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Time series: Backcasting
We may sometimes want to forecast a series back in time - this is known
as backcasting.
Let our dataset be of a quarterly retail trade index in the Euro area (17
countries), 1996-2011, covering wholesale and retail trade, and repair of
motor vehicles and motorcycles. (Index: 2005 = 100).
dt <- fpp::euretail
plot.ts(dt, xaxt = "n")
axis(side = 1, at = c(1996:2012), labels = 1996:2012)
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Assume that we want to create a forecast for 1995 : Q1− 1995 : Q4. To
do this, we note that while the ordering of a time series is important, the
direction of a series is less critical.

If our series is modelled via an ARMA(1, 1) process:

Yt = φ1Yt−1 + εt + θ1εt−1

which we can express for Yt−1 as:

Yt−1 = 1
φ1

Yt −
1
φ1
εt −

θ1
φ1
εt−1

i.e.:
Yt = 1/φ1Yt+1 − 1/φ1εt+1 − θ1/φ1εt

Similarly, think back to the AR(1) case wiwth |φ| > 1 - we had no trouble
expressing Yt as a function of future value Yt+1 and εt+1.

While the above expression is not useful in forecasting the future, it is
quite useful if we want to forecast backwards.



To see why, we can reverse the series:
rev_data <- rev(dt)
plot.ts(rev_data, xaxt = "n")
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Estimate a model:
suppressPackageStartupMessages({

library(forecast)
library(fma)

})
mdl <- auto.arima(rev_data)



And calculate the forecasts:
dt_forc <- forecast(mdl, h = 4)
plot(dt_forc)
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Note: We will learn about ARMA(p, d , q) models in later lectures.
So, for the initial (i.e. non-reversed) series, the predictions are:
dt_forc_mean <- ts(rev(dt_forc$mean), start = c(1995, 1), frequency = 4)
combined_ts <- ts(c(dt_forc_mean, dt),

start = start(dt_forc_mean), frequency = 4)



So, for the initial series, the predictions are:
plot.ts(combined_ts, xlim = c(1995, 2012),

ylim = c(min(dt_forc$lower[, "95%"], dt), 102))
polygon(c(time(dt_forc_mean), rev(time(dt_forc_mean))),

c(rev(dt_forc$lower[, "95%"]), dt_forc$upper[, "95%"]),
col = "grey95", border = NA)

polygon(c(time(dt_forc_mean), rev(time(dt_forc_mean))),
c(rev(dt_forc$lower[, "80%"]), dt_forc$upper[, "80%"]),
col = "grey80", border = NA)

lines(dt_forc_mean, col = "red", lwd = 2)
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Note that we need to reverse the series with rev() - both the mean forecast, as well as the lower an upper confidence intervals. Note that
to shade the area we have used polygon(), where the ordering of the data needed to be specified c(time(dt_forc_mean),
rev(time(dt_forc_mean))) (the upepr and lower intervals).



Time Series: Forecasting and Backcasting for missing data
Assume that we have the following logarithms of a monthly series, where
we see that a couple of years of data are missing:
data(airpass)
AP <- log(airpass)
AP <- ts(AP, start = c(1949, 1), freq = 12)
plot.ts(AP)
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For interests sake, assume that some of the data is missing - some near
the middle, and some near the end:
AP_missing <- AP
AP_missing[(12*3 + 1):(12*4)] <- NA
AP_missing[(12*10 + 1):(12*11)] <- NA
plot.ts(AP_missing)
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We see that we are missing some data - what do we do now?
I If we try to only use the most recent available data - we only have around a year’s

worth.
I If we try to only use the data in the middle - we do not have the most recent data.

Solution: Combine backcasting and forecasting!



We see that there a number of ways that we can begin - as we know from
cross-sectional data - the more data we have, the more accurate our
models (and their predictions). Furthermore, one we have the forecasts -
we have “bridged” the gap between our historical data with the expected
value and can now use more data for prediction. Hence we could employ a
number of different strategies:
I Strategy 1: Use the middle data to backcast and forecast the

missing series;
I Strategy 2: Use the middle data to backcast the missing series.

Then use the available historical data, including the predictions, to
forecast the missing series;

I Strategy 3: Use the middle data to forecast the missing series. Then
use the available historical data, including the predictions, to
backcast the missing series.

We will use the auto.arima(), the exponential smoothing ets()
methods, as well as a regression via OLS and compare the results for
Streategy 1. Other strategies may provide a similar fit for the missing
data in terms of accuracy (you should try the other methods and
verify this!).



Strategy 1: via auto.arima()

We take the middle of the data, which is not missing and create an
additional reverse of the series:
dt_middle <- ts(AP_missing[(12*4+1):(12*10)],

start = time(AP_missing)[(12*4+1)],
frequency = frequency(AP_missing))

dt_middle_rev <- ts(rev(dt_middle), start = start(dt_middle),
frequency = frequency(dt_middle))

It is very important that you specify the seasonal frequency
correctly. we then estimate two different models for the series and its
reverse:
mdl_arima_middle_frw <- auto.arima(dt_middle)
mdl_arima_middle_bck <- auto.arima(dt_middle_rev)

and calculate the forecasts:
middle_forc_arima_frw <- forecast(mdl_arima_middle_frw, h = 12)
middle_forc_arima_bck <- forecast(mdl_arima_middle_bck, h = 12)

To make plotting a bit easier, we will fill in the missing values with the forecasted mean
values:
AP_filled_arima <- AP_missing
AP_filled_arima[(12*10 + 1):(12*11)] <- middle_forc_arima_frw$mean
AP_filled_arima[(12*3 + 1):(12*4)] <- rev(middle_forc_arima_bck$mean)



plot(AP, col = "blue")
lines(AP_filled_arima, col = "red")
lines(AP_missing, col = "black")
legend("topleft",

legend = c("Historical", "True (and unobserved)", "Predicted"),
col = c("black", "blue", "red"), lwd = c(2, 1, 1))
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Strategy 1: via ets()

we use the exponential smoothing methods on the two different models for
the series and its reverse:
mdl_ets_middle_frw <- ets(dt_middle)
mdl_ets_middle_bck <- ets(dt_middle_rev)

and calculate the forecasts:
middle_forc_ets_frw <- forecast(mdl_ets_middle_frw, h = 12)
middle_forc_ets_bck <- forecast(mdl_ets_middle_bck, h = 12)

Finally, we fill the forecasts in place of the missing observations:
AP_filled_ets <- AP_missing
AP_filled_ets[(12*10 + 1):(12*11)] <- middle_forc_ets_frw$mean
AP_filled_ets[(12*3 + 1):(12*4)] <- rev(middle_forc_ets_bck$mean)



plot(AP, col = "blue")
lines(AP_filled_ets, col = "red")
lines(AP_missing, col = "black")
legend("topleft",

legend = c("Historical", "True (and unobserved)", "Predicted"),
col = c("black", "blue", "red"), lwd = c(2, 1, 1))
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The forecasts for the two separate parts are:
par(mfrow = c(1, 2))
plot(middle_forc_ets_frw)
plot(middle_forc_ets_bck)
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Note that the date is the same only for plotting convenience purposes.

The letters are for the Error-Trend-seasonality smoothing type. It appears that the best
model would be a Multiplicative for the error, an Additive for the trend, and a
Multiplicative for the seasonality.



What would happen if we forget to specify the frequency of our data?

print(head(dt_middle, 6))

## Jan Feb Mar Apr May Jun
## 1953 5.278115 5.278115 5.463832 5.459586 5.433722 5.493061
dt_middle_no_freq <- ts(c(dt_middle))
print(head(dt_middle_no_freq, 6))

## Time Series:
## Start = 1
## End = 6
## Frequency = 1
## [1] 5.278115 5.278115 5.463832 5.459586 5.433722 5.493061
bad_middle_forc_arima_frw <- forecast(auto.arima(dt_middle_no_freq), h = 12)
bad_middle_forc_arima_bck <- forecast(auto.arima(rev(dt_middle_no_freq)),h=12)
#
bad_middle_forc_ets_frw <- forecast(ets(dt_middle_no_freq), h = 12)
bad_middle_forc_ets_bck <- forecast(ets(rev(dt_middle_no_freq)), h = 12)

AP_filled_bad_1 <- AP_missing
AP_filled_bad_1[(12*10 + 1):(12*11)] <- bad_middle_forc_arima_frw$mean
AP_filled_bad_1[(12*3 + 1):(12*4)] <- rev(bad_middle_forc_arima_bck$mean)
#
AP_filled_bad_2 <- AP_missing
AP_filled_bad_2[(12*10 + 1):(12*11)] <- bad_middle_forc_ets_frw$mean
AP_filled_bad_2[(12*3 + 1):(12*4)] <- rev(bad_middle_forc_ets_bck$mean)



plot(AP_filled_bad_1, col = "red")
lines(AP_missing, col = "black")
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plot(AP_filled_bad_2, col = "red")
lines(AP_missing, col = "black")
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To reiterate: do NOT forget to specify the frequency of our data!
Otherwise, it some cases it may seem that neither ARIMA, nor exponential
smoothing are adequate, when all we needed to do was specify the correct
data frequency!



Strategy 1: via lm()
Firstly, we create the seasonal dummy variables:
tmp <- seasonaldummy(AP_missing)
print(head(tmp, 4))

## Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
## [1,] 1 0 0 0 0 0 0 0 0 0 0
## [2,] 0 1 0 0 0 0 0 0 0 0 0
## [3,] 0 0 1 0 0 0 0 0 0 0 0
## [4,] 0 0 0 1 0 0 0 0 0 0 0

Then the trend:
t = time(AP_missing)
print(head(t, 4))

## Jan Feb Mar Apr
## 1949 1949.000 1949.083 1949.167 1949.250

and combine into a single dataset:
dt <- data.frame(cbind(AP_missing, t, tmp))
colnames(dt) <- c("log_Y", "t", paste0("dm_", 1:ncol(tmp)))
print(head(dt, 4))

## log_Y t dm_1 dm_2 dm_3 dm_4 dm_5 dm_6 dm_7 dm_8 dm_9 dm_10 dm_11
## 1 4.718499 1949.000 1 0 0 0 0 0 0 0 0 0 0
## 2 4.770685 1949.083 0 1 0 0 0 0 0 0 0 0 0
## 3 4.882802 1949.167 0 0 1 0 0 0 0 0 0 0 0
## 4 4.859812 1949.250 0 0 0 1 0 0 0 0 0 0 0



Note that in lm() by default rows with NA values in the dependent and/or
the explanatory variables, are removed. This would mean that our
beginning and end of the series would be included.

To keep in line with the data used in auto.arima and ets, we will only
use the middle of the series.
From the previous lecture, we know that the logarithm of airpass for the
dependent variable, a quadratic trend and dummy variables provide the
best model fit.
dt_middle <- dt[(12*4+1):(12*10), ]

mdl_ols_middle_frw <- lm(log_Y ~ t + I(t^2)+.,
dt_middle[1:nrow(dt_middle), ])

mdl_ols_middle_bck <- lm(log_Y ~ t + I(t^2)+.,
dt_middle[rev(1:nrow(dt_middle)), ])

Note that for the regression case - we can predict in both directions!
Furthermore, since the data ordering does not matter for the regression -
both of our models are exactly the same!



round(coef(summary(mdl_ols_middle_frw)), 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -19843.4959 8000.9644 -2.4801 0.0161
## t 20.1803 8.1811 2.4667 0.0166
## I(t^2) -0.0051 0.0021 -2.4525 0.0172
## dm_1 0.0378 0.0276 1.3673 0.1768
## dm_2 -0.0150 0.0276 -0.5446 0.5881
## dm_3 0.1379 0.0276 5.0013 0.0000
## dm_4 0.1104 0.0276 4.0048 0.0002
## dm_5 0.1149 0.0275 4.1739 0.0001
## dm_6 0.2469 0.0275 8.9722 0.0000
## dm_7 0.3505 0.0275 12.7425 0.0000
## dm_8 0.3350 0.0275 12.1857 0.0000
## dm_9 0.1810 0.0275 6.5852 0.0000
## dm_10 0.0402 0.0275 1.4643 0.1485
## dm_11 -0.1061 0.0275 -3.8617 0.0003



round(coef(summary(mdl_ols_middle_bck)), 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -19843.4959 8000.9644 -2.4801 0.0161
## t 20.1803 8.1811 2.4667 0.0166
## I(t^2) -0.0051 0.0021 -2.4525 0.0172
## dm_1 0.0378 0.0276 1.3673 0.1768
## dm_2 -0.0150 0.0276 -0.5446 0.5881
## dm_3 0.1379 0.0276 5.0013 0.0000
## dm_4 0.1104 0.0276 4.0048 0.0002
## dm_5 0.1149 0.0275 4.1739 0.0001
## dm_6 0.2469 0.0275 8.9722 0.0000
## dm_7 0.3505 0.0275 12.7425 0.0000
## dm_8 0.3350 0.0275 12.1857 0.0000
## dm_9 0.1810 0.0275 6.5852 0.0000
## dm_10 0.0402 0.0275 1.4643 0.1485
## dm_11 -0.1061 0.0275 -3.8617 0.0003



An upside is that in order to calculate the predictions, we do not need to
create a new data matrix for the trend and seasonality!
dt_ols_predict <- predict(mdl_ols_middle_frw, newdata = dt)
dt_ols_predict <- ts(dt_ols_predict, start = start(AP_missing),

frequency = frequency(AP_missing))

plot(dt_ols_predict, col = "red")
lines(AP_missing)
legend("topleft", legend = c("Actual", "Predicted (via OLS)"),

lty = 1, col = c("black", "red"))
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Or, keeping only the missing data predictions:
AP_filled_ols <- AP_missing
AP_filled_ols[is.na(AP_filled_ols)] <- dt_ols_predict[is.na(AP_filled_ols)]

plot(AP, col = "blue")
lines(AP_filled_ols, col = "red")
lines(AP_missing, lwd = 2)
legend("topleft",

legend = c("Historical", "True (and unobserved)", "Predicted"),
col = c("black", "blue", "red"), lwd = c(2, 1, 1))
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Comparing the results
plot(AP, col = "blue")
lines(AP_filled_arima, col = "red", lty = 2)
lines(AP_filled_ets, col = "darkgreen", lty = 2)
lines(AP_filled_ols, col = "darkorange", lty = 2)
lines(AP_missing, lwd = 2)
legend("topleft",

legend = c("Historical", "True (and unobserved)", "ARIMA", "ETS", "OLS"),
col = c("black", "blue", "red", "darkgreen", "darkorange"),
lwd = c(2, 1, 1, 1), lty = c(1, 1, 2, 2, 2))
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Visually, it is difficult to say which method is superior.



The errors for the missing data:
err_arima <- (AP - AP_filled_arima)[is.na(AP_missing)]
err_ets <- (AP - AP_filled_ets)[is.na(AP_missing)]
err_ols <- (AP - AP_filled_ols)[is.na(AP_missing)]

Can be used to calculate the:
I Mean absolute error (MAE):

MAE = 1
T

T∑
t=1
|Yt − Ŷt |

I Mean absolute percentage error (MAPE):

MAPE = 1
T

T∑
t=1

∣∣∣∣Yt − Ŷt
Yt

∣∣∣∣
I Mean absolute scaled error (MASE):

MASE = 1
T

T∑
t=1

|Yt − Ŷt |
1

T − 1
∑T

t=2 |Yt − Yt−1|



MAE <- data.frame(ARIMA = mean(abs(err_arima)), ETS = mean(abs(err_ets)),
OLS = mean(abs(err_ols)))

print(MAE)

## ARIMA ETS OLS
## 1 0.1121146 0.05741011 0.04000328
MAPE <- data.frame(ARIMA = mean(abs(err_arima / AP[is.na(AP_missing)])),

ETS = mean(abs(err_ets / AP[is.na(AP_missing)])),
OLS = mean(abs(err_ols / AP[is.na(AP_missing)])))

print(MAPE)

## ARIMA ETS OLS
## 1 0.01991718 0.01010996 0.00723825
denom <- mean(abs(diff(AP[is.na(AP_missing)])))
MASE <- data.frame(ARIMA = mean(abs(err_arima) / denom),

ETS = mean(abs(err_ets) / denom),
OLS = mean(abs(err_ols) / denom))

print(MASE)

## ARIMA ETS OLS
## 1 0.9568328 0.4899616 0.3414046

From the above accuracy measures we see that the OLS model provides
a better fit for the missing data (we can also see a simialr result from
the plot, though it is not quite as clear).



Question: Would the previous methods give the same results in terms of
accuracy if there are no clear seasonal patterns and the random shocks
have a more pronounced effect (and some of the data would be missing)?
soi <- astsa::soi
plot(soi, main = "Southern Oscillation Index, monthly data")
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Answer: It is likely that a SARMA model, in combination with OLS or
ETS, may prove useful, if the shocks are autocorrelated. Other methods
for replacing missing data include EM and MICE and others.

https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
https://towardsdatascience.com/stop-using-mean-to-fill-missing-data-678c0d396e22
http://imaging.mrc-cbu.cam.ac.uk/statswiki/FAQ/emalgm?action=AttachFile&do=get&target=graham.pdf


Takeaway

The key takeaway is:
I There are no universal methods, which would be best suited to all

problems;
I It is vital to know the frequency of the series - the automated

procedures may fail in case of seasonality effects;
I OLS can be succesfully applied to time series data and in some cases

be superior to ARIMA and exponential smoothing methods, or at
least when compared to the automated model selection procedures.


