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Time series with deterministic components
Up until now we assumed our time series is generated by a stationary
process - either a white noise, an autoregressive, a moving-average or an
ARMA process.

However, this is not usually the case with real-world data - they are often
governed by a (deterministic) trend and they might have (deterministic)
cyclical or seasonal components in addition to the irregular/remainder
(stationary process) component:
I Trend component - a long-term increase or decrease in the data

which might not be linear. Sometimes the trend might change
direction as time increases.

I Cyclical component - exists when data exhibit rises and falls that
are not of fixed period. The average length of cycles is longer than
the length of a seasonal pattern. In practice, the trend component is
assumed to include also the cyclical component. Sometimes the trend
and cyclical components together are called as trend-cycle.

I Seasonal component - exists when a series exhibits regular
fluctuations based on the season (e.g. every month/quarter/year).
Seasonality is always of a fixed and known period.

I Irregular component - a stationary process.
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In order to remove the deterministic components, we can decompose our
time series into separate stationary and deterministic components.



Time series decomposition
The general mathematical representation of the decomposition approach:

Yt = f (Tt ,St ,Et)

where
I Yt is the time series value (actual data) at period t;
I Tt is a deterministic trend-cycle or general movement component;
I St is a deterministic seasonal component
I Et is the irregular (remainder or residual) (stationary) component.

The exact functional form of f (·) depends on the decomposition method
used.



Trend Stationary Time Series
A common approach is to assume that the equation has an additive form:

Yt = Tt + St + Et

Trend, seasonal and irregular components are simply added together to
give the observed series.
Alternatively, the multiplicative decomposition has the form:

Yt = Tt · St · Et

Trend, seasonal and irregular components are multiplied together to give
the observed series.



In both additive and multiplicative cases the series Yt
is called a trend stationary (TS) series.

This definition means that after removing the deterministic part from a TS
series, what remains is a stationary series.

If our historical data ends at time T and the process is additive, we can
forecast the deterministic part by taking T̂T+h + ŜT+h, provided we
know the analytic expression for both trend and seasonal parts and
the remainder is a WN .

(Note: time series can also be described by another, difference stationary
(DS) model, which will be discussed in a later topic)
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Additive or multiplicative?
I An additive model is appropriate if the magnitude of the seasonal

fluctuations does not vary with the level of time series;
I The multiplicative model is appropriate if the seasonal fluctuations

increase or decrease proportionally with increases and
decreases in the level of the series.

Multiplicative decomposition is more prevalent with economic series
because most seasonal economic series do have seasonal variations which
increase with the level of the series.

Rather than choosing either an additive or multiplicative decomposition,
we could transform the data beforehand.



Transforming data of a multiplicative model
Very often the transformed series can be modeled additively when the
original data is not additive. In particular, logarithms turn a multiplicative
relationship into an additive relationship:
I if our model is

Yt = Tt · St · Et

I then taking the logarithms of both sides gives us:

log(Yt) = log(Tt) + log(St) + log(Et)

So, we can fit a multiplicative relationship by fitting a more convenient
additive relationship to the logarithms of the data and then to move back
to the original series by exponentiating.



Determining if a time series has a trend component
One can use ACF to determine if a time series has a a trend. Some
examples by plotting time series with a larger trend (by increasing the
slope coefficient): Yt = α · t + εt

Slope coef. = 0
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a non-stationary series with a constant variance and a non-constant mean.
The more pronounced the trend, the slower the ACF declines.



Determining if a time series has a seasonal component
We can use the ACF to determine if seasonality is present in a time series.
For example, Yt = γ · St + εt .

Simulation of Yt = St + Et
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Determining if a time series has a seasonal component
Some examples of more pronounced seasonality:

γ = 1
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γ = 0.25
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The larger the amplitude of seasonal fluctuations, the more pronounced
the oscillations are in the ACF.



Determining if a time series has both a trend and seasonal
component
For a Series with both a Trend and a Seasonal component:
Yt = Trt + St + εt

Simulation of Yt = 0.2*Trt + St + Et
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forecast::Acf(z, lag.max = 36)
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The ACF exhibits both a slow decline and oscillations.



Basic Steps in Decomposition (1)

1. Estimate the trend. Two approaches:
I Using a smoothing procedure;
I Specifying a regression equation for the trend;

2. De-trending the series:
I For an additive decomposition, this is done by subtracting the trend

estimates from the series;
I For a multiplicative decomposition, this is done by dividing the series

by the estimated trend values.
3. Estimating the seasonal factors from the de-trended series:

I Calculate the mean (or median) values of the de-trended series for
each specific period (for example, for monthly data - to estimate the
seasonal effect of January - average the de-trended values for all
January values in the series etc);

I Alternatively, the seasonal effects could also be estimated along with
the trend by specifying a regression equation.

The number of seasonal factors is equal to the frequency of the series
(e.g. monthly data = 12 seasonal factors, quarterly data = 4, etc.).



Basic Steps in Decomposition (2)
4. The seasonal effects should be normalized:

I For an additive model, seasonal effects are adjusted so that the
average of d seasonal components is 0 (this is equivalent to their sum
being equal to 0);

I For a multiplicative model, the d seasonal effects are adjusted so that
they average to 1 (this is equivalent to their sum being equal to d);

5. Calculate the irregular component (i.e. the residuals):
I For an additive model Êt = Yt − T̂t − Ŝt

I For a multiplicative model Êt = Yt

T̂t · Ŝt
;

6. Analyze the residual component. Whichever method was used to
decompose the series, the aim is to produce stationary residuals.

7. Choose a model to fit the stationary residuals (e.g. see ARMA
models).

8. Forecasting can be achieved by forecasting the residuals and
combining with the forecasts of the trend and seasonal components.



Estimating the trend, Tt
There are various ways to estimate the trend Tt at time t but a relatively
simple procedure which does not assume any specific form of Tt is to
calculate a moving average centered on t.

A moving average is an average of a specific number of time series values
around each value of t in the time series, with the exception of the first
few and last few terms (this procedure is available in R with the
decompose function). This method smooths the time series.

The estimation depends on the seasonality of the time series:
I If the time series has no seasonal component;
I If the time series contains a seasonal component;

Smoothing is usually done to help us better see patterns (like the trend) in
the time series by smoothing out the irregular roughness to see a clearer
signal. For seasonal data, we might smooth out the seasonality so that we
can identify the trend.



Estimating Tt if the time series has no seasonal component
In order to estimate the trend, we can take any odd number, for example,
if l = 3, we can estimate an additive model:

T̂t = Yt−1 + Yt + Yt+1
3 , (two-sided averaging)

T̂t = Yt−2 + Yt−1 + Yt
3 , (one-sided averaging)

In this case, we are calculating the averages, either:
I centered around t - one element to the left (past) and one element to

the right (future),
I or alternatively - two elements to the left of t (past values at t − 1

and t − 2).



Estimating Tt if the time series contains a seasonal component
If the time series contains a seasonal component and we want to average
it out, the length of the moving average must be equal to the seasonal
frequency (for monthly series, we would take l = 12). However, there is
a slight hurdle.

Suppose, our time series begins in January (t = 1) and we average up to
December (t = 12). This averages corresponds to a time t = 6.5 (time
between June and July).

When we come to estimate seasonal effects, we need a moving average at
integer times. This can be achieved by averaging the average of January
to December and the average of February (t = 2) up to January (t = 13).
This average of the two moving averages corresponds to t = 7 and the
process is called centering.



Thus, the trend at time t can be estimated by the centered moving
average:

T̂t = (Yt−6 + ...+ Yt+5)/12 + (Yt−5 + ...+ Yt+6)/12
2

= (1/2)Yt−6 + Yt−5...+ Yt+5 + (1/2)Yt+6
12

where t = 7, ...,T − 6.

By using the seasonal frequency for the coefficients in the moving average,
the procedure generalizes for any seasonal frequency (i.e. quarterly, weekly,
etc. series), provided the condition that the coefficients sum up to unity is
still met.



Estimating the seasonal component, St
An estimate of St at time t can be obtained by subtracting T̂t :

Ŝt = Yt − T̂t

By averaging these estimates of the monthly effects for each month
(January, February etc.), we obtain a single estimate of the effect for each
month. That is, if the seasonality period is d , then:

St = St+d

Seasonal factors can be thought of as expected variations from trend
throughout a seasonal period, so we would expect them to cancel each
other out over that period - i.e., they should add up to zero.

d∑
t=1

St = 0

Note that this applies to the additive decomposition.



Estimating the seasonal component, St
If the estimated (average) seasonal factors S̃t do not add up to zero, then
we can correct them by dividing the sum of the seasonal estimates by the
seasonality period and adjusting each seasonal factor. For example, if the
seasonal period is d , then:

1. Calculate the total sum:
∑d

t=1 S̃t

2. Calculate the value w =
∑d

t=1 S̃t

d

3. Adjust each period Ŝt = S̃t − w

Now, the seasonal components add up to zero:
∑d

t=1 Ŝt = 0.



It is common to present economic indicators such as unemployment
percentages as seasonally adjusted series.

This highlights any trend that might otherwise be masked by seasonal
variation (for example, to the end of the academic year, when schools and
university graduates are seeking work).

If the seasonal effect is additive, a seasonally adjusted series is given by
Yt − Ŝt .

The described moving-average procedure usually
quite successfully describes the time series in question,
however it does not allow to forecast it.



Remark
To decide upon the mathematical form of a trend, one must first draw the
plot of the time series.

If the behavior of the series is rather ‘regular’, one can choose a parametric
trend - usually it is a low order polynomial in t, exponential, inverse or
similar functions.

The most popular method to estimate the coefficients of the chosen
function is OLS, however, the form could also be described by certain
computational algorithms (one of which will be presented later on).

In any case, the smoothing method is acceptable if the residuals
ε̂t = Yt − T̂t − Ŝt constitute a stationary process.



If we have a few competing trend specifications, the best one can be chose
by AIC, BIC or similar criterions.

An alternative approach is to create models for all but some T0 end
points and then choose the model whose forecast fits the original data
best. To select the model, one can use such characteristics as:
I Root Mean Square Error:

RMSE =

√√√√ 1
T0

T∑
t=T−T0

ε̂2t

I Mean Absolute Percentage Error:

MAPE = 100
T0

T∑
t=T−T0

∣∣∣∣ ε̂tYt

∣∣∣∣
and similar statistics.



The Global Methods of Decomposition and Forecasting -
OLS

The OLS method estimates the coefficients of, say, quadratic trend:

Yt = β0 + β1t + β2t2 + εt

by minimizing:

RSS(β0, β1, β2) =
T∑

t=1
(Yt − (β0 + β1t + β2t2))2

Note that if the value of the last YT for whatever reason deviates much
from the trend - this may considerably change the estimates β̂0, β̂1 and β̂2
and, therefore, the fitted values of the first Ŷ1.

This is why we term the method global. One local method which little
alters the estimate of Y1, following a change in a remote YT , will be
examined in the next section.



Example
We shall examine the number of international passenger bookings (in
thousands) per month on an airline in the US, 1949:1 - 1960:12. We shall
create three models:

I Model 1: APt = β0 + β1t + β2t2 + εt ;

I Model 2: APt = β0 + β1t + β2t2 + γ1dm1t + ...+ γ11dm11t + εt ;

I Model 3: logAPt = β0 + β1t + β2t2 + γ1dm1t + ...+ γ11dm11t + εt ;

where t = 1, ..., 144 is for the trend, dm1 is the dummy variable for the 1st
month, dm2 - second month etc.

Recall that in order to avoid the dummy variable trap, we have to exclude
one dummy variable (in this case, we exclude dm12) from our regression
models.



suppressPackageStartupMessages({
library(forecast)
library(fma)

})
data(airpass)
AP <- airpass
AP <- ts(AP, start = c(1949, 1), freq = 12)
tsdisplay(AP)
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We need to create the additional variables:
t = time(AP)
AP <- data.frame(AP, t)
for(j in 1:11){

val <- j + 12 *(0:(nrow(AP)/12))
val <- val[val < nrow(AP)]
tmp <- rep(0, times = nrow(AP))
tmp[val] <- 1
AP <- cbind(AP, tmp)

}
colnames(AP) <- c("AP", "t", paste0("dm", 1:11))
AP <- ts(AP, start = c(1949, 1), freq = 12)

Note: alternatively, when dealing with time series data, we can use
seasonaldummy() function to generate the seasonal dummies of our data.



We will now estimate the separate models:
AP.lm1 = lm(AP ~ t + I(t^2), data = AP)
AP.lm2 = lm(AP ~ t + I(t^2) +., data = AP)
AP.lm3 = lm(log(AP) ~ t + I(t^2) +., data = AP)

You can view the summary statistics of each model with the summary
function.



We can now View the resulting models using the fitted function:
plot(AP[,"AP"], main = "Model 1", type = "l", ylab = "AP",

col = "red")
lines(ts(fitted(AP.lm1), start = c(1949, 1), freq = 12),

col = "blue")

Model 1

Time

A
P

1950 1952 1954 1956 1958 1960

10
0

20
0

30
0

40
0

50
0

60
0

While the first model does capture the trend quite well, it does not capture
the seasonal fluctuations.



Model 2
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The second model attempts to capture the seasonal effect, however, it is
captured in the wrong way - in the historic data, the seasonal fluctuations
increase together with the level, but in the fitted values they don’t. It
appears that the actual data might be better captured via a multiplicative
model.



To correct for multiplicativity, we created the last model for logarithms.
plot(log(AP[,"AP"]), main = "Model 3", type = "l",

ylab = "log(AP)", col = "red")
lines(ts(fitted(AP.lm3), start = c(1949, 1), freq = 12),

col = "blue")
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Note: we also need to check if the residuals are WN. Otherwise, we need
to specify a different model or a separate model for the stationary residuals.



To get the fitted values for the original time series instead of the logarithm,
we can take the exponent of the fitted values:
plot(AP[,"AP"], main = "Model 3", type = "l",

ylab = "AP", col = "red")
lines(ts(exp(fitted(AP.lm3)), start = c(1949, 1), freq = 12),

col = "blue")
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If we want, we can forecast the data:
new.dt <- data.frame(t = seq(1960, by = 1/12,

length.out = 24))
for(j in 1:11){

val <- j + 12 *(0:(nrow(new.dt)/12))
val <- val[val < nrow(new.dt)]
tmp <- rep(0, times = nrow(new.dt))
tmp[val] <- 1
new.dt <- cbind(new.dt, tmp)

}
colnames(new.dt) <- c("t", paste0("dm", 1:11))
AP.lm3.forc <- predict(AP.lm3, new.dt)
AP.lm3.forc <- ts(AP.lm3.forc,

start = 1960, freq = 12)



plot(AP[,"AP"], main = "Model 3 forecast", type = "l",
ylab = "AP", col = "red",
xlim = c(1949, 1962), ylim = c(100, 700))

lines(exp(AP.lm3.forc), col = "blue")
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One Local Method of Decomposition and Forecasting

We will present a short introduction to exponential smoothing.

Exponential smoothing is a technique that can be applied to times series
data, either to produce smoothed data for presentation, or to make
forecasts.

Exponential smoothing and ARIMA models are the two most widely-used
approaches to time series forecasting, and provide complementary
approaches to the problem.

While ARIMA models aim to describe the autocorrelations in the data,
exponential smoothing models are based on a description of the trend and
seasonality in the data.

We will examine three types of Exponential Smoothing:
I Single (i.e. simple)
I Double
I Triple

https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm
https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc433.htm
https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm


Simple Exponential Smoothing
This method is suitable for forecasting data with no clear trend or seasonal
pattern.
We state the exponential smoothing procedure as an algorithm for
converting the observed series Yt into a smoothed series Ŷt , t = 1, ...,T
and forecasts ŶT+h,T :
1. Initialize at t = 1: Ŷ1 = Y1;
2. Update: Ŷt = αYt−1 + (1− α)Ŷt−1, t = 2, ...,T ;
3. Forecast: ŶT+h,T = ŶT , h = 1, 2, ....

We call Ŷt the estimate of the level at time t. The smoothing parameter
α is in the unit interval, α ∈ [0, 1].
The smaller α is, the smoother the estimated level. As α approaches 0,
the smoothed series approaches constancy, and as α approaches 1, the
smoothed series approaches point-by-point interpolation.
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Typically, the more observations we have per unit of calendar time, the
more smoothing we need - we would smooth weekly data more than
quarterly data. There is no substitute, however, for a trial-and-error
approach involving a variety of values of the smoothing parameter.



Double Exponential Smoothing - Holt’s Linear Method
Now imagine that we have not only a slowly evolving local level, but also a
trend with a slowly evolving local slope. Then the optimal smoothing
algorithm is as follows:
1. Initialize at t = 2: Ŷ2 = Y2, F2 = Y2 − Y1;
2. Update:

Ŷt = αYt + (1− α)(Ŷt−1 + Ft−1), 0 < α < 1;

Ft = β(Ŷt − Ŷt−1) + (1− β)Ft−1, 0 < β < 1, t = 3, ...,T ;

3. Forecast: ŶT+h,T = ŶT + hFT .
where Ŷt is the estimated, or smoothed, level at time t and Ft is the
estimated slope at time t.
The parameter α controls smoothing of the level and β controls smoothing
of the slope.
The h-step ahead forecast simply takes the estimated level at time T and
augments it with h times the estimated slope at time T .



Triple Exponential Smoothing - Holt-Winters’ Method
I If the data has no trend or seasonal patterns, then the simple

exponential smoothing is appropriate;
I If the data exhibits a linear trend, then Holt’s linear method is

appropriate;
I However, if the data is seasonal, these methods on their own cannot

handle the problem well.
A method known as Holt-Winters method is based on three smoothing
equations:
I Level (overall) smoothing;
I Trend smoothing;
I Seasonality smoothing.

It is similar to Holt’s linear method, with one additional equation dealing
with seasonality.



Example
The ets function from the forecast package represents a fully
automated procedure (the best model is elected according to its AIC)
based on the exponential moving average filter.
As an example, we shall smooth the data of accidental deaths in the US in
1973-1978:
data(USAccDeaths)
US.ad <- ets(USAccDeaths)
plot(US.ad)
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par(mfrow = c(1,2))
plot(USAccDeaths,

main = "Accidental Deaths in the US 1973-1978")
plot(forecast(US.ad), include = 36)
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tsdisplay(US.ad$residuals, main = "Residuals")
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Recall that this decomposition is valid only if the irregular part (residuals)
of our model make a stationary process. In this case, the residuals seem to
form a stationary process.



Remark

The h-step ahead forecast of an additive TS time series
Yt = Tt + St + Et , t = 1, ...,T is given by:
YT+h,T ,T = T̂T+h + ŜT+h, provided Et is a WN process.
If the residuals Êt constitute a more complicated stationary process
(AR, MA, ARMA etc.), the forecast should take into account
their structure.

There are many more R functions for decomposition and/or smoothing:
StructTS, decompose, stl, tsSmooth, ts, ma, ses, lowess, etc.
However, most of them do not allow to forecast the series under
consideration.



Combining Different Decomposition Methods

We can also combine the moving average with these methods:

1. Evaluate the trend, T̂t via moving average smoothing method;

2. Estimate and normalize the seasonal factors, Ŝt , from the de-trended
series;

3. Deseasonalize the data by removing the seasonal component from the
series only (i.e. do not remove the trend component from the series):
Ỹt = Yt − Ŝt ;

4. Re-estimate the trend, T̂ (2)
t , from the deseasonalized data using

either a (polynomial) regression, exponential smoothing, or any other
method, which allows forecasting the trend;

5. Analyse the residuals Êt = Yt − Ŝt − T̂ (2)
t - verify that they are

stationary and specify their model (if needed).

6. Forecast the series ŶT+h. Remember that Ŝt = Ŝt+d means that we
can always forecast the seasonal component.



Differencing to de-trend a series
Instead of attempting to remove the noise by smoothing the series or
estimating an OLS regression, we can attempt to eliminate the trend by
differencing:

∇Xt = Xt − Xt−1 = (1− L)Xt

∇kXt = ∇k−1(Xt − Xt−1) = ∇k−1Xt −∇k−1Xt−1 = ...

If our time series is a linear function: Yt = β0 + β1 · t + εt
Then the differenced series does not have the trend:

∇Yt = β1 · t − β1 · (t − 1) + εt − εt−1 = β1 +∇εt
In the same way, any polynomial trend of degree k can be removed by
applying the operator ∇k .
In practice, the order k to remove the trend is often quite small k = 1, 2.
It should be noted that by differencing the data, we are reducing our
sample size. The interpretation also changes, since we are now working
with differences, rather than levels of Yt .



Differencing to de-seasonalize a series
If our time series contains a seasonal component (and a trend):

Yt = β0 + β1 · t + St + εt , St = St+d

Then, if we define our difference operator as:

∇dXt = Xt − Xt−d = (1− Ld )Xt

∇k
dXt = ∇k−1

d (Xt − Xt−d ) = ∇k−1
d Xt −∇k−1

d Xt−d = ...

Then the differenced series does not have a seasonal component:

∇dYt = β1 · t − β1 · (t − d) + St − St−d + εt − εt−d = β1 · d +∇dεt

Usually k = 1 is sufficient to remove seasonality. Note that we have also
removed the trend and instead have a constant β1 · d , although we may
need to apply both a non-seasonal first difference and a seasonal difference
if we want to completely remove the trend and seasonality.
Our data interpretation is also different since we are now working with
period-differences of the series, ∇dYt , instead of the levels Yt .



Seasonal ARMA models
The seasonal ARIMA model incorporates both non-seasonal and seasonal
factors in a multiplicative model: SARIMA(p, d , q)(P,D,Q)S .

For now, we will restrict our analysis to non-differenced data SARMA
models (i.e. d = 0 and D = 0), where p, q are the ARMA orders of the
non-seasonal components and P,Q are the ARMA orders of the seasonal
components.

For example, our series could be described as a seasonal (e.g. quarterly)
process:

Yt = ΦYt−1 + wt + Θwt−4

while our shocks wt could also be a non-seasonal MA process:

wt = εt + θεt−1

So, while the seasonal term is additive, the combined model is
multiplicative:

Yt = ΦYt−1 + wt + Θwt−4

= ΦYt−1 + εt + θεt−1 + Θεt−4 + θΘεt−5



We can write the general model formally as:

Φ(LS)φ(L)(Yt − µ) = Θ(LS)θ(L)εt

where φ(z) = 0,∀|zi | > 1 and Φ(z) = 0,∀|zj | > 1, and:
I The non-seasonal components are:

AR: φ(L) = 1− φ1L− ...− φpLp

MA: θ(L) = 1 + θ1L + ...+ θqLq

I The seasonal components are:

Seasonal AR: Φ(LS) = 1− Φ1LS − ...− ΦpLS·P

Seasonal MA: Θ(LS) = 1 + Θ1LS + ...+ ΘqLS·Q

Note that on the left side of equation the seasonal and non-seasonal AR
components multiply each other, and on the right side of equation the
seasonal and non-seasonal MA components multiply each other.



For example, a SARIMA(1, 0, 1)(0, 0, 1)12 model could be written:

(1− φL)Yt = (1 + θL) · (1 + ΘL12)εt
(1− φL)Yt = (1 + θL + ΘL12 + θΘL12+1)εt

Yt = φYt−1 + εt + θεt−1 + Θεt−12 + θΘεt−13

where φ = 0.4, θ = 0.2 and Θ = 0.5.

Generated Y ~ SARIMA(1,0,1)x(0,0,1)[12]
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There is seasonality, but no trend.



Examine the ACF and PACF of the data:
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Overall, both ACF and PACF plots seem to be declining - a possible
ARMA(1, 1) model for the non-seasonal model component.

From the ACF plot - the first 12th lag is significant and every other 12th
lag (24, 36, etc.) is not (i.e. seasonal cut-off after the first period lag).
From the PACF plot - the 12th, 24th, 36th, etc. lags are declining. Also
note the 13th lag, εt−13. This means that the seasonality could be a
MA(1) model.



seas_mdl <- Arima(Y,
order = c(1, 0, 1),
seasonal = list(order = c(0, 0, 1), period = 12),
include.mean = FALSE)

seas_mdl

## Series: Y
## ARIMA(1,0,1)(0,0,1)[12] with zero mean
##
## Coefficients:
## ar1 ma1 sma1
## 0.4148 0.1870 0.4802
## s.e. 0.1369 0.1432 0.0902
##
## sigma^2 estimated as 0.7888: log likelihood=-156.28
## AIC=320.56 AICc=320.91 BIC=331.71

Our estimated model coefficients are: φ̂ = 0.4919, θ̂ = 0.2058 and
Θ̂ = 0.4788. Note Y is a ts() object, i.e. Y <- ts(Y, freq = 12).



In comparison, the auto.arima suggests a slightly different ARMA model:
capture.output(summary(seas_mdl_auto <- auto.arima(Y)))[2]

## [1] "ARIMA(2,0,0)(0,0,1)[12] with zero mean "
plot.ts(Y, lwd = 1)
lines(fitted(seas_mdl), col = "red", lty = 2)
lines(fitted(seas_mdl_auto), col = "blue", lty = 2)
legend(x = 1, y = 3, c("actual", "fitted", "fitted_auto"),

col = c("black", "red", "blue"), lty = c(1, 2, 2), cex = 0.7)
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Residuals of SARIMA model
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From the ACF and PACF plots the manually specified
SARIMA(1, 0, 1)(0, 0, 1)12 model residuals are very close to the
SARIMA(2, 0, 0)(0, 0, 1)12 residuals from the auto.arima function.



Example: SARIMA(0, 0, 1)(0, 0, 1)12 model

Yt = (1 + θL) · (1 + ΘL12)εt ⇐⇒ Yt = (1 + θL + ΘL12 + θΘL12+1)εt
⇐⇒ Yt = εt + θεt−1 + Θεt−12 + θΘεt−13

where θ = 0.7 and Θ = 0.6.
Note that:

Yt−11 = εt−11 + θεt−12 + Θεt−23 + θΘεt−24
Yt−12 = εt−12 + θεt−13 + Θεt−24 + θΘεt−25
Yt−13 = εt−13 + θεt−14 + Θεt−25 + θΘεt−26

which means that the covariance between Yt and Yt−11 is non-zero:

Cov(Yt ,Yt−11)
= Cov (εt + θεt−1 + Θεt−12 + θΘεt−13, εt−11 + θεt−12 + Θεt−23 + θΘεt−24)
= Cov (Θεt−12, θεt−12) = Θθ · σ2 6= 0

It can also be shown that Cov(Yt ,Yt−12) 6= 0, Cov(Yt ,Yt−13) 6= 0 and
the remaining terms, like Cov(Yt ,Yt−10) = Cov(Yt ,Yt−14) = 0.



SARIMA(0, 0, 1)(0, 0, 1)_[12]

0 20 40 60 80 100

−
4

−
2

0
2

4

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4

Lag

A
C

F

0 5 10 15 20 25 30 35

−
0.

2
0.

0
0.

2
0.

4

Lag

PA
C

F

I the spikes at lags 1, 11, 12 and 13 in the ACF. Remember that the
feature of a moving-average process - ACF has a sharp cutoff;

I this model has non-seasonal and seasonal MA terms, so the PACF
tapers nonseasonally, following lag 1, and tapers seasonally that is
near lag = 12, and again near lag = 2*12=24 and so on.



Example: SARIMA(1, 0, 0)(1, 0, 0)12 model

(1− ΦL12)(1− φL)Yt = εt ⇐⇒ (1− φL− ΦL12 + φΦL13)Yt = εt

⇐⇒ Yt = φYt−1 + ΦYt−12 − φΦYt−13 + εt

where φ = 0.6 and Φ = 0.5.
SARIMA(1, 0, 0)(1, 0, 0)_[12]
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I there are distinct spikes at lags 1, 12 and 13 in the PACF.
Remember that the feature of an autoregressive process - PACF has
a sharp cutoff.



Revisiting Time Series Smoothing

In some cases, linear regression cannot clarify relationships between
variables and cannot detect the trend of a data series. For this reason, we
can apply other regression methods in statistics.

A smoother is a function or procedure for drawing a smooth curve through
a scatter diagram. Similarly to linear regression (in which the “curve” is a
straight line), the smooth curve is drawn in such a way as to have some
desirable properties.

In general, the properties are that:
I the curve is indeed smooth;
I locally, the curve minimizes the variance of the residuals, or prediction

error.

Depending on the method, we can either attempt to specify the function
ourselves to control the degree of smoothing (e.g. moving average, single
or double exponential smoothing), or we can estimate the optimal
parameters (e.g. Holt-Winters exponential smoothing).



I The SOI measures changes in air pressure, related to sea surface temperatures in the central Pacific Ocean.
I The central Pacific warms every three to seven years due to the El Niño effect, which has been blamed for various global extreme

weather events.
I Periodic behavior is of interest because underlying processes of interest may be regular and the rate or frequency of oscillation

characterizing the behavior of the underlying series would help to identify them.

Southern Oscillation Index, monthly data
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I Do you notice any trends in the data?
I Do you notice any seasonalities in the data?
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Looking at the above plots, think about the differences between:
I An autoregressive process with oscillating ACF

(e.g. Yt = 1.5 · Yt−1 − 0.9 · Yt−2 + εt);
I An ACF of a SARMA model;
I An ACF of a process with a seasonal component;
I An ACF of a process with a Trend component;



Additional Time Series Smoothing Methods
Previously we discussed using a moving average smoothing method, which
is useful for discovering certain traits in a time series, such as trend
and/or seasonal components.

Southern Oscillation Index, monthly data
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While the moving average seems to work quite well, it appears to be too
choppy. We can obtain a smoother fit using the normal distribution
for the weights



MA smoothing residuals
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Since we have eliminated the trend component - the seasonality is more
pronounced in the residuals.



Kernel smoothing
Kernel smoothing - a moving average smoothing method that uses a
kernel as the weight function to average the observations.

T̂t =
T∑

i=1
wi (t)Yi , wi (t) = K

(
t − i
b

)/ T∑
j=1

K
(
t − j
b

)

where K (·) is a kernel function. This estimator is often called the
Nadaraya-Watson estimator.

Southern Oscillation Index, monthly data
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Typically, the normal kernel K (z) = 1√
2π

exp
(
−z2/2

)
is used.



Kernel smoothing residuals
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Since we have eliminated the trend component - the seasonality is more
pronounced in the residuals.



Lowess Smoothing
Another approach to smoothing a time plot is the so called nearest
neighbor regression.
I The technique is based on k-nearest neighbors (k − NN) regression,

where we use only data points in the vicinity of Yt – namely
Yt−k/2, ...,Yt , ...,Yt+k/2 – and predict Yt via regression, then set
T̂t = Ŷt .

I The locally weighted scatterplot smoothing (LOWESS) method
makes no assumptions about the form of the relationship, and allows
the form to be discovered using the data itself.

(Note: the next slide will have a general outline of the process - try to get
the basic idea behind it.)



The basic idea of LOWESS is close to the nearest neighbor regression (see here
and here):

I start with a local polynomial (i.e. k − NN) least squares fit and then to use
robust methods to obtain the final fit. Specifically, one can first fit a
polynomial regression in a neighborhood of Yt :

1
T

T∑
i=1

Wk,i (Yt)

(
Yi −

p∑
j=0

βjY j
t

)2

−→ min
β0,...,βp

where Wk,i (Yt) are the k − NN weights:

Wk,i (Yt) = Tri
(Yi − Yt

h

)
where h is the k-th smallest distance |Yi − Yt |, i = 1, ...,T and
Tri(x) = (1− |x |3)3 if |x | < 1 and Tri = 0 otherwise.

I Calculate the residuals ε̂t and the scale parameter σ̂ = Median(ε̂t);

I Define robustness weights δi = K
(
ε̂i

6σ̂

)
, where K(u) = (15/16)(1− u)2,

if |u| ≤ 1 and K(u) = 0 otherwise.
I Use δi Wk,i (Yt) instead of Wk,i (Yt) and estimate new parameters β̂0, ..., β̂p ;
I Repeat the process a predefined number of times.

Recommended to use p = 1 for computational efficiency. Note that we sometimes use f (or λ), which is often expressed as a fraction,
or span k/T of the total sample T .

https://vsp.pnnl.gov/help/vsample/LOWESS_Plot.htm
https://www.ime.unicamp.br/~dias/loess.pdf


The larger the fraction of nearest neighbors included, the smoother the fit
will be.

Southern Oscillation Index, monthly data
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Insight from the decomposition: a decreasing (or, negative) trend in
SOI indicates the long-term warming of the Pacific Ocean.



LOWESS Smoothing of Trend Data using 5% of the data for NN
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Since we have eliminated the trend component - the seasonality is more
pronounced in the residuals.



Southern Oscillation Index, monthly data
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Q: Which method is better?

A: Depends on whether we can decompose seasonality after removing the
trend.



Seasonal Decomposition of Time Series by Loess
To decompose the seasonal component, use the stl() function in R. t.window
controls the ‘wiggliness’ of the trend components and s.window controls the variation on the seasonal component.
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It is a very versatile and robust decomposition method - the seasonal component
is allowed to change over time, the smoothness of the trend cycle can also be
controlled by the user.
This method is robust to outliers, however it is only available for additive
decompositions.



soi_stl$time.series[, "remainder"]
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I No more seasonality;
I No more trend;

In R the two main robust “user-friendly” methods are:

I stl() - does not allow forecasting. To remedy this forecast::forecast() can be used, which applies a non-seasonal
forecasting method to the seasonally adjusted data and re-seasonalizes using the last year of the seasonal component. See here.

I ets() - Holt-Winters Exponential smoothing, allows forecasting.

https://www.rdocumentation.org/packages/forecast/versions/8.5/topics/forecast.stl


Remarks on LOWESS (LOESS)
Advantages:
I LOWESS does not require specification of a functional form to fit a

model to the data sample;
I LOWESS is very flexible, making it ideal for modeling complex

processes for which no theoretical models exist.
Disadvantages:
I LOWESS makes less efficient use of data than other least squares

methods. It requires fairly large, densely sampled data sets in order to
produce good models;

I LOWESS does not produce a regression function that is easily
represented by a mathematical formula. This can make it difficult to
transfer the results of an analysis to other people;

I LOWESS is a computationally intensive method that is also prone to
the effects of outliers in the data set, like other least squares methods.



Local Linear Forecast Using Cubic Splines

Suppose that our time series Yt , t = 1, ...,T exhibits a non-linear trend.
We are interested in forecasting this series by extrapolating the trend using
a linear function, which we estimate from the historical data.

An obvious way to smooth data would be to fit a polynomial regression in
terms of time. For example, a cubic polynomial would have Yt = Tt + Et ,
where

Tt = β0 + β1 · t + β2 · t2 + β3 · t3

In practice we would fit this cubic polynomial on Yt via OLS to obtain T̂t .
I An extension of polynomial regression is to first divide time

t = 1, ...,T into k intervals: [t0, t1] , [t1 + 1, t2] , ..., [tk−1 + 1, tk ]
with t0 = 1 and tk = T . The values t0, ..., tk are called knots. Each
interval fits a polynomial regression, typically of order 3, and this is
called cubic splines.

I A similar method is called smoothing splines, which minimizes a
compromise between the fit and the degree of smoothness.



For equally spaced time series, a cubic smoothing spline can be defined
as the function f̂ (t), which minimizes:

T∑
t=1

(Yt − f (t))2 + λ

∫
S

(f ′′(u))2du

over all twice differentiable functions f on S where [1,T ] ⊆ S ⊆ R. The
smoothing parameter λ is controlling the trade-off between fidelity to the
data and roughness of the function estimate. The larger the value of λ,
the smoother the fit.
I Link to the paper presenting this method can be found [here].
I The cubic smoothing spline model is equivalent to an ARIMA(0, 2, 2)

model (this model will be presented later) but with a restricted
parameter space.

I The advantage of the cubic smoothing spline approach over the full
ARIMA model is that it provides a smooth historical trend as well as
a linear forecast function.

https://robjhyndman.com/papers/splinefcast.pdf


Southern Oscillation Index, monthly data
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Results appear similar to other trend estimation methods . . .



Southern Oscillation Index, monthly data
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. . . like the recently introduced LOWESS.



data(shampoo)
fcast <- splinef(shampoo, h = 12)
fcast.l <- splinef(log(shampoo), h = 12)
par(mfrow = c(1, 2))
plot(fcast, main = "Cubic smoothing spline for \n Sales of shampoo over a three year period.")
plot(fcast.l, main = "Cubic smoothing spline for logarithm of \n Sales of shampoo over a three year period.")
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The X-12-ARIMA or X-13-ARIMA-SEATS Seasonal
Adjustment

Link to R package documentation [here] and [here].

X-13ARIMA-SEATS is a seasonal adjustment software produced,
distributed, and maintained by the United States Census Bureau.

X-13ARIMA-SEATS combines the current filters used in X-12-ARIMA with
ARIMA-model-based adjustment as implemented in the program SEATS.

In SEATS, the seasonal and trend filters are estimated simultaneously
based on the ARIMA model.

The new program still provides access to all of X-12-ARIMA’s seasonal and
trend filters and to the diagnostics.

https://cran.r-project.org/web/packages/seasonal/vignettes/seas.pdf
http://www.seasonal.website/seasonal.html


X_13 <- seasonal::seas(x = AirPassengers)
capture.output(summary(X_13))[6:11]

[1] " Estimate Std. Error z value Pr(>|z|) "
[2] "Weekday -0.0029497 0.0005232 -5.638 1.72e-08 ***"
[3] "Easter[1] 0.0177674 0.0071580 2.482 0.0131 * "
[4] "AO1951.May 0.1001558 0.0204387 4.900 9.57e-07 ***"
[5] "MA-Nonseasonal-01 0.1156205 0.0858588 1.347 0.1781 "
[6] "MA-Seasonal-12 0.4973600 0.0774677 6.420 1.36e-10 ***"

We can generate a nice .html output of our model with:
seasonal::out(X_13)



where (using the [documentation, Tables 4.1 and 7.28]):
I Weekday - One Coefficient Trading Day, the difference between the

number of weekdays and the 2.5 times the number of Saturdays and
Sundays

I AO1951.May - Additive (point) outlier variable, AO, for the given
date or observation number. In this case it is the regARIMA
(regression model with ARIMA residuals) outlier factor for the point
at time 1951-May of the series;

I Easter[1] - Easter holiday regression variable for monthly or
quarterly flow data which assumes the level of daily activity changes
on the [1]-st day before Easter and remains at the new level through
the day before Easter.

I MA-Nonseasonal-01 - coefficients of the non-seasonal components
of the ARMA model for the differenced residuals, ∇εt .

I MA-Seasonal-12 - coefficients of the seasonal components of the
ARMA model for the differenced residuals ∇12εt .

https://www.census.gov/ts/x13as/docX13ASHTML.pdf


Looking at ?series, we can extract different data:
#Estimate of the Seasonal factors:
X_13.seas <- seasonal::series(X_13, "history.sfestimates")

## specs have been added to the model: history
#Estimate of the seasonally adjusted data
X_13.deseas <- seasonal::series(X_13, "history.saestimates")

## specs have been added to the model: history
#Estimate of the trend component
X_13.trend <- seasonal::series(X_13, "history.trendestimates")

## specs have been added to the model: history
#Forecasts:
X_13.forc <- seasonal::series(X_13, "forecast.forecasts")

## specs have been added to the model: forecast



plot(X_13)
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Note: The series is adjusted for seasonality only (i.e. seasonality removed).



plot(AirPassengers, main = "Data and trend")
lines(X_13$data[, "trend"], col = "blue")
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Note: The blue line is the trend (no random component).



layout(matrix(c(1, 1, 1, 2, 3, 4), 2, 3, byrow = TRUE))
plot.ts(resid(X_13), main = "Residuals")
forecast::Acf(resid(X_13)); forecast::Pacf(resid(X_13))
qqnorm(resid(X_13)); qqline(resid(X_13), lty = 2, col = "red")
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We can also plot the forecasts along with their confidence intervals:
#Set the x and y axis separtely
x.lim = c(head(time(AirPassengers), 1), tail(time(X_13.forc), 1))
y.lim = c(min(AirPassengers), max(X_13.forc[,"upperci"]))

#Plot the time series:
plot.ts(AirPassengers, xlim = x.lim, ylim = y.lim,

main = "X-13ARIMA-SEATS Forecasts")

#Plot the shaded forecast confidence area:
polygon(c(time(X_13.forc), rev(time(X_13.forc))),

c(X_13.forc[,"upperci"], rev(X_13.forc[,"lowerci"])),
col = "grey90", border = NA)

#Plot the forecasts along with their lower and upper bounds:
lines(X_13.forc[,"forecast"], col = "blue")
lines(X_13.forc[,"lowerci"], col = "grey70", lty = 2)
lines(X_13.forc[,"upperci"], col = "grey70", lty = 2)



X−13ARIMA−SEATS Forecasts
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Looking back at our SOI data example:
soi_X_13 <- seasonal::seas(x = soi)

It may sometimes be the case that seasonal::series(...) will not
work, so the relevant results can always be extracted directly.
print(head(soi_X_13$data))

final seasonal seasonaladj trend irregular adjustfac
Jan 1950 0.10145039 0.2755496 0.10145039 0.1316089 -0.02457600 0.2755496
Feb 1950 -0.08329878 0.3292988 -0.08329878 0.1452373 -0.16458940 0.3292988
Mar 1950 0.13144671 0.1795533 0.13144671 0.1808291 -0.02679486 0.1795533
Apr 1950 0.28609804 -0.1820980 0.28609804 0.2264334 0.04469685 -0.1820980
May 1950 0.34707990 -0.3630799 0.34707990 0.2641907 0.07335916 -0.3630799
Jun 1950 0.47731379 -0.2423138 0.47731379 0.2810873 0.17002810 -0.2423138



Southern Oscillation Index, monthly data
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Residuals of X13−ARIMA appllied to SOI dataset
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Note: In this case, we are interested in the forecasts of airplane passengers - not
just the forecasts of the random component, but the trend and seasonality as
well - after all, in most empirical applications we want our forecasts to be for the
same original series.



Recap: Seasonality
I Seasonality in a time series is a regular pattern, which repeats over d

time units, where d is called the (seasonality) period - the number of
time units/periods, until the pattern repeats again. This can be
written as St = St+d ;

I Seasonality usually causes the series to be nonstationary, since the
average values from particular seasonal periods (e.g. summer) may be
different than the average values at other times (e.g. winter);
I We can remove the trend by differencing the series, e.g. by

transforming the series to (1− L)Yt ;
I We can remove the seasonality by seasonally differencing the series,

e.g. by transforming the series to (1− Ld)Yt ;
I To remove both trend and seasonality by applying both non-seasonal

and seasonal differencing, e.g. (1− L)(1− Ld)Yt ;

I The seasonal ARMA model incorporates both non-seasonal and
seasonal factors in a multiplicative model. In a seasonal ARMA
model, the seasonal AR and MA terms predict Yt using lagged values,
where the lags are multiples of d .



Recap: Time Series Decomposition
I Decomposition procedures are used in time series to describe the

trend and seasonal factors in a time series. More extensive
decompositions might also include long-run cycles, holiday effects, day
of week effects and so on (see X − 13ARIMA− SEATS).

I Decomposition can be used to estimate and remove seasonality in
order to calculate seasonally adjusted values. These adjusted values
can then be used to analyse the trend more clearly. For instance, U.S.
unemployment tends to decrease in the summer due to increased
employment in agricultural areas. So, it would appear that
unemployment decreased from winter to summer, however, this does
not indicate that there is a trend toward lower unemployment in the
country.

I Decomposition is usually done in three steps: (i) trend estimation; (ii)
seasonality estimation on the de-trended series; (ii) remainder
(i.e. random) component estimation by removing the seasonal and
trend component from the original series. The decomposition method
depends on whether the series is additive or multiplicative.

I The random component can be analyzed for such things as the mean,
variance, or possibly even for whether the component is actually truly
random (WN) or might be modeled with an ARIMA model.



Recap: Time Series Smoothing
I Smoothing is usually done to help us better see patterns in the time

series. The term filter is sometimes used to describe a smoothing
procedure.

I For Series with a trend, we may smooth out the irregular roughness to
see a clearer signal.

I For non-seasonal data you should experiment with moving averages of
different spans. Those spans of time could be relatively short. The
objective is to knock off the rough edges to see what trend or pattern
might be there.

I For seasonal data, we might smooth out the seasonality so that we
can identify the trend.

I To take away seasonality from a series, so we can better see the trend,
we would use a moving average with a length equal to d (the seasonal
length). If d is even, then a centered moving average is needed.

I Some possible smoothing methods include - moving average
smoothing; single, double or triple (Holt-Winters) exponential
smoothing. Additional methods include kernel smoothing, lo(w)ess
smoothing, cubic smoothing splines and more.

I Smoothing doesn’t provide us with a model, but it can be a good first
step in describing various components of the series.


