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Stationarity
A process {Yt}, t ∈ Z, is said to be a (weakly) stationary process, if:
I E(Yt) = µY <∞, ∀t ∈ Z;
I Var(Yt) = σ2

Y <∞, ∀t ∈ Z;
I Cov(Yt ,Yt+h) = σY ,h <∞, ∀t ∈ Z, h > 0;

White Noise
A process {Yt}, t ∈ Z, is said to be a White Noise (WN) process, if:
I E(Yt) = 0, ∀t ∈ Z;
I Var(Yt) = σ2

Y <∞, ∀t ∈ Z;
I Cov(Yt ,Yt+h) = 0, ∀t ∈ Z, h > 0.

Every White Noise process is stationary, however, not every stationary
process is a WN process.

The Lag (or, the Backshift) operator
The lag operator (also known as the backshift operator) is defined as
LkYt = Yt−k , for some integer value k. Note that generally the backshift
operator Lk refers to how far back “to the past” are we looking and not as
a literal subtraction of an integer k from the index value t. For example, if
we had quarterly data at Y2010Q3, then we use the lag operator to refer to
a previous quarter LY2010Q3 = Y2010Q2, L2Y2010Q3 = Y2010Q1,
L3Y2010Q3 = Y2009Q4 and so on. Sometimes Bk is used instead of Lk .



The ARMA(p, q) Process
An ARMA(p, q) process, where p, q ∈ N,can be defined as:

Φ(L)Yt = α + Θ(L)εt , εt ∼WN(0, σ2)

where the lag polynomials are defined as:
I Φ(L) = 1− φ1L− ...− φpLp;
I Θ(L) = 1 + θ1L + ...+ θqLq.

Furthermore:
I If p = 0, then ARMA(0, q) ≡ MA(q), where:

I The ACF (τ) → 0, as τ → ∞ (i.e. declines);
I The PACF (τ) = 0 for τ > q (i.e. cuts off).

I If q = 0, then ARMA(p, 0) ≡ AR(p), where:
I The ACF (τ) = 0 for τ > p (i.e. cuts off);
I The PACF (τ) → 0, as τ → ∞ (i.e. declines).

I If p > 0 and q > 0, then ARMA(p, q) is such that:
I The ACF (τ) → 0, as τ → ∞ (i.e. declines);
I The PACF (τ) → 0, as τ → ∞ (i.e. declines).

The above process can also be written in an expanded form as:

Yt = α +
p∑

i=1
φpYt−p +

q∑
j=1

θqεt−q + εt



Intuition of Stationarity for an AR(1) process

Firstly, consider the AR(1) model. In this case, the polynomial is
Φ(z) = 1− φ1z , which results in:

Yt = φ1Yt−1 + εt

If we iterate the above process, we get:

Yt = εt + φ1(φ1Yt−2 + εt−1)
= εt + φ1εt−1 + φ2

1(φ1Yt−3 + εt−2)
= ...

= εt + φ1εt−1 + φ2
1εt−2 + ...+ φn

1εt−n + φn+1
1 Yt−n−1



This suggests that the solution Yt can be given by an infinite sum:

Yt =
∞∑

k=0
φk

1εt−k

We can see that the above is the same, as the process described by the
Wold’s representation theorem. Since the above only has a single
parameter φ1, we would need to consider three cases:
I If |φ1| = 1;
I If |φ1| < 1;
I If |φ1| > 1;

If |φ1| = 1
In such a case

∑∞
k=0 φ

k
1εt−k would not converge. Hence, we can rule out

|φ1| = 1.



If |φ1| > 1
Then

∑∞
k=0 φ

k
1εt−k would not converge. However, if we rewrite

Yt = φ1Yt−1 + εt as:

Yt−1 = φ−1
1 Yt − φ−1

1 εt

or, in terms of t:
Yt = φ−1

1 Yt+1 − φ−1
1 εt+1

Then, since |φ1| > 1 =⇒ |φ−1
1 | < 1 and we would have the following

infinite representation:

Yt = −
∞∑

k=1
φ−k

1 εt+k

The above solution is frequently regarded as unnatural, since this means
that the time series depends on its future, which does not make sense in
practice.
For this reason, we require Yt to be a causal (or future-independent)
function of εt .



If |φ1| < 1
In this case

∑∞
k=0 φ

k
1εt−k converges. The solution is expressed as:

Yt =
∞∑

k=0
φk

1εt−k , |φ1| < 1

Furthermore:
I The solution Yt is stationary, since

E(Yt) =
∞∑

k=0
φk

1E(εt−k) = 0

γY (h) =
∞∑

j=0
φj

1φ
j+h
1 σ2 = σ2φh

1
1− φ2

1
<∞



I The solution Yt is unique. To verify this, consider any other
solution Zt for Φ(L)Zt = εt (with the same coefficients and the
same εt that are in Φ(L)Yt = εt), which is expressed as:

Zt = εt + φ1εt−1 + φ2
1εt−2 + ...+ φn

1εt−n + φn+1
1 Zt−n−1

If Zt is also stationary (otherwise it is not comparable to Yt), then
EZ 2

t <∞ and independent of t, so that:

E

(
Zt −

n∑
k=0

φk
1εt−k

)2

= φ2n+2
1 E(Zt−n−1)2 → 0, as n→∞

This implies that:

Zt =
∞∑

k=0
φk

1εt−k

Hence it must hold that Zt ≡ Yt .
Consequently, for Yt = φ1Yt−1 + εt , if |φ1| < 1, then Yt is the
unique stationary solution that is causal.

Equivalently, a stationary and causal solution is unique.



Relationship Between Stationarity and Lag Polynomial
Roots: The AR(1) Process

Now, what does the requirement that |φ1| < 1 have to do with the
polynomial Φ(·) ?

If we were to calculate the root of Φ(z) = 1− φ1z , we would see
that |φ1| < 1 directly results in the root |z | = 1

|φ1|
> 1.

Alternatively, this means that Φ(z) does not have ANY roots for
|z | ≤ 1.

Equivalently, the inverse Φ(z)−1:

∞∑
k=0

φk
1zk = 1

1− φ1z = Φ(z)−1

is a convergent power series for |φ| < 1 and, for the inverse, |z | ≤ 1.

We can summarize the above to the general case.



Stationarity Generalization: The AR(p) model
Let us consider an AR(p) model:

Yt = φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt , εt ∼WN(0, σ2)

and the polynomial: Φ(z) = 1− φ1z − φ2z2 − ...− φpzp, z ∈ C. We then
rewrite Yt with the lag operator in the above polynomial Φ(L)Yt = εt .

As before, we want a similar property for the roots of Φ(z).

Then:
I If ∃z ∈ C : |z | = 1 such that Φ(z) = 0, then a stationary

solution does not exist (see the |φ1| = 1 case for the AR(1)).
I Yt is the unique stationary solution if and only if

Φ(z) 6= 0, ∀z ∈ C : |z | = 1. (In practice it is difficult to verify
an inequality.)

I Yt is the unique stationary solution that is CAUSAL if
and only if all of the roots of the polynomial Φ(z) lie outside
the unit disk, i.e. Φ(z) 6= 0, ∀z ∈ C : |z | ≤ 1.
In other words, Φ(z) = 0, z ∈ C : |z | > 1. (We can check
this in practice.)



The ARMA(p, q) Process: Defining a Solution

For simplicity, assume that α = 0. To solve the ARMA(p, q) model
equation, we need to express it as Yt (without the lag polynomial).

Consequently, we say that Yt is the solution to Φ(L)Yt = Θ(L)εt , if:

Yt = Θ(L)
Φ(L) εt

I Since we already assume that εt WN, for the above equality to make
sense, we require Θ(L)/Φ(L) to be convergent.

I From Wold’s representation theorem this is equivalent to:

Yt =
∞∑

i=0
ψjεt−j

where ψ0 = 1 and
∑∞

i=0 ψ
2
j <∞.

Question: How does Wold’s theorem apply to the ARMA process?



If we set Ψ(L) = Θ(L)/Φ(L) = ψ0 +ψ1L +ψ2L2 + ..., then we can express
Ψ(z)Φ(z) = Θ(z):

(1−φ1z−φ2z2−...−φpzp)(ψ0+ψ1z+ψ2z2+...) = 1+θ1z+θ2z2+...+θqzq

Equating the coefficients of z j on both sides for j = 0, 1, ... gives us:

1 = ψ0, θ1 = ψ1 − ψ0φ1, θ2 = ψ2 − ψ1φ1 − ψ0φ2, ...

In general, for j = 0, 1, ..., q, we have that:

θj = ψj −
p∑

k=1
φkψj−k , where ψj−k = 0, if j − k < 0

and θj = 0, for j > q.

Question: Does
∑∞

i=0 ψ
2
j <∞ hold for an ARMA process?



As we have already seen from the AR(p) case, we can calculate the inverse
of Φ(L), if all of its roots are outside the unit circle.

Consequently, the lag polynomial:

Θ(z)
Φ(z) =

∞∑
j=0

ψjz j

is absolutely convergent on the unit circle, so
∑∞

j=0 |ψj | <∞. This also
ensures that

∑∞
j=0 ψ

2
j <∞.

Note: Similarly to before, if some roots are inside the unit circle then the
ARMA(p, q) process is not causal, but can be expressed as a combination
of past and future values of ε. As this situation does not make much
sense in econometrics, we usually rule it out.



Common roots in the ARMA(p, q) process
If the roots of Φ(L) and Θ(L) are the same - they cancel each other
out. The roots that cancel between the AR and the MA parts are
not identifiable, so cannot be estimated.

To see why this is, remember that a stationary and invertible ARMA
process can be expressed as an infinite MA by multiplying by the inverse
of the characteristic lag polynomial of the AR part:

Yt = Θ(L)
Φ(L) εt

For example, consider an ARMA(1, 1) process with φ(L) = 1− 0.5L and
θ(L) = 1− 0.5L. This means that:

Yt = 1− 0.5L
1− 0.5Lεt = εt

In other words, Yt is a WN process. If we were to simulate such a
process - we would find that the estimated parameters are not significantly
different from zero (and any automated ARMA order selection process
would, usually, suggest p = q = 0 as the best order in terms of
AICc/BIC).



As another example, an ARMA(1, 2) process with φ(L) = 1− 0.5L and
θ(L) = (1− 0.5L)(1 + 0.5L) would result in an MA(1) process:

Yt = (1− 0.5L)(1 + 0.5L)
1− 0.5L εt = (1 + 0.5L)εt

Looking it the other way around, we could express Yt = (1 + 0.5L)εt as
various different ARMA(1, 2) processes by using the common roots. For
example, by taking φ(L) = 1− βL and θ(L) = (1− βL)(1 + 0.5L) with
|β| < 1.

In practice, if the true underlying ARMA(p, q) process has common
AR and MA roots - we will never be able to identify it. However,
after removing the same roots, the resulting process, which we can
identify, will be equivalent to the true one.

Consequently, in practical applications we assume that Φ(L) and
Θ(L) do not have any common roots. Otherwise there are (infinitely)
many possible combinations, where two roots cancel each other out.



Note: Similarly to the ideas for the stationarity conditions for Φ(L), we
can define invertibility conditions for Θ(L). Invertibility allows εt to be
expressed in terms of Ys , s ≤ t.

Consequently, when we talk about an ARMA(p, q) process,
Φ(L)Yt = Θ(L)εt :

I We assume that the polynomials Φ(z) and Θ(z) have no
common roots.

I A unique stationary solution Yt exists if and only if Φ(z) has
no roots on the unit circle, i.e. Φ(L) 6= 0, ∀|z | = 1.

I A unique stationary solution Yt that is causal exists if and
only if Φ(z) has no roots inside the unit disk, i.e.
Φ(z) 6= 0, ∀z ∈ C : |z | ≤ 1;

I Yt is invertible if Θ(z) 6= 0, ∀z ∈ C : |z | ≤ 1;

Finally, an ARMA representation is not unique. For example, we can write
a stationary AR(1) process as an MA(∞) and an MA(1) and as AR(∞).
In practice, this also means that we can approximate the infinite processes
with some finite order.


