01 Stationary time series Recap and Additional Key Points

Andrius Buteikis, andrius.buteikis@mif.vu.lt http://web.vu.lt/mif/a.buteikis/

Stationarity

A process $\{Y_t\}$, $t \in \mathbb{Z}$, is said to be a (weakly) stationary process, if:

$$\blacktriangleright \mathbb{E}(Y_t) = \mu_Y < \infty, \ \forall t \in \mathbb{Z};$$

•
$$\operatorname{Var}(Y_t) = \sigma_Y^2 < \infty, \ \forall t \in \mathbb{Z};$$

•
$$\mathbb{C}$$
ov $(Y_t, Y_{t+h}) = \sigma_{Y,h} < \infty, \forall t \in \mathbb{Z}, h > 0;$

White Noise

A process $\{Y_t\}$, $t \in \mathbb{Z}$, is said to be a White Noise (*WN*) process, if: $\mathbb{E}(Y_t) = 0, \forall t \in \mathbb{Z}$;

•
$$\operatorname{Var}(Y_t) = \sigma_Y^2 < \infty, \ \forall t \in \mathbb{Z};$$

$$\blacktriangleright \quad \mathbb{C}\operatorname{ov}(Y_t, Y_{t+h}) = 0, \ \forall t \in \mathbb{Z}, \ h > 0.$$

Every White Noise process is stationary, however, not every stationary process is a WN process.

The Lag (or, the Backshift) operator

The **lag operator** (also known as the **backshift operator**) is defined as $L^k Y_t = Y_{t-k}$, for some integer value k. Note that generally the backshift operator L^k refers to how far back "to the past" are we looking and not as a literal subtraction of an integer k from the index value t. For example, if we had quarterly data at Y_{2010Q3} , then we use the lag operator to refer to a previous quarter $LY_{2010Q3} = Y_{2010Q2}$, $L^2 Y_{2010Q3} = Y_{2010Q1}$, $L^3 Y_{2010Q3} = Y_{2009Q4}$ and so on. Sometimes B^k is used instead of L^k .

The ARMA(p, q) Process

An ARMA(p,q) process, where $p,q \in \mathbb{N}$, can be defined as:

$$\Phi(L)Y_t = \alpha + \Theta(L)\epsilon_t, \quad \epsilon_t \sim WN(0, \ \sigma^2)$$

where the lag polynomials are defined as:

•
$$\Phi(L) = 1 - \phi_1 L - \dots - \phi_p L^p;$$

• $\Theta(L) = 1 + \theta_1 L + \dots + \theta_q L^q.$

Furthermore:

The above process can also be written in an expanded form as:

$$Y_t = \alpha + \sum_{i=1}^{p} \phi_p Y_{t-p} + \sum_{j=1}^{q} \theta_q \epsilon_{t-q} + \epsilon_t$$

Intuition of Stationarity for an AR(1) process

Firstly, consider the AR(1) model. In this case, the polynomial is $\Phi(z) = 1 - \phi_1 z$, which results in:

$$Y_t = \phi_1 Y_{t-1} + \epsilon_t$$

If we iterate the above process, we get:

$$Y_{t} = \epsilon_{t} + \phi_{1}(\phi_{1}Y_{t-2} + \epsilon_{t-1})$$

= $\epsilon_{t} + \phi_{1}\epsilon_{t-1} + \phi_{1}^{2}(\phi_{1}Y_{t-3} + \epsilon_{t-2})$
= ...
= $\epsilon_{t} + \phi_{1}\epsilon_{t-1} + \phi_{1}^{2}\epsilon_{t-2} + ... + \phi_{1}^{n}\epsilon_{t-n} + \phi_{1}^{n+1}Y_{t-n-1}$

This suggests that the **solution** Y_t can be given by an infinite sum:

$$Y_t = \sum_{k=0}^{\infty} \phi_1^k \epsilon_{t-k}$$

We can see that the above is the same, as the process described by the Wold's representation theorem. Since the above only has a single parameter ϕ_1 , we would need to consider three cases:

• If $|\phi_1| = 1$; • If $|\phi_1| < 1$; • If $|\phi_1| > 1$;

If $|\phi_1| = 1$

In such a case $\sum_{k=0}^{\infty}\phi_1^k\epsilon_{t-k}$ would not converge. Hence, we can rule out $|\phi_1|=1.$

If $|\phi_1| > 1$

Then $\sum_{k=0}^{\infty} \phi_1^k \epsilon_{t-k}$ would not converge. **However**, if we rewrite $Y_t = \phi_1 Y_{t-1} + \epsilon_t$ as:

$$Y_{t-1} = \phi_1^{-1} Y_t - \phi_1^{-1} \epsilon_t$$

or, in terms of t:

$$Y_t = \phi_1^{-1} Y_{t+1} - \phi_1^{-1} \epsilon_{t+1}$$

Then, since $|\phi_1| > 1 \implies |\phi_1^{-1}| < 1$ and we would have the following infinite representation:

$$Y_t = -\sum_{k=1}^{\infty} \phi_1^{-k} \epsilon_{t+k}$$

The above **solution** is frequently regarded as unnatural, since this means that the time series depends on its **future**, which does not make sense in practice.

For this reason, we require Y_t to be a **causal** (or **future-independent**) function of ϵ_t .

If $|\phi_1| < 1$ In this case $\sum_{k=0}^{\infty} \phi_1^k \epsilon_{t-k}$ converges. The **solution** is expressed as:

$$Y_t = \sum_{k=0}^{\infty} \phi_1^k \epsilon_{t-k}, \quad |\phi_1| < 1$$

Furthermore:

 \blacktriangleright The solution Y_t is **stationary**, since

$$\mathbb{E}(Y_t) = \sum_{k=0}^{\infty} \phi_1^k \mathbb{E}(\epsilon_{t-k}) = 0$$

$$\gamma_{Y}(h)=\sum_{j=0}^{\infty}\phi_{1}^{j}\phi_{1}^{j+h}\sigma^{2}=rac{\sigma^{2}\phi_{1}^{h}}{1-\phi_{1}^{2}}<\infty$$

The solution Y_t is unique. To verify this, consider any other solution Z_t for Φ(L)Z_t = ε_t (with the same coefficients and the same ε_t that are in Φ(L)Y_t = ε_t), which is expressed as:

$$Z_{t} = \epsilon_{t} + \phi_{1}\epsilon_{t-1} + \phi_{1}^{2}\epsilon_{t-2} + \dots + \phi_{1}^{n}\epsilon_{t-n} + \phi_{1}^{n+1}Z_{t-n-1}$$

If Z_t is also stationary (otherwise it is not comparable to Y_t), then $\mathbb{E}Z_t^2 < \infty$ and independent of t, so that:

$$\mathbb{E}\left(Z_t - \sum_{k=0}^n \phi_1^k \epsilon_{t-k}\right)^2 = \phi_1^{2n+2} \mathbb{E}(Z_{t-n-1})^2 \to 0, \text{ as } n \to \infty$$

This implies that:

$$Z_t = \sum_{k=0}^{\infty} \phi_1^k \epsilon_{t-k}$$

Hence it must hold that $Z_t \equiv Y_t$.

Consequently, for $Y_t = \phi_1 Y_{t-1} + \epsilon_t$, if $|\phi_1| < 1$, then Y_t is the unique stationary solution that is causal.

Equivalently, a stationary and causal solution is unique.

Relationship Between Stationarity and Lag Polynomial Roots: The AR(1) Process

Now, what does the requirement that $|\phi_1| < 1$ have to do with the polynomial $\Phi(\cdot)$?

If we were to calculate the root of $\Phi(z) = 1 - \phi_1 z$, we would see that $|\phi_1| < 1$ directly results in the root $|z| = \frac{1}{|\phi_1|} > 1$. Alternatively, this means that $\Phi(z)$ does not have ANY roots for |z| < 1.

Equivalently, the inverse $\Phi(z)^{-1}$:

$$\sum_{k=0}^{\infty} \phi_1^k z^k = \frac{1}{1 - \phi_1 z} = \Phi(z)^{-1}$$

is a convergent power series for $|\phi|<1$ and, for the inverse, $|z|\leq 1$. We can summarize the above to the general case.

Stationarity Generalization: The AR(p) model

Let us consider an AR(p) model:

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + \epsilon_t, \quad \epsilon_t \sim WN(0, \sigma^2)$$

and the polynomial: $\Phi(z) = 1 - \phi_1 z - \phi_2 z^2 - ... - \phi_p z^p$, $z \in \mathbb{C}$. We then rewrite Y_t with the lag operator in the above polynomial $\Phi(L)Y_t = \epsilon_t$.

As before, we want a similar property for the roots of $\Phi(z)$.

```
Then:
If ∃z ∈ C : |z| = 1 such that Φ(z) = 0, then a stationary solution does not exist (see the |φ₁| = 1 case for the AR(1)).
Y<sub>t</sub> is the unique stationary solution if and only if Φ(z) ≠ 0, ∀z ∈ C : |z| = 1. (In practice it is difficult to verify an inequality.)
Y<sub>t</sub> is the unique stationary solution that is CAUSAL if and only if all of the roots of the polynomial Φ(z) lie outside the unit disk, i.e. Φ(z) ≠ 0, ∀z ∈ C : |z| ≤ 1. In other words, Φ(z) = 0, z ∈ C : |z| > 1. (We can check this in practice.)
```

The ARMA(p, q) Process: Defining a Solution

For simplicity, assume that $\alpha = 0$. To **solve** the ARMA(p,q) model equation, we need to express it as Y_t (without the lag polynomial).

Consequently, we say that Y_t is the **solution** to $\Phi(L)Y_t = \Theta(L)\epsilon_t$, if:

$$Y_t = \frac{\Theta(L)}{\Phi(L)} \epsilon_t$$

- Since we already assume that ε_t WN, for the above equality to make sense, we require Θ(L)/Φ(L) to be convergent.
- From Wold's representation theorem this is equivalent to:

$$Y_t = \sum_{i=0}^{\infty} \psi_j \epsilon_{t-j}$$

where $\psi_0 = 1$ and $\sum_{i=0}^{\infty} \psi_j^2 < \infty$.

Question: How does Wold's theorem apply to the ARMA process?

If we set
$$\Psi(L) = \Theta(L)/\Phi(L) = \psi_0 + \psi_1 L + \psi_2 L^2 + ...$$
, then we can express $\Psi(z)\Phi(z) = \Theta(z)$:

$$(1 - \phi_1 z - \phi_2 z^2 - \dots - \phi_p z^p)(\psi_0 + \psi_1 z + \psi_2 z^2 + \dots) = 1 + \theta_1 z + \theta_2 z^2 + \dots + \theta_q z^q$$

Equating the coefficients of z^j on both sides for j = 0, 1, ... gives us:

$$1 = \psi_0, \quad \theta_1 = \psi_1 - \psi_0 \phi_1, \quad \theta_2 = \psi_2 - \psi_1 \phi_1 - \psi_0 \phi_2, \quad \dots$$

In general, for j = 0, 1, ..., q, we have that:

$$heta_j = \psi_j - \sum_{k=1}^p \phi_k \psi_{j-k}, ext{ where } \psi_{j-k} = 0, ext{ if } j-k < 0$$

and $\theta_j = 0$, for j > q.

Question: Does $\sum_{i=0}^{\infty}\psi_j^2<\infty$ hold for an ARMA process?

As we have already seen from the AR(p) case, we can calculate the inverse of $\Phi(L)$, if all of its roots are outside the unit circle.

Consequently, the lag polynomial:

$$rac{\Theta(z)}{\Phi(z)} = \sum_{j=0}^{\infty} \psi_j z^j$$

is absolutely convergent on the unit circle, so $\sum_{j=0}^{\infty} |\psi_j| < \infty$. This also ensures that $\sum_{j=0}^{\infty} \psi_j^2 < \infty$.

Note: Similarly to before, if some roots are inside the unit circle then the ARMA(p, q) process is not causal, but can be expressed as a combination of past and **future** values of ϵ . As this situation does not make much sense in econometrics, we usually rule it out.

Common roots in the ARMA(p, q) process

If the roots of $\Phi(L)$ and $\Theta(L)$ are the same - they cancel each other out. The roots that cancel between the *AR* and the *MA* parts are not identifiable, so cannot be estimated.

To see why this is, remember that a stationary and invertible ARMA process can be expressed as an infinite MA by multiplying by the inverse of the characteristic lag polynomial of the AR part:

$$Y_t = \frac{\Theta(L)}{\Phi(L)} \epsilon_t$$

For example, consider an ARMA(1,1) process with $\phi(L) = 1 - 0.5L$ and $\theta(L) = 1 - 0.5L$. This means that:

$$Y_t = \frac{1 - 0.5L}{1 - 0.5L} \epsilon_t = \epsilon_t$$

In other words, Y_t is a WN process. If we were to simulate such a process - we would find that the estimated parameters are not significantly different from zero (and any automated *ARMA* order selection process would, *usually*, suggest p = q = 0 as the best order in terms of *AICc/BIC*).

As another example, an ARMA(1,2) process with $\phi(L) = 1 - 0.5L$ and $\theta(L) = (1 - 0.5L)(1 + 0.5L)$ would result in an MA(1) process:

$$Y_t = \frac{(1 - 0.5L)(1 + 0.5L)}{1 - 0.5L} \epsilon_t = (1 + 0.5L)\epsilon_t$$

Looking it the other way around, we could express $Y_t = (1 + 0.5L)\epsilon_t$ as various different ARMA(1,2) processes by using the common roots. For example, by taking $\phi(L) = 1 - \beta L$ and $\theta(L) = (1 - \beta L)(1 + 0.5L)$ with $|\beta| < 1$.

In practice, if the true underlying ARMA(p, q) process has common AR and MA roots - we will never be able to identify it. However, after removing the same roots, the resulting process, which we **can identify**, will be equivalent to the true one.

Consequently, in practical applications we assume that $\Phi(L)$ and $\Theta(L)$ do not have any common roots. Otherwise there are (infinitely) many possible combinations, where two roots cancel each other out.

Note: Similarly to the ideas for the stationarity conditions for $\Phi(L)$, we can define **invertibility** conditions for $\Theta(L)$. Invertibility allows ϵ_t to be expressed in terms of Y_s , $s \leq t$.

Consequently, when we talk about an ARMA(p,q) process, $\Phi(L)Y_t = \Theta(L)\epsilon_t$: \triangleright We assume that the polynomials $\Phi(z)$ and $\Theta(z)$ have no common roots. A unique stationary solution Y_t exists if and only if $\Phi(z)$ has no roots on the unit circle, i.e. $\Phi(L) \neq 0$, $\forall |z| = 1$. A unique stationary solution Y_t that is causal exists if and only if $\Phi(z)$ has no roots **inside the unit disk**, i.e. $\Phi(z) \neq 0, \forall z \in \mathbb{C} : |z| \leq 1;$ • Y_t is invertible if $\Theta(z) \neq 0$, $\forall z \in \mathbb{C} : |z| < 1$;

Finally, an *ARMA* representation is not unique. For example, we can write a stationary AR(1) process as an $MA(\infty)$ and an MA(1) and as $AR(\infty)$. In practice, this also means that we can approximate the infinite processes with some finite order.