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Multiple Regression: Model Assumptions

Much like in the case of the univariate regression with one independent variable, the multiple
regression model has a number of required assumptions:

(MR.1): Linear Model The Data Generating Process (DGP), or in other words, the
population, is described by a linear (in terms of the coefficients) model:

Y = Xβ + ε (MR.1)

(MR.2): Strict Exogeneity Conditional expectation of ε, given all observations of the
explanatory variable matrix X , is zero:

E (ε|X) = 0 (MR.2)

This assumption also implies that E(ε) = E (E(ε|X)) = 0, E(εX) = 0
and Cov(ε,X) = 0. Furthermore, this property implies that: E (Y |X) = Xβ



(MR.3): Conditional Homoskedasticity The variance-covariance matrix of the error
term, conditional on X is constant:

Var (ε|X) =


Var(ε1) Cov(ε1, ε2) ... Cov(ε1, εN)

Cov(ε2, ε1) Var(ε2) ... Cov(ε2, εN)
...

...
. . .

...
Cov(εN , ε1) Cov(εN , ε2) ... Var(εN)

 = σ2ε I (MR.3)

(MR.4): Conditionally Uncorrelated Errors The covariance between different error
term pairs, conditional on X , is zero:

Cov (εi , εj |X) = 0, i 6= j (MR.4)

This assumption implies that all error pairs are uncorrelated. For cross-sectional data,
this assumption implies that there is no spatial correlation between errors.



(MR.5) There exists no exact linear relationship between the explanatory variables.
This means that:

c1Xi1 + c2Xi2 + ...+ ckXik = 0, ∀i = 1, ...,N ⇐⇒ c1 = c2 = ... = ck = 0 (MR.5)

This assumption is violated if there exists some cj 6= 0.
Alternatively, this requirement means that:

rank (X) = k + 1

or, alternatively, that:
det
(

X>X
)
6= 0

This assumption is important, because a linear relationship between independent variables
means that we cannot separately estimate the effects of changes in each variable
separately.
(MR.6) (optional) The residuals are normally distributed:

ε|X ∼ N
(
0, σ2ε I

)
(MR.6)



Multiple Regression: Summary of R
functions and Theory



Examining the variables
Note: the code shown is from the example task in chapter 4.11. The code in these slides is only a summarization
and therefore not complete.
#From: https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/pairs.html
panel.hist <- function(x, ...){

usr <- par("usr"); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE, breaks = 30)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, ...)

}
panel.abs_cor <- function(x, y, digits = 2, prefix = "", cex.cor, ...){

usr <- par("usr"); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
r <- abs(cor(x, y))
txt <- format(c(r, 0.123456789), digits = digits)[1]
txt <- paste0(prefix, txt)
if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt)
text(0.5, 0.5, txt, cex = 2)

}

pairs(dt4_train,
diag.panel = panel.hist,
lower.panel = panel.smooth,
upper.panel = panel.abs_cor,
col = "dodgerblue4",
pch = 21,
bg = adjustcolor("dodgerblue3", alpha = 0.2))

Note: These plots are useful for continuous data.



Correlation matrix can be visualized with:
myPanel <- function(x, y, z, ...){
lattice::panel.levelplot(x,y,z,...)
my_text <- ifelse(!is.na(z), paste0(round(z, 4)), "")
lattice::panel.text(x, y, my_text)

}
#
mask = cor(dt4_train)
mask[upper.tri(mask, diag = TRUE)] <- NA
#
#
lattice::levelplot(mask,

panel = myPanel,
col.regions = viridisLite::viridis(100),
main = 'Correlation of numerical variables')



Model estimation
The model Yi = β0 +β1X1,i +β2X2,i +β3X 2

1,i +β4(X1,i ×X2,i) + εi can be estimated using lm():
my_model <- lm(y ~ 1 + x1 + x2 + I(x1^2) + x1*x2, data = dt4_train)
Note that

I y ~ 1 + x1 + x2 + I(x1ˆ2) + x1*x2 is the same as y ~ 1 + x1 + x2 + I(x1ˆ2) + x1:x2
I y ~ 1 + x1 + x2 + I(x1ˆ2) + x1*x2 is the same as y ~ 1 + x1*x2 + I(x1ˆ2)
I y ~ 1 + I(x1ˆ2) + x1:x2 is Yi = β0 + β1X2

1,i + β2(X1,i × X2,i ) + εi

Furthermore:
I When specifying polynomial and interaction terms it is important to think about their

interpretation;
I In general, the coefficient signs should make economic sense, so you should have an initial

assumption of their signs. Then, from the estimated model, you should determine whether
the coefficients are significant, and if they are, whether their signs make sense (sometimes
both a positive and a negative sign can have an economic interpretation).

I As per the lecture note example, you should be able to write down the estimated regression
model.



Linear Restrictions {
H0 : βeduc = βexper , and βeduc2 = βexper2

H1 : βeduc 6= βexper or βeduc2 6= βexper2 or both

car::linearHypothesis(mdl_4_fit, c("educ-exper=0", "I(educ^2)-I(exper^2)=0")){
H0 : βeduc = βexper

H1 : βeduc 6= βexper

car::linearHypothesis(mdl_4_fit, c("educ-exper=0"))

Restricted Least Squares
If we have no grounds to reject the linear restriction hypothesis - we can estimate the model via
RLS:
lrmest::rls(formula = formula(my_model),

R = LL,
r = rr,
data = dt4_train,
delt = rep(0, length(rr)))

Note that the standard errors and p-values for the coefficient significance are available provided
in the output but can be calculated manually.



Collinearity
Verify whether the explanatory variables are collinear using the Variance Inflation Factor (VIF):
car::vif(my_model)

Note that in case of categorical/factor variables, the Generalized VIF will be calculated.
A
(
GVIF1/(2·DF)

)2
< 5 (DF is the number of coefficients, polynomial and interaction terms that

in some way include the specific variable) is equivalent to a VIF < 5, which indicated no
multicollinearity.
Carrying out the test on a model without any interaction and polynomial terms. If some
variables are found to be collinear- they should be excluded from the model.



Residual diagnostics - plots
I The residual vs fitted plot:

plot(my_model$fitted.values, my_model$residuals)
I The residual histogram:

hist(my_model$residuals)
I The QQ plot:

qqnorm(my_model$residuals)
qqline(my_model$residuals, col = "red")

Residual diagnostics - tests
Homoskedasticity tests {

H0 : residuals are homoskedastic
H1 : residuals are heteroskedastic

# Breusch–Pagan Test
print(lmtest::bptest(my_model))
# Goldfeld–Quandt Test
lmtest::gqtest(my_model, alternative = "two.sided")
# White Test
lmtest::bptest(mdl_3_fit, ~ x1*x2 + I(x1^2) + I(x2^2), data = dt4_train)
In general, if the p-value < 0.05 - we reject the null hypothesis and conclude that the residuals are heteroskedastic.



Autocorrelation Tests{
H0 : the errors are serially uncorrelated
H1 : the errors are autocorrelated (the exact order of the autocorrelation depends on the test carried out)

# Durbin–Watson Test - first order autocorrelation only
lmtest::dwtest(my_model, alternative = "two.sided")
# Breusch-Godfrey Test
lmtest::bgtest(my_model, order = 2)
In general, if the p-value < 0.05 - we reject the null hypothesis and conclude that the residuals are autocorrelated
(or simply, serially correlated).

Normality Tests {
H0 : residuals follow a normal distribution
H1 : residuals do not follow a normal distribution

norm_tests = c("Anderson-Darling", "Shapiro-Wilk", "Kolmogorov-Smirnov",
"Cramer-von Mises", "Jarque-Bera")

norm_test <- data.frame(
p_value = c(nortest::ad.test(my_model$residuals)$p.value,

shapiro.test(my_model$residuals)$p.value,
ks.test(my_model$residuals, y = "pnorm", alternative = "two.sided")$p.value,
nortest::cvm.test(my_model$residuals)$p.value,
tseries::jarque.bera.test(my_model$residuals)$p.value),

Test = norm_tests)
In general, if the p-value < 0.05 - we reject the null hypothesis and conclude that the residuals are not normally
distributed.



I What can you say about the residual plots - are there any non-linearities? Do the residuals
appear to be normally distributed?

I What can you conclude about your model from these tests? Which of the (MR.1) -
(MR.6) assumptions are (not) violated?



HCE
If we find that our residuals are heteroskedastic but not autocorrelated - we can correct the
standard errors via either HC0, HC1, HC2, or HC3.
Of the four, HC3 is the superior estimate.
lmtest::coeftest(my_model,

vcov. = sandwich::vcovHC(my_model, type = "HC3"))

WLS
Alternatively, we can correct the estimates themselves for heteroskedasticity by using WLS with a
generic weight function:
log_resid_sq_ols <- lm.fit(y = log(my_model$residuals^2), x = model.matrix(my_model))
h_est = exp(log_resid_sq_ols$fitted.values)
#
my_model_wls <- lm(formula = formula(my_model), data = dt4_train, weights = 1 / h_est)
Note that R2

adj calculated for WLS is not comparable to the OLS R2
adj .

HAC
If the residuals are autocorrelated (and also heteroskedastic, but not necessarily) - we can correct
the standard errors via:
mtest::coeftest(my_model,

sandwich::NeweyWest(my_model, lag = 2))[, ], 4)



Model Specification test
Rainbow Test for Linearity:
lmtest::raintest(formula(my_model), order.by = ~ x1, data = dt4_train)
lmtest::raintest(formula(my_model), order.by = ~ x2, data = dt4_train)
...
The data needs to be ordered. If p-value < 0.05 - we reject the null hypothesis and conclude that the model fit is
not adequate.

Ramsey Regression Specification Error Test:
lmtest::resettest(formula(my_model), data = dt4_train, power = 2, type = "fitted")
lmtest::resettest(formula(my_model), data = dt4_train, power = 3, type = "fitted")
...
If p-value < 0.05, we reject the null hypothesis and conclude that the original model is inadequate.

Automatic model selection
We can pass different variables, their interaction and polynomial terms via my_full_formula
and attempt to automatically fit the best model based on BIC , or R2

adj up to a maximum of 8
explanatory variables:
leaps::regsubsets(my_full_formula, data = dt4_train, nvmax = 8, nbest = 1)
Note: check the lecture notes and the example task chapter on the various plots that are available.


