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Multiple Regression: Model Assumptions

Much like in the case of the univariate regression with one independent variable, the multiple
regression model has a number of required assumptions:

(MR.1): Linear Model The Data Generating Process (DGP), or in other words, the
population, is described by a linear (in terms of the coefficients) model:

Y=XB+e (MR.1)

(MR.2): Strict Exogeneity Conditional expectation of e, given all observations of the
explanatory variable matrix X, is zero:

E(e|X) =0 (MR.2)

This assumption also implies that E(e) = E (E(¢| X)) =0, E(eX) =0
and Cov(e, X) = 0. Furthermore, this property implies that: E(Y|X) = X3




(MR.3): Conditional Homoskedasticity The variance-covariance matrix of the error
term, conditional on X is constant:

Var(er) Cov(er,€2) ... Cov(er,en)
Cov(ez,e1)  Var(ep) ... Cov(er,en)
Var (g|X) = _ , _ : =02l (MR.3)
Cov(en,€1) Cov(en,€2) ...  Var(en)

(MR.4): Conditionally Uncorrelated Errors The covariance between different error
term pairs, conditional on X, is zero:

Cov (€j,€¢/|X) =0, i#j (MR.4)

This assumption implies that all error pairs are uncorrelated. For cross-sectional data,
this assumption implies that there is no spatial correlation between errors.




(MR.5) There exists no exact linear relationship between the explanatory variables.
This means that:

aXnp+oXo+..+taXu=0,Vi=1,.N < ag=c=..=c¢ =0 (MR5)

This assumption is violated if there exists some ¢; # 0.
Alternatively, this requirement means that:

rank (X) = k+1
or, alternatively, that:
det (xTx) £0

This assumption is important, because a linear relationship between independent variables
means that we cannot separately estimate the effects of changes in each variable
separately.

(MR.6) (optional) The residuals are normally distributed:

e|X ~ N (0,021) (MR.6)




Multiple Regression: Summary of R
functions and Theory



Examining the variables
Note: the code shown is from the example task in chapter 4.11. The code in these slides is only a summarization
and therefore not complete.

#From: https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/pairs.html
panel.hist <- function(x,
usr <- par("usr"); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE, breaks = 30)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, ...)
}
panel.abs_cor <- function(x, y, digits = 2, prefix = "", cex.cor, ...){
usr <- par("usr"); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
r <- abs(cor(x, y))
txt <- format(c(r, 0.123456789), digits = digits) [1]
txt <- pasteO(prefix, txt)
if (missing(cex.cor)) cex.cor <- 0.8/strwidth(txt)
text (0.5, 0.5, txt, cex = 2)
}

pairs(dt4_train,
diag.panel = panel.hist,
lower.panel = panel.smooth,
upper.panel = panel.abs_cor,
col = "dodgerblue4",
=821
bg = adjustcolor("dodgerblue3", alpha = 0.2))



Correlation matrix can be visualized with:

myPanel <- function(x, y, z, ...){
lattice: :panel.levelplot(x,y,z,...)
my_text <- ifelse(!is.na(z), pasteO(round(z, 4)), "")
lattice::panel.text(x, y, my_text)

}

#

mask = cor(dt4_train)

mask [upper.tri(mask, diag = TRUE)] <- NA

#

#

lattice: :levelplot (mask,
panel = myPanel,
col.regions = viridisLite::viridis(100),
main = 'Correlation of numerical variables')



Model estimation
The model Y; = o+ B1.X1,i + B2Xo,; +B3X12,,- + Ba(X1,i X X2,;) + €; can be estimated using 1m():

my_model <- lm(y ~ 1 + x1 + x2 + I(x172) + x1*x2, data = dt4_train)

Note that
>y~ 1+ x1+x2+ I(x172) + x1*x2isthesameasy ~ 1 + x1 + x2 + I(x172) + x1:x2
>y ~ 1+ x1 +x2+ I(x17°2) + x1*x2isthesameasy ~ 1 + x1*x2 + I(x1°2)

>y~ 1+ I(x1°2) + x1:x21is Y; = By +51X12J +52(X1’[ X Xz’;) + €
Furthermore:

» When specifying polynomial and interaction terms it is important to think about their
interpretation;

» In general, the coefficient signs should make economic sense, so you should have an initial
assumption of their signs. Then, from the estimated model, you should determine whether
the coefficients are significant, and if they are, whether their signs make sense (sometimes
both a positive and a negative sign can have an economic interpretation).

» As per the lecture note example, you should be able to write down the estimated regression
model.



Linear Restrictions

Ho  : Bedue = Bexper; and Bey 2 = BexperZ
Hi 2 Beduc 7 Bexper OF Beguc2 7 ﬁexperZ or both

car::linearHypothesis(mdl_4_fit, c("educ-exper=0", "I(educ~2)-I(exper~2)=0"))

Ho : Beduc = 6exper
Hi  : Beduc # Bexper

car::linearHypothesis(mdl_4_fit, c("educ-exper=0"))

Restricted Least Squares
If we have no grounds to reject the linear restriction hypothesis - we can estimate the model via
RLS:

lrmest::rls(formula = formula(my_model),
R = LL,
r =rr,
data = dt4_train,
delt = rep(0, length(rr)))

Note that the standard errors and p-values for the coefficient significance are available provided
in the output but can be calculated manually.



Collinearity
Verify whether the explanatory variables are collinear using the Variance Inflation Factor (VIF):
car: :vif (my_model)

Note that in case of categorical /factor variables, the Generalized VIF will be calculated.

2
A (GVIFl/(z‘DF)) < 5 (DF is the number of coefficients, polynomial and interaction terms that

in some way include the specific variable) is equivalent to a VIF < 5, which indicated no
multicollinearity.

Carrying out the test on a model without any interaction and polynomial terms. If some
variables are found to be collinear- they should be excluded from the model.



Residual diagnostics - plots
» The residual vs fitted plot:

plot (my_model$fitted.values, my_model$residuals)
» The residual histogram:

hist (my_model$residuals)
» The QQ plot:

qgqnorm(my_model$residuals)
gqline(my_model$residuals, col = "red")

Residual diagnostics - tests
Homoskedasticity tests

Ho : residuals are homoskedastic
H; : residuals are heteroskedastic
# Breusch-Pagan Test
print (lmtest: :bptest (my_model))
# Goldfeld-Quandt Test
Imtest: :gqtest(my_model, alternative = "two.sided")

# White Test
Imtest::bptest(mdl_3_fit, ~ x1*x2 + I(x172) + I(x272), data = dt4_train)

In general, if the p-value < 0.05 - we reject the null hypothesis and conclude that the residuals are heteroskedastic.



Autocorrelation lests

Ho : the errors are serially uncorrelated
Hi : the errors are autocorrelated (the exact order of the autocorrelation depends on the test carried out)

# Durbin-Watson Test - first order autocorrelation only
Ilmtest: :dwtest(my_model, alternative = "two.sided")

# Breusch-Godfrey Test

Imtest: :bgtest (my_model, order = 2)

In general, if the p-value < 0.05 - we reject the null hypothesis and conclude that the residuals are autocorrelated
(or simply, serially correlated).

Normality Tests

Ho : residuals follow a normal distribution
H; : residuals do not follow a normal distribution

norm_tests = c("Anderson-Darling", "Shapiro-Wilk", "Kolmogorov-Smirnov",
"Cramer-von Mises", "Jarque-Bera")
norm_test <- data.frame(
p_value = c(nortest::ad.test(my_model$residuals)$p.value,
shapiro.test(my_model$residuals)$p.value,
ks.test (my_model$residuals, y = "pnorm", alternative = "two.sided")$p.value,
nortest::cvm.test (my_model$residuals) $p.value,
tseries::jarque.bera.test(my_model$residuals)$p.value),
Test = norm_tests)

In general, if the p-value < 0.05 - we reject the null hypothesis and conclude that the residuals are not normally
distributed.



» What can you say about the residual plots - are there any non-linearities? Do the residuals
appear to be normally distributed?

» What can you conclude about your model from these tests? Which of the (MR.1) -
(MR.6) assumptions are (not) violated?



HCE
If we find that our residuals are heteroskedastic but not autocorrelated - we can correct the
standard errors via either HCO, HC1, HC2, or HC3.

Of the four, HC3 is the superior estimate.

Ilmtest: :coeftest (my_model,
vcov. = sandwich::vcovHC(my_model, type = "HC3"))

WLS
Alternatively, we can correct the estimates themselves for heteroskedasticity by using WLS with a

generic weight function:

log_resid_sq_ols <- 1m.fit(y = log(my_model$residuals”2), x = model.matrix(my_model))
h_est = exp(log_resid_sq_ols$fitted.values)

#

my_model_wls <- lm(formula = formula(my_model), data = dt4_train, weights = 1 / h_est)

Note that Rgdj calculated for WLS is not comparable to the OLS R?

adj*
HAC
If the residuals are autocorrelated (and also heteroskedastic, but not necessarily) - we can correct

the standard errors via:

mtest: :coeftest (my_model,
sandwich: :NeweyWest (my_model, lag = 2))[, 1, 4)



Model Specification test
Rainbow Test for Linearity:

Imtest::raintest(formula(my_model), order.by = ~ x1, data
Imtest: :raintest (formula(my_model), order.by = ~ x2, data

dt4_train)
dt4_train)

The data needs to be ordered. If p-value < 0.05 - we reject the null hypothesis and conclude that the model fit is
not adequate.

Ramsey Regression Specification Error Test:

Imtest: :resettest(formula(my_model), data
Imtest: :resettest(formula(my_model), data

"fitted")
"fitted")

dt4_train, power
dt4_train, power

2, type
3, type

If p-value < 0.05, we reject the null hypothesis and conclude that the original model is inadequate.

Automatic model selection

We can pass different variables, their interaction and polynomial terms via my_full_formula
and attempt to automatically fit the best model based on BIC, or Rfdj up to a maximum of 8
explanatory variables:

leaps: :regsubsets(my_full_formula, data = dt4_train, nvmax = 8, nbest = 1)

Note: check the lecture notes and the example task chapter on the various plots that are available.



