
PE I: Multivariable Regression
Generalized Least Squares, Heteroskedastic and Autocorrelated Errors

(Chapters 4.6, 4.7 & 4.8)

Andrius Buteikis, andrius.buteikis@mif.vu.lt
http://web.vu.lt/mif/a.buteikis/

mailto:andrius.buteikis@mif.vu.lt
http://web.vu.lt/mif/a.buteikis/

Multiple Regression: Model Assumptions

Much like in the case of the univariate regression with one independent variable, the multiple
regression model has a number of required assumptions:

(MR.1): Linear Model The Data Generating Process (DGP), or in other words, the
population, is described by a linear (in terms of the coefficients) model:

Y = Xβ + ε (MR.1)

(MR.2): Strict Exogeneity Conditional expectation of ε, given all observations of the
explanatory variable matrix X , is zero:

E (ε|X) = 0 (MR.2)

This assumption also implies that E(ε) = E (E(ε|X)) = 0, E(εX) = 0
and Cov(ε,X) = 0. Furthermore, this property implies that: E (Y |X) = Xβ

(MR.3): Conditional Homoskedasticity The variance-covariance matrix of the error
term, conditional on X is constant:

Var (ε|X) =


Var(ε1) Cov(ε1, ε2) ... Cov(ε1, εN)

Cov(ε2, ε1) Var(ε2) ... Cov(ε2, εN)
...

...
. . .

...
Cov(εN , ε1) Cov(εN , ε2) ... Var(εN)

 = σ2ε I (MR.3)

(MR.4): Conditionally Uncorrelated Errors The covariance between different error
term pairs, conditional on X , is zero:

Cov (εi , εj |X) = 0, i 6= j (MR.4)

This assumption implies that all error pairs are uncorrelated. For cross-sectional data,
this assumption implies that there is no spatial correlation between errors.

(MR.5) There exists no exact linear relationship between the explanatory variables.
This means that:

c1Xi1 + c2Xi2 + ...+ ckXik = 0, ∀i = 1, ...,N ⇐⇒ c1 = c2 = ... = ck = 0 (MR.5)

This assumption is violated if there exists some cj 6= 0.
Alternatively, this requirement means that:

rank (X) = k + 1

or, alternatively, that:
det
(

X>X
)
6= 0

This assumption is important, because a linear relationship between independent variables
means that we cannot separately estimate the effects of changes in each variable
separately.
(MR.6) (optional) The residuals are normally distributed:

ε|X ∼ N
(
0, σ2ε I

)
(MR.6)

Generalized Least Squares

Generalized Least Squares

Let our multiple regression be defined as:

Y = Xβ + ε

So far, one of our assumptions about the error term was defined by (MR.3) - (MR.4), namely
that:

Var (ε|X) = E
(
εε>

)
= σ2ε I

However, sometimes the variance-covariance matrix of the residuals Var (ε|X) 6= σ2ε I.

In this lecture we will examine how this change effects parameter estimation, as well as the
possible solutions for such cases.

A General Multiple Linear Regression
Consider the following model:

Y = Xβ + ε, E (ε|X) = 0, Var (ε|X) = E
(
εε>

)
= Σ = σ2εΩ

where Ω is symmetric and positive definite N × N matrix. This model allows for the
errors to be heteroskedastic or autocorrelated (or both) and is often referred to as
special case of the generalized linear (regression) model (GLM).
Consequently, we may refer to this type of a models as a general multiple linear
regression (GMLR), to distinguish it as only a special case of a GLM. We will examine
GLM’s in more detail in a later lecture.

I If Ω = I, then the GMLR is just the simple multiple linear regression model that we are
already familiar with;

I If Ω is diagonal with non-constant diagonal elements, then the error terms are
uncorrelated but they are heteroskedastic;

I If Ω is not diagonal then Cov(εi , εj) = Ωi,j 6= 0 for some i 6= j . In econometrics,
non-diagonal covariance matrices are most commonly encountered in time-series data, with
higher correlations for observations closer in time (usually when i and j are differ by 1 or 2).
I If Ω is not diagonal and the diagonal elements are constant, then the errors are

autocorrelated and homoskedastic;
I If Ω is not diagonal and the diagonal elements are not constant, then the errors are

autocorrelated and heteroskedastic;

As such, we will now assume that Ω 6= I, since we have already covered this case in previous
chapters.

Consequences when OLS is used on GMLR
Since the OLS estimator can be expressed as:

β̂OLS =
(

X>X
)−1

X>Y

then:
I The expected value of the OLS estimator:

E
(
β̂OLS

)
= β +

(
X>X

)−1
X>E (ε) = β

i.e. the OLS estimators of β are unbiased;
I The variance-covariance matrix of the OLS estimator:

Var
(
β̂OLS

)
= E

[(
X>X

)−1
X>εε>X

(
X>X

)−1]
= σ2ε

(
X>X

)−1
X>ΩX

(
X>X

)−1
6= σ2ε

(
X>X

)−1

I Since Var
(
β̂OLS

)
6= σ2ε

(
X>X

)−1
, statistical inference based on the following

assumptions:
V̂ar

(
β̂OLS

)
= σ̂2OLS

(
X>X

)−1
σ̂2OLS = ε̂>OLS ε̂OLS

N − (k + 1) = 1
N − (k + 1)

(
Y − Xβ̂OLS

)> (
Y − Xβ̂OLS

)
are invalid since, in general, σ̂2OLS is a biased and inconsistent estimator of σ2 for GMLR.
Consequently V̂ar

(
β̂OLS

)
are also biased and inconsistent.

I The usual OLS t-statistics do not have Students t distribution, even in large samples;
I The F -statistic no longer has Fisher distribution; the LM statistic (see the previously

described heteroskedasticity tests) no longer has an asymptotic χ2 distribution.
I β̂OLS → β, if the largest eigenvalue of Ω is bounded for all N, and the largest eigenvalue of(

X>X
)−1

tends to zero as N →∞.

In other words, the OLS estimates are unbiased and consistent, but their variance
estimators are biased and inconsistent, which leads to incorrect results for statistical
tests.

http://mathworld.wolfram.com/Eigenvalue.html

Generalized Least Squares (GLS)
The general idea behind GLS is that in order to obtain an efficient estimator of β̂, we need to
transform the model, so that the transformed model satisfies the Gauss-Markov theorem (which
is defined by our (MR.1) - (MR.5) assumptions).
Then, estimating the transformed model by OLS yields efficient estimates. The transformation is
expressed in terms of a (usually) triangular matrix Ψ, such that:

Ω−1 = ΨΨ>

Then, premultiplying our initial model via this matrix yields:

Ψ>Y = Ψ>Xβ + Ψ>ε (1)

Because Ω is non-singular - so is Ψ, therefore we can always multiply the previous expression by(
Ψ>
)−1

to arrive back at the initial model.
In other words - we have simply scaled both sides of the initial equation.

Then, the following properties hold for the residuals:

E
(

Ψ>ε
)

= Ψ>E (ε) = 0

Var
(

Ψ>ε
)

= Var
(

Ψ>ε
)

= Ψ>Var (ε) Ψ

= σ2Ψ>ΩΨ = σ2Ψ>
(
Ω−1

)−1 Ψ

= σ2Ψ>
(

ΨΨ>
)−1

Ψ = σ2Ψ>
(

Ψ>
)−1

Ψ−1Ψ

= σ2I

which means that now the assumptions (MR.3) - (MR.4) hold true for the model, defined in (1).

The Parameter GLS Estimator
Consequently, the OLS estimator of β from regression in (1) is:

β̂ =
(

X>ΨΨ>X
)−1

X>ΨΨ>Y =
(

X>Ω−1X
)−1

X>Ω−1Y

This estimator is called the generalized least squares (GLS) estimator of β.
So, the GLS estimator can be formulated as follows:

Let Ω−1 = ΨΨ> and let Y ∗ = X∗β + ε∗, where Y ∗ = Ψ>Y , X∗ = Ψ>X and
ε∗ = Ψ>ε. then the GLS estimator of β is:

β̂GLS =
(

X∗>X∗
)−1

X∗>Y ∗ =
(

X>Ω−1X
)−1

X>Ω−1Y

Alternatively, it can also be obtained as a solution to the minimization of the GLS criterion
function:

(Y − Xβ)>Ω−1 (Y − Xβ)→ min
β

This criterion function can be thought of as a generalization of the RSS function, which is
minimized in the OLS case. The effect of such weighting is clear when Ω is diagonal - each
observation is simply given a weight proportional to the inverse of the variance of its error term.

The Error Variance Estimator
Next, we need to estimate the error variance:

σ̂2 = 1
N − (k + 1)

(
Y ∗ − X∗β̂GLS

)> (
Y ∗ − X∗β̂GLS

)
= 1

N − (k + 1)

(
Ψ>Y −Ψ>Xβ̂GLS

)> (
Ψ>Y −Ψ>Xβ̂GLS

)
= 1

N − (k + 1)

(
Y − Xβ̂GLS

)>
ΨΨ>

(
Y − Xβ̂GLS

)
which leads to the following unbiased and consistent estimator of σ2:

σ̂2 = 1
N − (k + 1)

(
Y − Xβ̂GLS

)>
Ω−1

(
Y − Xβ̂GLS

)

Properties of the GLS Estimator
Because of our conveniently written GMLR model form Y ∗ = X∗β + ε∗, the following GLS
properties can be derived following the same principles as in the OLS case:
I The GLS is an unbiased estimator:

E
(
β̂GLS

)
= β +

(
X∗>X∗

)−1
X∗>E (ε∗) = β

I The GLS variance-covariance matrix is:

Var
(
β̂GLS

)
= σ2

(
X∗>X∗

)−1
= σ2

(
X>ΨΨ>X

)−1
= σ2

(
X>Ω−1X

)−1
I If the errors are normally distributed, then:

β̂GLS |X ∼ N
(
β, σ2

(
X>Ω−1X

)−1)
I σ̂2 is unbiased and consistent.

The GLS estimator is BLUE for the GMLR.
Consequently, for the GMLR, the OLS estimator is also inefficient.

Sometimes, we may decompose the whole variance-covariance matrix:

Var (ε|X) = σ2εΩ = Σ, Σ−1 = ΦΦ−1

Then the variance-covariance matrix is: Var
(

Φ>ε
)

= Φ>Var (ε) Φ = I
In some econometric software, the variance-covariance matrix may be decomposed in
this way. The difference is that in this case the GLS error variance is known to be 1,
while before, we needed to estimate σ2.
Either way, the GLS estimates will be the same, regardless of the error variance-
covariance specification used.

Multiple Linear Restriction Test
M multiple Linear Restrictions can be tested via the following hypothesis:{

H0 : Lβ = r
H1 : Lβ 6= r

Then, the F -statistic is:

F =

(
Lβ̂GLS − r

)> [
L
(

X>Ω−1X
)−1

L>
]−1 (

Lβ̂GLS − r
)

Mσ̂2
∼ F(M,N−(k+1))

Weighted Least Squares
It is particularly easy to obtain GLS estimates, when the error terms are heteroskedastic but
uncorrelated - this implies that the matrix is Ω diagonal, with non-constant diagonal elements:

Ω =


ω2
1 0 0 ... 0
0 ω2

2 0 ... 0
...

...
...

. . .
...

0 0 0 ... ω2
N

 ⇐⇒ Ω−1 =


ω−21 0 0 ... 0
0 ω−22 0 ... 0
...

...
...

. . .
...

0 0 0 ... ω−2N


So, if we select matrix Ψ as:

Ψ =


ω−11 0 0 ... 0
0 ω−12 0 ... 0
...

...
...

. . .
...

0 0 0 ... ω−1N



Then, our typical regression expression Ψ>Y = Ψ>Xβ + Ψ>ε can be written as:

Yi/ωi = β0 · (1/ωi) + β1 · (X1,i/ωi) + ...+ βk · (Xk,i/ωi) + εi/ωi

In other words, all of the variables, including the constant term, are multiplied by the same
weights ω−1i .

Consequently, β0 is no longer multiplied by a constant, so when estimating the model with
these transformed variables via OLS, create a new variable for 1/ωi , and exclude a
constant from your model.

There are various ways of determining the weights used in weighted least squares estimation. In
the simplest case, either from economic theory, or from some preliminary testing, we may assume
that E(ε2i) is proportional to Z 2

i , where Zi is some observed variable.

For example Zi may be the population, or income. Alternatively, sometimes E(ε2i) may be
proportional the sample size used to obtain an average (or total) value of observation i , which is
saved in the dataset.

I If observation Yi is an average of Ni equally variable (uncorrelated) observations,
then Var (Yi) = σ2/Ni and ωi = 1/

√
Ni ;

I If observation Yi is an aggregated total of Ni (uncorrelated) observations, then
Var (Yi) = Niσ

2 and ωi =
√
Ni ;

I If the variance of Yi is proportional to some predictor Zi , then Var (Yi) = Z 2
i σ

2

and ωi = Zi ;

It is possible to report various summary statistics, like R2, ESS and RSS in terms of Yi , or
Yi/ωi , however, R2 is only valid for the transformed variables Yi/ωi (since the coefficients are
estimated on the transformed dependent variables).

Feasible Generalized Least Squares
In practice the true form of Ω is unknown.

Even in the simplest case of Ω = diag
(
ω2
1 , ..., ω

2
N
)
, we would need to estimate a total of

k + 1 + N parameters (β0, ..., βk and ω2
1 , ..., ω

2
N), which is impossible since we only have N

observations (and a rule of thumb says that we would need a minimum of 5 - 20 observations per
parameters in order to get satisfactory estimates of β).

Therefore, we need to assume some simplifying conditions for Ω. For example, if Ω is diagonal,
suppose that ω2

i = α0 + α1Xm,i for some m = 1, ..., k - now we only need to estimate two
additional parameters (as opposed to N).

The case, where we use an estimated matrix Ω̂, is known as the feasible (or, estimable)
generalized least squares (FGLS). The estimators have good properties in large
samples.

Consequently, using the estimated matrix of Ω results in the following FGLS estimator:

The FGLS estimator is defined as:

β̂FGLS =
(

X>Ω̂
−1

X
)−1

X>Ω̂
−1

Y

where Ω̂ = Ω̂(θ) is a parametric estimation (with parameter vector θ) of the true
unknown matrix Ω.

For the weighted least squares case we would need to:

1. Estimate a model via OLS and calculate the residuals ε̂i,(OLS). If the regression is correctly
specified, an estimate of ω2

i is the OLS squared residual ε̂2i,(OLS).
2. Generally, the residuals are much too variable to be used directly in estimating the weights,

so instead we could use:
I some other kind of transformation of the residuals, or their squares. For example, log(ε̂2i).

Then regressing these variables on some selected predictors and using the fitted values as
weights.

I regressing the squared residuals against the fitted values. Then the square root of the fitted
values could be used as ωi ;

I regressing the absolute residuals against the fitted values. Then the fitted values could be
used as ωi ;

Plotting the residuals (or their squared values, or their absolute values, or the root square of their
absolute value) against the independent variable X would help in determining the regression form.

The resulting fitted values from this regression are estimates of ωi .

Generally, the structure can be imposed in two most popular ways: by assuming error
heteroskedasticity, or by assuming error serial correlation.

If the assumption about the error covariance structure is incorrect - heteroskedasticity
still remains and FGLS is is no longer BLUE. In this case:
I FGLS it is still unbiased, just like OLS;
I the FGLS estimator of the error variance is biased, just like OLS (but the

magnitude of the bias is not the same);

Furthermore, regarding the use of FGLS instead of GLS, it can be stated that:

Since we do not know the true Ω, but instead estimate Ω̂ from the sample, then it
becomes a random variable (just like when we estimate other parameters, like β̂). This
fact affects the distribution of the GLS estimator. Very little is known about the
finite-sample properties of the FGLS estimator.

A Note on Coefficient Interpretation
Since we are using the following model:

Y ∗ = X∗β + ε∗, where Y ∗ = Ψ>Y , X∗ = Ψ>X , ε∗ = Ψ>ε

to estimate β̂ with GLS (or FGLS), then the predicted values are:

Ŷ ∗ = X∗β̂GLS = Ψ>Xβ̂GLS

(
i .e. = Ψ>Ŷ

)
In other words multiplying both sides by

(
Ψ>
)−1

yields:

(
Ψ>
)−1

Ŷ ∗ = Xβ̂GLS = Ŷ

If we were to use X∗ to calculate the fitted/predicted values, then we would need to multiply the
fitted values Ŷ ∗ by

(
Ψ>
)−1

to get the fitted values for the original data Ŷ . Alternatively, this
expression also means that we can use the the original design matrix X with the GLS
estimates of β to get the fitted/predicted values of Y . In other words:

The GLS (as well as WLS and FGLS) estimates of β retain their coefficient interpretation of how a
unit increase in one explanatory variable Xj affects the dependent variable Y , ceteris paribus.

Heteroskedastic Errors

Heteroskedastic Errors
Consider the case where assumption (MR.3) does not hold, but assumption (MR.4) (and the
other remaining assumptions (MR.1), (MR.2), (MR.5) and, optionally, (MR.6)) are still valid.
Then we can write the following model as:

Y = Xβ + ε, E (ε|X) = 0, Var (ε|X) = E
(
εε>

)
= Σ 6= σ2ε I

The case when the error variance-covariance matrix is diagonal, but not equal to σ2ε I, expressed
as:

Σ =


σ21 0 0 ... 0
0 σ22 0 ... 0
...

...
...

. . .
...

0 0 0 ... σ2N


is referred to as heteroskedasticity. As mentioned before:
I the OLS estimators will remain unbiased;
I the OLS variance estimator is biased and inconsistent;
I the usual t-statistics of the OLS estimates do not have Student’s t distribution, even in

large samples.

1. Assume that Y = Xβ + ε is the true model.
2. Test the null hypothesis that the residuals are homoskedastic:

H0 : Var (ε|X) = σ2ε I

3. If we fail to reject the null hypothesis - we can use the usual OLS estimators.
4. If we reject the null hypothesis, there are two ways we can go:

I Use the OLS estimators, but correct their variance estimators (i.e. make them
consistent);

I Instead of OLS, use the weighted least squares (WLS) to estimate the parameters;
I Attempt to specify a different model, which would hopefully, be able to account for

heteroskedasticity (this is the least preferred method - our initial model should
already be the one we want in terms of variables, signs, interpretation, etc.).

Example
We will simulate the following model:

Yi = β0 + β1X1,i + β2X2,i + ui

ui = i · εi , εi ∼ N (0, σ2)
[
or ui ∼ N (0, i2 · σ2)

]
set.seed(123)
#
N <- 200
beta_vec <- c(10, 5, -3)
#
x1 <- seq(from = 0, to = 5, length.out = N)
x2 <- sample(seq(from = 3, to = 17, length.out = 80), size = N, replace = TRUE)
e <- rnorm(mean = 0, sd = 1:N, n = N)
x_mat <- cbind(1, x1, x2)
y <- x_mat %*% beta_vec + e
#
data_mat <- data.frame(y, x1, x2)

Testing For Heteroskedasticity
We can examine the presence of heteroskedasticity from the residuals plots, as well as conducting
a number of formal tests.
We will begin by estimating our model via OLS, as we usually would.
mdl_1 <- lm(y ~ x1 + x2, data = data_mat)
print(round(coef(summary(mdl_1)), 5))

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.89066 28.42373 -0.03134 0.97503
x1 7.21929 5.93429 1.21654 0.22524
x2 -1.83213 2.18885 -0.83703 0.40359

Residual Plot Diagnostic
One way of investigating the existence of heteroskedasticity is to visually examine the OLS model
residuals. If they are homoskedastic, there should be no pattern in the residuals. If the errors are
heteroskedastic, they would exhibit increasing or decreasing variation in some systematic way.
For example, variation may increase with larger values of Ŷ , or with larger values of Xj .
par(mfrow = c(2, 2))
#
plot(mdl_1$residuals, main = "Run-Sequence Plot")
plot(mdl_1$fitted.values, mdl_1$residuals, main = "Residuals vs Fitted")
plot(x1, mdl_1$residuals, main = bquote("Residuals vs"~X[1]))
plot(x2, mdl_1$residuals, main = bquote("Residuals vs"~X[2]))

0 50 100 150 200

−
40

0
0

40
0

Run−Sequence Plot

Index

m
dl

_1
$r

es
id

ua
ls

−30 −20 −10 0 10 20

−
40

0
0

40
0

Residuals vs Fitted

mdl_1$fitted.values

m
dl

_1
$r

es
id

ua
ls

0 1 2 3 4 5

−
40

0
0

40
0

Residuals vs X1

x1

m
dl

_1
$r

es
id

ua
ls

4 6 8 10 12 14 16

−
40

0
0

40
0

Residuals vs X2

x2

m
dl

_1
$r

es
id

ua
ls

The residuals appear to have different variance, depending on the value of Ŷ and X1.

Heteroskedasticity Tests
Most of the tests are identical to the ones described in @ref(OLS-Test-Heteroskedastic), but with
a bit more mathematical detail.

The Goldfeld–Quandt Test
This test is designed for the case where we have two sub-samples with possibly different
variances. The sub-samples can be created in a number of ways:
I create data sub-samples based on an indicator variable;
I sort the data along a known explanatory variable, from lowest to highest;

The test outline is as follows . . .

Let the the sub-samples j = 1, 2 contain Nj observations and let the regression on
sub-sample j have kj + 1 parameters (including the intercept). Let ε̂j be the residuals
of the regression on the j-th sub-sample and let the true variance of the sub-sample
errors be σ2j . Then the sub-sample variance can be estimated by:

σ̂2j =
ε̂>j ε̂j

Nj − (kj + 1)

We want to test the null hypothesis:{
H0 : σ̂21/σ̂22 = 1
H1 : σ̂21/σ̂22 6= 1

Then, the GQ statistic can be defined as:

GQ = σ̂21
σ̂22
∼ F(N1−(k1+1),N2−(k2+1))

If we reject the null hypothesis, for a chosen significance level α, then the variances
in the sub-samples are different, hence we cannot reject the null hypothesis of het-
eroskedasticity.

In our example model, we see that the residuals can be ordered by either the fitted values, or by X1. If we specify
to order by X1:
GQ_t <- lmtest::gqtest(mdl_1, alternative = "two.sided", order.by = ~ x1)
print(GQ_t)

##
Goldfeld-Quandt test
##
data: mdl_1
GQ = 10.217, df1 = 97, df2 = 97, p-value < 2.2e-16
alternative hypothesis: variance changes from segment 1 to 2

since the p-value is less than 0.05, we reject the null hypothesis and conclude that the residuals are
heteroskedastic.

I Furthermore, we can order by the fitted values:
GQ_t <- lmtest::gqtest(mdl_1, alternative = "two.sided", order.by = order(mdl_1$fitted.values))
print(GQ_t)

##
Goldfeld-Quandt test
##
data: mdl_1
GQ = 5.7826, df1 = 97, df2 = 97, p-value = 3.736e-16
alternative hypothesis: variance changes from segment 1 to 2

and we would arrive at the same conclusions.

On the other hand, if we would have specified to order by X2:
GQ_t <- lmtest::gqtest(mdl_1, alternative = "two.sided", order.by = ~ x2)
print(GQ_t)

##
Goldfeld-Quandt test
##
data: mdl_1
GQ = 1.1747, df1 = 97, df2 = 97, p-value = 0.4292
alternative hypothesis: variance changes from segment 1 to 2

We would have no grounds to reject the null hypothesis, and would have concluded that the errors are
homoskedastic.

This is why the residual plots are important.

Without them, we may have blindly selected one explanatory variable at random to order by, and would have
arrived at a completely different conclusion!

By default, if order.by is not specified, then the data is taken as ordered - i.e. it would be the equivalent of the
residual run-sequence plot.

A General Heteroskedasticity Test
The next test is used for conditional heteroskedasticity, which is related to explanatory variables.
This test is a generalization of the Breusch–Pagan Test.

Consider the following regression:
Y = Xβ + ε

We assume that the general expression for the conditional variance can be expressed as:

Var (ε|Z) = E
(
εε>|Z

)
= diag (h (Zα))

where Z is some explanatory variable matrix, which may include some (or all) of the explanatory
variables from X. h(·) is some smooth function, and α = [α0, ..., αm]>.
We want to test the null hypothesis:{

H0 : α1 = ... = αm = 0
H1 : at least one αj 6= 0, j ∈ {1, ...,m}

Then the associated BP test specifies the following linear model for the squared residuals:

ε̂̂ε
> = diag (Zα+ v)

Estimating the squared residuals model via OLS yields the parameter estimates. Then, using the F -test
for the joint significance of α1, ..., αm would be equivalent to testing for homoskedasticity. Alternatively,
and more conveniently, there is a test based on the R2

ε̂
:

LM = N · R2
ε̂
∼ χ2m

If we reject the null hypothesis, for a chosen significance level α, then the error variance is heteroskedastic.

BP_t <- lmtest::bptest(mdl_1)
print(BP_t)

##
studentized Breusch-Pagan test
##
data: mdl_1
BP = 35.896, df = 2, p-value = 1.604e-08

The p-value is less than the chosen 0.05 significance level, so the residuals are heteroskedastic.

The White Test
An even more generalized test, which proposes to include not only the exogenous variables, but
also their polynomial and interaction terms.

The associated OLS squared residual regression is similar to the general case:

ε̂ε̂> = diag (Zα+ v)

except now, the matrix Z also includes s additional polynomial and interaction terms
of the explanatory variables. The parameter vector is α1, ..., αm+s . We want to test
the null hypothesis:{

H0 : α1 = ... = αm+s = 0
H1 : at least one αj 6= 0, j ∈ {1, ...,m + s}

Then the test statistic is calculated in the same way as before:

LM = N · R2
ε̂
∼ χ2m+s

One difficulty with the White test is that it can detect problems other than heteroskedas-
ticity.
Thus, while it is a useful diagnostic, be careful about interpreting the test result -
instead of heteroskedasticity, it may be that you have an incorrect functional form, or
an omitted variable.

The test is also performed similar to how it was for the univariate regression with one
explanatory variable:
W_t <- lmtest::bptest(mdl_1, ~ x1 + I(x1^2) + x2 + I(x2^2) + x1:x2)
print(W_t)

##
studentized Breusch-Pagan test
##
data: mdl_1
BP = 43.195, df = 5, p-value = 3.373e-08

We again reject the null hypothesis of homoskedasticity and conclude that the residuals are heteroskedastic.

Heteroskedasticity-Consistent Standard Errors (HCE)
Once, we have determined that the errors are heteroskedastic, we want to have a way to account
for that.
One alternative is to stick with OLS estimates, but correct their variance. This is known as the
White correction - it will not change the β̂OLS , which are unbiased and ineffective, but it will
correct V̂ar

(
β̂OLS

)
.

If the errors from the error vector ε are independent, but have distinct variances, so that Var (ε|X) =
Σ = diag(σ21 , ..., σ2N).
Then the true underlying variance-covariance matrix of the OLS estimates would be:

V
(
β̂OLS

)
=
(

X>X
)−1 X>ΣX

(
X>X

)−1
Since E(εi) = 0, then Var(εi) = E(ε2i) = σ2i . Which means that we can estimate the variance diagonal
elements as:

σ̂2i = ε̂2i

Let Σ̂ = diag(̂ε21, ..., ε̂2N). Then the Whites Estimators, also known as the Heteroscedasticity-Consistent
Estimator (HCE), can be specified as:

VHCE
(
β̂OLS

)
=
(

X>X
)−1 X>Σ̂X

(
X>X

)−1
Furthermore, alternative specifications of Σ̂ are also possible.

In our simulated case, the white correction can be estimated either manually:
xtx_inv <- solve(t(x_mat) %*% x_mat)
V_HC <- xtx_inv %*% t(x_mat) %*% diag(mdl_1$residuals^2) %*% x_mat %*% xtx_inv
#
print(V_HC)

x1 x2
693.25117 -91.740409 -52.244062
x1 -91.74041 46.570134 2.341761
x2 -52.24406 2.341761 4.749053

or, via the built-in functions:
V_HC_1 <- sandwich::vcovHC(mdl_1, type = "HC0")
print(V_HC_1)

(Intercept) x1 x2
(Intercept) 693.25117 -91.740409 -52.244062
x1 -91.74041 46.570134 2.341761
x2 -52.24406 2.341761 4.749053

Having estimated the standard errors is nice, but we would also like to get the associated p-values.
print(lmtest::coeftest(mdl_1, vcov. = V_HC_1))

##
t test of coefficients:
##
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.89066 26.32966 -0.0338 0.9730
x1 7.21929 6.82423 1.0579 0.2914
x2 -1.83213 2.17923 -0.8407 0.4015

compared to the biased standard errors:
print(coef(summary(mdl_1)))

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.8906595 28.423734 -0.03133506 0.9750341
x1 7.2192910 5.934290 1.21653830 0.2252355
x2 -1.8321252 2.188846 -0.83702804 0.4035910

I We see that after correcting the standard errors, the p-values are also slightly different. The extent of the
difference depends of the severity of heteroskedasticity and the method used to correct for it.

I While the corrected variance estimated helps us avoid incorrect t-statistics (as well as avoid incorrect
confidence intervals) in case of heteroskedasticity, it does not address the problem that OLS estimates
are no longer the best (in terms of variance).

I If we have a large number of observations (i.e. thousands upon thousands), then the robust corrected
standard errors are enough. On the other hand, if we have s smaller sample size, then we would like to have
a more efficient estimator - this is where our previously presented GLS and FGLS come in handy.

HCE Alternative Specifications
A nice summary on alternative HCE specifications are presented in this paper by Hayes and Cai
2007. Several alternative Σ̂ specifications have been proposed in literature. Here we will briefly
summarize them.

Taking Σ̂ = diag(ε̂21, ..., ε̂2N), where εi are the OLS residuals, leads to the following
White’s HCE:

HC0
β̂OLS

=
(

X>X
)−1

X>diag(ε̂21, ..., ε̂2N)X
(

X>X
)−1

I for small sample sizes, the standard errors from HC0
β̂OLS

are quite biased. This
results in overly liberal inferences in regression models.

I HC0
β̂OLS

is consistent when the errors are heteroskedastic - the bias shrinks as the
sample size increases.

Estimators in this family have come to be known as sandwich estimators - X>Σ̂X is the filling
between two matrices

(
X>X

)−1
.

Consequently, alternative estimators to HC0
β̂OLS

were proposed, which are asymptotically
equivalent to HC0

β̂OLS
, but have superior small sample properties, when compared to HC0

β̂OLS
.

http://www.afhayes.com/public/BRM2007.pdf
http://www.afhayes.com/public/BRM2007.pdf

I An alternative HC estimator adjusts the degrees of freedom of HC0
β̂OLS

:

HC1
β̂OLS

=
N

N − (k + 1)
(

X>X
)−1 X>diag(̂ε21, ..., ε̂2N)X

(
X>X

)−1
Another HC estimator is defined based on extensive research, that finite-sample bias is a result of the
existence of points of high leverage. It uses the weight matrix, which is defined as:

H = X
(

X>X
)−1 X>

I Then the HC estimator is constructed by by weighting the i-th squared OLS residual by using the
i-th diagonal elements of the weight matrix H:

HC2
β̂OLS

=
(

X>X
)−1 X>diag

(
ε̂21

1− h11
, ...,

ε̂2N
1− hNN

)
X
(

X>X
)−1

I Similarly, using 1/(1− h11)2, instead of 1/(1− h11) for the weights leads to yet another HCE
specification:

HC3
β̂OLS

=
(

X>X
)−1 X>diag

(
ε̂21

(1− h11)2
, ...,

ε̂2N
(1− hNN)2

)
X
(

X>X
)−1

Evaluating the empirical power of the four methods: HC0, HC1, HC2 and HC3 suggested that
HC3 is a superior estimate, regardless of the presence, or absence, of heteroskedasticity.

Nevertheless, the performance of HC3 depends on the presence, or absence, of points of high
leverage in X and it may fail for certain forms of heteroskedasticity (for example, when the
predictors are from heavy-tailed distributions, and the errors are from light-tailed distributions).

I To account for large leverage values, another HC estimator was proposed:

HC4
β̂OLS

=
(

X>X
)−1

X>diag
(

ε̂21
(1− h11)δ1 , ...,

ε̂2N
(1− hNN)δN

)
X
(

X>X
)−1

where:
δi = min

{
4, N · hii

k + 1

}
Simulation tests indicated that HC4 can outperform HC3 when there are high
leverage points and non-normal errors.

Nevertheless, even with these alternative specifications, the variability of HCE are often larger
than model-based estimators, like WLS, GLS of FGLS, if the residual covariance-matrix is
correctly specified. On the other hand, HCE are derived under a minimal set of assumptions
about the errors. As such, it is useful when heteroskedasticity if of an unknown form and cannot
be adequately evaluated from the data.

Therefore, when using HCE (instead of some other model-based estimation methods),
we are trading efficiency for consistency.

Furthermore, there is also another specification, HC5 (Source).
In our example dataset different HCE can be easily specified with the built-in functions:
print(lmtest::coeftest(mdl_1, vcov. = sandwich::vcovHC(mdl_1, type = "HC0")))

##
t test of coefficients:
##
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.89066 26.32966 -0.0338 0.9730
x1 7.21929 6.82423 1.0579 0.2914
x2 -1.83213 2.17923 -0.8407 0.4015
print(lmtest::coeftest(mdl_1, vcov. = sandwich::vcovHC(mdl_1, type = "HC1")))

##
t test of coefficients:
##
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.89066 26.52939 -0.0336 0.9733
x1 7.21929 6.87600 1.0499 0.2950
x2 -1.83213 2.19576 -0.8344 0.4051

https://www.tandfonline.com/doi/full/10.1080/03610920601126589?src=recsys

print(lmtest::coeftest(mdl_1, vcov. = sandwich::vcovHC(mdl_1, type = "HC2")))

##
t test of coefficients:
##
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.89066 26.59922 -0.0335 0.9733
x1 7.21929 6.89407 1.0472 0.2963
x2 -1.83213 2.20143 -0.8322 0.4063
print(lmtest::coeftest(mdl_1, vcov. = sandwich::vcovHC(mdl_1, type = "HC3")))

##
t test of coefficients:
##
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.89066 26.87208 -0.0331 0.9736
x1 7.21929 6.96475 1.0365 0.3012
x2 -1.83213 2.22390 -0.8238 0.4110
print(lmtest::coeftest(mdl_1, vcov. = sandwich::vcovHC(mdl_1, type = "HC4")))

##
t test of coefficients:
##
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.89066 26.72908 -0.0333 0.9735
x1 7.21929 6.92585 1.0424 0.2985
x2 -1.83213 2.21168 -0.8284 0.4085

Note: Python currently does not have HC4 specification. Available specifications can be found
[here](https://www.statsmodels.org/dev/generated/statsmodels.regression.linear_model.RegressionResults.html

https://www.statsmodels.org/dev/generated/statsmodels.regression.linear_model.RegressionResults.html

As per the sandwich::vcovHC documentation, we can even calculate the HC5 specification:
print(lmtest::coeftest(mdl_1, vcov. = sandwich::vcovHC(mdl_1, type = "HC5")))

##
t test of coefficients:
##
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.89066 26.52816 -0.0336 0.9733
x1 7.21929 6.87476 1.0501 0.2950
x2 -1.83213 2.19536 -0.8345 0.4050

https://www.rdocumentation.org/packages/sandwich/versions/2.5-1/topics/vcovHC

Weighted Least Squares (WLS)
After detecting heteroskedasticity in the errors, we may want to impose a structure on the
residual covariance matrix and estimate the coefficients via GLS. If we know that there is no
serial correlation in the errors, then the covariance is diagonal. This leads to a specific case of
GLS - weighted least squares (WLS).
In reality, we do not know the true form of heteroskedasticity. So, even knowing that the
covariance matrix is diagonal still does not say anything about the diagonal elements, they could
be either of the following:

Σ = σ2 · diag (Xj,1,Xj,2, ...,Xj,N) i.e., variance is proportional to Xj

Σ = σ2 · diag
(
X 2

j,1,X 2
j,2, ...,X 2

j,N
)

Σ = σ2 · diag
(√

Xj,1,
√
Xj,2, ...,

√
Xj,N

)
, if Xj,i ≥ 0, ∀i = 1, ...,N

Furthermore, in a multiple regression setting, heteroskedasticity pattern may depend on more
than one explanatory variable - it could even be related to variables, not included in the model.
So, how do we select the most likely form for heteroskedasticity?

In general, one specification of heteroskedasticity, which works quite well, is:

σ2i = exp (α0 + α1Z1,i + ...+ αmZm,i)
= σ2 exp (α1Z1,i + ...+ αmZm,i) , where exp (α0) = σ2

taking logarithms of both sides and adding/removing the OLS residual yields:

log(σ2i) = α0 + α1Z1,i + ...+ αmZm,i ± log(ε̂2i)

which simplifies to:

log(ε̂2i) = α0 + α1Z1,i + ...+ αmZm,i + log
(
ε̂2i
σ2i

)
= α0 + α1Z1,i + ...+ αmZm,i + vi

using this model we can estimate α0, ..., αm via OLS. the properties of this model depend on the
introduced error term vi - whether it is homoskedastic, with zero-mean. In smaller samples it is
not, but in larger samples it is closer to what we expect from the error term.

Feasible GLS Procedure:
1. Estimate the regression Y = Xβ + ε via OLS.
2. Use the residuals ε̂OLS and create log(ε2i).
3. Estimate the regression log(ε2i) = α0 + α1Z1,i + ...+ αmZm,i + vi and calculate

the fitted values ̂log(ε2i). In practice we use the same variables from X , unless we
know for sure that there are additional explanatory variables, which may determine
heteroskedasticity.

4. Take the exponent of the fitted values: ĥi = exp
(
̂log(ε2i)

)
.

5. Estimate the regression Y = Xβ + ε via WLS using weights ω−1i = 1/
√

ĥi , i.e.

use FGLS with Ψ> = Ψ = diag
(
1/
√
ĥ1, ..., 1/

√
ĥN

)
.

As noted before, applying WLS is equivalent to dividing each observation by
√

ĥi and estimating
OLS on the transformed data:

Yi/

√
ĥi = β0 ·

(
1/
√
ĥi

)
+ β1 ·

(
X1,i/

√
ĥi

)
+ ...+ βk ·

(
Xk,i/

√
ĥi

)
+ εi/

√
ĥi

The downside is that our model no longer contains a constant - β0 is now used for the new
(non-constant) variable 1/

√
ĥi 6= 1.

We begin by manually transforming the data and estimating OLS on the transformed variables:
resid_data <- data.frame(log_e2 = log(mdl_1$residuals^2), x1, x2)
#
resid_mdl <- lm(log_e2 ~ x1 + x2, data = resid_data)
h_est <- exp(resid_mdl$fitted.values)
#
data_weighted = data.frame(data_mat / sqrt(h_est),

weighted_intercept = 1 / sqrt(h_est))
mdl_w_ols <- lm(y ~ -1 + weighted_intercept + x1 + x2, data = data_weighted)
print(round(coef(summary(mdl_w_ols)), 5))

Estimate Std. Error t value Pr(>|t|)
weighted_intercept -1.39237 10.19482 -0.13658 0.89151
x1 7.97645 4.00325 1.99249 0.04770
x2 -2.02459 0.88157 -2.29656 0.02270

Next, we carry out WLS (where Ω−1 = diag
(

ĥ−11 , ..., ĥ−1N

)
). Manually:

beta_wls <- solve(t(x_mat) %*% diag(1 / h_est) %*% x_mat) %*% t(x_mat) %*% diag(1 / h_est) %*% y
#
resid_wls <- y - x_mat %*% beta_wls
sigma2_wls <- (t(resid_wls) %*% diag(1 / h_est) %*% resid_wls) / (N - length(beta_wls))
beta_wls_se <- c(sigma2_wls) * solve(t(x_mat) %*% diag(1 / h_est) %*% x_mat)
#
print(data.frame(est = beta_wls, se = sqrt(diag(beta_wls_se))))

est se
-1.392372 10.1948202
x1 7.976445 4.0032528
x2 -2.024586 0.8815747

Note: in most econometric software, you need to pass weights, which are inversely
proportional to the variances. In other words you need to supply weights = 1/σ2i = 1/ω2

i
which are the diagonal elements of Ω−1, not Ψ (regardless of your specification of Σ). Then,
the software automatically takes the square root of the specified values when calculating.
Using built-in functions:
mdl_wls <- lm(y ~ x1 + x2, data = data_mat, weights = 1 / h_est)
print(round(coef(summary(mdl_wls)), 5))

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.39237 10.19482 -0.13658 0.89151
x1 7.97645 4.00325 1.99249 0.04770
x2 -2.02459 0.88157 -2.29656 0.02270

We see that we get identical results in all cases.

Finally, we would like to compare the residuals from the OLS and GLS procedures. If we
have indeed accounted for heteroskedasticity, then the residual plots should indicate so as well.
We note that the GLS estimates are for the model:

Y ∗ = X∗β + ε∗, where Y ∗ = Ψ>Y , X∗ = Ψ>X , ε∗ = Ψ>ε

In other words we need to calculate: ε̂∗WLS = Y ∗ − X∗β̂WLS .

In most software, using built-in WLS estimation, the residuals are calculated as:
ε̂WLS = Y − Xβ̂WLS .

Consequently, since we have specified Ψ> = Ψ = diag
(
1/
√
ĥ1, ..., 1/

√
ĥN

)
, we can calculate

the residuals for the transformed model as:

ε̂∗WLS = Ψ>ε̂WLS = diag
(
1/
√
ĥ1, ..., 1/

√
ĥN

)
ε̂WLS

e_star <- 1 / sqrt(h_est) * mdl_wls$residuals

Now we can compare the plots:
par(mfrow = c(2, 2))
#
plot(mdl_1$fitted.values, mdl_1$residuals, main = "OLS Residuals vs Fitted")
plot(x1, mdl_1$residuals, main = bquote("OLS Residuals vs"~X[1]))
plot(mdl_wls$fitted.values, e_star, col = "blue", main = "WLS Residuals vs Fitted")
plot(x1, e_star, col = "blue", main = bquote("WLS Residuals vs"~X[1]))

−30 −20 −10 0 10 20

−
40

0
0

40
0

OLS Residuals vs Fitted

mdl_1$fitted.values

m
dl

_1
$r

es
id

ua
ls

0 1 2 3 4 5

−
40

0
0

40
0

OLS Residuals vs X1

x1

m
dl

_1
$r

es
id

ua
ls

−30 −20 −10 0 10 20 30

−
4

0
4

WLS Residuals vs Fitted

mdl_wls$fitted.values

e_
st

ar

0 1 2 3 4 5
−

4
0

4

WLS Residuals vs X1

x1

e_
st

ar

We see that:
I the magnitude of the residuals is smaller;
I there still appears to be some (albeit possibly insignificant) heteroskedasticity.

What would have happened, if we were to plot the WLS residuals of the non-transformed
data?

par(mfrow = c(2, 2))
#
plot(mdl_1$fitted.values, mdl_1$residuals, main = "OLS Residuals vs Fitted")
plot(x1, mdl_1$residuals, main = bquote("OLS Residuals vs"~X[1]))
plot(mdl_wls$fitted.values, mdl_wls$residuals, col = "blue", main = "WLS Residuals (of ORIGINAL data) vs Fitted")
plot(x1, mdl_wls$residuals, col = "blue", main = bquote("WLS Residuals (of ORIGINAL data) vs"~X[1]))

−30 −20 −10 0 10 20

−
40

0
0

40
0

OLS Residuals vs Fitted

mdl_1$fitted.values

m
dl

_1
$r

es
id

ua
ls

0 1 2 3 4 5

−
40

0
0

40
0

OLS Residuals vs X1

x1

m
dl

_1
$r

es
id

ua
ls

−30 −20 −10 0 10 20 30

−
40

0
0

40
0

WLS Residuals (of ORIGINAL data) vs Fitted

mdl_wls$fitted.values

m
dl

_w
ls

$r
es

id
ua

ls

0 1 2 3 4 5

−
40

0
0

40
0

WLS Residuals (of ORIGINAL data) vs X1

x1

m
dl

_w
ls

$r
es

id
ua

ls

Looking at the original, untransformed, data it would appear that we did not account
for heteroskedasticity but this is not the case. As mentioned, we have created a
model on the transformed data, hence we should analyse the residuals of the
transformed data.

As mentioned before - we have attempted to approximately calculate the weights, using the
logarithms of the squared residuals. Therefore, we may not always be able to capture all of the
heteroskedasticity. Nevertheless, it is much better than it was initially.

On the other hand, if we were to use 1/i as the weights, instead of 1/
√
ĥi :

mdl_wls_2 <- lm(y ~ x1 + x2, data = data_mat, weights = 1 / (1:N)^2)
print(round(coef(summary(mdl_wls_2)), 5))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.34254 2.37257 6.46663 0.00000
x1 5.33401 2.90696 1.83491 0.06803
x2 -3.32553 0.22286 -14.92183 0.00000
par(mfrow = c(1, 2))
plot(mdl_wls_2$fitted.values, 1 / 1:N * mdl_wls_2$residuals, col = "red", main = "WLS Residuals vs Fitted")
plot(x1, 1 / 1:N * mdl_wls_2$residuals, col = "red", main = bquote("WLS Residuals vs"~X[1]))

−40 −30 −20 −10 0 10 20 30

−
2

−
1

0
1

2

WLS Residuals vs Fitted

mdl_wls_2$fitted.values

1/
1:

N
 *

 m
dl

_w
ls

_2
$r

es
id

ua
ls

0 1 2 3 4 5
−

2
−

1
0

1
2

WLS Residuals vs X1

x1

1/
1:

N
 *

 m
dl

_w
ls

_2
$r

es
id

ua
ls

The resulting errors of the transformed model are no longer heteroskedastic.

Unfortunately, if we would have used 1/
√
X1,i , or 1/X1,i , then the residuals would have likely

remained heteroskedastic.

This is an important conclusion regarding WLS (and FGLS in general): if we attempt to
approximate the results, then, no matter the approximation, there is still a chance that the WLS
residuals would still contain some kind of (weak) heteroskedasticity. As such, we should examine
different residual plots to determine what kind of weights are appropriate.

In this example the true (unknown) variance of the error term is
Var (ε|X) = Σ = σ2ε · diag(12, 22, ...,N2). This would be equivalent to the case where the i-th
response is an aggregated total of Ni = i2 observations.

Regarding R2:
In most econometric software, the coefficient of determination for WLS uses a weighted
mean when calculating TSS. As a result, the reported R2 now measures the proportion
of total variation in weighted Y , Y ∗ explained by the weighted X, X∗.
To get a more conventional expression of R2 - use the general (or pseudo-) expression:

R2
g = Corr(Y , Ŷ)2

where Ŷ are the fitted values of the original (i.e. non-weighted) dependent variable).

Note that the weighted mean is calculated as:

Y (w) =
∑N

i=1 Yi/hi∑N
i=1 1/hi

We can verify this by examining the manual results with the output:
w <- 1 / h_est
RSS_W <- sum(w * mdl_wls$residuals^2)
TSS_W <- sum(w * (y - weighted.mean(y, w))^2)
print(1 - RSS_W / TSS_W)

[1] 0.04576885
print(summary(mdl_wls)$r.squared)

[1] 0.04576885
r2g_ols <- cor(y, mdl_1$fitted)^2
r2g_wls <- cor(y, mdl_wls$fitted)^2
print(paste0("OLS pseudo-R^2 = ", r2g_ols))

[1] "OLS pseudo-R^2 = 0.011880153644293"
print(paste0("WLS pseudo-R^2 = ", r2g_wls))

[1] "WLS pseudo-R^2 = 0.0118801535929629"

As was mentioned before regarding R2 - it is not always a good measure of the overall model
adequacy. Even if the OLS R2 is higher, if the residuals do not conform to (MR.2) - (MR.6)
assumptions, then the model and its hypothesis test results are not valid.

Choosing between HCE and WLS
The generalized least squares estimator require that we know the underlying form of the
variance-covariance matrix.

Regarding HCE:
I The variance estimator is quite robust because it is valid whether

heteroskedasticity is present or not, but only in a matter that is appropriate
asymptotically.

I In other words, if we are not sure whether the random errors are heteroskedastic or
homoskedastic, then we can use a robust variance estimator and be confident that
our standard errors, t-tests, and interval estimates are valid in large samples.

I In small samples, whether we modify the covariance estimator or not, the usual
statistics will still be unreliable.

I This estimator needs to be modified, if we suspect that the errors may exhibit
autocorrelation (of some unknown form).

Regarding WLS:
I If we know the underlying form of the residual variance-covariance matrix, then

FGLS would result in more efficient estimators;
I If we specify the covariance structure incorrectly, i.e. we do not completely remove

heteroskedasticity, then the FGLS estimator will be unbiased, but not the best and
the standard errors will still be biased (as in the OLS case).

So, both methods have their benefits and their drawbacks. However, we can combine
them both:
I Attempt to correct for heteroskedasticity via the WLS;
I Test the residuals from WLS for heteroskedasticity;
I If the WLS residuals are homoskedastic - the WLS has improved the precision of

our model;
I If the WLS residuals are heteroskedastic - we may use HCE on the WLS residuals.
I This way we protect ourselves from a possible misspecification of the unknown

variance-covariance structure.

Monte Carlo Simulation: OLS vs FGLS
To illustrate the effects of heteroskedasticity on the standard errors of the estimates, and
efficiency between OLS, GLS and FGLS, we will carry out a Monte Carlo simulation. We will
simulate the following model:

Y (m)
i = β0 + β1X (m)

1,i + β2X (m)
2,i + ε

(m)
i , ε

(m)
i ∼ N (0, i2 · σ2), i = 1, ...,N, m = 1, ...,MC

We will simulate a total of MC = 1000 samples from this model with specific coefficients and
estimate the parameters via OLS, WLS, as well as correct the standard errors of OLS via HCE.
We will do so with the following code:
set.seed(123)
Number of simulations:
MC <- 1000
Fixed parameters
N <- 100
beta_vec <- c(10, 5, -3)
matrix of parameter estimates for each sample:
beta_est_ols <- NULL
beta_pval_ols <- NULL
beta_pval_hce <- NULL
#
beta_est_wls <- NULL
beta_pval_wls <- NULL
#
beta_est_gls <- NULL
beta_pval_gls <- NULL

for(i in 1:MC){
simulate the data:
x1 <- seq(from = 0, to = 5, length.out = N)
x2 <- sample(seq(from = 3, to = 17, length.out = 80), size = N, replace = TRUE)
e <- rnorm(mean = 0, sd = 1:N, n = N)
y <- cbind(1, x1, x2) %*% beta_vec + e
data_mat <- data.frame(y, x1, x2)
estimate via OLS
mdl_0 <- lm(y ~ x1 + x2, data = data_mat)
correct OLS se's:
mdl_hce <- lmtest::coeftest(mdl_0, vcov. = sandwich::vcovHC(mdl_0, type = "HC0"))
estimate via WLS
resid_data <- data.frame(log_e2 = log(mdl_0$residuals^2), x1, x2)
h_est <- exp(lm(log_e2 ~ x1 + x2, data = resid_data)$fitted.values)
mdl_wls <- lm(y ~ x1 + x2, data = data_mat, weights = 1 / h_est)
estimate via GLS (by knowing the true covariance matrix)
mdl_gls <- lm(y ~ x1 + x2, data = data_mat, weights = 1 / (1:N)^2)
Save the estimates from each sample:
beta_est_ols <- rbind(beta_est_ols, coef(summary(mdl_0))[, 1])
beta_est_wls <- rbind(beta_est_wls, coef(summary(mdl_wls))[, 1])
beta_est_gls <- rbind(beta_est_gls, coef(summary(mdl_gls))[, 1])
Save the coefficient p-values from each sample:
beta_pval_ols <- rbind(beta_pval_ols, coef(summary(mdl_0))[, 4])
beta_pval_hce <- rbind(beta_pval_hce, mdl_hce[, 4])
beta_pval_wls <- rbind(beta_pval_wls, coef(summary(mdl_wls))[, 4])
beta_pval_gls <- rbind(beta_pval_gls, coef(summary(mdl_gls))[, 4])

}

Firstly, it is interesting to see how many times we would have rejected the null hypothesis that a parameter is
insignificant with significance level α = 0.05. We will divide the number of times that we would have rejected the
null hypothesis by the total number of samples MC to get the rejection rate:
alpha = 0.05
a1 <- colSums(beta_pval_ols < alpha) / MC
a2 <- colSums(beta_pval_hce < alpha) / MC
a3 <- colSums(beta_pval_wls < alpha) / MC
a4 <- colSums(beta_pval_gls < alpha) / MC
#
a <- t(data.frame(a1, a2, a3, a4))
colnames(a) <- names(a1)
rownames(a) <- c("OLS: H0 rejection rate", "HCE: H0 rejection rate", "WLS: H0 rejection rate", "GLS: H0 rejection rate")
print(a)

(Intercept) x1 x2
OLS: H0 rejection rate 0.062 0.254 0.569
HCE: H0 rejection rate 0.109 0.216 0.584
WLS: H0 rejection rate 0.195 0.369 0.982
GLS: H0 rejection rate 0.856 0.605 1.000

I We see that we would have rejected the null hypothesis that X2 is insignificant in around 55.5% of the
simulated samples with OLS.

I If we were to correct for heteroskedasticity, this would have increased to 57.4%.
I On the other hand, if we were to re-estimate the model with WLS, then we would have rejected the null

hypothesis that X2 is insignificant around in around 97.6% of the simulated samples.

One possible explanation for the relatively poor performance of HCE is the fact that it uses
Σ̂ = diag(ε̂21, ..., ε̂2N) for the covariance matrix. In this case it is clearly inferior to the covariance
matrix specification used in WLS. On the other hand, as we have already mentioned - HCE are
only useful in large samples.

Because of the large variance of εi , we see that we would often not reject the null hypothesis that
X1 is insignificant. On the other hand, as we can see, using WLS reduces this risk significantly.

Finally, if we were to know the true covariance structure - we could incorporate GLS - this
would mean that we would almost never reject the null hypothesis that the coefficient of X2 is
insignificant! Furthermore, the rejection rate of the null hypothesis for β0 and β1 are also
significantly larger.

Unfortunately, in empirical applications we will never know the true covariance structure,
so the GLS results are only presented as the best case scenario, which we would hope
to achieve with FGLS.

We can look at the coefficient estimate histograms:

x2

beta_est_ols[, j]

F
re

qu
en

cy

−6 −4 −2 0 2

0
50

10
0

15
0

True Value
OLS
WLS
GLS

x1

beta_est_ols[, j]

F
re

qu
en

cy

−10 −5 0 5 10 15 20

0
40

80
12

0 True Value
OLS
WLS
GLS

(Intercept)

beta_est_ols[, j]

F
re

qu
en

cy

−40 −20 0 20 40 60

0
50

10
0

15
0

True Value
OLS
WLS
GLS

I OLS estimates are less efficient than WLS in terms of the estimate variance.
I On the other hand, both estimates are unbiased - their average is equal to the true

parameter value. - Consequently, because OLS estimators are less efficient, we would need a
larger sample to achieve a similar level of precision as the WLS.

As mentioned before, GLS is the best case scenario, when we exactly know the true covariance
structure and do not need to estimate it.

Autocorrelated (Serially Correlated)
Errors

Autocorrelated (Serially Correlated) Errors
Consider the case where assumption (MR.4) does not hold, but assumption (MR.3) (and the
other remaining assumptions (MR.1), (MR.2), (MR.5) and, optionally, (MR.6)) are still valid.
Then we can write the following model as:

Y = Xβ + ε, E (ε|X) = 0, Var (ε|X) = E
(
εε>

)
= Σ 6= σ2ε I

The case when the error variance-covariance matrix is no longer diagonal, but with equal
diagonal elements, expressed as:

Σ =


σ2 σ1,2 σ1,3 ... σ1,N
σ2,1 σ2 σ2,3 ... σ2,N
...

...
...

. . .
...

σN,1 σN,2 σN3, ... σ2

 , σi,j = σj,i = Cov(εi , εj) 6= 0, i , j = 1, ...,N

is referred to as autocorrelation (or serial correlation). Just like before with heteroskedasticity:
I the OLS estimators remain unbiased and consistent;
I OLS estimators are no longer efficient;
I the variance estimator of the OLS estimates is biased and inconsistent;
I t-statistics of the OLS estimates are invalid.

It should be stressed that serial correlation is usually present in time-series data. For
cross-sectional data, the errors may be correlated in terms of social, or geographical distance.
For example, the distance between cities, towns, neighborhoods, etc.

1. Assume that Y = Xβ + ε is the true model.
2. Create a model for the OLS residuals:

ε̂i = α0 + α1X1,i + ...+ αkXk,i + ρ1ε̂i−1 + ρ2ε̂i−2 + ...+ ρp ε̂i−p + ut

3. Test the null hypothesis that the residuals are serially correlated: create a
model on the OLS residuals

H0 : ρ1 = ρ2 = ... = ρp = 0

4. If we fail to reject the null hypothesis - we can use the usual OLS estimators.
5. If we reject the null hypothesis, there are two ways we can go:

I Use the OLS estimators, but correct their variance estimators (i.e. make them
consistent);

I Instead of OLS, use FGLS (and its variations).
I Attempt to specify a different model, which would hopefully, be able to account for

serial correlation (autocorrelation may be the cause of a misspecified model).

Example
We will simulate the following model:{

Yi = β0 + β1X1,i + β2X2,i + εi

εi = ρεi−1 + ui , |ρ| < 1, ui ∼ N (0, σ2), ε0 = 0

set.seed(123)
#
N <- 200
beta_vec <- c(10, 5, -3)
rho <- 0.8
#
x1 <- seq(from = 0, to = 5, length.out = N)
x2 <- sample(seq(from = 3, to = 17, length.out = 80), size = N, replace = TRUE)
serially correlated residuals:
ee <- rnorm(mean = 0, sd = 3, n = N)
for(i in 2:N){

ee[i] <- rho * ee[i-1] + ee[i]
}
#
x_mat <- cbind(1, x1, x2)
y <- x_mat %*% beta_vec + ee
data_mat <- data.frame(y, x1, x2)

Testing For Serial Correlation
We can examine the presence of autocorrelation from the residuals plots, as well as conducting a
number of formal tests.
We will begin by estimating our model via OLS, as we usually would.
mdl_1 <- lm(y ~ x1 + x2, data = data_mat)
print(round(coef(summary(mdl_1)), 5))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.61601 0.97983 10.83457 0
x1 4.89018 0.20457 23.90497 0
x2 -2.93686 0.07545 -38.92241 0

Residual Correlogram
We begin by calculating the residuals from the OLS model:

ε̂ = Y − Xβ̂OLS

we will use these residuals as estimates for the true (unobserved) error term ε and examine their
autocorrelations. Note that from the OLS structure it holds true that E (ε̂|X) = 0. So, assume
that we want to calculate the sample correlation between ε̂i and ε̂i−k - we want to calculate the
autocorrelation at lag k:

ρ̂(k) = Ĉorr(ε̂i , ε̂i−k) = Ĉov(ε̂i , ε̂i−k)√
V̂ar(ε̂i)

√
V̂ar(ε̂i−k)

=
∑N

i=k+1 ε̂i ε̂i−k∑N
i=1 ε̂

2
i

Furthermore, assume that we are interested in testing whether the sample (auto)correlation ρ̂(k)
is significantly different from zero:

H0 : ρ̂(k) = 0
H1 : ρ̂(k) 6= 0

Under the null hypothesis it holds true that ρ̂(k) a∼ N (0, 1/N), where a∼ indicates asymptotic
distribution - the distribution as the sample size N →∞. In this case, it means that for large
samples the distribution is approximately normal. Consequently, a suitable statistic can be
constructed as:

Z = ρ̂(k)− 0√
1/N

= ρ̂(k) ·
√
N a∼ N (0, 1)

So, at a 5% significance level, the critical value is Zc ≈ 1.96. In this case, w would reject the
null hypothesis when:

ρ̂(k) ·
√
N ≥ 1.96, or ρ̂(k) ·

√
N ≤ 1.96

or alternatively, if we want to have the notation similar to
“estimate± critical value · se(estimate)”, we can write it as:

ρ̂(k) ≥ 1.96/
√
N, or ρ̂(k) ≤ 1.96/

√
N

As a rule of thumb, we can sometimes take 2 instead of 1.96. We can also calculate this via software:
z_c <- qnorm(p = 1 - 0.05 / 2, mean = 0, sd = 1)
print(z_c)

[1] 1.959964

We will begin by manually calculating the autocorrelations and their confidence bounds for k = 1, ..., 20:
rho <- NULL
e <- mdl_1$residuals
for(k in 1:20){

r <- sum(e[-c(1:k)] * e[1:(N-k)]) / sum(e^2)
rho <- c(rho, r)

}
rho_lower <- - z_c / sqrt(N)
rho_upper <- + z_c / sqrt(N)

and we can plot them:
plot(1:k, rho, ylim = c(min(rho_lower), 1), pch = 21, bg = "red")
segments(x0 = 1:k, y0 = rho, x1 = 1:k, y1 = 0, lwd = 2)
abline(h = 0)
Draw the confidence bounds:
abline(h = rho_upper, lty = 2, col = "blue")
abline(h = rho_lower, lty = 2, col = "blue")

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1:k

rh
o

Alternatively, we can use the built-in functions:
forecast::Acf(e)

−
0.

2
0.

0
0.

2
0.

4
0.

6

Lag

A
C

F

Series e

5 10 15 20

We can see from the plots that there are some sample autocorrelations ρ̂(k), which are
statistically significantly different from zero (i.e. their values are above the blue horizontal line).

As with most visual diagnostics tools - it may not always be a clear-cut answer from the plots
alone. So, we can apply a number of different statistical tests to check whether there are
statistically significant sample correlations.

Autocorrelation Tests
The tests are identical to the ones described in the univariate regression, but re-visited for the
multiple regression model case. These tests will be re-examined when dealing with time-series
data models.

Durbin-Watson Test
The DW test is used to test the hypothesis that the residuals are serially correlated at
lag 1, i.e. that in the following model:

εi = ρεi−1 + vi

the hypothesis being tested is:{
H0 : ρ = 0 (no serial correlation)
H1 : ρ 6= 0 (serial correlation at lag 1)

Since we do not observe the true error terms, we use the OLS residuals ε̂i and calculate
the Durbin-Watson statistic as:

DW =
∑N

i=2(ε̂i − ε̂i−1)2∑N
i=1 ε̂

2
i

The DW test statistics critical values may not be available in some econometric software.
Furthermore, its distribution no longer holds, when the equation of Yi contains a lagged
dependent variable, Yi−1.
As a quick rule of thumb, if the DW statistic is near 2, then we do not reject the null
hypothesis of no serial correlation.

If we assume that
∑N

i=2 ε̂
2
i ≈

∑N
i=2 ε̂

2
i−1, then we can re-write the DW statistic as:

DW =

∑N
i=2 ε̂

2
i − 2

∑N
i=2 ε̂i ε̂i−1 +

∑N
i=2 ε̂

2
i−1∑N

i=1 ε̂
2
i

≈
2
[∑N

i=2 ε̂
2
i −
∑N

i=2 ε̂i ε̂i−1

]
∑N

i=1 ε̂
2
i

= 2
[
1− ρ̂(1)

]
=

{
4, if ρ̂(1) = −1
2, if ρ̂(1) = 0
0, if ρ̂(1) = 1

which helps in understanding why we expect the DW statistic to be close to 2 under the null
hypothesis.
print(lmtest::dwtest(mdl_1, alternative = "two.sided"))

##
Durbin-Watson test
##
data: mdl_1
DW = 0.56637, p-value < 2.2e-16
alternative hypothesis: true autocorrelation is not 0

because p − value < 0.05, we reject the null hypothesis at the 5% significance level and conclude that the
residuals are serially correlated at lag order 1.

Breusch-Godfrey (BG or LM) Test
The BG test can be applied to a model, with a lagged response variable on the right-hand side, for
example: Yi = β0 + β1X1,i + ...+ βkXk,i + βk+1Yi−1 + εi .
In general, we estimate the model parameters via OLS and calculate the residuals:

ε̂ = Y − Xβ̂

where X can contain X1,i , ...,Xk,i ,Yi−1 for i = 1, ...,N.
Then, we estimate an auxiliary regression on ε̂ as:

ε̂i = α0 + α1X1,i + ...+ αkXk,i + ρi ε̂i−1 + ...+ ρp ε̂i−p + ui

(Note: if we included Yi−1 in the initial regression, then we need to also include them in the auxiliary
regression).
We want to test the null hypothesis that the lagged residual coefficients are insignificant:{

H0 : ρ1 = ... = ρp = 0
H1 : ρj 6= 0, for some j

We can either carry out an F -test, or a Chi-squared test:

LM = (N − p)R2
ε̂
∼ χ2p

where R2
ε̂
is the R-squared from the auxiliary regression on ε̂.

The BG test is a more general test compared to DW

Looking at the correlogram plots Let’s test the null hypothesis that at least on of the first three
lags of the residuals is not zero, i.e. p = 3:
bg_t <- lmtest::bgtest(mdl_1, order = 3)
print(bg_t)

##
Breusch-Godfrey test for serial correlation of order up to 3
##
data: mdl_1
LM test = 100.72, df = 3, p-value < 2.2e-16

Since the p − value < 0.05, we reject the null hypothesis and conclude that there is serial correlation in the
residuals.

Heteroskedasticity-and-Autocorrelation-Consistent Standard Errors (HAC)
So far, we have assumed that the diagonal elements of Σ are constant - i.e. that the residuals
are serially correlated but homoskedastic. We can further generalize this for the case of
heteroskedastic serially correlated standard errors:

Σ =


σ21 σ1,2 σ1,3 ... σ1,N
σ2,1 σ22 σ2,3 ... σ2,N
...

...
...

. . .
...

σN,1 σN,2 σN3, ... σ2N

 , σi,j = σj,i = Cov(εi , εj) 6= 0, i , j = 1, ...,N

Similarly to dealing with heteroskedasticity, we can use OLS estimator and correct the standard
errors. In this case the corrected standard errors are known as HAC
(Heteroskedasticity-and-Autocorrelation-Consistent) standard errors, or Newey–West
standard errors.

The White covariance matrix assumes serially uncorrelated residuals. On the other hand, the Newey-
West proposed a more general covariance estimator, which is robust to both heteroskedasticity and
autocorrelation, of the residuals of unknown covariance form. The HAC coefficient covariance
estimator handles autocorrelation with lags up to p - it is assumed that lags larger than p are
insignificant and thus can be ignored. It is defined as:

HAC
β̂OLS

=
(

X>X
)−1 NΣ̂

(
X>X

)−1
where:

Σ̂ = Γ̂(0) +
p∑

j=1

[
1−

j
p + 1

] [
Γ̂(j) + Γ̂(−j)

]
Γ̂(j) =

1
N

(
N∑

i=1

ε̂i ε̂i−j X i X>i−j

)
, X i =

[
1, X1,i , X2,i , ..., Xk,i

]>
In the absence of serial correlation we would have that:

Σ̂ = Γ̂(0)

which is equivalent to the White Estimators (HCE).
Note: HAC not only corrects for autocorrelation, but also for heteroskedasticity.
Do not be alarmed if you see slightly different HAC standard errors in different statistical programs -
there are a number of different variations of Σ̂.

Using the built-in functions we have that:
#V_HAC <- sandwich::vcovHAC(mdl_1)
V_HAC <- sandwich::NeweyWest(mdl_1, lag = 1)
print(V_HAC)

(Intercept) x1 x2
(Intercept) 1.43560709 -0.303808295 -0.043572462
x1 -0.30380830 0.183608167 -0.002018108
x2 -0.04357246 -0.002018108 0.004421496

Following the documentation, NeweyWest() is a convenience interface to vcovHAC() using Bartlett kernel weights.
In comparison vcovHAC() allows choosing weights as either weightsAndrews, or weightsLumley, or a custom
function to calculate the weights.

Then the coefficients, their standard errors and p-values can be summarized as:
print(lmtest::coeftest(mdl_1, sandwich::vcovHAC(mdl_1)))
print(lmtest::coeftest(mdl_1, sandwich::NeweyWest(mdl_1, lag = 1))[,])

Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.616005 1.19816822 8.860196 4.719858e-16
x1 4.890185 0.42849524 11.412460 1.741811e-23
x2 -2.936860 0.06649433 -44.167068 3.799730e-104

Compared with the biased residuals in the OLS output - HAC standard errors are somewhat larger:
print(coef(summary(mdl_1)))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.616005 0.97982714 10.83457 9.311699e-22
x1 4.890185 0.20456771 23.90497 3.887306e-60
x2 -2.936860 0.07545421 -38.92241 1.933624e-94

ftp://ftp.auckland.ac.nz/pub/software/CRAN/doc/packages/sandwich.pdf

Feasible GLS - Cochrane-Orcutt Procedure (CORC)
Alternatively to HAC, we can make some assumptions regarding the nature of autocorrelation
and employ a more efficient GLS estimator.
For the case, when the residuals are serially correlated at lag 1, but not heteroskedastic:

εi = ρεi−1 + ui , |ρ| < 1, ui ∼ N (0, σ2), i ∈ {0,±1,±2, ...}

we note that:
Var(εi) = Var(ρεi−1 + ui) = Var(ρ(ρεi−2 + ui−1) + ui)

= Var(ρ2(ρεi−3 + ui−2) + ui + ρui−1)
= ...

= Var
(∞∑

j=0
ρjui−j

)
=
∞∑

j=0
ρ2j · Var (ui−j)

= σ2

1− ρ2

and:
Cov(εi , εi−k) = Cov(ρ(ρεi−2 + ui−1) + ui , εi−k)

= Cov(ρ2(ρεi−3 + ui−2) + ρui−1, εi−k)
= ...

= Cov(ρkεi−k , εi−k)
= ρkCov(εi−k , εi−k)
= ρkσ2, since Cov(ui , εj) = 0, i 6= j

Consequently, we can re-write the covariance matrix as:

Σ = σ2

1− ρ2


1 ρ ρ2 ... ρN−1

ρ 1 ρ ... ρN−2

...
...

...
. . .

...
ρN−1 ρN−2 ρN−3 ... 1


In this case, the knowledge of parameter ρ allows us to empirically apply the GLS - as FGLS.

Cochrane–Orcutt (CORC) estimator:
1. Estimate β via OLS from:

Y = Xβ + ε

and calculate the residuals ε̂(1) = Y − Xβ̂, where (1) denotes the first iteration.
2. Estimate the following residual regression via OLS:

ε̂
(1)
i = ρε̂

(1)
i−1 + ûi

and obtain ρ̂(1).
3. Calculate the following transformed variables:

Y ∗i = Yi − ρ̂(1)Y ∗i−1, X∗i = X i − ρ̂(1)X∗i−1, where X i =
[
1, X1,i , X2,i , ..., Xk,i

]>
4. Apply OLS to the following model:

(Yi − ρ̂(1)Yi−1) = β0(1− ρ̂(1)) + β1(X1,i − ρ̂(1)) + ...+ βk (Xk,i − ρ̂(1)) + ui

or, more compactly:
Y ∗ = X∗β + u

to get the OLS estimates β̃.
5. Having estimated the model, calculate the residuals on the non-transformed data:
ε̂

(2) = Y − Xβ̃ and go to step (2).
Repeat this procedure until ρ̂ converges: if the change in ρ̂(K), compared to the previous iteration
ρ̂(K−1) is no more than ∆ (for example ∆ = 0.001) - stop the procedure.

Note on step (4): if we decide to use a column of ones for the constant β0, then we will
actually have estimated β̃∗0 = β̃0(1− ρ̂(1)) and will need to transform the intercept term
as β̃0 = β̂∗0/(1− ρ̂(1)). On the other hand, if we transform the intercept column to have
1− ρ̂(1) in the design matrix instead, then we will not need to transform the intercept
coefficient (this is similar to how we had to carry out WLS for the heteroskedastic error
case in the previous section).

The final value ρ̂(K) is then used to get the FGLS (CORC) estimates of β̂. Again,
depending on your specification, you may need to transform the intercept coefficient:
β̂0 = β̂∗0/(1− ρ̂(K)).
These FGLS estimators are not unbiased but they are consistent and asymp-
totically efficient.

The procedure can be carried out with the built-in functions as follows:
mdl_1_CORC <- orcutt::cochrane.orcutt(mdl_1)
#
print(coef(summary(mdl_1_CORC)))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.402800 1.50824063 6.897 7.124332e-11
x1 5.082365 0.48877934 10.398 1.899433e-20
x2 -2.978490 0.04202203 -70.879 1.185668e-141

the estimated ρ is:
print(mdl_1_CORC$rho)

[1] 0.7088817

which is close to the true value of ρ used in the data generation.

Alternative procedures to CORC are Hildreth-Lu Procedure and Prais–Winsten Procedure.

https://en.wikipedia.org/wiki/Hildreth%E2%80%93Lu_estimation
https://en.wikipedia.org/wiki/Prais%E2%80%93Winsten_estimation

Choosing Between HAC and FGLS
It has become more popular to estimate models by OLS and correct the standard errors for fairly
arbitrary forms of serial correlation and heteroskedasticity.

Regarding HAC:
I Computation of robust standard errors works generally well in large datasets;
I With increase in computational power, not only has it become possible to

(quickly) estimate models on large datasets, but also to calculate their robust
covariance (HAC) estimators;

I While FGLS offers a theoretical efficiency, it involves making additional
assumptions on the error covariance matrix, which may not be easy to test/verify,
which may threaten the consistency of the estimator.

Regarding FGLS:
I if the explanatory variables are not strictly exogenous (i.e. if we include Yi−1 on

the right-hand-side of the equation) - the FGLS is not only inefficient, but it is
also inconsistent;

I in most applications of FGLS, the errors are assumed to follow a first order
autoregressive process. It may be better to evaluate OLS estimates and use a
robust correction on their standard errors for more general forms of serial
correlation;

I in addition to imposing an assumption of the residual covariance structure in
regard to autocorrelation, GLS also requires an exogeneity assumption (MR.3) to
hold, unlike HAC.

Generally, serial correlation is usually encountered in time-series data, which has its own
set of models that specifically deal address serial correlation of either the residuals ε,
the endogenous variable Y , or the exogeneous variables Xj , or even all at once.
It is worth noting that autocorrelated residuals are more frequently the result of a
misspecified regression equation, rather than a genuine autocorrelation.

A final thing to note:

In many cases, the presence of autocorrelation, especially in cross-sectional data, is not
an indication that the model has autocorrelated errors, but rather that it:
I is misspecified;
I is suffering from omitted variable bias;
I has an incorrect functional form for either Y , or X .

Monte Carlo Simulation: OLS vs FGLS
To illustrate the effects of heteroskedasticity on the standard errors of the estimates, and
efficiency between OLS and FGLS, we will carry out a Monte Carlo simulation. We will simulate
the following model:{
Y (m)

i = β0 + β1X (m)
1,i + β2X (m)

2,i + ε
(m)
i

ε
(m)
i = ρε

(m)
i−1 + u(m)

i , |ρ| < 1, u(m)
i ∼ N (0, σ2), ε

(m)
0 = 0, i = 1, ...,N, m = 1, ...,MC

We will simulate a total of MC = 1000 samples from this model with specific coefficients and
estimate the parameters via OLS, WLS, as well as correct the standard errors of OLS via HCE.
See the lecture notes for the code sample

Regarding the rejection rate of the null hypothesis that a parameter is insignificant, we have that:
(Intercept) x1 x2
OLS: H0 rejection rate 0.373 0.505 0.757
HAC: H0 rejection rate 0.457 0.365 0.919
FGLS: H0 rejection rate 0.135 0.122 0.999

So, the FGLS seems to be better in some parameter cases, while HAC may be similar to OLS. All
in all, if we only have an autocorrelation of order 1 problem - the corrections may not have a
huge impact on our conclusions in some cases.

We can look at the coefficient estimate histograms:

x2

beta_est_ols[, j]

F
re

qu
en

cy

−0.6 −0.4 −0.2 0.0

0
50

15
0

True Value
OLS
FGLS

x1

beta_est_ols[, j]

F
re

qu
en

cy

−2 −1 0 1 2 3

0
10

0
20

0

True Value
OLS
FGLS

(Intercept)

beta_est_ols[, j]

F
re

qu
en

cy

−5 0 5 10

0
40

10
0 True Value

OLS
FGLS

For higher order and more complex correlation structure of the residuals, this may not always be the
case, hence, if we detect serial correlation, we should account for it in some way.

