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OLS: Assumptions
(UR.1) The Data Generating Process (DGP), or in other words, the population, is
described by a linear (in terms of the coefficients) model:

Yi = β0 + β1Xi + εi , ∀i = 1, ...,N (UR.1)

(UR.2) The error term ε has an expected value of zero, given any value of the explanatory
variable:

E(εi |Xj) = 0, ∀i , j = 1, ...,N (UR.2)

(UR.3) The error term ε has the same variance given any value of the explanatory
variable (i.e. homoskedasticity) and the error terms are not correlated across observations
(i.e. no autocorrelation):

Var (ε|X) = σ2ε I (UR.3)

i.e. Cov(εi , εj) = 0, i 6= j and Var(εi) = σ2ε = σ2.
(UR.4) (optional) The residuals are normal:

ε|X ∼ N
(
0, σ2ε I

)
(UR.4)

ε = (ε1, ..., εN)>, X = (X1, ....,XN)>, and Y = (Y1, ...,YN)>.



OLS: The Estimator and Standard Errors
The unknown parameters of the linear regression Y = Xβ + ε can be estimated via
OLS:

β̂ =
(
X>X

)−1X>Y (OLS)

The term Ordinary Least Squares (OLS) comes from the fact that these estimates
minimize the sum of squared residuals.
Gauss-Markov Theorem
Under the assumption that the conditions (UR.1) - (UR.3) hold true, the OLS estimator
(OLS) is BLUE (Best Linear Unbiased Estimator) and Consistent.
The square roots of the diagonal elements of the variance-covariance matrix

V̂ar(β̂) =
[

V̂ar(β̂0) Ĉov(β̂0, β̂1)
Ĉov(β̂1, β̂0) V̂ar(β̂1)

]
= σ̂2

(
X>X

)−1
, where σ̂2 = 1

N − 2 ε̂
>ε̂,

are called the standard errors (se) of the corresponding (OLS) estimators β̂, which
we use to estimate the standard deviation of β̂i from βi

se(β̂i) =
√
V̂ar(β̂i)

The standard errors describe the accuracy of an estimator (the smaller the better).



Parameter Interval Estimators
I Point estimates, β̂, are single values for each parameter via (OLS).
I Interval estimates are ranges of values, in which the true β parameters are

likely to fall. These interval estimates are also known as confidence intervals.

The interval estimator of βi , i = 0, 1 is defined by these endpoints:

β̂i ± tc · se(β̂i)

where tc is the critical value, such that for a selected significance level α:

P
(
β̂i − tc · se(β̂i) ≤ βi ≤ β̂i + tc · se(β̂i)

)
= 1− α

For a specific sample, this is also known as a 100 · (1− α)% interval estimate of βi ,
or the 100 · (1− α)% confidence interval. Here, we can also define the t-statistic:

ti = β̂i − βi
se(β̂i)

∼ t(N−2), [which also means that P(−tc ≤ ti ≤ tc) = 1− α]

also known as the t-ratio, which has a t(N−2) distribution under H0 : β̂i = βi .



Question: What is a test statistic, ti?

Answer: A test statistic is computed from the data under a specific null hypothesis and tested
against pre-determined critical values for a selected significance level.

Question: What is the significance level, α?

Answer: α can be though of as the probability of making a Type I error - i.e. that we will reject
the null hypothesis (100 · α)% of the time, when it is in fact true. They define the sensitivity of
the test.

The choice of α is somewhat arbitrary, although in practice the values are usually selected quite
small: α ∈ {0.01, 0.05, 0.1}.

Question: What is the critical value, tc?

Answer: Critical values are cut-off values that define regions, where the test statistic is unlikely
to lie. The null hypothesis is rejected if the test statistic lies within this region (also known as
the rejection region), which is an unlikely event to occur under the null.

In general, for every hypothesis test there is an equivalent statement about whether the
hypothesized parameter value is included in a confidence interval.



Interval Estimation for the Mean Response
If (UR.4) assumption holds true, then, for some value of X = X̃, the mean response
Ŷ = Ê(Y|X = X̃) = X̃β̂ follows a normal distribution:(

Ŷ|X̃,X
)
∼ N

(
X̃β, σ2X̃

(
X>X

)−1 X̃>)
and the 100 · (1− α)% confidence interval for the mean response is:

Ŷi ± t(1−α/2,N−2) · se(Ŷi)

Furthermore, note that the t-distribution approaches the standard normal distribution as the
degrees of freedom increases (i.e. as the sample size N gets larger).

In particular for α = 0.05 we have that t(1−α/2, N) → 1.96 as N →∞.

Hence, a rule of thumb for calculating approximate confidence intervals is to take tc ≈ 1.96 for
α = 0.05, if we have no way of calculating the actual value of t(1−α/2, N).



The p-value approach to Hypothesis testing
The p-value is the probability that the test-statistic exceeds or equals the value of the
test-statistic derived from a randomly drawn sample, under H0.

The p-value is not the probability of a Type I error - it is given by a chosen value of α.
I If you collect data many times, under the assumption that the null is true, a proportion

of α of those times you would reject the null (i.e. a Type I error);
I The p-value is a random variable computed from the actual observed data that can be

compared to α as one way of performing the test (instead of comparing the test-statistics).
See Murdock, D, Tsai, Y, and Adcock, J (2008) P-Values are Random Variables.

Instead of comparing the test-statistics to the rejection region, we can instead calculate
the probability of what we observe (or more extreme) given the null is true and compare
that probability to α. So, having the p-value allows us to easier determine the outcome
of the test, as we do not need to directly compare the critical values.
I If p-value < α, we reject H0.
I If p-value ≥ α, we do not reject H0.

Note: in practice, if p-value ≈ α, we may be indecisive on whether we should reject the
null hypothesis, or not. After all, the p-value is based on a specific sample, so having a
bit more data may result in a smaller/larger p-value.

https://www.tandfonline.com/doi/abs/10.1198/000313008X332421


Hypothesis Testing
Alternative, > (One Tail Test) {

H0 : βi = c
H1 : βi > c

We reject H0 and accept the alternative H1, if ti ≥ tc , where tc = t(1−α,N−2).
The p-value is the probability to the right of the calculated t-statistic:

p-value = P(T ≥ ti) = P(T > ti) = 1− P(T ≤ ti) = 1−
∫ ti

−∞
p(x)dx

I If p-value < α, we reject H0.
I If p-value ≥ α, we do not reject H0.

Here p(x) is the density function of the distribution of t-statistic under the null hypothesis.
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We reject H0. From the shaded plots it is clear that p-value < α.
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We have no grounds to reject H0. From the shaded plots it is clear that p-value > α.



Hypothesis Testing
Alternative, < (One Tail Test) {

H0 : βi = c
H1 : βi < c

We reject H0 and accept the alternative H1, if ti ≤ tc , where tc = t(α,N−2).
The p-value is the probability to the left of the calculated t-statistic:

p-value = P(T ≤ ti) =
∫ ti

−∞
p(x)dx

I If p-value < α, we reject H0.
I If p-value ≥ α, we do not reject H0.

Here p(x) is the density function of the distribution of t-statistic under the null hypothesis.
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We reject H0. From the shaded plots it is clear that p-value < α.
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We have no grounds to reject H0. From the shaded plots it is clear that p-value > α.



Hypothesis Testing
Alternative, 6= (Two Tail Test) {

H0 : βi = c
H1 : βi 6= c

We reject H0 and accept the alternative H1, if ti ≤ −|tc | or if ti ≥ |tc |, where
tc = t(1−α/2,N−2) = −t(α/2,N−2).
The p-value is the probability to the left of the calculated t-statistic:

p-value = P(T ≤ −|ti |) + P(T ≥ |ti |) = 2 · P(T ≤ −|ti |) = 2 ·
∫ −|ti |
−∞

p(x)dx

I If p-value < α, we reject H0.
I If p-value ≥ α, we do not reject H0.

Here p(x) is the density function of the distribution of t-statistic under the null hypothesis.
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We have no grounds to reject H0. Note that in this case, we are checking either ti ≤ −|tc |, or
ti ≥ |tc |, so here we shade an appropriate comparison, since the p-value itself is 2 times the
probability to the left of −|tc |.



Hypothesis Testing and The Parameter Confidence Interval
The two-tail tests and parameter confidence intervals are closely related. Assume that we want
to test the following: {

H0 : βi = c
H1 : βi 6= c

Under the null hypothesis we would have that βi = c. So, if we test the null hypothesis
against the two-tailed alternative, then we should check if c belongs to the confidence interval:
I If c ∈

[
β̂i − tc · se(β̂i); β̂i + tc · se(β̂i)

]
, we will (most likely) not reject H0 at the level

of significance α.
I If c /∈

[
β̂i − tc · se(β̂i); β̂i + tc · se(β̂i)

]
, we will (most likely) reject H0.

If the same population is sampled a number of times and interval estimates are calculated
for the coefficient estimates on each sample, then 100 · (1 − α)% of the confidence
intervals would contain the true population parameters.

So, under the null hypothesis, it is quite likely that our the sample confidence interval contains
the true coefficient βi .



Continuing from where we left off. . .



OLS Prediction and Prediction Intervals
We have examined model specification, parameter estimation and interpretation techniques.
However, usually we are not only interested in identifying and quantifying the independent
variable effects on the dependent variable, but we also want to predict the (unknown) value of
Y for any value of X .
Prediction plays an important role in financial analysis (forecasting sales, revenue, etc.),
government policies (prediction of growth rates for income, inflation, tax revenue, etc.) and so
on.
Let our univariate regression be defined by the linear model:

Y = β0 + β1X + ε

and let assumptions (UR.1)-(UR.4) hold. Let X̃ be a given value of the explanatory variable.



OLS Prediction
We want to predict the value Ỹ , for this given value X̃ . In order to do that we assume that the
true DGP process remains the same for Ỹ .

The difference from the mean response is that when we are talking about the prediction, our
regression outcome is composed of two parts:

Ỹ = E
(
Ỹ|X̃

)
+ ε̃

where:
I E

(
Ỹ |X̃

)
= β0 + β1X̃ is the systematic component;

I ε̃ - the random component;

The expected value of the random component is zero. We can estimate the systematic
component using the OLS estimated parameters:

Ŷ = Ê
(
Ỹ|X̃

)
= X̃β̂

Ŷ is called the prediction.



Prediction Intervals

We can defined the forecast error as:

ẽ = Ỹ− Ŷ = X̃β + ε̃− X̃β̂

From the distribution of the dependent variable:

Y|X ∼ N
(
Xβ, σ2I

)
We know that the true observation Ỹ will vary with mean X̃β and variance σ2I.

Furthermore, since ε̃ are independent of Y, it holds that (assuming that X and X̃ are fixed):

Cov(Ỹ, Ŷ) = Cov(X̃β + ε̃, X̃β̂)

= Cov(ε̃, X̃
(
X>X

)−1X>Y)
= 0



We again highlight that ε̃ are shocks in Ỹ, which is some other realization from the DGP that is
different from Y (which has shocks ε, and was used when estimating parameters via OLS).

Because of this, the variance of the forecast error is (assuming that X and X̃ are fixed):

Var (ẽ) = Var
(
Ỹ− Ŷ

)
= Var

(
Ỹ
)
− Cov(Ỹ, Ŷ)− Cov(Ŷ, Ỹ) + Var

(
Ŷ
)

= Var
(
Ỹ
)

+ Var
(
Ŷ
)

= σ2I + X̃σ2
(
X>X

)−1 X̃>
= σ2

(
I + X̃

(
X>X

)−1 X̃>)
Note that our prediction interval is affected not only by the variance of the true Ỹ
(due to random shocks), but also by the variance of Ŷ (since coefficient estimates, β̂,
are generally imprecise and have a non-zero variance), i.e. it combines the uncertainty
coming from the parameter estimates and the uncertainty coming from the randomness
in a new observation.



Hence, a prediction interval will be wider than a confidence interval. In practice, we replace σ2

with its estimator σ̂2 = 1
N − 2

∑N
i=1 ε̂

2
i .

Let se(ẽi) =
√
V̂ar(ẽi) be the square root of the corresponding i-th diagonal element

of V̂ar(ẽ). This is also known as the standard error of the forecast. Then, the
100 · (1− α)% prediction interval can be calculated as:

Ŷi ± t(1−α/2,N−2) · se(ẽi)



Example
We will generate a univariate linear regression with β0 = 2, β1 = 0.4, N = 100 and X - an equally spaced
sequence from an interval in [0, 20].
import numpy as np
#
np.random.seed(123)
#
N = 100
beta_0 = 2
beta_1 = 0.4
#
x = np.linspace(start = 0, stop = 20, num = N)
e = np.random.normal(loc = 0, scale = 2, size = N)
y = beta_0 + beta_1 * x + e

Next, we will estimate the coefficients and their standard errors:
# Manual Calculation
# Estimate the parameters:
x_mat = np.column_stack((np.ones(len(x)), x))
xtx = np.dot(np.transpose(x_mat), x_mat)
xty = np.dot(np.transpose(x_mat), y)
beta_mat_est = np.dot(np.linalg.inv(xtx), xty)
# Calculate model fit:
y_fit = beta_mat_est[0] + beta_mat_est[1] * x
# Calculate the residuals:
resid = y - y_fit
# Estimate the standard errors:
sigma2_est = sum(resid**2) / (len(x) - 2)
var_beta = sigma2_est * np.linalg.inv(np.dot(np.transpose(x_mat), x_mat))
std_err = np.sqrt(np.diag(var_beta))



For simplicity, assume that we will predict Y for the existing values of X :
import scipy.stats as stats
import pandas as pd
#
# Let's calculate the predicted values:
x_new = x_mat
y_pred = np.dot(x_new, beta_mat_est)
# Calculate the prediction SE:
y_pred_se = np.linalg.inv(np.dot(np.transpose(x_mat), x_mat))
y_pred_se = np.dot(np.dot(x_new, y_pred_se), np.transpose(x_new))
y_pred_se = np.identity(len(x_new)) + y_pred_se
y_pred_se = sigma2_est * y_pred_se
y_pred_se = np.sqrt(np.diag(y_pred_se))
# Prediction intervals for the predicted Y:
y_pred_lower = y_pred - stats.t.ppf(q = 1 - 0.05 / 2, df = N-2) * y_pred_se
y_pred_upper = y_pred + stats.t.ppf(q = 1 - 0.05 / 2, df = N-2) * y_pred_se
print(pd.DataFrame(np.column_stack([y_pred, y_pred_lower, y_pred_upper])).head())

## 0 1 2
## 0 2.026150 -2.585366 6.637667
## 1 2.107526 -2.501381 6.716433
## 2 2.188901 -2.417448 6.795250
## 3 2.270276 -2.333567 6.874119
## 4 2.351651 -2.249738 6.953040



import matplotlib.pyplot as plt
#
_ = plt.figure(num = 0, figsize=(15, 6))
_ = plt.plot(x, y, linestyle = "None", marker = "o",

markerfacecolor = "None", color = "black")
_ = plt.plot(x, y_pred, color = "red")
_ = plt.plot(x, y_pred_lower, color = "blue", linestyle = "--")
_ = plt.plot(x, y_pred_upper, color = "blue", linestyle = "--")
plt.show()
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Just like for the confidence intervals, we can get the prediction intervals from the built-in
functions:
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import summary_table
#
# Automatically estimate the OLS parameters:
lm_fit = sm.OLS(y, x_mat).fit()
#
dt = lm_fit.get_prediction(x_mat).summary_frame(alpha = 0.05)
y_prd = dt['mean']
yprd_ci_lower = dt['obs_ci_lower']
yprd_ci_upper = dt['obs_ci_upper']
print(pd.DataFrame(np.column_stack([y_prd, yprd_ci_lower, yprd_ci_upper])).head())

## 0 1 2
## 0 2.026150 -2.585366 6.637667
## 1 2.107526 -2.501381 6.716433
## 2 2.188901 -2.417448 6.795250
## 3 2.270276 -2.333567 6.874119
## 4 2.351651 -2.249738 6.953040



_ = plt.figure(num = 1, figsize=(15, 6))
_ = plt.plot(x, y, linestyle = "None", marker = "o",

markerfacecolor = "None", color = "black")
_ = plt.plot(x, y_prd, color = "red")
_ = plt.plot(x, yprd_ci_lower, color = "blue", linestyle = "--")
_ = plt.plot(x, yprd_ci_upper, color = "blue", linestyle = "--")
plt.show()
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Confidence Intervals vs Prediction Intervals
Confidence intervals Prediction intervals
Tell you about how well you have determined
the mean.

Tell you where you can expect to see the next
data point sampled.

Assume that the data really are randomly
sampled from a Gaussian distribution.

Assume that the data really are randomly
sampled from a Gaussian distribution.

If you sample the data many times, and cal-
culate a confidence interval of the mean from
each sample, you’d expect about 95% of those
intervals to include the true value of the pop-
ulation mean.

Collect a sample of data and calculate a pre-
diction interval. Then sample one more value
from the population. If you do this many
times, you’d expect that next value to lie
within that prediction interval in 95% of the
samples.

The key point is that the confidence interval
tells you about the likely location of the true
population parameter.

The key point is that the prediction interval
tells you about the distribution of values, not
the uncertainty in determining the population
mean.

Prediction intervals must account for both: (i) the uncertainty of the population mean; (ii) the
randomness (i.e. scatter) of the data. So, a prediction interval is always wider than a confidence
interval.



ym_ci_lower = dt['mean_ci_lower']
ym_ci_upper = dt['mean_ci_upper']

_ = plt.figure(num = 2, figsize = (15, 5))
_ = plt.plot(x, y, linestyle = "None", marker = "o", label = "actual",

markerfacecolor = "None", color = "black")
_ = plt.plot(x, y_fit, color = "red", label = "OLS")
_ = plt.plot(x, ym_ci_lower, color = "darkgreen", linestyle = "--", label = "Confidence Interval")
_ = plt.plot(x, ym_ci_upper, color = "darkgreen", linestyle = "--")
_ = plt.plot(x, yprd_ci_lower, color = "blue", linestyle = "--", label = "Prediction Interval")
_ = plt.plot(x, yprd_ci_upper, color = "blue", linestyle = "--")
_ = plt.legend()
plt.show()
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Prediction intervals when Y is transformed
We will examine the following exponential model, Y = exp(β0 + β1X + ε), which we can rewrite
as a log-linear model:

log(Y ) = β0 + β1X + ε

Having estimated the log-linear model we are interested in the predicted value Ŷ . Unfortunately,
our specification allows us to calculate the prediction of the log of Y , ̂log(Y ). Nevertheless, we
can obtain the predicted values by taking the exponent of the prediction, namely:

Ŷ = exp
(
̂log(Y )

)
= exp

(
β̂0 + β̂1X

)
Having obtained the point predictor Ŷ , we may be further interested in calculating the prediction
(or, forecast) intervals of Ŷ . In order to do so, we apply the same technique that we did for the
point predictor - we estimate the prediction intervals for ̂log(Y ) and take their exponent.

Then, a 100 · (1− α)% prediction interval for Y is:[
exp

(
̂log(Y )− tc · se(ẽi)

)
; exp

(
̂log(Y ) + tc · se(ẽi)

)]



np.random.seed(123)
#
N = 1000
beta_0 = 0.2
beta_1 = -1.8
#
x = np.random.choice(np.linspace(start = 0, stop = 1, num = N),

size = N, replace = True)
e = np.random.normal(loc = 0, scale = 0.2, size = N)
y = np.exp(beta_0 + beta_1 * x + e)

_ = plt.figure(num = 3, figsize = (16, 4))
_ = plt.plot(x, y, linestyle = "None", marker = "o",

markerfacecolor = "None", color = "black")
plt.show()
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We estimate the model via OLS and calculate the predicted values ̂log(Y ) and plot ̂log(Y ) along with their
prediction intervals:
lm_fit = sm.OLS(np.log(y), sm.add_constant(x)).fit()
dt = lm_fit.get_prediction(sm.add_constant(x)).summary_frame(alpha = 0.05)
log_y_prd = dt['mean']
log_y_prd_lower = dt['obs_ci_lower']
log_y_prd_upper = dt['obs_ci_upper']

_ = plt.figure(num = 4, figsize=(16, 4))
_ = plt.plot(x, np.log(y), linestyle = "None", marker = "o",

markerfacecolor = "None", color = "black")
_ = plt.plot(x[np.argsort(x)], log_y_prd[np.argsort(x)], color = "red", linewidth = 3)
_ = plt.plot(x[np.argsort(x)], log_y_prd_lower[np.argsort(x)],

color = "blue", linestyle = "--", linewidth = 3)
_ = plt.plot(x[np.argsort(x)], log_y_prd_upper[np.argsort(x)],

color = "blue", linestyle = "--", linewidth = 3)
plt.show()
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Finally, we take the exponent of ̂log(Y ) and the prediction interval to get the predicted value and 95% prediction
interval for Ŷ :
y_prd = np.exp(log_y_prd)
y_prd_lower = np.exp(log_y_prd_lower)
y_prd_upper = np.exp(log_y_prd_upper)

_ = plt.figure(num = 5, figsize=(16, 4))
_ = plt.plot(x, y, linestyle = "None", marker = "o",

markerfacecolor = "None", color = "black")
_ = plt.plot(x[np.argsort(x)], y_prd[np.argsort(x)], color = "red", linewidth = 3)
_ = plt.plot(x[np.argsort(x)], y_prd_lower[np.argsort(x)],

color = "blue", linestyle = "--", linewidth = 3)
_ = plt.plot(x[np.argsort(x)], y_prd_upper[np.argsort(x)],

color = "blue", linestyle = "--", linewidth = 3)
plt.show()
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Alternatively, notice that for the log-linear (and similarly for the log-log) model:

Y = exp(β0 + β1X + ε) = exp(β0 + β1X ) · exp(ε) = E(Y |X ) · exp(ε)

the prediction is comprised of the systematic and the random components, but they are
multiplicative, rather than additive.

Therefore we can use the properties of the log-normal distribution to derive an alternative
corrected prediction of the log-linear model:

Ŷc = Ê(Y |X ) · exp(σ̂2/2) = Ŷ · exp(σ̂2/2)

Because, if ε ∼ N (µ, σ2), then:
I E(exp(ε)) = exp(µ+ σ2/2);
I Var(ε) =

[
exp(σ2)− 1

]
exp(2µ+ σ2).

For larger samples sizes Ŷc is closer to the true mean than Ŷ . On the other hand, in smaller
samples Ŷ performs better than Ŷc . Finally, it also depends on the scale of X .



Because exp(0) = 1 ≤ exp(σ̂2/2), the corrected predictor will always be larger than the natural
predictor: Ŷc ≥ Ŷ .

Furthermore, this correction assumes that the errors have a normal distribution (i.e.
that (UR.4) holds).

In our case:
sigma2_est = sum(lm_fit.resid**2) / (len(y) - 2)
y_prd_c = y_prd * np.exp(sigma2_est / 2)

_ = plt.figure(num = 6, figsize=(16, 4))
_ = plt.plot(x, y, linestyle = "None", marker = "o",

markerfacecolor = "None", color = "black")
_ = plt.plot(x[np.argsort(x)], y_prd[np.argsort(x)],

color = "red", linewidth = 3, label = "$\\widehat{Y}$")
_ = plt.plot(x[np.argsort(x)], y_prd_c[np.argsort(x)],

color = "darkgreen", linewidth = 3, label = "$\\widehat{Y}_c$")
_ = plt.legend()
plt.show()



0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
Y
Yc

There is a slight difference between the corrected and the natural predictor when the variance of
the sample, Y , increases.

The same ideas apply when we examine a log-log model.



Goodness-Of-Fit



Goodness-Of-Fit
Having the following model:

Yi = β0 + β1Xi + εi , i = 1, ...,N

Allows us to:

1. Explain, how the dependent variable Yi changes, if the independent variable Xi changes.
2. Predict the value of Ỹ , given a value of X̃ .

In order to have an accurate prediction of Y , we hope that the independent variable X helps us
explain as much variation in Y as possible (hence why X is usually referred to as an explanatory
variable). Ideally, the variance of X will help explain the variance in Y .

Having said that, we would like to have a way to measure just how good our model
is - how much of the variation in Y can be explained by the variation in X using our
model - we need a goodness-of-fit measure.

Another way to look at it is - a goodness-of-fit measure aims to quantify how well
the estimated model fits the data. Fortunately, there are many ways to measure the
goodness-of-fit of the estimated model.



Model Residuals: RSS, ESS and TSS
We can separate our univariate regression into two components:

Yi = E(Yi |Xi) + εi

where:
I E(Yi |Xi) = β0 + β1Xi is the explainable, systematic, component of our model;
I εi is the random, unsystematic, unexplainable component of our model.

In practical application, we do not observe the true systematic and the true random components,
but we can use the OLS to estimate the unknown parameters. then our regression can be written
as:

Yi = Yi ± Ŷi = Ŷi + ε̂i

where Ŷi = β̂0 + β̂1Xi and ε̂i = Yi − Ŷi .



Because the least squares fitted regression passed through the sample mean (Y ,X ), if we
subtract the sample mean of Y , Y = 1

N
∑N

i=1 Yi from both sides of the equation, we rewrite our
model in terms of differences (i.e. variation) from the process mean:

Yi − Y = (Ŷi − Y ) + ε̂i

This expression states that the difference between Yi and its sample mean, Y , consists of an
explained, (Ŷi − Y ), and unexplained, êi , part. Taking the squares of both sides and summing
across i = 1, ...,N yields:

N∑
i=1

(
Yi − Y

)2 =
N∑
i=1

(
(Ŷi − Y ) + ε̂i

)2
=

N∑
i=1

(
Ŷi − Y

)2
+ 2

N∑
i=1

(
Ŷi − Y

)
ε̂i +

N∑
i=1

ε̂2i

Using the fact that :
N∑
i=1

(
Ŷi − Y

)
ε̂i =

N∑
i=1

(
β̂0 + β̂1Xi

)
ε̂i − Y

N∑
i=1

ε̂i = β̂0

N∑
i=1

ε̂i + β̂1

N∑
i=1

Xi ε̂i − Y
N∑
i=1

ε̂i = 0

we can rewrite the equality as:
N∑
i=1

(
Yi − Y

)2 =
N∑
i=1

(
Ŷi − Y

)2
+

N∑
i=1

ε̂2i (1)



The (1) equation gives us a decomposition of the total sample variation, into explained and unexplained
components.

Define the following:
I Total Sum of Squares (SST or TSS) as:

TSS =
N∑
i=1

(Yi − Y )2

It is a measure of total variation in Y around the sample mean.
I Explained Sum of Squares (ESS) as:

ESS =
N∑
i=1

(Ŷi − Y )2

It is the part of the total variation in Y around the sample mean, that is explained by our regression.
This is sometimes called the model sum of squares or sum of squares due to regression (which is confusingly
also abbreviated as “SSR”).

I Residual Sum of Squares (SSR or RSS) as:

RSS =
N∑
i=1

ε̂2i

It is the part of the total variation in Y around the sample mean that is not explained by our regression.
This is sometimes called the unexplained sum of squares or the sum of squared estimate of errors (SSE).



Then, (1) equation can be written simply as:

TSS = ESS + RSS

R-squared, R2

It is often useful to compute a number that summarizes how well the OLS regression fits the
data. This measure is called the coefficient of determination, R2, which is the ratio of
explained variation, compared to the total variation, i.e. the proportion of variation in Y that is
explained by X in our regression model:

R2 = ESS
TSS = 1− RSS

TSS

I The closer R2 is to 1, the closer the sample values of Yi are to the fitted values Ŷ of our
regression. Ir R2 = 1, then all the sample data fall exactly on the fitted regression. In such
a case our model would be a perfect fit for our data.

I If the sample data of Y and X do not have a linear relationship, then R2 = 0 of a univariate
regression.

I Values 0 < R2 < 1, the interpretation of R2 is as the proportion of the variation in Y
around its mean, that is explained by the regression model. For example R2 = 0.17 means
that 17% of the variation in Y is explained by X .



When comparing RSS of different models, we want to choose the model, which better
fits our data.
If we want to choose a model based on its R2 value we should note a couple of things:
I R2 comparison is not valid for comparing models, that do not have have the

same transformation of the dependent variable, for example two models -
one with Y and the other with log(Y ) dependent variables cannot be compared
via R2.

I R2 does not measure the predictability power of the model. For example, a linear
model may be a good fit for the data, but its forecasts may not make economic
sense (e.g. forecasting negative wage for low values of years in education via a
simple linear model).

I R2 is based on the sample data, so it says nothing whether our model is close to
the true population DGP.

I R2 may be low if: the error variance, σ2, is large; or if the variance of X is small.
I R2 may be large even if the model is wrong. For example, even if the true

relationship is non-linear, a linear model may have a larger R2, compared to the
quadratic, or even the log-linear model.



On the other hand, the goodness-of-fit of the model does not depend on the unit
of measurement of our variables (e.g. dollars vs thousands of dollars). Furthermore,
comparisons of R2 are valid, if we compare a simple linear model to a linear-log model,
as they both have the same dependent variable, Y .

In any case, a model should not be chosen only on the basis of model fit with R2 as
the criterion.

import numpy as np
#
np.random.seed(123)
#
N = 100
beta_0 = 2
beta_1 = 0.4
#
x = np.linspace(start = 0, stop = 20, num = N)
e = np.random.normal(loc = 0, scale = 2, size = N)
y = beta_0 + beta_1 * x + e

Next, we will estimate the coefficients.



We will use to built-in functions as we have already, plentifully, shown how the coefficients, standard errors, fitted
values and residuals can be calculated manually:
import statsmodels.api as sm
#
lm_fit = sm.OLS(y, sm.add_constant(x)).fit()
print(lm_fit.params)

## [2.02615049 0.40280677]

Next, we will use the residuals to calculate the TSS, RSS and R2:
RSS = np.sum(lm_fit.resid**2)
TSS = np.sum((y - np.mean(y))**2)
R_sq = 1 - RSS / TSS
print(R_sq)

## 0.5200895667266314

Which we can also conveniently extract from the estimated model objects:
print(lm_fit.rsquared)

## 0.5200895667266314



Finally, we may look at the full summary output of our models:
print(lm_fit.summary())

## OLS Regression Results
## ==============================================================================
## Dep. Variable: y R-squared: 0.520
## Model: OLS Adj. R-squared: 0.515
## Method: Least Squares F-statistic: 106.2
## Date: Wed, 02 Oct 2019 Prob (F-statistic): 2.63e-17
## Time: 20:47:44 Log-Likelihood: -223.27
## No. Observations: 100 AIC: 450.5
## Df Residuals: 98 BIC: 455.8
## Df Model: 1
## Covariance Type: nonrobust
## ==============================================================================
## coef std err t P>|t| [0.025 0.975]
## ------------------------------------------------------------------------------
## const 2.0262 0.452 4.478 0.000 1.128 2.924
## x1 0.4028 0.039 10.306 0.000 0.325 0.480
## ==============================================================================
## Omnibus: 2.753 Durbin-Watson: 1.975
## Prob(Omnibus): 0.252 Jarque-Bera (JB): 1.746
## Skew: 0.035 Prob(JB): 0.418
## Kurtosis: 2.356 Cond. No. 23.1
## ==============================================================================
##
## Warnings:
## [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

and see a variety of familiar statistics.



R2 and variable scaling
If we decide to scale the variables, by say, dividing by 10, then the R2 would be unchanged:
lm_fit_scale_y = sm.OLS(y/10, sm.add_constant(x)).fit()
print(lm_fit_scale_y.params)
## [0.20261505 0.04028068]
print(lm_fit_scale_y.rsquared)
## 0.5200895667266313
lm_fit_scale_x = sm.OLS(y, sm.add_constant(x/10)).fit()
print(lm_fit_scale_x.params)
## [2.02615049 4.02806766]
print(lm_fit_scale_x.rsquared)
## 0.5200895667266314
lm_fit_scale_yx = sm.OLS(y/10, sm.add_constant(x/10)).fit()
print(lm_fit_scale_yx.params)
## [0.20261505 0.40280677]
print(lm_fit_scale_yx.rsquared)
## 0.5200895667266314



Cases When R2 is Negative
A Case of a negative R2 can arise when:

1. The predictions that are being compared to the corresponding outcomes have not been
derived from a model-fitting procedure using those data. E.g. if we try to guess the
coefficient values - e.g. we assume that coefficients of models on similar data, or in similar
countries would be the same for our data;

2. We do not include an intercept, β0 in our linear regression model;
3. When a non-linear function is used to fit the data;

In cases where negative R2 values arise, the mean of the data provides a better fit to
the outcomes, rather than the fitted model values, according to this criterion, R2.
We will later see, that there is a variety of different alternative criterions for evaluating
the accuracy of a model.

We will look at each case separately.



Fitted values are not derived from the data, which is being analysed
Let’s say that we use a model, which was fitted on the following dataset:
np.random.seed(123)
#
N = 1000
#
x0 = np.random.choice(np.linspace(start = 0, stop = 2, num = N), size = N, replace = True)
e0 = np.random.normal(loc = 0, scale = 1, size = N)
y0 = -2 + 2 * x0 + e0
The estimated model of such a dataset is:
lm_fit0 = sm.OLS(y0, sm.add_constant(x0)).fit()
print(lm_fit0.params)
## [-2.00889979 2.01142461]
Now, assume that we are analyzing a different data sample. Let’s say that our data sample comes from the
following underlying DGP:
np.random.seed(456)
#
N = 1000
beta_0 = 2
beta_1 = -2
#
x_other = np.random.choice(np.linspace(start = 0, stop = 2, num = N), size = N, replace = True)
e_other = np.random.normal(loc = 0, scale = 1, size = N)
y_other = beta_0 + beta_1 * x_other + e_other



However, we make the incorrect assumption that our data sample comes from the same population as the
previous data. This leads us to calculating the fitted values, residuals and R2 using pre-estimated coefficients:
y_fit_other = lm_fit0.params[0] + lm_fit0.params[1] * x_other
resid_other = y_other - y_fit_other
#
RSS = np.sum(np.array(resid_other)**2)
TSS = np.sum((y_other - np.mean(y_other))**2)
R_sq = 1 - RSS / TSS
print(R_sq)

## -1.7715352852594477

Visual inspection reveals that our assumption that an existing model of one dataset is good enough for our dataset
was incorrect - it is clear that our dataset is from a different DGP. For comparison, we also plot the process mean.
_ = plt.figure(num = 1, figsize = (16, 4))
_ = plt.plot(x_other, y_other, linestyle = "None", marker = "o", markerfacecolor = "None",

color = "black", label = "Data Sample")
_ = plt.plot(x_other[np.argsort(x_other)], y_fit_other[np.argsort(x_other)], linestyle = "-",

color = "red", label = "$\\widehat{Y}_i$")
_ = plt.axhline(y = np.mean(y_other), linestyle = "--", color = "blue",

label = "$\\overline{Y}_i$")
_ = plt.legend()
plt.show()
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If we compare models from datasets of different countries, different firms, we would run into such problems.

For example, if one firm is very large, while another is relatively new and small - making an assumption that a
model on the data of one firm can be applied to the data of this new firm would be incorrect - some variables may
have similar effects, but they would most likely not be the same in magnitude.



Regression without an intercept
We will generate an OLS model with an intercept
np.random.seed(123)
#
N = 100
beta_0 = 30
beta_1 = 2
#
x = np.linspace(start = 0, stop = 20, num = N)
e = np.random.normal(loc = 0, scale = 1, size = N)
y = beta_0 + beta_1 * x + e
But we will estimate the parameters of a regression model without an intercept. The estimated coefficient, fitted
values and residuals are calculated as follows (take note that we do not include a constant in the independent
variable matrix):
lm_fit = sm.OLS(y, x).fit()
print(lm_fit.params)
## [4.24107257]
Which results in the following negative R2:
RSS = np.sum(np.array(lm_fit.resid)**2)
TSS = np.sum((y - np.mean(y))**2)
R_sq = 1 - RSS / TSS
print(R_sq)
## -0.6718501471478293



For cases when a model does not have an intercept, R2 is usually computed as:

R2 = 1− RSS∑N
i=1 Y 2

i

where the denominator acts as if we assume that E(Y ) = 0 (and hence we assume that Y ≈ 0).

Applying this expression for the R2 yields:
R_sq = 1 - RSS/np.sum(np.array(y)**2)
print(R_sq)

## 0.9129369975970213

Furthermore, this value of R2 is (silently) applied in the built-in OLS estimation functions:
print(lm_fit.rsquared)

## 0.9129369975970213



Unfortunately, if R2 is calculated in this way, it ignores a very important fact about our model - a
negative R2 indicates that the regression is actually worse than a simple average of the process. In
fact, the modified R2 shows a very high value - the complete opposite of what we would expect to see
in such a situation.

Visually, we can see that our model provides quite a poor fit. For comparison, we also plot the process mean:
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So, while the modified R2 seems high, in reality the model provides a poor fit for the data sample.



A Nonlinear function is used to fit the data with large error variance
As an example we will simulate data from the following log-linear model: log(Y ) = β0 + β1X + ε,
where β0 = 0.2, β1 = 2, N = 100, ε ∼ N (0, 1), and X is a random sample with replacement
from an interval from 0 to 0.5, equally spaced into N elements.
np.random.seed(123)
#
N = 100
beta_0 = 0.2
beta_1 = 2
#
x = np.random.choice(np.linspace(start = 0, stop = 0.5, num = N), size = N, replace = True)
e = np.random.normal(loc = 0, scale = 1, size = N)
y = np.exp(beta_0 + beta_1 * x + e)
This data has a small variation in X and a (relative to the variance in log(Y ) and in ε) large error variance:
print(np.var(x))
## 0.023800418324660753
print(np.var(np.log(y)))
## 1.1624704319571753
print(np.var(e))
## 1.0245932457731062



If we estimate the correct model and look at the coefficients and R2:
lm_fit = sm.OLS(np.log(y), sm.add_constant(x)).fit()
print(lm_fit.params)

## [0.0878827 2.44826432]
print(lm_fit.rsquared)

## 0.12272111156714938

We see that the R2 is very small. Furthermore, if we were to back-transform our fitted values and calculate R2:
y_fit = np.exp(lm_fit.fittedvalues)
resid = y - y_fit
#
RSS = np.sum(resid**2)
TSS = np.sum((y - np.mean(y))**2)
R_sq = 1 - RSS/TSS
print(R_sq)

## -0.04781349315972472

We see that it is even worse.



The plot of the fitted values:
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So, a large variance of the error term, or a small variance of the independent variable,
will result in a lower R2 value overall. Furthermore, back-transforming would likely
result in a lower R2 value.



Finally, plotting the residuals against the fitted values indicates that the residuals of
Y − exp( ̂log(Y )) do not have the same properties as the log-linear model residuals:
fig = plt.figure(num = 4, figsize = (16, 8))
_ = fig.add_subplot('211').plot(lm_fit.fittedvalues, lm_fit.resid, color = "black",

linestyle = "None", marker = "o", markerfacecolor = 'None')
_ = plt.title("log-linear model residuals")
_ = fig.add_subplot('212').plot(y_fit, resid, color = "black",

linestyle = "None", marker = "o", markerfacecolor = 'None')
_ = plt.title("Dependent variable and the back-transformed fitted value residuals")
_ = plt.tight_layout()
plt.show()
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Correlation Analysis
The correlation coefficient between X and Y is defined as:

ρX ,Y = Cov(X ,Y )√
Var(X )

√
Var(Y )

= σX ,Y
σXσY

The sample correlation is calculated as:

rX ,Y = σ̂X ,Y
σ̂X σ̂Y

=

1
N − 1

∑N
i=1(Xi − X )(Yi − Y )√

1
N − 1

∑N
i=1(Xi − X )2

√
1

N − 1
∑N

i=1(Yi − Y )2

The sample correlation −1 ≤ rX ,Y ≤ 1 measures the strength of the linear association between
the sample values of X and Y .



Correlation Analysis and R2

There is a relationship between R2 and rX ,Y :
1. R2 = r2X ,Y . So, R2 can be computed as the square of the sample correlation between Y and

X .
2. R2 = r2

Y ,Ŷ
. So, R2 can be computed as the square of the sample correlation between Y and

its fitted values Ŷ . As such, R2 measures the linear association, the goodness-of-fit,
between the sample data Y , and its predicted values Ŷ . Because of this, R2 is sometimes
called a measure of goodness-of-fit.

print(lm_fit.rsquared)
## 0.12272111156714938
print(np.corrcoef(np.log(y), x)[0][1]**2)
## 0.12272111156714918
print(np.corrcoef(np.log(y), lm_fit.fittedvalues)[0][1]**2)
## 0.12272111156714925



A General (pseudo) R-squared Measure, R2
g

As we have seen, we may need to back-transform our independent variable. Then, we can
calculate a general (pseudo) measure of R2:

R2
g = r2

Y ,Ŷ
= Corr(Y , Ŷ )2

print(np.corrcoef(np.log(y), lm_fit.fittedvalues)[0][1]**2)
## 0.12272111156714925
print(np.corrcoef(y, y_fit)[0][1]**2)
## 0.05975262825731168
In our previous example we can calculate R2

g for both the log and the back-transformed values:

A way to look at it is that R2 measures the variation explained by our model, whereas R2
g measures

the variance explained by our model. In a linear regression, the two definitions are the same, as long
as the intercept coefficient is included in the model.



Regression Diagnostics



Regression Diagnostics
In many cases while carrying out statistical/econometric analysis, we are not sure, whether we
have correctly specified our model. As we have seen, the R2 can be artificially small (or large),
regardless of the specified model. As such, there are a number of regression diagnostics and
specification tests.

For the univariate regression, the most crucial assumptions come from (UR.3) and (UR.4),
namely:
I Var(εi |X) = σ2ε , ∀i = 1, ..,N
I Cov(εi , εj) = 0, i 6= j
I ε|X ∼ N

(
0, σ2ε I

)
We note that the residuals are defined as:

ε̂ = Y− Ŷ

= Y− Xβ̂

= Y− X
(
X>X

)−1X>Y
=
[
I− X

(
X>X

)−1X>]Y



Hence, for the OLS residuals (i.e. not the true unobserved errors) the expected value of the
residuals is still zero:

E (ε̂|X) = E
([
I− X

(
X>X

)−1X>]Y|X)
= E

([
I− X

(
X>X

)−1X>] (Xβ + ε) |X
)

= Xβ + E(ε)− Xβ − X
(
X>X

)−1X>E(ε)
= 0

or simplicity, let ε̂ = [I−H]Y, where H = X
(
X>X

)−1X>.
Consequently, the variance-covariance matrix of the residuals is:

Var (ε̂|X) = Var ([I−H]Y|X)

= [I−H]Var (Y|X) [I−H]>

= [I−H]σ2 [I−H]>

= σ2
[
I−H> −H + HH>

]
= σ2

[
I−H> −H + H>

]
= σ2 [I−H]

(2)



This result shows an important distinction of the residuals from the errors - the residuals
may have different variances (which are the diagonal elements of Var (ε̂|X)), even if
the true errors (which affect the process Y) all have the same variance σ2.

Residual Diagnostic Plots
One way to examine the adequacy of the model is to visualize the residuals. There are a number
of ways to do this:
I Plotting the residuals ε̂i against the fitted values Ŷi ;
I Plotting the residuals ε̂i against Xi
I Plotting the residual Q-Q plot, histogram or boxplot.

In all cases, if there are no violations of our (UR.2) or (UR.3) assumptions - the plots should
reveal no patterns. The residual histogram, Q-Q plot should be approximately normal so that
our assumption (UR.4) holds.

As we are not guaranteed to specify a correct functional form, residual plots offer a great insight
on what possible functional form we may have missed.



We should note that when having multiple models, it is only meaningful to compare the residuals
of models with the same dependent variable. For example, comparing the residuals of a
linear-linear model (with Y ) and of a log-linear model (with log(Y )) is not meaningful as they
have different value scales.

Transforming the dependent or the independent variables may help to alleviate some of
the problems of the residuals:
I If nonlinearities are present in the residual plots - we must firstly account for them,

and only after can we check, whether the errors have a constant variance.
I Transforming Y primarily aims to help with problems with the error terms (and

may help with non-linearity);
I Transforming X primarily aims to help with correcting for non-linearity;
I Sometimes transforming X is enough to account for non-linearity and have

normally distributed errors, while transforming Y may account for non-linearity but
might make the errors non-normally distributed.

I Other times, transforming X does not help account for the nonlinear relationship
at all;

Remember that the Q-Q plot plots quantiles of the data versus quantiles of a distribution. If the
observations come from a normal distribution we would expect the observed order statistics
plotted against the expected (theoretical) order statistics to form an approximately straight line.



Example
We will generate four different models:
I a simple linear model: Y = β0 + β1X + ε;
I a log-linear model: log(Y ) = β0 + β1X + ε;
I a linear-log model: Y = β0 + β1 log(X ) + ε;
I a log-log model: log(Y ) = β0 + β1 log(X ) + ε;

For each case, we will estimate a simple linear model on the data and examine the residual plots.
For simplicity, we will use the same Xi and the same εi ∼ N (0, 0.22), i = 1, ...,N with N = 200,
β0 = 1 and β1 = 2.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import scipy.stats as stats
#
np.random.seed(123)
# Sample size and coefficients
N = 200
beta_0 = 1
beta_1 = 2
# Variables which will be the same for each model:
x = np.linspace(start = 0.1, stop = 2, num = N)
e = np.random.normal(loc = 0, scale = 0.2, size = N)



# Simple linear model
y = beta_0 + beta_1 * x + e
data_lin = pd.DataFrame([y, x, e], index = ["y", "x", "e"]).T
# Linear-Log model:
y = beta_0 + beta_1 * np.log(x) + e
data_linlog = pd.DataFrame([y, x, e], index = ["y", "x", "e"]).T
# Log-linear model:
y = np.exp(beta_0 + beta_1 * x + e)
data_loglin = pd.DataFrame([y, x, e], index = ["y", "x", "e"]).T
# Log-Log model:
y = np.exp(beta_0 + beta_1 * np.log(x) + e)
data_loglog = pd.DataFrame([y, x, e], index = ["y", "x", "e"]).T
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Next, we will estimate the simple linear regression for each dataset:
mdl1 = sm.OLS(data_lin["y"], sm.add_constant(data_lin["x"])).fit()
mdl2 = sm.OLS(data_linlog["y"], sm.add_constant(data_linlog["x"])).fit()
mdl3 = sm.OLS(data_loglin["y"], sm.add_constant(data_loglin["x"])).fit()
mdl4 = sm.OLS(data_loglog["y"], sm.add_constant(data_loglog["x"])).fit()
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Then, the different residual plots are as follows:

simple linear DGP
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We see that the linear model for the dataset, which is generated from a simple linear DGP, has
residuals which appear to be random - we do not see any non-random patterns in the
scatterplots.

Furthermore, the histogram and Q-Q plot indicate that the residuals may be from a normal
distribution.

On the other hand, a simple linear model does not fit the data well, if the data is sampled from a
non-linear DGP - we see clear patterns in the residual scatter plots, as well as non-normality.

For comparison, if we were to fit the correct models, we would have the following plots:
mdl2_correct = sm.OLS(data_linlog["y"], sm.add_constant(np.log(data_linlog["x"]))).fit()
mdl3_correct = sm.OLS(np.log(data_loglin["y"]), sm.add_constant(data_loglin["x"])).fit()
mdl4_correct = sm.OLS(np.log(data_loglog["y"]), sm.add_constant(np.log(data_loglog["x"]))).fit()



simple linear DGP

2 1 0 1 2
Theoretical quantiles

0.5

0.0

0.5

Or
de

re
d 

Va
lu

es

Probability Plot

0.50 0.25 0.00 0.25 0.50
0

10

20
Histogram of residuals

2 3 4 5

0.5

0.0

0.5
Residuals vs Fitted values

0.5 1.0 1.5 2.0

0.5

0.0

0.5
Residuals vs X

linear-log DGP

2 1 0 1 2
Theoretical quantiles

0.5

0.0

0.5

Or
de

re
d 

Va
lu

es

Probability Plot

0.50 0.25 0.00 0.25 0.50
0

10

20
Histogram of residuals

2 0 2

0.5

0.0

0.5
Residuals vs Fitted values

0.5 1.0 1.5 2.0

0.5

0.0

0.5
Residuals vs X

log-linear DGP

2 1 0 1 2
Theoretical quantiles

0.5

0.0

0.5

Or
de

re
d 

Va
lu

es

Probability Plot

0.50 0.25 0.00 0.25 0.50
0

10

20
Histogram of residuals

2 3 4 5

0.5

0.0

0.5
Residuals vs Fitted values

0.5 1.0 1.5 2.0

0.5

0.0

0.5
Residuals vs X

log-log DGP

2 1 0 1 2
Theoretical quantiles

0.5

0.0

0.5

Or
de

re
d 

Va
lu

es

Probability Plot

0.50 0.25 0.00 0.25 0.50
0

10

20
Histogram of residuals

2 0 2

0.5

0.0

0.5
Residuals vs Fitted values

0.5 1.0 1.5 2.0

0.5

0.0

0.5
Residuals vs X

Then the residuals are normally distributed and do not have any patterns or change in variance.



Residual Heteroskedasticity
If Var(εi |X) = σ2ε , ∀i = 1, ..,N, we say that the residuals are homoskedastic. If this
assumption is violated, we say that the residuals are heteroskedastic - that is, their variance is
not constant throughout observations.

The consequences of heteroskedasticity are as follows:
I OLS parameters remain unbiased;
I OLS estimates are no longer efficient (i.e. they no longer have the smallest

variance). The reason for this is that OLS gives equal weight to all observations in
the data, when in fact, observation with larger error variance contain less
information, compared to observations with smaller error variance;

I The variance estimate of the residuals is biased, and hence the standard errors
are biased. This in turn leads to a bias in test statistics and confidence intervals.

I Because of standard error bias, we may fail to reject the null hypothesis whether
βi = 0 in our estimated model, when the null hypothesis is actually false
(i.e. making a Type II error).



There are a few possible corrections to account for heteroskedasticity:
I Take logarithms of the data, this may be able to help linearize the data and in

turn, the residuals;
I Apply a different estimation method. We will examine this later on, but one

possibility is to use a Weighted Least Squares estimation method, which gives
different observations different weights and allows to account for a non-constant
variance;

I It is possible to correct the the biased standard errors for heteroskedasticity. This
would leave the OLS estimates unchanged. White’s heteroskedasticity-consistent
standard errors (or, robust standard errors) give a consistent variance estimator.

Example
We are going to simulate the following model:

Yi = β0 + β1Xi + ui
ui =

√
i · εi , where εi ∼ N (0, σ2)

https://en.wikipedia.org/wiki/Heteroscedasticity-consistent_standard_errors
https://en.wikipedia.org/wiki/Heteroscedasticity-consistent_standard_errors


np.random.seed(123)
#
N = 100
beta_0 = 8
beta_1 = 10
#
x = np.linspace(start = 0, stop = 5, num = N)
e = np.random.normal(loc = 0, scale = 0.8, size = N)
u = np.array(list(range(1, N + 1))) * e
#
y = beta_0 + beta_1 * x + u
#
mdl = sm.OLS(y, sm.add_constant(x)).fit()
print(mdl.summary().tables[1])

## ==============================================================================
## coef std err t P>|t| [0.025 0.975]
## ------------------------------------------------------------------------------
## const 10.8945 9.978 1.092 0.278 -8.907 30.696
## x1 9.3559 3.448 2.714 0.008 2.514 16.198
## ==============================================================================
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There are a number of methods to test for the presence of heteroskedasticity. . .



Goldfeld–Quandt Test
I It divides the dataset into two subsets. The subsets are specified so that the observations

for which the explanatory variable takes the lowest values are in one subset, and the highest
values - in the other subset.

I The subsets are not necessarily of equal size, nor do they contain all the observations
between them.

I The test statistic used is the ratio of the mean square residual errors for the regressions on
the two subsets.

I This test statistic corresponds to an F-test of equality of variances.
I The Goldfeld–Quandt test requires that data be ordered along a known explanatory

variable, from lowest to highest.



If the error structure depends on an unknown variable or an unobserved variable the
Goldfeld–Quandt test provides little guidance.
Also, error variance must be a monotonic function of the specified explanatory variable.
For example, when faced with a quadratic function mapping the explanatory variable to
error variance the Goldfeld–Quandt test may improperly accept the null hypothesis of
homoskedastic errors.

Unfortunately the Goldfeld–Quandt test is not very robust to specification errors. The
Goldfeld–Quandt test detects non-homoskedastic errors but cannot distinguish between
heteroskedastic error structure and an underlying specification problem such as an
incorrect functional form or an omitted variable.



Breusch–Pagan Test
I After estimating the linear regression Y = β0 + β1X + ε, calculate the model residuals ε̂i .
I The OLS assumptions state that the residual variance does not depend on the independent

variables Var(εi |X) = σ2ε . If this assumptions is not true, then there may be a linear
relationship between ε̂2i and Xi .

So, the Breush-Pagan test is the based on the following regression:

ε̂2i = γ0 + γ1Xi + vi

The hypothesis tests is:

H0 : γ1 = 0 (residuals are homoskedastic)
H1 : γ1 6= 0 (residuals are heteroskedastic)

It is a chi-squared test, where the test statistic:

LM = N · R2
ε̂

is distributed as χ21 under the null. Here R2
ε̂
is the R-square of the squared residual regression.



One weakness of the BP test is that it assumes that the heteroskedasticity is a linear
relationship of the independent variables. If we fail to reject the null hypothesis, we
still do not rule out the possibility of a non-linear relationship between the independent
variables and the error variance.

White Test
I It is more generic than the BP test as it allows the independent variables to have a

nonlinear effect on the error variance. For example, a combination of linear, quadratic and
cross-products of the independent variables.

I It is a more commonly used test for homoskedasticity.
The test statistic is calculated the same way as in BP test:

LM = N · R2
ε̂

the difference from BP is that the squared residual model, from which we calculate R2
ε̂
, may be

nonlinear.
A shortcoming of the White test is that it can lose its power if the model has many
exogenous variables.



import statsmodels.stats.diagnostic as sm_diagnostic
# Goldfeld–Quandt Test
print(sm_diagnostic.het_goldfeldquandt(y = y,

x = sm.add_constant(x), alternative = "two-sided"))

## (5.330019801721165, 4.3458162211165886e-08, 'two-sided')
# Breusch–Pagan Test
print(sm_diagnostic.het_breuschpagan(resid = mdl.resid,

exog_het = sm.add_constant(x)))

## (27.15440005289671, 1.8783720306329005e-07, 36.53111796891305, 2.7232777548974932e-08)
# White Test
print(sm_diagnostic.het_white(resid = mdl.resid,

exog = sm.add_constant(x)))

## (27.63658737233078, 9.972207411097485e-07, 18.522820288405395, 1.5369984549894296e-07)
I For BP and White tests - the first value is the LM statistic, the second value is the p-value of the LM

statistic, the third value is the F -test statistic, the last value is the p-value of the F test.
I For the GQ test, the first value is the F -statistic, the second value is the associated p-value.

The LM test exaggerates the significance of results in small or moderately large samples. In this case, the
F-statistic is preferable.

We see that in all cases the p-value is less than 0.05, so we reject the null hypothesis and conclude that the
residuals are hetereoskedastic.



On the other hand, if we were to carry out these tests for a correctly specified model, like the one for the simple
linear regression:
# Goldfeld–Quandt Test
print(sm_diagnostic.het_goldfeldquandt(y = data_lin["y"],

x = sm.add_constant(data_lin["x"]), alternative = "two-sided"))

## (0.7299402182948976, 0.12090366054870887, 'two-sided')
# Breusch–Pagan Test
print(sm_diagnostic.het_breuschpagan(resid = mdl1.resid,

exog_het = sm.add_constant(data_lin["x"])))

## (3.987557828302002, 0.04583745596968394, 4.027991495112321, 0.04611120607782332)
# White Test
print(sm_diagnostic.het_white(resid = mdl1.resid,

exog = sm.add_constant(data_lin["x"])))

## (4.0785282350399354, 0.13012443194407053, 2.050490063862835, 0.13140921798003924)

We see that we do not reject the null hypothesis of homoskedastic residuals (except for the BP test in Python,
where the p-value is close to 0.05, on the other hand, the remaining two tests do not reject the null).

There are also a number of additional heteroskedasticity tests. A discussion of their quality can be found here.

https://www.researchgate.net/post/Heteroskedasticity_Which_test_should_you_choose


Residual Autocorrelation
If Cov(εi , εj) 6= 0 for some i 6= j , then the errors are correlated. Autocorrelation is frequently
encountered in time-series models.

Example
Assume that our model is defined as follows:

Yt = β0 + β1Xt + εt

εt = ρεt−1 + ut , |ρ| < 1, ut ∼ N (0, σ2)

Then we say that the model has autocorrelated, or serially correlated errors.
In this case, we have that:

Cov(εt , εt−1) = Cov(ρεt−1 + ut , εt−1) = ρCov(εt−1, εt−1) = ρσ2 6= 0

Estimating the coefficients via OLS and ignoring the violation will still result in unbiased and
consistent OLS estimators. However, the estimators are inefficient and the variance of the
regression coefficients will be biased.
On the other hand, autocorrelation in errors may be a result of a misspecified model.



Example
If we were to fit a linear model on a quadratic - we may get residuals, which appear to be
correlated.
np.random.seed(123)
#
N = 100
beta_0 = 2
beta_1 = 1.5
#
x = np.linspace(start = 0, stop = 10, num = N)
e = np.random.normal(loc = 0, scale = 0.8, size = N)
y = beta_0 + beta_1 * (x**2) + e
#
lm_fit = sm.OLS(y, sm.add_constant(x)).fit()
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There are a number of tests for the presence of autocorrelation. . .



Durbin–Watson Test
Tests the hypothesis:

H0 : the errors are serially uncorrelated
H1 : the errors follow a first order autoregressive process (i.e. autocorrelation at lag 1)

The test statistic:

d =
∑N

i=2(ε̂i − ε̂i−1)2∑N
i=1 ε̂

2
i

The value of d always lies between 0 and 4. d = 2 indicates no autocorrelation. If the
Durbin–Watson statistic is not close to 2, there is evidence of a serial correlation.



Breusch-Godfrey Test
A more flexible test, covering autocorrelation of higher orders and applicable whether or not the
regressors include lags of the dependent variable. Consider the following linear regression:

Yi = β0 + β1Xi + εi

We then estimate the model via OLS and fit the following model on the residuals ε̂i :

ε̂i = α0 + α1Xi + ρ1ε̂i−1 + ρ2ε̂i−2 + ...+ ρp ε̂i−p + ut

and calculate its R2 (R-squared), then testing the hypothesis:

H0 : ρ1 = ρ2 = ... = ρp = 0
H1 : ρj 6= 0 for some j

Under the null hypothesis the test statistic:

LM = (N − p)R2 ∼ χ2p



import statsmodels.stats.stattools as sm_tools
# Durbin–Watson Test
print(sm_tools.durbin_watson(lm_fit.resid))

## 0.018027275453585786
# Breusch-Godfrey Test
print(sm_diagnostic.acorr_breusch_godfrey(lm_fit, nlags = 2))

## (93.98337188826778, 3.9063405254180396e-21, 749.7890457680423, 2.5642011470769976e-59)
I For the Durbin–Watson Test, the DW statistic is returned. The test statistic equals 2 for no serial

correlation. If it is closer to zero - we have evidence of positive correlation. If it is closer to 4, then we have
more evidence of negative serial correlation.

I The Breusch-Godfrey Test returns the LM statistic with its corresponding p-value as well as the alternative
test version with the F -statistic with its corresponding p-value.

In all test cases (because p-values are less than 0.05 and the Durbin-Watson test statistic is further from 2), we
reject the null hypothesis of no serial correlation.



On the other hand, if we were to carry out these tests for a correctly specified model, like the
one for the simple linear regression:
# Durbin–Watson Test
print(sm_tools.durbin_watson(mdl1.resid))

## 1.9377965734765383
# Breusch-Godfrey Test
print(sm_diagnostic.acorr_breusch_godfrey(mdl1, nlags = 2))

## (0.20396667467699192, 0.9030445986699857, 0.10004570053602482, 0.9048422424493952)

In this case the DW statistic is close to 2, and the test p-values are greater than 0.05, so we fail to reject the null
hypothesis of no serial correlation.

Note There is also the Ljung-Box Test for testing the null hypothesis of no autocorrelation of residuals.



Residual Normality Testing
The normality requirement is necessary if we want to obtain the correct p-values and critical
t-values when testing the hypothesis that H0 : βj = c, especially for significance testing, with
c = 0. Assume that we want to test whether our residuals z1, ..., zN come from a normal
distribution. The hypothesis can be stated as:

H0 : residuals follow a normal distribution
H1 : residuals do not follow a normal distribution

There are a number of normality tests. . .



Anderson-Darling Test.
The test statistic is calculated as:

A2 = −N −
N∑
i1

2i − 1
N

[
log(F (z(i)) + log

(
1− F (z(N+1−i))

)]
where z(i) are the ordered data and F (·) is the cumulative distribution function (cdf) of the
distribution being tested (for the univariate regression residuals - we are usually interested in
testing for the normal distribution). The test statistic is compared against the critical values
from the normal distribution. Empirical testing indicates that the Anderson–Darling test is not
quite as good as Shapiro-Wilk, but is better than other tests.

https://web.archive.org/web/20150630110326/http://instatmy.org.my/downloads/e-jurnal%202/3.pdf


Shapiro-Wilk Test.
The test statistic is:

W =

(∑N
i=1 aiz(i)

)2
∑N

i=1(zi − z)2

where z(i) is the i-th smallest value in the sample (i.e. the data are ordered). ai values are
calculated using means, variances and covariances of z(i). W is compared against tabulated
values of this statistic’s distribution. Small values of W will lead to the rejection of the null
hypothesis. Monte Carlo simulation has found that Shapiro–Wilk has the best power for a given
significance, followed closely by Anderson–Darling when comparing the Shapiro–Wilk,
Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests.



Kolmogorov-Smirnov Test.
The test statistic is given by:

D = max{D+;D−}

where:
D+ = max

i

(
i
N − F (z(i))

)
D− = max

i

(
F (z(i))−

i − 1
N

)
where F (·) is the theoretical cdf of the distribution being tested (for the univariate regression
residuals - we are usually interested in testing for the normal distribution). The Lilliefors Test is
based on the Komogorov-Smirnov Test as a special case of this for the normal distribution.. For
the normal distribution case, the test statistic is compared against the critical values from a
normal distribution in order to determine the p-value.



Cramer–von Mises Test
Can be though of as an alternative to the Kolmogorov–Smirnov test. The test statistic:

W = Nω2 = 1
12N +

N∑
i=1

[
2i − 1
2N − F (z(i))

]2
If this value is larger than the tabulated value, then the hypothesis that the data came from the
distribution F can be rejected.



Jarque–Bera Test
This test is valid for large samples. The statistic is calculated as:

JB = N − k + 1
6

(
S2 + (C − 3)2

4

)
where

S =

1
N
∑N

i=1(zi − z)3(
1
N
∑N

i=1(zi − z)2
)3/2 = µ̂3

σ̂3

C =

1
N
∑N

i=1(zi − z)4(
1
N
∑N

i=1(zi − z)2
)2 = µ̂4

σ̂4

N is the sample size, S is the skewness and C is kurtosis and k is the number of regressors
(i.e. the number of different independent variables X , with k = 1 outside a regression context).
If the data comes from a normal distribution, then the JB statistic has a chi-squared distribution
with two degrees of freedom, χ22.



Chi-squared (Goodness-Of-Fit) Test.
The chi-square goodness-of-fit test can be applied to discrete distributions such as the binomial
and the Poisson, while the Kolmogorov-Smirnov and Anderson-Darling tests are restricted to
continuous distributions.
This is not a restriction per say, since for non-binned data you can simply calculate a histogram
before generating the chi-square test. However, the value of the chi-square test statistic are
dependent on how the data is binned. Another disadvantage of the chi-square test is that it
requires a sufficient sample size in order for the chi-square approximation to be valid.



We will carry out the normality tests on the log-linear DGP, with an incorrectly specified linear model:
# May need to install through terminal: pip install scikit-gof
import skgof as skgof
# Anderson-Darling Test
print(sm_diagnostic.normal_ad(x = mdl3.resid))

## (2.742775345091559, 6.263145991939627e-07)
# Shapiro-Wilk Test
print(stats.shapiro(x = mdl3.resid))

## (0.9430360198020935, 4.2506789554863644e-07)
# Kolmogorov-Smirnov Test
print(sm_diagnostic.kstest_normal(x = mdl3.resid, dist = "norm")) #statistic and p-value

## (0.08586356720817684, 0.0010846493406071833)
# Cramer–von Mises test
print(skgof.cvm_test(data = mdl3.resid,

dist = stats.norm(0, np.sqrt(np.var(mdl3.resid)))))

## GofResult(statistic=0.39458042141994304, pvalue=0.07458108247027562)
# Jarque–Bera Test
print(sm_tools.jarque_bera(mdl3.resid)) #JB statistic, pvalue, skew and kurtosis.

## (27.00245322122904, 1.3692784843495163e-06, 0.8659632801063863, 3.490637112922614)

Note that the Jarque-Bera tests in R and Python in these packages do not allow to control for the fact that we are
carrying out the tests on the residuals. In other words, it assumes that k = 1. In this case the p-value is less than
0.05 for most tests, so we reject the null hypothesis and conclude that the residuals are not normally distributed.



For a correctly specified log-linear model:
# Anderson-Darling Test
print(sm_diagnostic.normal_ad(x = mdl3_correct.resid))

## (0.1576307896975777, 0.9518802524386675)
# Shapiro-Wilk Test
print(stats.shapiro(x = mdl3_correct.resid))

## (0.9960342049598694, 0.8864037990570068)
# Kolmogorov-Smirnov Test
print(sm_diagnostic.kstest_normal(x = mdl3_correct.resid, dist = "norm")) #statistic and p-value

## (0.031206131899122358, 0.2)
# Cramer–von Mises test
print(skgof.cvm_test(data = mdl3_correct.resid,

dist = stats.norm(0, np.sqrt(np.var(mdl3_correct.resid)))))

## GofResult(statistic=0.02066788690314537, pvalue=0.996414601640607)
# Jarque–Bera Test
print(sm_tools.jarque_bera(mdl3_correct.resid)) #JB statistic, pvalue, skew and kurtosis.

## (0.4627520589444065, 0.793441052712381, -0.11645049039934306, 2.9641199189474325)

In this case, the p-values for the tests are greater than 0.05, so we do not reject the null hypothesis of normality.



The more tests we carry out the more certain we can be, whether the residuals are (not)
from a normal distribution.
For now, focus on at least one test from each category - namely:
I Breusch–Pagan Test for homoskedasticity,
I Durbin-Watson Test for autocorrelation,
I Shapiro-Wilk Test for normality.

Standardized Residuals
When we compare residuals for different observations, we want to take into account that their
variances may be different (as we have shown in eq. @ref(eq:residVar)). One way to account for
this is to divide the residuals by an estimate the residuals standard deviation. This results in
calculating the standardized residuals:

si = ε̂i

σ̂
√
1− hii

where hii is the i-th diagonal element of H. Standardized residuals are useful in detecting
outliers. Generally, any observation with a standardized residual greater than 2 in absolute value
should be examined more closely.



Lecture Summary
We have :
I re-examined hypothesis testing;
I learned about predictions and their intervals. We have compared them with confidence

intervals.
I examined various measures of model goodness of fit in terms of R2. We have looked at the

various drawbacks of such measures (see the counter examples).
I analysed regression diagnostic tests - what kind of problems arise; what tests are available;

how to carry them out.

Examples using empirical data
From the Lecture notes Ch. 3.10 continue with the dataset(-s) that you have used from the
previous exercise set and do the tasks from Exercise Set 3 from Ch 3.10. See Ch. 3.11 for
an example.

Next Lecture
I Subsampling + Review of theory + Some Python code summarization;


