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Multiple Regression

We can augment our initial univariate regression, by including:
I additional explanatory variables;
I including polynomial (squared, cubed, etc.) variables;
I including interaction terms;
I including dummy variables.

For example, we could specify our model as follows:

log(Yi) = β0 + β1X1,i + β2 log(X2,i) + β3D1,i + β4X 2
1,i + β5 [log(X2,i)× D1,i ] + εi , i = 1, ...,N

where D1,j is some kind of dummy variable.

See the lecture notes and previous slides on interpretation of polynomial, interaction
and dummy variables.



Then, we can re-write the model in matrix notation:


log(Y1)
log(Y2)

...
log(YN)

 =


1 X1,1 log(X2,1) D1,1 X 2

1,1 log(X2,1)× D1,1
1 X1,2 log(X2,2) D1,2 X 2

1,2 log(X2,2)× D1,2
...

...
...

...
...

...
1 X1N log(X2,N) D1,N X 2

1,N log(X2,N)× D1,N



β0
β1
β2
β3
β4
β5

+


ε1
ε2
...
εN


or in a more compact form:

Y = Xβ + ε

Note that sometimes the explanatory variable matrix X is called the design matrix, or
the model matrix, or regressor matrix.



Dummy Variables from Categorical Variables
Consider a dataset, where the observations (Yj ,X1,j , ...,Xk,j), j = 1, ...,N are collected at
specific days of the week. This in turn gives us a variable, which specifies the days of the week:

day_of _the_weekj =


Monday , if j = Monday
Tuesday , if j = Tuesday

...
Sunday , if j = Sunday

set.seed(123)
N <- 100
day_vec_ordered <- c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday")
data <- data.frame(day_of_the_week = sample(day_vec_ordered, size = N, replace = TRUE))
print(t(head(data, 5)))

## 1 2 3 4 5
## day_of_the_week "Sunday" "Sunday" "Wednesday" "Saturday" "Wednesday"
print(head(data$day_of_the_week, 5))

## [1] Sunday Sunday Wednesday Saturday Wednesday
## Levels: Friday Monday Saturday Sunday Thursday Tuesday Wednesday



We may want to change the ordering of the factors:
data$day_of_the_week <- factor(data$day_of_the_week, levels = day_vec_ordered)
print(head(data$day_of_the_week))

## [1] Sunday Sunday Wednesday Saturday Wednesday Tuesday
## Levels: Monday Tuesday Wednesday Thursday Friday Saturday Sunday

We can create the design matrix with a constant term column and without the base group
in the following way:
x_mat <- model.matrix(~ day_of_the_week, data)
print(head(x_mat))

## (Intercept) day_of_the_weekTuesday day_of_the_weekWednesday
## 1 1 0 0
## 2 1 0 0
## 3 1 0 1
## 4 1 0 0
## 5 1 0 1
## 6 1 1 0
## day_of_the_weekThursday day_of_the_weekFriday day_of_the_weekSaturday
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 1
## 5 0 0 0
## 6 0 0 0
## day_of_the_weekSunday
## 1 1
## 2 1
## 3 0
## 4 0
## 5 0
## 6 0



print(head(cbind(data, x_mat[, -1])))

## day_of_the_week day_of_the_weekTuesday day_of_the_weekWednesday
## 1 Sunday 0 0
## 2 Sunday 0 0
## 3 Wednesday 0 1
## 4 Saturday 0 0
## 5 Wednesday 0 1
## 6 Tuesday 1 0
## day_of_the_weekThursday day_of_the_weekFriday day_of_the_weekSaturday
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 1
## 5 0 0 0
## 6 0 0 0
## day_of_the_weekSunday
## 1 1
## 2 1
## 3 0
## 4 0
## 5 0
## 6 0



If needed, we can create a matrix of only our dummy variables, but we need to be mindful of
not including them all in a model with a constant term (otherwise we will fall in the dummy
variable trap):
tmp_mat <- model.matrix(~ -1 + day_of_the_week, data)
print(head(tmp_mat, 5))

## day_of_the_weekMonday day_of_the_weekTuesday day_of_the_weekWednesday
## 1 0 0 0
## 2 0 0 0
## 3 0 0 1
## 4 0 0 0
## 5 0 0 1
## day_of_the_weekThursday day_of_the_weekFriday day_of_the_weekSaturday
## 1 0 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 1
## 5 0 0 0
## day_of_the_weekSunday
## 1 1
## 2 1
## 3 0
## 4 0
## 5 0



Model Assumptions

Much like in the case of the univariate regression with one independent variable, the multiple
regression model has a number of required assumptions:

(MR.1): Linear Model The Data Generating Process (DGP), or in other words, the
population, is described by a linear (in terms of the coefficients) model:

Y = Xβ + ε (MR.1)

(MR.2): Strict Exogeneity Conditional expectation of ε, given all observations of the
explanatory variable matrix X, is zero:

E (ε|X) = 0 (MR.2)

This assumption also implies that E(ε) = E (E(ε|X)) = 0, E(εX) = 0
and Cov(ε,X) = 0. Furthermore, this property implies that: E (Y|X) = Xβ



(MR.3): Conditional Homoskedasticity The variance-covariance matrix of the error
term, conditional on X is constant:

Var (ε|X) =


Var(ε1) Cov(ε1, ε2) ... Cov(ε1, εN)

Cov(ε2, ε1) Var(ε2) ... Cov(ε2, εN)
...

...
. . .

...
Cov(εN , ε1) Cov(εN , ε2) ... Var(εN)

 = σ2ε I (MR.3)

(MR.4): Conditionally Uncorrelated Errors The covariance between different error
term pairs, conditional on X, is zero:

Cov (εi , εj |X) = 0, i 6= j (MR.4)

This assumption implies that all error pairs are uncorrelated. For cross-sectional data,
this assumption implies that there is no spatial correlation between errors.



(MR.5) There exists no exact linear relationship between the explanatory variables.
This means that:

c1Xi1 + c2Xi2 + ...+ ckXik = 0, ∀i = 1, ...,N ⇐⇒ c1 = c2 = ... = ck = 0 (MR.5)

This assumption is violated if there exists some cj 6= 0.
Alternatively, this requirement means that:

rank (X) = k + 1

or, alternatively, that:
det
(
X>X

)
6= 0

This assumption is important, because a linear relationship between independent variables
means that we cannot separately estimate the effects of changes in each variable
separately.
(MR.6) (optional) The residuals are normally distributed:

ε|X ∼ N
(
0, σ2ε I

)
(MR.6)



OLS Estimation, Confidence Intervals and Hypothesis Testing
Most of the properties and formula expressions presented in this chapter are identical to the
simple univariate regression case.

The multiple regression model in this section is specified in the following matrix form:

Y = Xβ + ε

We will further assume that the multiple regression assumptions (MR.1) - (MR.6) hold true.

Example
We will use the following model to aid our presented methodology:

log(Yi) = β0 + β1X1i + β2 log(X2i) + β3MARRIEDi + β4AGE_GROUP1i + β5AGE_GROUP2i

+ β6(AGE_GROUP2i × X1i) + β7(MARRIEDi × AGE_GROUP1i) + εi

where MARRIEDi = 1, if the i-th person is married, 0 otherwise; AGE_GROUPji are different
age groups: if j = 1 - between 20− 30; if j = 2 - between 31− 65, the **base group**,
AGE_GROUPOTHER , consists the people with ages in the remaining age brackets, not covered
by j = 1, 2.



In this example the specified model has several distinctions:
I The dependent variable Y is log-transformed;
I Some independent variables are log-transformed;
I Inclusion of indicator variables;
I Cross-products (interaction terms) of some independent variables;
I Not all indicator variable cross-products have a significant effect - for example

(MARRIEDi × AGE_GROUP2i) is not included, which means that married people, aged
31− 65 do not have any additional effects on log(Yi), compared to non-married people in
the base age group.

See the lecture notes on an example on how to simulate such a model.



Assume that we have either created the age group dummy variables using the previously
mentioned methods, or that these variables were already provided in the dataset:
head(data_mat)

## y x1 x2 married age_gr1 age_gr2 age_group
## 1 29.313052 10.206100 2.450563 1 0 1 aged_31_65
## 2 14.656237 10.164646 2.976220 0 0 1 aged_31_65
## 3 28.228720 10.816951 2.255319 1 0 0 other
## 4 7.741518 11.713026 4.286608 1 0 1 aged_31_65
## 5 9.333522 6.220738 2.514393 1 1 0 aged_20_30
## 6 2.165643 5.813722 4.237797 1 0 1 aged_31_65
print(head(data_mat$age_group))

## [1] aged_31_65 aged_31_65 other aged_31_65 aged_20_30 aged_31_65
## Levels: aged_20_30 aged_31_65 other

We may also want to re-level the categorical (factor) variable so that the age group - other - would be the base
level (this is equivalent to being the first level):
data_mat$age_group <- relevel(data_mat$age_group, "other")
print(head(data_mat$age_group))

## [1] aged_31_65 aged_31_65 other aged_31_65 aged_20_30 aged_31_65
## Levels: other aged_20_30 aged_31_65



OLS Estimation of Regression Parameters
We want to minimize the sum of squared residuals:

RSS(β) = ε>ε

= (Y− Xβ)> (Y− Xβ)
= Y>Y− β>X>Y− Y>Xβ + β>X>Xβ → min

β0,β1,...,βk

Then, equating the partial derivative to zero:

∂RSS(β̂)
∂β̂

= −2X>Y + 2X>Xβ̂ = 0

gives us the OLS estimator:

β̂ =
(
X>X

)−1X>Y (OLS)

The Gauss-Markov Theorem for the multiple regression states that: if the conditions
(MR.1) - (MR.5) hold true, the OLS estimators β̂ are the Best Linear Unbiased
Estimators and they are consistent (BLUE&C) with the true parameter values of the
multiple regression model.



The proofs are analogous to the proofs in the simple univariate regression case since we are
using the same matrix notation as before!

This means that the variance-covariance matrix of the OLS estimator vector is:

Var(β̂) =


Var(β̂0) Cov(β̂0, β̂1) ... Cov(β̂0, β̂k)

Cov(β̂1, β̂0) Var(β̂1) ... Cov(β̂1, β̂k)
...

...
. . .

...
Cov(β̂k , β̂0) Cov(β̂k , β̂1) ... Var(β̂k)

 = σ2
(
X>X

)−1

The difference from the univariate case is in the estimation of the unknown error variance
parameter σ2.



x_mat_1 <- cbind(1, data_mat$x1, log(data_mat$x2), data_mat$married,
data_mat$age_gr1, data_mat$age_gr2,
data_mat$age_gr2 * x1, data_mat$age_gr1 * data_mat$married)

colnames(x_mat_1) <- c("intercept", "x1", "log_x2", "married",
"age_gr1", "age_gr2", "age_gr2_x1", "married_age_gr1")

head(x_mat_1)

## intercept x1 log_x2 married age_gr1 age_gr2 age_gr2_x1
## [1,] 1 10.206100 0.8963179 1 0 1 10.206100
## [2,] 1 10.164646 1.0906541 0 0 1 10.164646
## [3,] 1 10.816951 0.8132915 1 0 0 0.000000
## [4,] 1 11.713026 1.4554958 1 0 1 11.713026
## [5,] 1 6.220738 0.9220314 1 1 0 0.000000
## [6,] 1 5.813722 1.4440436 1 0 1 5.813722
## married_age_gr1
## [1,] 0
## [2,] 0
## [3,] 0
## [4,] 0
## [5,] 1
## [6,] 0



beta_est <- solve(t(x_mat_1) %*% x_mat_1) %*% t(x_mat_1) %*% log(data_mat$y)
colnames(beta_est) <- "coef_est"
print(beta_est)

## coef_est
## intercept 4.01017653
## x1 0.15906399
## log_x2 -3.00236892
## married 0.04664335
## age_gr1 0.02473384
## age_gr2 -0.14682506
## age_gr2_x1 0.05036566
## married_age_gr1 -0.02678704

In comparison, the true, unknown parameters were:

## [1] 4.00 0.16 -3.00 0.05 0.02 -0.15 0.05 -0.03



Estimation of The Error Variance Parameter
Define the residual vector as the difference between the actual and the fitted values:

ε̂ = [ε̂1, ..., ε̂N ]> = Y− Ŷ = Y− Xβ̂

Then:
An estimator of σ2, that uses the information from ε̂2i is:

σ̂2 = 1
N − (k + 1)

N∑
i=1

ε̂2i = ε̂>ε̂

N − (k + 1)

where k + 1 is the number of parameters in β̂ =
[
β̂0, β̂1, ..., β̂k

]>
.

Having estimated the unknown parameters via OLS and the variance parameters allows us to
calculate various confidence intervals, as discussed in the univariate regression case.
If, additionally to (MR.1) - (MR.5), condition (MR.6) holds true, the conditional distribution of
the OLS estimators is:

β̂|X ∼ N
(
β, σ2

(
X>X

)−1)
This allows us to calculate the confidence intervals for our parameters, their predicted values and
the mean response.



Important!
It should be noted that we require N > k + 1. That is, as long as we have more data
points than unknown parameters, we will be able to carry out OLS estimation and
calculate any relevant test statistics or confidence intervals.

I If N = k + 1, then our standard errors are very large. This is because standard errors reflect
the degree of uncertainty of our estimates and there is less information per parameter to get
an accurate estimate (remember that Ŷ is the mean response).

I If N is close to k + 1, then we would need to reduce the number of parameters in our model.

Another way to look at this is by examining the system of equations of the multivariable
regression - the case of N < k + 1 means that we have more unknown parameters, k + 1, than
we have equations, N - hence our system of equations has infinitely many solutions (or, in a rare
case - no solution).

Ideally, as a rule of thumb, we would need at least 20 - 30 observations for every
parameter that we want to estimate. On the other hand, while the sample size itself
is important, a more pressing concern is whether the sample is representative of the
overall population.



For our example dataset, the variance can be easily estimated from the residuals:
y_fit <- x_mat_1 %*% beta_est
#
resid <- log(data_mat$y) - y_fit
#
sigma2_est <- sum(resid^2) / (nrow(data_mat) - length(beta_est))
print(paste0("Estimated residual standard error: ", round(sqrt(sigma2_est), 5)))

## [1] "Estimated residual standard error: 0.04951"



Parameter Confidence Intervals
The 100 · (1− α)% interval estimate for parameter βi , i = 0, ..., k is calculated in the same way
as for the simple univariate regression:[

β̂i − tc · se(β̂i), β̂i + tc · se(β̂i)
]

where tc = t(1−α/2,N−(k+1)) and se(β̂i) =
√

V̂ar(β̂i). If this interval estimator is used in many
samples from the population, then 100 · (1− α)% of them will contain the true parameter βi .



Alternatively, we might introduce some kind of non-sample information on the coefficients in the
form of linear restrictions.

Interval Estimation for a Linear Combination of Coefficients
In general, a linear combination of coefficients can be specified as:

k∑
j=0

cj β̂j = c0β̂0 + ...+ ck β̂k = r̂

and has the following variance:

V̂ar (r̂) = V̂ar
( k∑

j=0
cj β̂j

)
=

k∑
j=0

c2j · V̂ar
(
β̂j

)
+ 2 ·

∑
i<j

cicj · Ĉov
(
β̂i , β̂j

)
This allows estimating the confidence interval of the specified linear combination as:

[̂r − tc · se(r̂), r̂ + tc · se(r̂)]

where tc = t(1−α/2,N−(k+1))



We are interested in different parameter linear combinations when we are considering
the mean response E(Y |X = X0) for some explanatory variables, X0. Alternatively,
we may be interested in the effect of changing two or more explanatory variables
simultaneously.
Finally, parameter linear combinations are especially relevant if the effect of an ex-
planatory variable depends on two or more parameters - i.e. in models with polynomial
variables, or models with interaction terms.

Mean Response Confidence Intervals
The mean response estimator Ê(Y|X = X0) = Ŷ = X0β̂ follows the same distribution as
highlighted in the simple univariate regression:(

Ŷ|X0,X
)
∼ N

(
X0β, σ2X0

(
X>X

)−1X>0 )
which means that the 100 · (1− α)% confidence intervals for the mean response are:[

Ŷi − t(1−α/2,N−(k+1)) · se(Ŷi), Ŷi + t(1−α/2,N−(k+1)) · se(Ŷi)
]

where se(Ŷi) =
√

V̂ar(Ŷi) is the square root of the corresponding i-th diagonal element of
V̂ar(Ŷ) = σ̂2X0

(
X>X

)−1X>0 , where σ̂2 is estimated for the multiple regression model case as
presented in this lecture.



Prediction Intervals
Following the simple univariate regression case, the 100 · (1− α)% prediction interval for Ŷi is:[

Ŷi − t(1−α/2,N−(k+1)) · se(ẽi), Ŷi + t(1−α/2,N−(k+1)) · se(ẽi)
]

where the standard forecast error se(ẽi) =
√

V̂ar(ẽi) is the square root of the corresponding i-th
diagonal element of V̂ar(ẽ) = σ̂2

(
I + X0

(
X>X

)−1X>0 )



Hypothesis Testing
Testing For Significance of a Single Parameter
If we wanted to test a hypothesis for βj :

H0 : β̂j = c

H1 : β̂j 6= c (or < c, or > c)

We firstly need to calculate the t-statistic:

tj = β̂j − c
s.e(β̂j)

∼ t(N−(k+1))

where s.e(β̂j) =
√
V̂ar(β̂0) and V̂ar(β̂j) is the corresponding diagonal element from

V̂ar(β̂) = σ̂2
(
X>X

)−1.
While the formula for the t-statistic remains the same, but its distribution depends on the
number of estimated unknown parameters - a t distribution with N − (k + 1) degrees of freedom.



The critical value tc also depends on the number of estimated parameters:
I If the alternative is H1 : β̂j > c, we reject H0 and accept the alternative H1, if ti ≥ tc ,

where tc = t(1−α,N−(k+1));
I If the alternative is H1 : β̂j < c, we reject H0 and accept the alternative H1, if ti ≤ tc ,

where tc = t(α,N−(k+1)) ;
I If the alternative is H1 : β̂j 6= c, we reject H0 and accept the alternative H1, if

ti ≤ t(α/2,N−(k+1)), or ti ≥ t(1−α/2,N−(k+1));
I We can also calculate the associated p-value: if p ≤ α, we reject H0; if p ≥ α, we do not

reject H0;



Example
Continuing our example, we want to test the two-tail hypothesis H0 : βj = 0 against the alternative H1 : βj 6= 0
for each coefficient j = 0, ..., 7 for α = 0.05 significance level. Note that we have always used the matrix notation
- this is helpful when we want to calculate the results for multiple values:
#Parameter variance-covariance matrix
beta_vcov <- sigma2_est * solve(t(x_mat_1) %*% x_mat_1)
# Calculate the test statistic for each coefficient:
t_stat <- beta_est / sqrt(diag(beta_vcov))
# Calculate the associated p-value:
p_val <- 2 * pt(-abs(t_stat), df = nrow(data_mat) - length(beta_est), lower = TRUE)
# Combine the output:
test_res <- cbind(t_stat, p_val)
colnames(test_res) <- c("t_stat", "p_val")
print(test_res)

## t_stat p_val
## intercept 326.510512 0.000000e+00
## x1 169.415700 0.000000e+00
## log_x2 -502.842822 0.000000e+00
## married 12.035132 3.091084e-31
## age_gr1 4.776168 2.055881e-06
## age_gr2 -8.620667 2.598470e-17
## age_gr2_x1 30.619696 1.744506e-145
## married_age_gr1 -4.054822 5.410364e-05

We see that all of the specified coefficients are statistically significantly different from zero since we do not reject
the null hypothesis for each of the coefficients.



Example
Additionally, we want to test the following hypothesis:

A one percent increase in X2 would result in a 3% reduction in Y

which can be written as the following hypothesis:{
H0 : β2 = −3
H1 : β2 6= −3

# Calculate the test statistic for beta[2] each coefficient:
t_stat <- (beta_est["log_x2", ] - (-3)) / sqrt(diag(beta_vcov)["log_x2"])
# Calculate the associated p-value:
p_val <- 2 * pt(-abs(t_stat), df = nrow(data_mat) - length(beta_est), lower = TRUE)
# combine the output
hyp_b2 <- cbind(t_stat, p_val)
print(hyp_b2)

## t_stat p_val
## log_x2 -0.3967519 0.6916357

Since the p − value > 0.05, we have no grounds to reject the null hypothesis and conclude that β2 is not
statistically significantly different from −3.



Joint Hypothesis Test for Multiple Coefficient Significance
The hypothesis tests with t-statistics allow for testing of a single equality in the null hypothesis.
But what if we want to test a joint hypothesis, where multiple values were to be equal to some
values?
One of the more popular types of joint hypothesis tests involves checking whether a group of
variables is statistically significantly different from zero in a particular model.
If we wanted to test, whether M coefficients with index i1, ..., iM ∈ {0, 1, ..., k} are statistically
significantly different from zero, we would specify the following hypothesis:{

H0 : βi1 = 0, βi2 = 0, ..., βiM = 0
H1 : βij 6= 0, for some j

We can test the hypothesis with an F -test, which evaluates, whether a reduction in the residual
sum of squares (RSS) is significantly different.
If adding the additional variables does not significantly reduce the residual sum of squares, then
those variable contribute little to the explanation of the variation in the dependent variable and
we would not reject the null hypothesis.



Define the following RSS:
I RSSUR - the residual sum of squares of the unrestricted (i.e. the full) model under the

alternative hypothesis. The coefficient of determination in the unrestricted model is R2
UR ;

I RSSR - the residual sum of squares of the restricted model under the null hypothesis
(i.e. when some of the parameters are not statistically significantly different from zero). The
coefficient of determination in the restricted model is R2

R ;

Then, the F -statistic is given by:

F = (RSSR − RSSUR)/M
RSSUR/(N − (k + 1)) = (R2

UR − R2
R)/M

(1− R2
UR)/(N − (k + 1)) ∼ F(M,N−(k+1))

We then select the significance level α and calculate the critical value Fc = F(1−α,M,N−(k+1)).

If F ≥ Fc , we reject the null hypothesis and conclude that at least one of the coefficients in
the null is not zero. We can also calculate the associated p-value.



Example
We again turn to our example data, where we will estimate an unrestricted model with an
additional coefficients. For interest, we also calculate the t-statistic and p-values for tests of
individual coefficient significance:

log(Yi) = β0 + β1X1i + β2 log(X2i) + β3MARRIEDi + β4AGE_GROUP1i + β5AGE_GROUP2i

+ β6(AGE_GROUP2i × X1i) + β7(MARRIEDi × AGE_GROUP1i)
+ β8(MARRIEDi × AGE_GROUP2i) + β9(AGE_GROUP1i × X1i) + εi

We begin by creating the appropriate design matrix:
x_mat_UR <- cbind(1, data_mat$x1, log(data_mat$x2), data_mat$married,

data_mat$age_gr1, data_mat$age_gr2,
data_mat$age_gr2 * x1, data_mat$age_gr1 * data_mat$married,
data_mat$age_gr2 * data_mat$married, data_mat$age_gr1 * x1)

colnames(x_mat_UR) <- c(colnames(x_mat_1), "married_age_gr2", "age_gr1_x1")

we then estimate the model coefficients and their variance-covariance matrix:
# parameter estimation
beta_est_UR <- solve(t(x_mat_UR) %*% x_mat_UR) %*% t(x_mat_UR) %*% log(data_mat$y)
colnames(beta_est_UR) <- "coef_est"
# fitted value and error calculation
y_fit_UR <- x_mat_UR %*% beta_est_UR
resid_UR <- log(data_mat$y) - y_fit_UR
sigma2_est_UR <- sum(resid_UR^2) / (nrow(data_mat) - length(beta_est_UR))
beta_vcov_UR <- sigma2_est_UR * solve(t(x_mat_UR) %*% x_mat_UR)



and finally perform significance testing separately for each estimated parameter:
# significance testing of individual parameters
t_stat_UR <- beta_est_UR / sqrt(diag(beta_vcov_UR))
p_val_UR <- 2 * pt(-abs(t_stat_UR), df = nrow(data_mat) - length(beta_est_UR), lower = TRUE)
# combined output
mdl_UR_out <- cbind(beta_est_UR, t_stat_UR, p_val_UR)
#
print(round(mdl_UR_out, 5))

## coef_est coef_est coef_est
## intercept 4.02536 258.76200 0.00000
## x1 0.15772 119.40341 0.00000
## log_x2 -3.00231 -502.99025 0.00000
## married 0.04293 7.83446 0.00000
## age_gr1 -0.00368 -0.18757 0.85125
## age_gr2 -0.16403 -8.21466 0.00000
## age_gr2_x1 0.05174 27.37776 0.00000
## married_age_gr1 -0.02278 -2.97211 0.00303
## married_age_gr2 0.00702 0.90482 0.36578
## age_gr1_x1 0.00266 1.41740 0.15668

Again, we will consider the above, mdl_UR_out, as the unrestricted model.



The restricted model will is the true model regression which we have previously estimated:
# combined output
mdl_R_out <- cbind(beta_est, test_res)
#
print(round(mdl_R_out, 5))

## coef_est t_stat p_val
## intercept 4.01018 326.51051 0e+00
## x1 0.15906 169.41570 0e+00
## log_x2 -3.00237 -502.84282 0e+00
## married 0.04664 12.03513 0e+00
## age_gr1 0.02473 4.77617 0e+00
## age_gr2 -0.14683 -8.62067 0e+00
## age_gr2_x1 0.05037 30.61970 0e+00
## married_age_gr1 -0.02679 -4.05482 5e-05

In other words, we want to test the hypothesis with two restrictions:{
H0 : β8 = 0, β9 = 0
H1 : β8 6= 0, or β9 6= 0, or both



So, we can calculate the unrestricted and restricted residual sum of squares and the F -statistic
along with the associated p-value:
RSS_UR <- sum(resid_UR^2)
RSS_R <- sum(resid^2)
# F-statistic and its p-value
F_stat <- ((RSS_R - RSS_UR) / 2) / (RSS_UR / (nrow(data_mat) - length(beta_est_UR)))
p_val_F<- pf(F_stat, df1 = 2, df2 = nrow(data_mat) - length(beta_est_UR),

lower.tail = FALSE)
#
print(cbind(F_stat, p_val_F))

## F_stat p_val_F
## [1,] 1.366289 0.2555323

In this case, the p-value is greater than 0.05, so we do not reject the null hypothesis that both
coefficients are not statistically significantly different from zero.

Note that if we were to reject the null hypothesis - it would mean that at least one
coefficient is statistically significantly different from zero - however, we would not know
which one, or if both of the coefficients are significant.



There are a lot of important steps, from the design matrix creation when specifying the model, to the standard
error and t-statistic calculation - Alternatively, we can specify the models with the built-in OLS estimation
functions and carry out an ANOVA (Analysis of variance) test:
lm_UR <- lm(log(y) ~ x1 + log(x2) + married + age_gr1 + age_gr2 +

age_gr2 * x1 + married * age_gr1 + married * age_gr2 +
age_gr1 * x1, data = data_mat)

lm_R <- lm(log(y) ~ x1 + log(x2) + married + age_gr1 + age_gr2 +
age_gr2 * x1 + married * age_gr1, data = data_mat)

#
print(anova(lm_R, lm_UR))

## Analysis of Variance Table
##
## Model 1: log(y) ~ x1 + log(x2) + married + age_gr1 + age_gr2 + age_gr2 *
## x1 + married * age_gr1
## Model 2: log(y) ~ x1 + log(x2) + married + age_gr1 + age_gr2 + age_gr2 *
## x1 + married * age_gr1 + married * age_gr2 + age_gr1 * x1
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 992 2.4314
## 2 990 2.4247 2 0.0066927 1.3663 0.2555

which give us the same F -statistic and p-values.



Testing for a Single Linear Restriction
Suppose that we are interested in testing the hypothesis that a linear combination of parameters:

k∑
j=0

cj β̂j = c0β̂0 + ...+ ck β̂k = r̂

is equal to r : {
H0 : r̂ = r
H1 : r̂ 6= r

Then, the associated t-statistic is calculated by:

tr = r̂ − r
s.e.(r̂) =

∑k
j=0 cj β̂j −

∑k
j=0 cjβj

s.e.
(∑k

j=0 cj β̂j
) ∼ t(N−(k+1))

where s.e.
(∑k

j=0 cj β̂j
)

=
√

V̂ar
(∑k

j=0 cj β̂j
)
, and

V̂ar
(∑k

j=0 cj β̂j
)

=
∑k

j=0 c2j · V̂ar
(
β̂j

)
+ 2 ·

∑
i<j cicj · Ĉov

(
β̂i , β̂j

)
Note that we can get the

relevant values from the variance-covariance matrix estimate, V̂ar(β̂) = σ̂2
(
X>X

)−1.



If the sample size is large then, the errors will be approximately normally distributed.

Since the t-statistic has the same distribution as when testing for a single parameter, we can use
the equivalent tc values when testing either one-tail or two-tail hypothesis.

Note, that testing this linear constraint is equivalent to testing the following constraint on the
parameter vector:

Lβ̂ =
[
c0 c1 ... ck

]

β0
β1
...
βk

 = r

We will talk about linear constraints a bit further on.



Example
We may be interested in testing whether one coefficient is eight times the magnitude of another
coefficient. For example, if our null hypothesis is:

A unit increase in X1 ( for a person from AGE_GROUPOTHER) has an 8 times larger effect on
the change in Y as the fact that a person is between 20 and 30 years old i.e. from AGE_GROUP1

which can be written as the following hypothesis:{
H0 : β1 = 8 · β4
H1 : β1 6= 8 · β4

⇐⇒

{
H0 : β1 − 8 · β4 = 0
H1 : β1 − 8 · β4 6= 0

Then, our test t-statistic is:

t = β1 − 8 · β4 − 0
s.e. (β1 − 8 · β4)

= β1 − 8 · β4
s.e. (β1 − 8 · β4)

We can then calculate the critical value tc and test the hypothesis as we would for the single
parameter case.



# The variance of the linear restriction:
var_restr <- sum(diag(beta_vcov)[c(2, 5)] * c(1, -8)^2) + 2 * 1 * (-8) * beta_vcov[2, 5]
# Intermediate output:
print(paste0("beta[1] - 8 * beta[4] = ", round(beta_est[2] - 8 * beta_est[5], 5)))

## [1] "beta[1] - 8 * beta[4] = -0.03881"
print(paste0("The s.e. of the difference = ", round(sqrt(var_restr), 5)))

## [1] "The s.e. of the difference = 0.04145"
# The t-statistic of the linear restriction:
t_stat_restr <- (beta_est[2] - 8 * beta_est[5] - 0) / sqrt(var_restr)
# The associated p-value:
p_val_restr <- 2 * pt(-abs(t_stat_restr), df = nrow(data_mat) - length(beta_est), lower = TRUE)
#
print(cbind(t_stat_restr, p_val_restr))

## t_stat_restr p_val_restr
## [1,] -0.9361572 0.3494201

So, we do not reject the null hypothesis and conclude that the estimated coefficient β̂1 (i.e. the coefficient of X1)
is eight times larger than the estimated coefficient β̂4 (i.e. the coefficient of AGE_GROUP1).



Thankfully, we have can automatically carry out this test:
lin_rest <- multcomp::glht(lm_R, linfct = c("x1 - 8 * age_gr1 = 0"))
print(summary(lin_rest))

##
## Simultaneous Tests for General Linear Hypotheses
##
## Fit: lm(formula = log(y) ~ x1 + log(x2) + married + age_gr1 + age_gr2 +
## age_gr2 * x1 + married * age_gr1, data = data_mat)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## x1 - 8 * age_gr1 == 0 -0.03881 0.04145 -0.936 0.349
## (Adjusted p values reported -- single-step method)

We note that the values are identical to our manual calculation.
While in general, there may be at least one package available for most types of tests,
this may not be the case across multiple different software.
In such cases, it is good to have an example of manual calculation across multiple
software and have a built-in method in at least one of them for checking.



Example
Additionally, we want to test the following hypothesis that we have tested before:{

H0 : β2 = −3
H1 : β2 6= −3

But this time, we formulate it as a linear restriction.
# We need to specify the formula WITHOUT any logarithm transformations to avoid possible errors:
lm_ht <- lm(log(y) ~ x1 + log_x2 + married + age_gr1 + age_gr2 + age_gr2 * x1 + married * age_gr1,

data = data.frame(y = data_mat$y, x_mat_1))
#
summary(multcomp::glht(lm_ht, linfct = c("log_x2 = -3")))

##
## Simultaneous Tests for General Linear Hypotheses
##
## Fit: lm(formula = log(y) ~ x1 + log_x2 + married + age_gr1 + age_gr2 +
## age_gr2 * x1 + married * age_gr1, data = data.frame(y = data_mat$y,
## x_mat_1))
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## log_x2 == -3 -3.002369 0.005971 -0.397 0.692
## (Adjusted p values reported -- single-step method)

Since the p − value > 0.05, we have no grounds to reject the null hypothesis and conclude that β2 is not
statistically significantly different from −3.



Note that this is identical to what we have manually calculated:
print(hyp_b2)

## t_stat p_val
## log_x2 -0.3967519 0.6916357

We note that in R, using log(x2) instead of log_x2 produces an error (though this may be
different for different package versions). So knowing how to manually calculate this hypothesis
test is much more useful than simply applying some black-box functions:
lm_ht_v2 <- lm(log(y) ~ x1 + log(x2) + married + age_gr1 + age_gr2 +

age_gr2 * x1 + married * age_gr1,
data = data.frame(y = data_mat$y, x_mat_1))

#
summary(multcomp::glht(lm_ht_v2, linfct = c("log(x2) = -3")))

## Error: multcomp:::expression2coef::walkCode::eval: the expression 'log(x2)' did not evaluate to a real valued constant. Result is '0.896317877324181''1.09065413148445''0.813291492402008''1.45549580493005''0.92203141904866''1.44404361692681''1.01330613576019''0.819928684908807''1.1192571176764''1.39035369534358''1.11680212462669''1.41801372546231''0.999582224112017''0.900903872622784''0.994039484748533''1.02145097716632''1.22060468826589''0.985667342823408''0.866774396722155''1.46854892717463''0.869925659834144''1.12414909644992''1.57272718804863''1.09443168057256''1.08051034205395''1.00371921001686''1.04681384947995''1.2932344635503''1.11803037452521''1.09568769915928''1.58125988364494''1.38660720329357''0.955800225892898''1.0415274935568''1.26608347448435''1.010576379743''1.40150968337192''1.37147927533475''1.38754514302154''1.56490650168063''1.39035369534358''1.40058475652935''1.20046226912588''1.47027654061901''0.833072357149358''1.56018456216198''0.798194756143242''1.22502621352377''0.987067576424418''1.32865729339279''0.911523441450245''1.39128812930038''1.15300881477885''1.31765901555738''1.51086835905354''1.22281789462854''1.4189226787138''1.32167239887084''1.56412105851942''0.905468932541538''1.13988474491925''1.01330613576019''1.46073751757225''1.52322266855448''0.908500769123659''1.41801372546231''1.26608347448435''1.59582883142873''0.69502276723044''1.09819501346907''1.19365694985612''0.72274243547074''0.818273512117139''0.933906867862072''1.58588357541678''0.891710753741286''0.914537004755509''1.39315438178605''1.13144248372308''1.29529278331646''1.25651063059561''1.25864586272358''1.49583885265681''0.744377894766619''0.938324052958336''1.05469135192304''1.58665211650751''1.37338282920904''1.25115251811599''1.21727566725173''1.0969421421421''1.11063814373772''0.85566611005772''0.784581386519577''1.46508472047696''0.854069090820234''1.60265652263849''0.819928684908807''0.816615595185847''0.80325236737368''1.09317408241897''1.42796705752046''1.52322266855448''1.51252444554852''1.09568769915928''1.15419341511481''0.865195033403598''0.930951200685725''1.25651063059561''1.35708593553683''1.27136238873163''1.49499721983956''0.984265145818716''1.41528189799314''1.59048598701823''1.26819838538898''1.60567615251221''1.58818742898924''1.15182280950047''0.932430126269558''1.010576379743''1.26608347448435''0.93685382480818''1.15537661383301''0.85566611005772''1.31564626747768''1.09065413148445''1.57350590320804''1.4941548780798''1.4616084713216''1.02684424866626''0.902427875965759''1.58818742898924''1.08939177070247''1.40335697453763''1.29220371272893''1.32467190120303''0.854069090820234''1.55702416975006''1.59125100044328''0.724563376793324''0.816615595185847''1.58511444321632''1.22171190373239''1.56647553965943''0.897848880430072''0.873067023673978''0.819928684908807''1.16946686651547''1.55067326192577''1.16830023212299''1.59430521508523''1.48484198446978''0.877760643763963''1.4642167904355''1.18105895922829''1.35321246394104''1.3724315052115''1.21949624551431''1.5950673134328''1.19137817940554''1.43871342959594''1.58357440184418''1.44934554392699''1.44492922584078''0.972976220663908''1.21838657275387''1.06639246050816''0.704348293314766''1.60868669166508''1.06768417220553''1.35998122467533''1.1799057782433''1.24143496819016''0.742592711311266''1.11063814373772''1.39780483195916''1.19023684391927''0.88243233666224''1.41528189799314''1.41254258719483''1.59201542907013''0.941258040393124''0.939792122710628''1.35127008715683''1.56018456216198''1.1204823577725''0.927986771637346''1.20834371356383''1.60718255500647''1.4642167904355''1.36382861640423''0.910013247355016''0.899377543148137''1.32666658271546''1.43871342959594''1.47286237742835''1.60793490613913''0.989862175355434''1.25115251811599''1.00646772297021''1.54668336435984''0.720918172270994''1.18795025755713''1.37717910077237''1.40243375551529''1.24034938820296''1.13506932630438''1.52485843773056''1.14228378645371''1.19706539852613''0.860441921735235''1.47027654061901''1.5434799446423''1.53623450841081''1.48313937338878''1.60793490613913''1.34834942955577''0.932430126269558''0.724563376793324''1.37052613785195''1.19933126052275''1.41345652480604''1.31362946007138''1.28287883079319''1.55226477419804''1.03220858875393''1.55146933467578''1.48569220416107''1.15655841424631''0.816615595185847''1.50087382832855''1.6094379124341''1.04549487808627''1.25329920945915''1.52893619246349''0.806609953068526''1.13868306241934''1.49331182618218''1.01466822450653''1.42886701258345''1.58125988364494''1.0375443061705''1.5950673134328''1.35029748211988''1.19479439073705''1.05207240673341''0.75854578228535''1.46247866717057''0.839579972306096''1.42255025222023''1.30450315031941''0.981454839519461''1.12536836097812''1.32666658271546''1.26925416588473''1.32666658271546''0.724563376793324''0.71725963160486''1.42435911614426''0.786293227165854''1.30958360155183''0.916040387649541''1.40150968337192''1.41254258719483''1.39594724628569''0.985667342823408''1.5750615166926''1.17411984117625''1.14467708635955''1.18565843073275''1.28079477307466''1.59201542907013''1.35029748211988''1.03354518953211''1.32566973930346''1.29632035662147''1.60793490613913''1.3724315052115''1.45022647189469''0.880877529404216''1.40796032776414''1.50754793541624''1.52404088761008''0.704348293314766''1.13386183974189''0.77251574172555''1.37147927533475''1.17179606011507''1.42255025222023''1.44492922584078''1.19706539852613''1.4475813564656''1.38096101514453''1.39965897340505''1.54187437833539''1.15419341511481''1.43514412182082''1.53865549143592''1.38660720329357''1.07154932625516''1.4762997912971''0.793111435397631''1.02684424866626''1.55067326192577''1.27136238873163''1.12658614071052''0.995428052432879''1.54267748371921''1.40887846095794''1.49835950936183''1.28287883079319''1.5133514614468''1.4762997912971''1.57116793617347''1.38096101514453''1.15655841424631''0.883984730246965''0.700628512212234''1.5338076499998''1.10319086066244''0.836331458350265''1.43960376946779''1.14706467205406''1.38284662223999''0.873067023673978''0.726381008314649''0.996814694670316''1.41436962789794''1.43156202843832''1.49751999623012''1.35805196362677''1.4642167904355''1.53056264985647''1.50171053176601''0.767299850445265''1.53865549143592''1.53865549143592''0.97439432536859''1.36861713313602''1.30450315031941''0.977224515936981''0.929470084641082''0.793111435397631''0.954355486898524''1.08305595225338''1.27030883288352''1.16479214043325''1.23052576908981''1.28703396142515''0.938324052958336''0.958683457106983''1.03621304349331''1.27661358231426''1.02415124883407''0.837957034432965''1.13023060718616''1.20497355497238''1.17295862564031''1.53946118504739''0.850867380507815''1.20722158889026''1.48484198446978''1.29220371272893''0.831438814722396''0.824877828912388''1.49919831830239''1.34150120452014''1.4762997912971''1.60341228536498''0.971556102082046''1.4694131069778''1.50588357996963''1.22060468826589''1.37147927533475''0.897848880430072''1.33460575772732''1.42073811037731''0.92203141904866''0.747938729389628''1.42164459178097''1.01602846049046''0.987067576424418''1.02953001572385''1.18105895922829''1.27451641272354''0.958683457106983''0.719090575051969''1.29939675624484''1.53946118504739''1.0402015265117''1.41436962789794''1.3405190469686''1.34248239838463''0.98286097989645''1.59201542907013''1.38848220384288''1.25437082949383''1.33953592383518''1.37147927533475''1.45549580493005''1.43782229631255''0.961558399192582''0.784581386519577''1.01330613576019''1.36094446122436''1.05990875506273''1.47458256133876''1.17063214145797''0.828163702624591''1.39965897340505''1.41619333661009''1.40979575195636''1.47113922938567''1.22612854690748''1.07667973511411''0.951459731979268''1.13627535660132''1.0415274935568''1.29939675624484''1.4261647139866''1.57583841690001''1.38190426313146''0.900903872622784''1.45724609709218''1.05076035756203''1.42796705752046''1.19137817940554''1.50421644982524''1.29529278331646''1.07283439818184''0.977224515936981''1.11310829731978''1.29632035662147''1.45286460914219''1.5133514614468''1.13023060718616''1.57272718804863''1.42706629180875''0.798194756143242''1.33361680099599''0.828163702624591''1.25007744186121''1.14108498511134''0.92947008464108



Example
We want to test the following hypothesis that one coefficient is two times larger than the other:{

H0 : β1 = 2 · β6
H1 : β1 6= 2 · β6

# Print the coefficient names:
names(coef(lm_R))

## [1] "(Intercept)" "x1" "log(x2)" "married"
## [5] "age_gr1" "age_gr2" "x1:age_gr2" "married:age_gr1"
# Specify the linear restriction
lin_rest <- multcomp::glht(lm_R, linfct = c("x1 - 2 * x1:age_gr2 = 0"))
print(summary(lin_rest))

##
## Simultaneous Tests for General Linear Hypotheses
##
## Fit: lm(formula = log(y) ~ x1 + log(x2) + married + age_gr1 + age_gr2 +
## age_gr2 * x1 + married * age_gr1, data = data_mat)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## x1 - 2 * x1:age_gr2 == 0 0.058333 0.003902 14.95 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)



In this case, we would reject the null hypothesis and conclude that the coefficients are different
by a magnitude, which is either greater, or lower than 2.

On the other hand, we know that the true parameter values are β1 = 0.16 and β6 = 0.05, so the
true magnitude is 3.2. If we specify the hypothesis with the true magnitude:{

H0 : β1 = 3.2 · β6
H1 : β1 6= 3.2 · β6

then:
# Specify the linear restriction
lin_rest <- multcomp::glht(lm_R, linfct = c("x1 - 3.2 * x1:age_gr2 = 0"))
print(summary(lin_rest))

##
## Simultaneous Tests for General Linear Hypotheses
##
## Fit: lm(formula = log(y) ~ x1 + log(x2) + married + age_gr1 + age_gr2 +
## age_gr2 * x1 + married * age_gr1, data = data_mat)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## x1 - 3.2 * x1:age_gr2 == 0 -0.002106 0.005850 -0.36 0.719
## (Adjusted p values reported -- single-step method)

We would not reject the null hypothesis that β1 is 3.2 times larger than β6.



Takeaway
If we were to estimate a model of the effects of price and advertising expenditure (in dollars) on
the revenue. In such a case βprice would be the change in revenue from a one dollar increase in
price, and βadvertising would be the change in revenue from a one dollar increase in advertising.
So, one Hypothesis could be formulated as:

reducing the price by 10 cents would have the same effect on revenue as
increasing the advertising by 100 dollars,

which would translate to the following hypothesis: H0 : −0.1βprice = 100βadvertising . The
alternative could be that H1 : −0.1βprice > 100βadvertising , i.e.:

reducing the price by 10 cents would be more effective than
increasing the advertising by 100 dollars.

Finally, it is usually more common to use use the tests provided further on, as they can be used
for more than one linear restriction.



In our first example, under the null hypothesis we have that our regression could be re-written as
the following restricted regression:
log(Yi) = β0 + β1 (X1i + 8 · AGE_GROUP1i) + β2 log(X2i) + β3MARRIEDi + β5AGE_GROUP2i

+ β6(AGE_GROUP2i × X1i) + β7(MARRIEDi × AGE_GROUP1i) + εi

Then, we could compare the residual sum of squares from this model with the ones from the
unrestricted regression (i.e. the regression under the alternative) via the F -test.
Testing for Multiple Linear Restrictions
If we want to test M < k + 1 different linear restriction on the coefficients, then we can define L
and the value vector of the linear restrictions as:

L =


c10 c11 ... c1k
c20 c21 ... c2k
...

...
. . .

...
cM0 cM1 ... cMk

 , r =


r1
r2
...
rM


We want to test the following hypothesis:{

H0 : Lβ = r
H1 : Lβ 6= r



The distribution of Lβ̂ is:
Lβ̂ ∼ N

(
Lβ, LVar(β̂)L>

)
where:

Lβ = r

LVar(β̂)L> = σ2L
(
X>X

)−1 L>
Where the variances of the linearly restricted parameters are the diagonal elements:

diag
(
LVar(β̂)L>

)
=


k∑

j=0
c2i,j · Var

(
β̂j

)
+
∑
j1 6=j2

ci,j1ci,j2 · Cov
(
β̂j1 , β̂j2

)
i=1,...,M

=
{ k∑

j=0
c2i,j · Var

(
β̂j

)
+ 2 ·

∑
j1<j2

ci,j1ci,j2 · Cov
(
β̂j1 , β̂j2

)}
i=1,...,M

In practice, we replace σ2 with σ̂2.

Since we have more than one restriction, a t-test is not applicable. Nevertheless, there are a
number of alternative test statistics, that we can use



Wald test for Multiple Linear Restrictions
One can calculate the Wald test statistic, which is applicable to large samples:

W =
(
Lβ̂ − r

)> [
LVar(β̂)L>

]−1 (
Lβ̂ − r

)
∼ χ2M

Note that we do not know the true Var(β̂). If the sample size is large, then the estimated σ̂2 is
close to the true population variance and the Wald test may be applicable.

F -test for Multiple Linear Restrictions
In practice, if we replace σ2 with σ̂2, and divide the statistic by the number of restrictions, M -
which is applicable for smaller samples - we get the following F − statistic:

F = 1
M

(
Lβ̂ − r

)> [
LV̂ar(β̂)L>

]−1 (
Lβ̂ − r

)
∼ F(M,N−(k+1))



Alternatively:

F = (RSSR − RSSUR)/M
RSSUR/(N − (k + 1)) = (R2

UR − R2
R)/M

(1− R2
UR)/(N − (k + 1)) ∼ F(M,N−(k+1))

where RSSR is the residual sum of squares of the restricted model (i.e. under the null
hypothesis), and RSSUR is the residual sum of squares of the unrestricted model (i.e.
under the alternative hypothesis).

Take note that, regardless of the restrictions, the R-squared must still be calculated for the same
dependent variable. E.g. setting a restriction that βj = 1 would allow us to create a restricted
model on Yi − Xj,i , instead of Yi .

This may be software-dependent, so it may sometimes be a good idea to examine the
fitted-values, or compare to manually calculated estimates, to make sure that the same
dependent variable is estimated in both cases.

Regardless of the chosen formula, we then need to calculate the relevant Fc = F(1−α,M,N−(k+1))
and the associated p-value.



Example
If we have the following multiple regression:

Yi = β0 + β1X1i + β2X2i + β3X3i + β4X4i + β5Xi5 + εi

We may be interested in testing if two pairs of parameters have the same pair-wise effect on Y :{
H0 : β2 = β3, β4 = 2 · β5
H1 : β2 − β3 6= 0 or β4 − 2 · β5 6= 0 or both

(Note: we have written the alternative hypothesis differently to highlight how we are going to
specify the L matrix).
In this case, our constraint matrix and the associated value vector is:

L =
[
0 0 1 −1 0 0
0 0 0 0 1 −2

]
, r =

[
0
0

]



Example
The joint hypothesis for model parameter significance hypothesis testing is equivalent to k
different restrictions: {

H0 : β1 = ... = βk = 0
H1 : βj 6= 0, for some j

Our constraint matrix and the associated value vector is:

L =


0 1 0 0 ... 0
0 0 1 0 ... 0
...

...
...

...
. . .

...
0 0 0 0 ... 1

 , r =


0
0
...
0


Note that this is equivalent to the joint hypothesis test for multiple coefficient significance.



What happens if we cannot reject the null hypothesis? This means that there is a
significant linear combination of some of our model parameters.
We would like to try to incorporate this information into our coefficient estimator.
We can do this by carrying out a Restricted Least Squares (or Constrained Least
Squares) procedure.
If we ignore this information, then the OLS estimates are still unbiased but not as
effective as RLS.
On the other hand, how do we even know what kind of restrictions we should be testing
for? Generally, we may sometimes want to impose (close-to-)zero-value restrictions on
some specific coefficients, which we cannot easily remove from the model specification.



Example
We can test the following hypothesis with an F -test, instead of a t-test:{

H0 : β2 = −3
H1 : β2 6= −3

car::linearHypothesis(lm_R, "log(x2) = -3")

## Linear hypothesis test
##
## Hypothesis:
## log(x2) = - 3
##
## Model 1: restricted model
## Model 2: log(y) ~ x1 + log(x2) + married + age_gr1 + age_gr2 + age_gr2 *
## x1 + married * age_gr1
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 993 2.4318
## 2 992 2.4314 1 0.00038582 0.1574 0.6916

The advantage of the t-test is that we can do it directly from the usual regression output, even if we weren’t sure
whether we would need to perform any hypothesis testing.



The relationship between a t-statistic and an F -statistic that has one degree of
freedom in the numerator (i.e. one restriction) is:

F(1,N−(k+1)) = t2(N−(k+1))

If we look at the squared t-statistic from our previous t-test:
print(summary(multcomp::glht(lm_ht, linfct = c("log_x2 = -3")))$test$tstat^2)

## log_x2
## 0.1574121

we see that it is the same as the F -statistic from our F -test.



Example
Say we want to test two linear restrictions:{

H0 : β2 = −3, β3 + β6 = 0.09,
H1 : β2 6= −3, or β3 + β6 6= 0.09, or both

We will first show how to carry out this test manually. We begin by specifying the linear
restriction matrix and the value vector for M = 2 restrictions:

L =
[
0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0

]
, r =

[
−3
0.09

]
L_mat <- matrix(0, nrow = 2, ncol = length(beta_est))
L_mat[1, 3] <- 1
L_mat[2, c(4, 7)] <- 1
r_vec <- c(-3, 0.09)
#
print(L_mat)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 0 0 1 0 0 0 0 0
## [2,] 0 0 0 1 0 0 1 0
print(r_vec)

## [1] -3.00 0.09



Next, since we have already estimated the variance-covariance matrix of our beta_est variable,
we can calculate the F -statistic:
M <- 2
F_stat_mult_lin <- 1 / M * t(L_mat %*% beta_est - r_vec)
F_stat_mult_lin <- F_stat_mult_lin %*% solve(L_mat %*% beta_vcov %*% t(L_mat))
F_stat_mult_lin <- F_stat_mult_lin %*% (L_mat %*% beta_est - r_vec)
F_stat_mult_lin <- c(F_stat_mult_lin)
#
p_val_F_mult_lin <- pf(F_stat_mult_lin,

df1 = M, df2 = nrow(data_mat) - length(beta_est_UR),
lower.tail = FALSE)

print(cbind(F_stat_mult_lin, p_val_F_mult_lin))

## F_stat_mult_lin p_val_F_mult_lin
## [1,] 1.474699 0.2293498



We can also do this automatically:
car::linearHypothesis(lm_R, c("log(x2) = -3", "married + x1:age_gr2 = 0.09"))

## Linear hypothesis test
##
## Hypothesis:
## log(x2) = - 3
## married + x1:age_gr2 = 0.09
##
## Model 1: restricted model
## Model 2: log(y) ~ x1 + log(x2) + married + age_gr1 + age_gr2 + age_gr2 *
## x1 + married * age_gr1
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 994 2.4386
## 2 992 2.4314 2 0.0072291 1.4747 0.2293

We have no grounds to reject the null hypothesis (p − value > 0.05).



We can also carry out the Wald test:
Wald_stat = F_stat_mult_lin * M
#
p_val_Wald <- pchisq(Wald_stat, df = M, lower.tail = FALSE)
#
print(cbind(Wald_stat, p_val_Wald))

## Wald_stat p_val_Wald
## [1,] 2.949399 0.2288475

and we can compare it to the built-in functions:
car::linearHypothesis(lm_R, c("log(x2) = -3", "married + x1:age_gr2 = 0.09"), test = "Chisq")

## Linear hypothesis test
##
## Hypothesis:
## log(x2) = - 3
## married + x1:age_gr2 = 0.09
##
## Model 1: restricted model
## Model 2: log(y) ~ x1 + log(x2) + married + age_gr1 + age_gr2 + age_gr2 *
## x1 + married * age_gr1
##
## Res.Df RSS Df Sum of Sq Chisq Pr(>Chisq)
## 1 994 2.4386
## 2 992 2.4314 2 0.0072291 2.9494 0.2288

In this example, the Wald test results give the same conclusions as the F -test.



Built-in Estimation Functions

We have seen a brief example on how to carry out multiple regression OLS using the built-in
functions - now, we will provide them separately. The aim is to highlight that these functions
produce the same results, as the manual approach (i.e. by applying the previously discussed
formulas):



Parameter OLS Estimation, Significance Testing
mdl <- lm(log(y) ~ x1 + log(x2) + married + age_gr1 + age_gr2 + age_gr2 * x1 + married * age_gr1,

data = data_mat)
print(summary(mdl))
##
## Call:
## lm(formula = log(y) ~ x1 + log(x2) + married + age_gr1 + age_gr2 +
## age_gr2 * x1 + married * age_gr1, data = data_mat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.129248 -0.034729 0.001534 0.034763 0.163707
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0101765 0.0122819 326.511 < 2e-16 ***
## x1 0.1590640 0.0009389 169.416 < 2e-16 ***
## log(x2) -3.0023689 0.0059708 -502.843 < 2e-16 ***
## married 0.0466433 0.0038756 12.035 < 2e-16 ***
## age_gr1 0.0247338 0.0051786 4.776 2.06e-06 ***
## age_gr2 -0.1468251 0.0170318 -8.621 < 2e-16 ***
## x1:age_gr2 0.0503657 0.0016449 30.620 < 2e-16 ***
## married:age_gr1 -0.0267870 0.0066062 -4.055 5.41e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04951 on 992 degrees of freedom
## Multiple R-squared: 0.997, Adjusted R-squared: 0.9969
## F-statistic: 4.647e+04 on 7 and 992 DF, p-value: < 2.2e-16



We can also extract the variance-covariance matrix of the parameters:
print(vcov(mdl))

## (Intercept) x1 log(x2) married
## (Intercept) 1.508456e-04 -8.758739e-06 -4.316298e-05 -9.329513e-06
## x1 -8.758739e-06 8.815287e-07 7.508965e-09 1.431190e-07
## log(x2) -4.316298e-05 7.508965e-09 3.565033e-05 -1.114429e-07
## married -9.329513e-06 1.431190e-07 -1.114429e-07 1.502027e-05
## age_gr1 -9.713703e-06 -7.153594e-08 -1.090457e-06 8.035502e-06
## age_gr2 -8.840137e-05 8.664538e-06 -3.808553e-06 6.299750e-07
## x1:age_gr2 8.300376e-06 -8.803845e-07 3.122693e-07 -3.112915e-08
## married:age_gr1 5.680298e-06 5.500742e-08 1.503668e-06 -1.499250e-05
## age_gr1 age_gr2 x1:age_gr2 married:age_gr1
## (Intercept) -9.713703e-06 -8.840137e-05 8.300376e-06 5.680298e-06
## x1 -7.153594e-08 8.664538e-06 -8.803845e-07 5.500742e-08
## log(x2) -1.090457e-06 -3.808553e-06 3.122693e-07 1.503668e-06
## married 8.035502e-06 6.299750e-07 -3.112915e-08 -1.499250e-05
## age_gr1 2.681785e-05 6.419738e-06 1.221773e-07 -2.313111e-05
## age_gr2 6.419738e-06 2.900805e-04 -2.727918e-05 1.165977e-06
## x1:age_gr2 1.221773e-07 -2.727918e-05 2.705623e-06 -1.542676e-07
## married:age_gr1 -2.313111e-05 1.165977e-06 -1.542676e-07 4.364213e-05



We can compare it to the manually calculated variance-covariance matrix:
# manually calculatd matrix
print(beta_vcov)

## intercept x1 log_x2 married
## intercept 1.508456e-04 -8.758739e-06 -4.316298e-05 -9.329513e-06
## x1 -8.758739e-06 8.815287e-07 7.508965e-09 1.431190e-07
## log_x2 -4.316298e-05 7.508965e-09 3.565033e-05 -1.114429e-07
## married -9.329513e-06 1.431190e-07 -1.114429e-07 1.502027e-05
## age_gr1 -9.713703e-06 -7.153594e-08 -1.090457e-06 8.035502e-06
## age_gr2 -8.840137e-05 8.664538e-06 -3.808553e-06 6.299750e-07
## age_gr2_x1 8.300376e-06 -8.803845e-07 3.122693e-07 -3.112915e-08
## married_age_gr1 5.680298e-06 5.500742e-08 1.503668e-06 -1.499250e-05
## age_gr1 age_gr2 age_gr2_x1 married_age_gr1
## intercept -9.713703e-06 -8.840137e-05 8.300376e-06 5.680298e-06
## x1 -7.153594e-08 8.664538e-06 -8.803845e-07 5.500742e-08
## log_x2 -1.090457e-06 -3.808553e-06 3.122693e-07 1.503668e-06
## married 8.035502e-06 6.299750e-07 -3.112915e-08 -1.499250e-05
## age_gr1 2.681785e-05 6.419738e-06 1.221773e-07 -2.313111e-05
## age_gr2 6.419738e-06 2.900805e-04 -2.727918e-05 1.165977e-06
## age_gr2_x1 1.221773e-07 -2.727918e-05 2.705623e-06 -1.542676e-07
## married_age_gr1 -2.313111e-05 1.165977e-06 -1.542676e-07 4.364213e-05



We can compare the relevant values:
I the estimated coefficients and their standard errors,
I the corresponding t-value for the null hypothesis tests,
I the residual standard error,
I degrees of freedom
I the F -statistic for the hypothesis that all the slope coefficients (i.e. excluding β0) are not

statistically significantly different from zero, against the alternative that at least one is
statistically significantly different.



Categorical Data Handling
Additionally, we have a categorical variable in our data_mat matrix - it is the age_group variable. Instead of
manually calculating the dummy indicator variables, we can directly include it in the model:
# Specify the model with categorical variable and interaction terms:
mdl2 <- lm(log(y) ~ x1 + log(x2) + married + age_group + age_group * x1 + married * age_group,

data = data_mat)
print(summary(mdl2))
##
## Call:
## lm(formula = log(y) ~ x1 + log(x2) + married + age_group + age_group *
## x1 + married * age_group, data = data_mat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.130645 -0.033463 0.001745 0.034883 0.159463
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.025357 0.015556 258.762 < 2e-16 ***
## x1 0.157716 0.001321 119.403 < 2e-16 ***
## log(x2) -3.002311 0.005969 -502.990 < 2e-16 ***
## married 0.042931 0.005480 7.834 1.21e-14 ***
## age_groupaged_20_30 -0.003679 0.019615 -0.188 0.85125
## age_groupaged_31_65 -0.164027 0.019968 -8.215 6.61e-16 ***
## x1:age_groupaged_20_30 0.002663 0.001879 1.417 0.15668
## x1:age_groupaged_31_65 0.051739 0.001890 27.378 < 2e-16 ***
## married:age_groupaged_20_30 -0.022777 0.007664 -2.972 0.00303 **
## married:age_groupaged_31_65 0.007016 0.007754 0.905 0.36578
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04949 on 990 degrees of freedom
## Multiple R-squared: 0.997, Adjusted R-squared: 0.9969
## F-statistic: 3.617e+04 on 9 and 990 DF, p-value: < 2.2e-16



On the other hand, if we want to remove insignificant interaction terms and keep only the significant ones - we
will need to use our indicator variables:
# Specify the model with categorical variable and interaction terms:
mdl3 <- lm(log(y) ~ x1 + log(x2) + married + age_group + age_gr2:x1 + married:age_gr1,

data = data_mat)
print(summary(mdl3))

##
## Call:
## lm(formula = log(y) ~ x1 + log(x2) + married + age_group + age_gr2:x1 +
## married:age_gr1, data = data_mat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.129248 -0.034729 0.001534 0.034763 0.163707
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0101765 0.0122819 326.511 < 2e-16 ***
## x1 0.1590640 0.0009389 169.416 < 2e-16 ***
## log(x2) -3.0023689 0.0059708 -502.843 < 2e-16 ***
## married 0.0466433 0.0038756 12.035 < 2e-16 ***
## age_groupaged_20_30 0.0247338 0.0051786 4.776 2.06e-06 ***
## age_groupaged_31_65 -0.1468251 0.0170318 -8.621 < 2e-16 ***
## x1:age_gr2 0.0503657 0.0016449 30.620 < 2e-16 ***
## married:age_gr1 -0.0267870 0.0066062 -4.055 5.41e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04951 on 992 degrees of freedom
## Multiple R-squared: 0.997, Adjusted R-squared: 0.9969
## F-statistic: 4.647e+04 on 7 and 992 DF, p-value: < 2.2e-16



Consequences of removing insignificant indicator variable interaction terms
Generally, if some interaction terms are insignificant as additional explanatory variables, removing
them from the model changes the interpretation of the base category. For example, in the
following model:

log(Yi) = β0 + β1X1i + β2 log(X2i) + β3AGE_GROUP1i

+ β4AGE_GROUP2i + β5(AGE_GROUP2i × X1i) + εi

since our base age category is AGE_GROUPOTHER , excluding the interaction term
(AGE_GROUP1i × X1i), implies that the coefficient β5 of the interaction variable now compares
to a different base group: AGE_GROUPOTHER + AGE_GROUP1.
In other words:
I coefficients β3 and β4 are the effects of different age groups compared to the

AGE_GROUPOTHER group;
I coefficient β5 is the additional effect of a unit increase in X1 from people in AGE_GROUP2,

compared to the remaining two groups AGE_GROUPOTHER + AGE_GROUP1.
If we were to leave the interaction variable (AGE_GROUP1i × X1i), then β5 would be the
additional effect of a unit increase in X1 from people in AGE_GROUP1, compared to the base
age group AGE_GROUPOTHER .



For this reason, if there are many insignificant interaction terms, or insignificant category
levels, we need to decide on the following:
I Re-categorize the data - combine some categories together, or combine

insignificant categories into a new, other, category, as long as that grouping
makes economic sense.

I Leave the groups as they are, along with insignificant interaction terms and/or
insignificant category levels. This makes interpretation consistent, since we will
have the same base group for individual category effects and interaction
effects.

Finally, inclusion of MARRIED indicator variable, indicating whether a person is married, would
compare to the base group of unmarried people, regardless of their age. Consequently, the
base age group AGE_GROUPOTHER ignores whether a person is single or married - it only
indicates their age group.

In other words, the categorical variables MARRIED (with its two categories) and AGE_GROUP
(with its three categories) will have base groups, that are not necessarily interpreted the same -
marriage status does not take into account age, and age does not take into account marriage
status.



Goodness-Of-Fit



Let our multiple regression model be defined as:

Yi = β0 + β1X1i + ...+ βkXki + εi , i = 1, ...,N

Furthermore, assume that conditions (MR.1) - (MR.6) hold true.

F -test For Goodness of Fit: Joint Hypothesis Test for the Overall Model
Significance
This is the joint hypothesis test for multiple coefficient significance, applied for all slope
coefficients (excluding the intercept):{

H0 : β1 = β2 = ... = βk = 0
H1 : βj 6= 0, for some j

the associated F -statistic:

F = ESS/k
RSS/(N − (k + 1)) = R2/k

(1− R2)/(N − (k + 1))

If F > F(1−α,k,N−(k+1)) for some significance level α (or if the associated p-value is less than α),
we reject the null hypothesis.



I The F -test of overall significance compares a model with no predictors to the specified
model.

I A regression model that contains no predictors is also known as an intercept-only model,
where all of the fitted values equal the mean of the response variable.

I Thus, if the p-value of the overall F -test is less than the significance level α, the specified
model predicts the response variable better than the mean of the response.

This is somewhat similar to what the R2 does. However, it does not provide a formal hypothesis
test (which the overall F -test does).

Consequently, if the p-value of the overall F -test is less than the α significance level, we could
conclude that the R2 value is significantly different from zero.



R-squared and Adjusted R-squared
In the multiple regression model R2 is a measure of the proportion of variation in the dependent
variable, that is explained by all the explanatory variables included in the model:

R2 = ESS
TSS =

∑N
i=1

(
Ŷi − Y

)2
∑N

i=1
(
Yi − Y

)2 = 1− RSS
TSS = 1−

∑N
i=1 ε̂

2
i∑N

i=1
(
Yi − Y

)2
where ε̂i = Yi − (β̂0 + β̂1X1,i + ...+ β̂kXk,i).
For the multiple regression model, R2 automatically increases when extra explanatory variables
are added to the model, even if the variables added have no justification: if the model contains
N − 1 variables, then R2 = 1.



As such, an adjusted R2, R2
adj may be used. This modification of R2 adjusts for the number of

explanatory variable (excluding the constant) terms in a model, relative to the number of data
points. Furthermore, R2

adj can be negative and R2
adj ≤ R2. The adjusted R2 is defined as:

R2
adj = 1− (1− R2) N − 1

N − k − 1 = 1− RSS/(N − k − 1)
TSS/(N − 1)

The adjusted R2, R2
adj , can be interpreted as an unbiased estimator of the population R2.

However, because of this correction, R2
adj loses its interpretation - R2

adj is no longer the
proportion of explained variation.



AIC and BIC
Selecting variables that maximize R2

adj is equivalent to selecting variables that minimize ESS,
subject to a penalty based on the number of variables. We will introduce two mode criterions,
which work in a similar way, but have different penalties for inclusion of additional variables:
I Akaike Information Criterion (AIC):

AIC = N + N log(2π) + N log
(
RSS
N

)
+ 2(k + 1)

I Bayesian Information Criterion (BIC), also called Schwarz Criterion (SC):

BIC = N + N log(2π) + N log
(
RSS
N

)
+ (k + 1) log(N)

The formulas are based on Source.
I On one hand, the variance parameter (which is also estimated) must also be

included: overall, there are k + 2 total parameters β0, β1, ..., βk , σ2. As such
(k + 1) is sometimes replaced with (k + 2).

I On the other hand, some textbooks ignore the first two terms, N +N log(2π), and
use k + 1, instead of k + 2.

Note: in ‘R‘ (k + 2) is used, while in ‘Python‘ (k + 1) is used.

http://www.stat.wisc.edu/courses/st333-larget/aic.pdf


In both cases, the first term decreases with each extra variable added, but the second term
increases, penalizing the inclusion of additional variables. BIC penalizes extra variables more
strictly, compared to the AIC.

The model with the smallest AIC (or BIC) is preferred.



Example
We will use the following model to aid our presented methodology:

log(Yi) = β0 + β1X1i + β2 log(X2i) + β3MARRIEDi + β4AGE_GROUP1i + β5AGE_GROUP2i

+ β6(AGE_GROUP2i × X1i) + β7(MARRIEDi × AGE_GROUP1i) + εi

where MARRIEDi = 1, if the i-th person is married, 0 otherwise; AGE_GROUPji are different
age groups: if j = 1 - between 20− 30; if j = 2 - between 31− 65, the base group,
AGE_GROUPOTHER , consists the people with ages in the remaining age brackets, not covered
by j = 1, 2.
We then generate the variables in the following way:
set.seed(132)
#
N <- 1000
beta_vec <- c(4, 0.16, -3, 0.05, 0.02, -0.15, 0.05, -0.03)
#
e <- rnorm(mean = 0, sd = 0.05, n = N)
x1<- rnorm(mean = 10, sd = 2, n = N)
x2<- sample(seq(from = 2, to = 5, length.out = floor(N * 0.8)),

size = N, replace = TRUE)
#
married <- sample(c(0, 1), size = N, replace = TRUE)



The different age groups can be generated randomly as well. We can further create separate indicator variables for
two of the three groups. Doing it this way automatically classifies the remaining group of other ages as the base
group and we will avoid the dummy variable trap:
age_group <- sample(c("other", "aged_20_30", "aged_31_65"),

size = N, replace = TRUE)
age_gr1 <- rep(0, N)
age_gr1[age_group %in% "aged_20_30"] <- 1
age_gr2 <- rep(0, N)
age_gr2[age_group %in% "aged_31_65"] <- 1

Finally, we can create our dependent variable and combine all the data into a single dataset:
x_mat <- cbind(1, x1, log(x2), married,

age_gr1, age_gr2, age_gr2 * x1 , married * age_gr1)
colnames(x_mat) <- c("intercept", "x1", "log_x2", "married",

"age_gr1", "age_gr2", "age_gr2_x1", "married_age_gr1")
#
y <- exp(x_mat %*% beta_vec + e)
#
data_mat <- data.frame(y, x1, x2, married, age_gr1, age_gr2, age_group)
head(data_mat)

## y x1 x2 married age_gr1 age_gr2 age_group
## 1 29.313052 10.206100 2.450563 1 0 1 aged_31_65
## 2 14.656237 10.164646 2.976220 0 0 1 aged_31_65
## 3 28.228720 10.816951 2.255319 1 0 0 other
## 4 7.741518 11.713026 4.286608 1 0 1 aged_31_65
## 5 9.333522 6.220738 2.514393 1 1 0 aged_20_30
## 6 2.165643 5.813722 4.237797 1 0 1 aged_31_65



Next, we estimate the models and print their output:
mdl <- lm(log(y) ~ x1 + log(x2) + married + age_gr1 + age_gr2 + age_gr2 * x1 + married * age_gr1,

data = data_mat)
print(summary(mdl))

##
## Call:
## lm(formula = log(y) ~ x1 + log(x2) + married + age_gr1 + age_gr2 +
## age_gr2 * x1 + married * age_gr1, data = data_mat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.129248 -0.034729 0.001534 0.034763 0.163707
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0101765 0.0122819 326.511 < 2e-16 ***
## x1 0.1590640 0.0009389 169.416 < 2e-16 ***
## log(x2) -3.0023689 0.0059708 -502.843 < 2e-16 ***
## married 0.0466433 0.0038756 12.035 < 2e-16 ***
## age_gr1 0.0247338 0.0051786 4.776 2.06e-06 ***
## age_gr2 -0.1468251 0.0170318 -8.621 < 2e-16 ***
## x1:age_gr2 0.0503657 0.0016449 30.620 < 2e-16 ***
## married:age_gr1 -0.0267870 0.0066062 -4.055 5.41e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04951 on 992 degrees of freedom
## Multiple R-squared: 0.997, Adjusted R-squared: 0.9969
## F-statistic: 4.647e+04 on 7 and 992 DF, p-value: < 2.2e-16



print(AIC(mdl))

## [1] -3163.401
print(BIC(mdl))

## [1] -3119.231

We also manually estimate AIC and BIC (again note that the formulas in R are different from the ones in
Python):
aic_lm <- nrow(mdl$model) + nrow(mdl$model) * log(2 * pi) +

nrow(mdl$model) * log(sum(mdl$residual^2) / nrow(mdl$model)) +
2 * (length(mdl$coefficients) + 1)

print(aic_lm)

## [1] -3163.401
bic_lm <- nrow(mdl$model) + nrow(mdl$model) * log(2 * pi) +

nrow(mdl$model) * log(sum(mdl$residual^2) / nrow(mdl$model)) +
(length(mdl$coefficients) + 1) * log(nrow(mdl$model))

print(bic_lm)

## [1] -3119.231



Out-of-Sample (Hold-Out-Sample) GoF Testing
If our model is designed for prediction/forecasting, we want to evaluate its ability to forecast the
dependent variable values, which have not been observed yet. One way to do this is to
hold-back some of the observations from estimation and evaluate how well can the model
predict the omitted observations (also known as splitting the data into an 80% training and a
20% testing set).
Lets say that out of the N observations, we use N −m to estimate the parameters and then
calculate the predictions:

Ŷi = β̂0 + β̂1X1,i + ...+ β̂kXk,i , i = N −m + 1, ...,N

Then, we can measure the models out-of-sample forecasting accuracy by calculating the Root
Mean Squared Error (RMSE):

RMSE =

√√√√ 1
m

N∑
i=N−m+1

(
Yi − Ŷi

)2
We can then compare different models based on their RMSE (as long as the models being
compared have the same dependent variable, as well as the same amount of held-back
observations, m).


