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Multiple Regression Model Specification
Estimating a univariate regression and transforming the dependent and/or the independent
variable still leaves a dependence structure in the residuals. A common reason is that it is rarely
the case, that economic relationships involve just two variables.

Multiple Regression With k Independent Variables
Generally, the dependent variable Y may depend on k different independent variables. Thus in
practice we are often faced with a multiple regression model:

Yi = β0 + β1X1i + ...+ βkXki + εi , i = 1, ...,N

we can think of the term β0 = β0 · 1, i.e. as the coefficient of a constant term.

This is not the same as a multivariate regression, where Y is an N × q matrix, as
opposed to the N × 1 vector, which is the case in the univariate and multivariable
regressions.
For example, an equation system, where Y1,i is the supply and Y2,i is the demand and
X1,i , ...,Xk,N a vector of explanatory variables - is a form of a multivariate regression.



A single coefficient βj measures the effect of a unit change in Xj on the expected value
of Y , ceteris paribus (holding all else constant):

βj = ∆E(Y |X1, ...,Xk)
∆Xj

∣∣∣∣
other X‘s held constant

= ∂E(Y |X1, ...,Xk)
∂Xj

Alternatively, if Xj increases by 1, then Y value changes from Ỹ to ˜̃Y . The total change is:

˜̃Y − Ỹ = β0 + β1X1 + ...+ βj(Xj + 1) + ...+ βkXk − (β0 + β1X1 + ...+ βjXj + ...+ βkXk) = βj

Regarding β0 - the intercept parameter - is the expected value of the dependent variable Y ,
when all of the independent variables X1, ...,Xk are zero.

However, just like in the univariate regression, β0 usually does not have a clear economic
interpretation and can be considered more of a garbage collector.

Generally, the same kind of variable transformations and interpretations of their coefficients carry
over from univariate regression to the multiple regression models.



Polynomial Regression
Previously, we constrained the quadratic model in the univariate regression case by including only
one variable. Now, working with the multiple regression model allows us to consider
unconstrained polynomials with all their terms. So, a p-order polynomial regression would take
the following form:

Yi = β0 + β1X1i + β2X 2
1i + ...+ βpX p

1i + εi

To investigate the slopes, and to interpret the parameters, we take the partial derivative:

dE(Y |X1)
dX1

= β1 + 2β2X1 + ...+ pβpX p−1
1

this is the slope of the average value of Y , which changes for every value of X1 and depends on
the parameters β1, ..., βp.
For p = 2 we have a quadratic model, where:
I If β1 > 0 and β2 < 0, this would indicate that an increase of X , when X is large, has a

decreasing effect on Y . For example, if X = age, then β1 > 0 and β2 < 0 would indicate
that as people get older, the effect of age on Y is lessened (diminishing returns for extra
years of age).

I If β1 > 0 and β2 > 0 - this would mean that as people get older, the effect of age on Y is
stronger.



However, when interpreting the ceteris paribus effect of a change in X1 on Y , we have
to look at the equation:

∆E(Y |X1) =
(
β1 + 2β2X1 + ...+ pβpX p−1

1

)
∆X1

That is, we cannot interpret β1 separately once we add higher order polynomial terms
of X1, like X 2

1 ,X 3
1 , ...,X

p
1 .

Furthermore, the inclusion of polynomial terms does not complicate least squares estimation.
Nevertheless, in some cases having a variable and its square, or cube, in the same model causes
collinearity problems.

When including higher order polynomial variables, it is generally recommended to include
the lower order polynomials as well. So, if we wanted to include a X p variable, we
would also need to include the lower order polynomials X 2

1 ,X 3
1 , ...,X

p−1
1 as well.



Regression with Transformed Variables
As in the simple univariate regression case, we may need to transform some of the variables in
our regression:

f (Yi ) = β0 + β1g1(X1i ) + ...+ βkgk(Xki ) + εi , i = 1, ...,N

where f (·), g1(·), ..., gk(·) are some kind of transformations of our variables. For example, the
transformations could yield the following regression:

log(Yi ) = β0 + β1 log(X1i ) + β2X2i + β3X3i + β4X 2
3i + εi

The interpretation of its coefficients would be similar to the univariate regression case:
I a one percent increase in X1 yields a β1 percentage change (i.e. %β1) in Y , ceteris

paribus;
I a one unit increase in X2 yields a (approximately) 100 · β2 percentage change

(i.e. %(100 · β2)) in Y , ceteris paribus;
I etc.



Regression with Interaction Variables
Another model generalization is to include a cross-product, or interaction terms in the model.
Such terms are the products, or the multiplication, or different independent variables:

Yi = β0 + β1X1i + β2X2i + β3 (X1iX2i ) + εi

where:
I β1 and β2 are the coefficients of the main effects X1 and X2, which interaction we also

want to include;
I β3 is the coefficient of the interaction term between X1 and X2;



We can also rewrite this equation to better understand how to interpret the coefficients. We can
write it either as:

Yi = β0 + (β1 + β3X2i )X1i + β2X2i + εi

or, alternatively, as;
Yi = β0 + β1X1i + (β2 + β3X1i )X2i + εi

Interpretation of β3 requires holding other variables fixed - so a unit increase in X1 would result
in a β1 + β3X2 unit change in Y , ceteris paribus. In other words, β1 + β3X2 changes depending
on the value of X2, therefore, the effect of a unit increase in X1 is no longer constant.

Furthermore, a unit increase in X2 would result in a β2 + β3X1 unit change in Y , ceteris paribus,
which leads to similar conclusions for the effect of a unit change in X2 (i.e. it is not constant as
well). Depending on the values of X1 and X2, this may help drawing some conclusions about
variable effects on Y .



It may sometimes be the case that the p-value of an interaction effect is very small
(i.e. less than α), but the p-values of the main effects are large (i.e. greater than α).
If we include an interaction term in a model, then we should also include its main
effects, even if the the main effects are insignificant (i.e. even if their associated
p-values > α).

Furthermore, polynomial variables can be thought of as interaction terms. Consequently,
if we include higher order polynomials, then we should not remove the lower order ones,
even if they are insignificant. For example, if X 2 is significant, but X is not, we should
leave both in the regression.

Removing the main effects, but leaving their interaction terms makes the interpretation of the
interaction coefficients more difficult.

Furthermore, if some of the values in the interaction can attain zero values, then, if at least
one variable in the interaction is zero, then any changes in other variables in the
interaction do not have an effect on the dependent variable.

For example, if X1 = 0, then regardless of the value of X2, the interaction term would be
β3 · 0 = 0 - including the main effects separately controls for these cases.



Regression With Indicator Variables
An indicator variable is a binary variable that takes values of either zero, or one. It is often
used to represent a non-quantitative characteristic - gender, race, location, etc. Indicator
variables are often called dummy, binary or dichotomous variables:

Dj =
{
1, if characteristic is present in obsetvation j
0, if characteristic is not present in obsetvation j

Indicator variables can be used to capture changes in the model intercept, or slopes, or both.



Intercept Indicator Variables
The most common use of indicator variables is to modify the regression model intercept
parameter:

Yj = β0 + αDj + β1X1 + εj

which leads to the following conditional expected value of Y :

E(Y |X ) =


(β0 + α) + β1X1, if D = 1

β0 + β1X1, if D = 0

Adding an indicator variable to the regression causes a parallel shift in the relationship by amount
α (i.e. the regression shifts either up, or down). An indicator variable, which is used to capture
the shift in the intercept as a result of some qualitative factor is called an intercept indicator
(or intercept dummy) variable.
The least squares estimators properties are not affected by the value range of D - we can
construct an interval estimate for α and test whether it is statistically significant.



On the other hand, assume that we define an indicator variable as LD = 1− D and include it
alongside D:

Yj = β0 + αDj + λLDj + β1X1 + εj

In this model the variables D + LD = 1 and β0 = β0 · 1 - this is a case of exact collinearity,
which we will expand in a later section.

For now, what you should know is that the least squares estimator is not defined
in such cases. Consequently , this is sometimes described as the dummy variable
trap. In other to avoid this problem, we need to choose to include only one of the two
indicator variables in our model - either LD, or D.

The regression with D = 0 defines a reference (or base) group. Therefore α coefficient
indicates the magnitude that observations with a specific characteristic (when D = 1) differ from
the base group without that characteristic (when D = 0).

If α is not statistically significantly different from zero, then there is no difference in Y
values between the two groups.



Slope Indicator Variables
As mentioned before r - we can also specify interaction variable terms. Since generally, there
are no restrictions on what types of data we can create interactions from (as long as we can
provide a clear economic interpretation), we can specify the following model, where we interact
the indicator variable along with an independent variable X1:

Yj = β0 + β1X1j + γ(X1j × Dj) + εj

where (X1j × Dj is the interaction variable (the product of Xj and Dj). Alternatively, it can be
called the slope indicator, or the slope dummy variable. A slope indicator variable is treated
just like any other variable when estimating the parameters.



This leads to the following conditional expected value of Y :

E(Y |X ) =


β0 + (β1 + γ)X1, if D = 1

β0 + β1X1, if D = 0

The interaction term allows to capture the effect of a unit change on X1 for observations with a
specific characteristic (when D = 1) - in this case Y changes by β1 + γ - and compare it to a unit
change in X1 for observation in the base group (when D = 0) - in this case Y changes by β1.

If γ is not statistically significantly different from zero, then a unit change in X1 has an
identical effect on Y in both groups.



Intercept and Slope Indicator Variable
If we assume that a characteristic D affects both the intercept (i.e. the average value of Y when
all the other explanatory variables are zero), and the slope (i.e. when a unit increase in X1 results
in a different change in Y , depending on the value of D), then we can specify the multiple
regression as:

Yj = β0 + αDj + β1X1j + γ(X1j × Dj) + εj

which leads to the following expected value:

E(Y |X ) =


(β0 + α) + (β1 + γ)X1, if D = 1

β0 + β1X1, if D = 0

When including interaction terms, regardless whether they are indicator variables or not,
it is generally recommended to include both the variables separately in the equation as
well.



Qualitative Factors With Several categories (Categorical Variables)
Many qualitative factors have more than two categories. For example, a variable, which describes
m different regions:

REGIONi,j =
{
1, if observation j is from region i
0, if observation j is not from region i

Furthermore, the indicator variables are such that
∑m

i=1 REGIONi,j = 1. Just like before, since
we do not want to fall in the dummy variable trap, we need to omit one indicator variable.
The omitted indicator variable will then define a reference group - a group that remains when
the remaining regional indicator variables are set to zero.
Assume that we omit the ith region indicator variable.
Then the regression:

Yj = β0+α1REGION1,j+...+αi−1REGIONi−1,j+αi+1REGIONi+1,j+...+αmREGIONm,j+β1X1j+εj



its expected value:

E(Y |X ) =



(β0 + α1) + β1X1, if REGION1 = 1

(β0 + α2) + β1X1, if REGION2 = 1

...
(β0 + αi−1) + β1X1, if REGIONi−1 = 1

β0 + β1X1, if REGIONi = 1

(β0 + αi+1) + β1X1, if REGIONi+1 = 1

...
(β0 + αm) + β1X1, if REGIONm = 1

In this case β1 measures the expected value of Y in REGIONi if X1 = 0. Furthermore, the
parameter α1 measures the expected Y differential between REGION1 and REGIONi ; α2
measures the expected Y differential between REGION2 and REGIONi , etc.



Alternatively, we may have a single variable REGION, which is coded as follows:

REGIONi =


0, if observation j is in the 1-st region
1, if observation j is in the 2-nd region
...
m − 1, if observation j is in the m-th region

Unfortunately, if we were to include REGIONi as a single variable - it would be difficult to
interpret - what does a “unit increase in REGION” mean? As such, a much better approach
would be to create the aforementioned regional dummy variables for each case:

REGIONi,j =
{
1, if observation j is in region i
0, if observation j is not in region i

, i = 1, ...,m − 1

Note that doing it this way, we create m− 1 dummy variables, and leave one region (in this case
the last m-th region) as the base group.



In most econometric software instead of multiple dummy variables for each subgroup,
we have a single categorical variable, which defines possible values. Examples include:
I region (south, east, north, west),
I state (Texas, Alabama, Florida, etc.),
I country (USA, UK, France, Germany, China, India, etc.)

and many more, which are often provided either as text strings, or integer codes.

In such cases, when carrying out OLS estimation, these categorical variables are split
into dummy variables for each subcategory, with one subcategory automatically selected
as the base group.



The Matrix Notation of a Multiple Linear Regression
In general, we can write the multiple regression model as:

Y1 = β0 + β1X11 + ...+ βkXk1 + ε1

Y2 = β0 + β1X12 + ...+ βkXk21 + ε2
...
YN = β0 + β1X1N + ...+ βkXkN + εN

where Xj· may be any type of independent variables - logarithms, polynomial, indicator, multiple
variable interaction, or non-transformed data. Y may be non-transformed, or may be logarithms
of the original dependent variable, or some other transformation, as long as it still results in a
linear relationship model.



Then, we can re-write the model in matrix notation:
Y1
Y2
...

YN

 =


1 X11 ... Xk1
1 X12 ... Xk2
...

...
. . .

...
1 X1N ... XkN



β0
β1
...
βk

+


ε1
ε2
...
εN


or in a more compact form:

Y = Xβ + ε

Note that sometimes the explanatory variable matrix X is called the design matrix, or
the model matrix, or regressor matrix.



Model Assumptions
Much like in the case of the univariate regression with one independent variable, the multiple
regression model has a number of required assumptions:

(MR.1): Linear Model The Data Generating Process (DGP), or in other words, the
population, is described by a linear (in terms of the coefficients) model:

Y = Xβ + ε (MR.1)

This requirement is similar to (UR.1) - regardless of how we transform the dependent and/or
independent variables, the model must be linear in parameters.

(MR.2): Strict Exogeneity Conditional expectation of ε, given all observations of the
explanatory variable matrix X, is zero:

E (ε|X) = 0 (MR.2)

This assumption also implies that E(ε) = E (E(ε|X)) = 0, E(εX) = 0 and Cov(ε,X) = 0.
Furthermore, this property implies that:

E (Y|X) = Xβ



(MR.3): Conditional Homoskedasticity The variance-covariance matrix of the error
term, conditional on X is constant:

Var (ε|X) =


Var(ε1) Cov(ε1, ε2) ... Cov(ε1, εN)

Cov(ε2, ε1) Var(ε2) ... Cov(ε2, εN)
...

...
. . .

...
Cov(εN , ε1) Cov(εN , ε2) ... Var(εN)

 = σ2ε I (MR.3)

The variance is constant throughout observations. Consequently, the fact that we require the
variance-covariance matrix to be diagonal, leads to another condition.

(MR.4): Conditionally Uncorrelated Errors The covariance between different error
term pairs, conditional on X, is zero:

Cov (εi , εj |X) = 0, i 6= j (MR.4)

This assumption implies that all error pairs are uncorrelated. For cross-sectional data, this
assumption implies that there is no spatial correlation between errors.



(MR.5) There exists no exact linear relationship between the explanatory variables.
This means that:

c1Xi1 + c2Xi2 + ...+ ckXik = 0, ∀i = 1, ...,N ⇐⇒ c1 = c2 = ... = ck = 0 (MR.5)

This assumption is violated if there exists some cj 6= 0.
Alternatively, this requirement means that:

rank (X) = k + 1

or, alternatively, that:
det
(
X>X

)
6= 0

This assumption is important, because a linear relationship between independent variables means
that we cannot separately estimate the effects of changes in each variable separately. Note that
in case of a linear relationship between explanatory variables, det

(
X>X

)
= 0, which means that

we cannot calculate
(
X>X

)−1, and as such, we cannot carry out an OLS estimation.



(MR.6) (optional) The residuals are normally distributed:

ε|X ∼ N
(
0, σ2ε I

)
(MR.6)

The normality assumption implies that Y is also normally distributed (as in the univariate
regression case):

Y|X ∼ N
(
Xβ, σ2I

)
I This assumption is useful for hypothesis testing and interval estimation when the sample

size is relatively small. - However, it is not a necessary requirement, since many of the
OLS estimator properties hold regardless.

I Furthermore, if the sample size is relatively large, this assumption is no longer necessary for
hypothesis testing and interval estimation.



Note that (MR.5) assumption also holds for the polynomial model, as we are not creating linear transformations
of the same variable, but rather polynomial ones.

Example
Assume that we have a design matrix of the following form:

X =

[1 X11 X21
...

...
...

1 X1N X2N

]

set.seed(123)
#
N = 100
#
x1 <- rnorm(mean = 5, sd = 2, n = N)
x2 <- rnorm(mean = 10, sd = 1.5, n = N)
x_mat <- cbind(1, x1, x2)

Then, we can easily check the rank of X and the determinant of X>X:
print(Matrix::rankMatrix(x_mat)[1])

## [1] 3
print(det(t(x_mat) %*% x_mat))

## [1] 6855725



Example
Assume that we have a design matrix where the second independent variable is the square of the first independent
variable:

X =

1 X11 X2
11

...
...

...
1 X1N X2

1N


set.seed(123)
#
N = 100
#
x <- rnorm(mean = 5, sd = 2, n = N)
x_mat <- cbind(1, x, x^2)

Then, we can easily check the rank of X and the determinant of X>X:
print(Matrix::rankMatrix(x_mat)[1])

## [1] 3
print(det(t(x_mat) %*% x_mat))

## [1] 65930843



Example
Assume that we have a design matrix where the second independent variable is a simple linear transformation of
the first independent variable:

X =

[1 X11 X11 + 3
...

...
...

1 X1N X1N + 3

]

set.seed(123)
#
N = 100
#
x <- rnorm(mean = 5, sd = 2, n = N)
x_mat <- cbind(1, x, x + 3)

Then, we can easily check the rank of X and the determinant of X>X:
print(Matrix::rankMatrix(x_mat)[1])

## [1] 2
print(det(t(x_mat) %*% x_mat))

## [1] -1.2379e-07

As we can clearly see, the design matrix has linearly-dependent variables, so (MR.5) does not hold.



Example
Assume that we have a design matrix of the following form:

X =

[1 X11 X21 X11 + X21
...

...
...

...
1 X1N X2N X1N + X2N

]

set.seed(123)
#
N = 100
#
x1 <- rnorm(mean = 5, sd = 2, n = N)
x2 <- rnorm(mean = 10, sd = 1.5, n = N)
x3 <- x1 + x2
x_mat <- cbind(1, x1, x2, x3)

Then, we can verify that the design matrix has linearly-dependent variables, so (MR.5) does not hold.
print(Matrix::rankMatrix(x_mat)[1])

## [1] 3
print(det(t(x_mat) %*% x_mat))

## [1] 4.666691e-05

For example, one variable could be education, another could be work_experience and the last one could be
knowledge = education + work_experience, which would be linearly dependent, if included with the previous
variables.



To be continued after the midterm. . .


