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OLS: Assumptions
(UR.1) The Data Generating Process (DGP), or in other words,
the population, is described by a linear (in terms of the coefficients)
model:

Yi = β0 + β1Xi + εi , ∀i = 1, ...,N (UR.1)

(UR.2) The error term ε has an expected value of zero, given any
value of the explanatory variable:

E(εi |Xj) = 0, ∀i , j = 1, ...,N (UR.2)

(UR.3) The error term ε has the same variance given any value of
the explanatory variable (i.e. homoskedasticity) and the error terms
are not correlated across observations (i.e. no autocorrelation):

Var (ε|X) = σ2
ε I (UR.3)

i.e. Cov(εi , εj) = 0, i 6= j and Var(εi ) = σ2
ε = σ2.

(UR.4) (optional) The residuals are normal:

ε|X ∼ N
(
0, σ2

ε I
)

(UR.4)

ε = (ε1, ..., εN)>, X = (X1, ....,XN)>, and Y = (Y1, ...,YN)>.



OLS: The Estimator
The unknown parameters of the linear regression

Y = Xβ + ε

can be estimated via OLS:

β̂ =
(
X>X

)−1 X>Y (OLS)

The term Ordinary Least Squares (OLS) comes from the fact
that these estimates minimize the sum of squared residuals.

Gauss-Markov Theorem
Under the assumption that the conditions (UR.1) - (UR.3) hold
true, the OLS estimator (OLS) is BLUE (Best Linear Unbiased
Estimator) and Consistent.



OLS: Standard Errors
We can measure the uncertainty of β̂ via its standard deviation. This is
the standard error of our estimate of β:

The square roots of the diagonal elements of the variance-covariance
matrix

V̂ar(β̂) =
[

V̂ar(β̂0) Ĉov(β̂0, β̂1)
Ĉov(β̂1, β̂0) V̂ar(β̂1)

]
= σ̂2 (X>X)−1

,

where σ̂2 = 1
N − 2 ε̂

>ε̂,

are called the standard errors (se) of the corresponding OLS
estimators β̂, which we use to estimate the standard deviation of
β̂i from βi

se(β̂i ) =
√

V̂ar(β̂i)

The standard errors describe the accuracy of an estimator (the
smaller the better).



Effects of Changing the Measurement Units
I If Y is multiplied by a constant c:

Ỹ = c ·Y = c · (β0 + β1X + ε) = (c · β0) + (c · β1)X + (c · ε)

I If X is multiplied by a constant c:

Y = β0 + β1X + ε = β0 +
(
β1
c

)
(c · X ) + ε

I If we scale both X and Y by the same constant:

Ỹ = c · Y = c ·
(
β0 +

(
β1
c

)
(c · X ) + ε

)
= (c · β0) + β1 (c · X ) + (c · ε)

I If we scale Y by one constant and X by a different constant:

Ỹ = a · Y = a ·
(
β0 +

(
β1
c

)
(c · X ) + ε

)
= (a · β0) +

(a
c · β1

)
(c · X ) + (a · ε)



Interpretation of the Parameters
In a level-level model

Yi = β0 + β1Xi + εi

β1 shows the amount by which the expected value of Y (remember
that E(Yi |Xi ) = β0+β1Xi) changes (either increases, or decreases),
when X increases by 1 unit.
As mentioned previously, interpreting the intercept β0 is tricky.

For example, if X is in thousands of dollars, then β1 shows the amount
that the expected value of Y changes, when X increases by one thousand.

The defining feature of a univariate linear regression is that the
change in (the expected value of) Y is equal to the change in X
multiplied by β1. So, the marginal effect of X on Y is constant
and equal to β1:

∆Y = β1∆X

or alternatively:

β1 = ∆Y
∆X = ∆E(Y |X )

∆X = dE(Y |X )
dX =: slope

because a one-unit change in X results in the same change in Y ,
regardless of the initial value of X .



The elasticity of a variable Y with respect to X is defined as the
percentage change in Y corresponding to a 1% increase in X :

η = η(Y |X ) = %∆Y
%∆X =

100 · ∆Y
Y

100 · ∆X
X

= ∆Y
∆X ·

X
Y

So, the elasticity of the expected value of Y with respect to X is:

η = dE(Y |X )
dX · X

E(Y |X ) = slope · X
E(Y |X )

In practice in a linear model the elasticity is different on each
point (Xi ,Yi ), i = 1, ...,N. Most commonly, elasticity estimated by
substituting the sample means of X and Y , with the interpretation
being that a 1% increase in X will yield, on average, a η̂ percentage
(i.e. %η̂) increase/decrease in Y .

Often times economic variables are not always related by a straight-
line relationship. In a simple linear regression the marginal effect of
X on Y is constant, though this is not realistic in many economic
relationships.



Nonlinearities in a Linear Regression
If we have a linear regression with transformed variables:

f (Yi ) = β0 + β1 · g(Xi ) + εi , i = 1, ...,N

then we can rewrite it in a matrix notation:

Y = Xβ + ε

where Y = [f (Y1), ..., f (YN)]>, ε = [ε1, ..., εN ]>, β = [β0, β1]>

and X =


1 g(X1)
1 g(X2)
...

...
1 g(XN)

, where f (Y ) and g(X) are some kind of

transformations of the initial values of Y and X .
This allows us to estimate the unknown parameters via OLS:

β̂ =
(
X>X

)−1 X>Y

Various transformations can be used to account for a nonlinear
relationship between the variables Y and X (but still expressed as a
linear regression in terms of parameters β).



Quadratic Regression Model
The quadratic (regression) model:

Y = β0 + β1X 2 + ε

is a parabola, where β0 is the intercept and β1 is the shape parameter
of the curve: if β1 > 0, then the curve is ∪ − shaped (convex); if
β1 < 0, then the curve is ∩ − shaped (concave).

Because of the nonlinearity in X , our unit change in X effect on Y now
depends on the initial value of X .

The slope of the quadratic regression is:

slope = dE(Y |X )
dX = 2β1X ,

which changes as X changes. For large values of X , the slope will
be larger, for β1 > 0 (or smaller, if β1 < 0), and would have a
more pronounced change in Y for a unit increase in X , compared to
smaller values of X . Note that, unlike the simple linear regression,
in this case β1 is no longer the slope.



Log-Linear Regression Model
In a log-linear model:

log(Y ) = β0 + β1X + ε, Y > 0

a unit increase in X yields (approximately) a (100 ·β1) percentage
change in Y .
Furthermore, we have that:

slope := dE(Y |X )
dX = β1Y

the marginal effect increases for larger values of Y (i.e. we see the
effects on Y and not log(Y )).
Many economic variables - price, income, wage, etc. - have skewed
distributions, and taking logarithms to regularize the data is a
common practice.

If we wanted to change the units of measurement of Y in a log-linear
model, then β0 would change, but β1 would remain unchanged, since:

log(cY ) = log(c) + log(Y ) = [log(c) + β0] + β1X + ε



Linear-Log Regression Model
In a linear-log model:

Y = β0 + β1 log(X ) + ε, X > 0

a 1% increase in X yields (approximately) a β1/100 unit change
in Y .
Furthermore, we have that:

slope := dE(Y |X )
dX = β1

1
X

So, for larger values of X , an increase in X results in a decreasing
effect on Y , i.e. the marginal effect decreases for larger values of
X .

If we wanted to change the units of measurement of X in a linear-log
model, then β0 would change, but β1 would remain unchanged, since:

Y = β0 + β1 log
(c
c X
)

= [β0 − β1 log(c)] + β1 log (cX )



Log-Log Regression Model
In a log-log model:

log(Y ) = β0 + β1 log(X ) + ε, X , Y > 0

a 1% increase in X yields (approximately) a β1 percentage change
in Y .
Furthermore, the elasticity of the log-log model is constant:

η = dE(Y |X )
dX · XY = β1



We have mentioned that (UR.4) is an optional assumption, which
simplifies some statistical properties. But we will show how it can be
applied to carry out an estimation method, which is based on the join
distribution of Y1, ...,YN .

However, we first need to talk about the distribution of Y . In order to do
that, we will first introduce a few distributions, which are frequently
encountered in econometrics literature.



The Normal Distribution
The most widely used distribution in statistics and econometrics. A
random normal variable X is a continuous variable that can take any value.
Its probability density function is defined as:

f (x) = 1√
2πσ2

exp
[
− (x − µ)2

2σ2

]
, −∞ < x <∞

where E(X ) =
∫∞
−∞ f (x)dx = µ, Var(X ) = σ2. We say that X has a

normal distribution and write X ∼ N (µ, σ2). The normal distribution is
sometimes called the Gaussian distribution.

import numpy as np

x <- 5
s2 <- 4
mu <- 1
tmp<- 1/sqrt(2 * pi * s2) *

exp(- (x - mu)^2 / (2 * s2))
print(tmp)
## [1] 0.02699548

x = 5
s2 = 4
mu = 1
tmp= 1 / np.sqrt(2 * np.pi * s2) * \

np.exp(- (x - mu)**2 / (2 * s2))
print("%.8f" % tmp)
## 0.02699548
from scipy.stats import norm

print(dnorm(x,
mean = mu, sd = sqrt(s2)))

## [1] 0.02699548

print("%.8f" % norm.pdf(x,
loc = mu, scale = np.sqrt(s2)))

## 0.02699548
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Probability density function of N( µ , σ2 )
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Certain random variables appear to roughly follow a normal distribution.
These include: a person’s height, weight, test scores; country
unemployment rate.

On the other hand, other variables, like income do not appear to follow the
normal distribution - the distribution is usually skewed towards the upper
(i.e. right) tail. In some cases, a variable might be transformed to achieve
normality.



The Standard Normal Distribution
A special case of normal distribution occurs when µ = 0 and σ2 = 1. If
Z ∼ N (0, 1) - we say that Z has a standard normal distribution. The
pdf of Z is then:

φ(z) = 1√
2π

exp
[
−z2

2

]
, −∞ < z <∞

The values of φ(·) are easily tabulated and can be found in most
(especially older) statistical textbooks as well as most
statistical/econometrical software.

In most applications we start with a normally distributed random variable,
but any normal random variable can be turned into a standard
normal.

If X ∼ N (µ, σ2) and a, b ∈ R, then:
I

X − µ
σ

∼ N (0, 1);
I (aX + b) ∼ N (aµ+ b, a2σ2).



The Chi-Square Distribution
The chi-square distribution is obtained directly from independent, standard
normal random variables. Let Z1, ...,ZN be independent random variables
and Zi ∼ N (0, 1), ∀i = 1, ...,N. Then a new random variable X , defined
as:

X =
N∑

i=1
Z 2

i

Then X has a chi-squared distribution with N degrees of freedom
(df) and write X ∼ χ2

N . The df corresponds to the number of terms in
the summation of Zi . Furthermore, E(X ) = N and Var(X ) = 2N.

Note: we calculate OLS estimates by minimizing
∑N

i=1 ε̂
2
i , which

appears similar, except, that we did not assume that the residual
variance is unity.
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The t Distribution
The t distribution is used in classical statistics and multiple regression
analysis. We obtain a t distribution from a standard normal, and a
chi-square random variable.
Let Z ∼ N (0, 1) and X ∼ χ2

N , let Z and X be independent random
variables. Then the random variable T , defined as:

T = Z√
X/N

has a (Students) t distribution with N degrees of freedom, which we
denote as T ∼ t(N). Furthermore, E(T ) = 0 and Var(T ) = N

N − 2 ,
N > 2.

As N → ∞, the t distribution approaches the standard normal
distribution.
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If X1, ...,XN is a random sample of independent random variables with
Xi ∼ N (µ, σ2), ∀i = 1, ...,N, then the t-ratio statistic (or simply
t-statistic) of an estimator of the sample mean X , defined as:

tX = X − µ
se
(
X
) = X − µ

σ̂2/
√
N

has the tN−1 distribution.



The F Distribution
Lastly, an important distribution for statistics and econometrics is the F
distribution. It is usually used for testing hypothesis in the context of
multiple regression analysis.
Let X1 ∼ χ2

k1
and X2 ∼ χ2

k2
be independent chi-squared random variables.

The, the random variable:
F = X1/k1

X2/k2

has an F distribution with (k1, k2) degrees of freedom, which we denote
by F ∼ Fk1,k2 .
The order of the degrees of freedom in Fk1,k2 is important:
I k1 - the numerator degrees of freedom - is associated with the

chi-square variable in the numerator, X1;
I k2 - the denominator degrees of freedom - is associated with the

chi-square variable in the denominator, X2;
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Now that we have introduced a few common distributions, we can look
back at our univariate regression model, and examine its distribution more
carefully. This also allows us to derive yet another model parameter
estimation method, which is based on the assumptions on the underlying
distribution of the data.



Univariate Linear Regression Model With Gaussian Noise

As before, let our linear equation be defined as:

Y = Xβ + ε

where:
I X can be either a non-random variable, or a random variable with

some arbitrary distribution.
I Var (ε|X) = Var (ε) = σ2

ε I - i.e. the error terms are independent of
X, independent across observations i = 1, ...,N and have a
constant variance.



As mentioned earlier, a consequence of (UR.4) assumption is that not only
are the residuals ε normal, but the OLS estimators as well:

β̂|X ∼ N
(
β, σ2 (X>X)−1)

The fact that the OLS estimators have a normal distribution can be shown
by applying a combination of the Central Limit Theorem and Slutsky’s
Theorem.

Additionally, if (UR.4) holds true, then it can be shown that:

Y|X ∼ N
(
Xβ, σ2I

)
Since:

E(Y|X) = E (Xβ + ε|X) = E (Xβ|X) = Xβ
Var (Y|X) = Var (Xβ + ε|X) = Var (ε|X) = σ2I

Furthermore, we see that a consequence of these assumptions is that Yi
and Yj are independent, given Xi and Xj , i 6= j .

https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Slutsky%27s_theorem
https://en.wikipedia.org/wiki/Slutsky%27s_theorem


We can also illustrate the distribution of Y graphically:
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E( Yi | Xi )= β0 + β1X



The assumption that the residual term is normal (or sometimes
called Gaussian) does not always hold true in practice.
If we believe that the random noise term is a combination of
a number of independent smaller random causes, all similar in
magnitude, then the error term will indeed be normal (via Central
Limit Theorem).

Nevertheless:
The Gaussian-noise assumption is important in that it gives us a
conditional joint distribution of the random sample Y, which in turn
gives us the sampling distribution for the OLS estimators of β.
The distributions are important when we are doing statistical in-
ference on the parameters - calculating confidence intervals or
testing null hypothesis for the parameters.
Furthermore, this allows us to calculate the confidence intervals
for E (Y|X), or prediction intervals for Ŷ, given a value of X.
Comparison of these intervals.

https://stats.stackexchange.com/a/271232


Consequently, we will see that the conditional probability density function
(pdf) of Y, given X is a multivariate normal distribution. For Yi , given Xi
the pdf is the same for each i = 1, ...,N. Lets first look at the cumulative
distribution function (cdf):

FY |X (yi |xi ) = P (Y ≤ yi |X = xi )
= P (β0 + β1X + ε ≤ yi |X = xi )
= P (β0 + β1xi + ε ≤ yi )
= P (ε ≤ yi − β0 − β1xi )
= Fε|X (yi − β0 − β1X |X = xi )

since ε ∼ N (0, σ2), it follows that the conditional pdf of Y on X is the
same across i = 1, ...,N:

fY |X (yi |xi ) = 1√
2πσ2

e
−

(yi − (β0 + β1xi ))2

2σ2



Because Yi are independent across observations, conditional on X, the
joint pdf is a product of the marginal pdf’s:

fY1,...,YN |X1,...,XN (y1, ..., yN |x1, ..., xN) =
N∏

i=1
fY |X (yi |xi )

=
N∏

i=1

1√
2πσ2

exp
[
− (yi − (β0 + β1xi ))2

2σ2

]

which we can re-write as a multivariate normal distribution:

fY|X(y|x) = 1
(2π)N/2(σ2)N/2 exp

[
−1
2 (y− xβ)>

(
σ2I
)−1 (y− xβ)

]



Having defined the distribution of our random sample allows us to
estimate the parameters in a different way - by using the probability
density function.

While the probability density function relates to the likelihood function
of the parameters of a statistical model, given some observed data:

L(β, σ2|y,X) = 1
(2π)N/2(σ2)N/2 exp

[
−1
2 (y− Xβ)>

(
σ2I
)−1 (y− Xβ)

]
The probability density function is a function of an outcome y, given
fixed parameters, while the likelihood function is a function of the
parameters only, with the data held as fixed.



Maximizing The Log-Likelihood Function - The MLE
In practice, it is much more convenient to work with the log-likelihood
function:
`(β, σ2|y,X) = log

(
L(β, σ2|y,X)

)
= −N

2 log(2π)− N log(σ)− 1
2σ2 (y− Xβ)> (y− Xβ)

Taking the partial derivatives allows us to fund the ML estimates:
∂`

∂β>
= − 1

2σ2
(
−2X>y + 2X>Xβ

)
= 0

∂`

∂σ2 = −N
2

1
σ2 + 1

2σ4 (y− Xβ)> (y− Xβ) = 0

which give us the ML estimators:

β̂ML =
(
X>X

)−1 X>Y

σ̂2 = 1
N

(
y− Xβ̂ML

)> (
y− Xβ̂ML

)
We see that these estimators exactly match the OLS estimators of β. This
is a special property of (UR.4) (and (UR.3)) assumption. The estimator of
σ2 is divided by N (instead of N − 2 in the OLS case).



Standard Errors of a MLE
The standard errors can be found by calculating the inverse of the square
root of the diagonal elements of the observed Fisher information matrix.
In general, the Fisher information matrix I(γ) is a symmetrical k × k
matrix (if the parameter vector is γ = (γ1, ..., γk)>), which contains the
following entries:

(I(γ))i,j = − ∂2

∂γi∂γj
`(γ), 1 ≤ i , j ≤ p

The observed Fisher information matrix is the information matrix
evaluated at the MLE: I(γ̂ML).
Most statistical software calculates and returns the Hessian matrix.
The Hessian is defined as H(γ):

(H(γ))i,j = ∂2

∂γi∂γj
`(γ), 1 ≤ i , j ≤ p

i.e. it is a matrix of second derivatives of the likelihood function with
respect to the parameters.



Often times we minimize the negative log-likelihood function (which is
equivalent to maximizing the log-likelihood function), then
I(γ̂ML) = H(γ̂ML). If we maximize the likelihood function, then
I(γ̂ML) = −H(γ̂ML).

Furthermore:
Var(γ) = [I(γ̂ML)]−1

and the standard errors are then the square roots of the diagonal
elements of the covariance matrix.

Generally, the asymptotic distribution for a maximum likelihood estimate
is:

γ̂ML ∼ N
(
γ, [I(γ̂ML)]−1

)



When to use MLE instead of OLS
Assuming that (UR.1) - (UR.3) holds. If we additionally assume that that
the property (UR.4) holds true, OLS and MLE estimates are equivalent.
See the lecture notes for an example.

The main takeaway is that when we are using OLS to estimate the
parameters by minimizing the sum of squared residuals, we do not make
any assumptions about the underlying distribution of the errors.

If the errors are normal, then MLE is equivalent to OLS. However, if we
have reason to believe that the errors are not normal, then specifying a
correct likelihood function would yield the correct estimates using MLE.



Example: Poisson Regression
A Poisson regression is sometimes known as a log-linear model. It is
used to model count data (i.e. integer-valued data):
I number of passengers in a plane;
I the number of calls in a call center;
I the number of insurance claims in an insurance firm, etc.

Poisson regression assumes the response variable Y has a poisson
distribution and that the logarithm of its expected value is modelled by a
linear combination of its expeected values. If we assume that our DGP
follows a Poisson regression, then:

Y ∼ Pois(µ), =⇒ E(Y ) = Var(Y ) = µ

and:
log(µ) = β0 + β1X ⇐⇒ µ = exp [β0 + β1X ]

This leads to the following model:

E(Y |X ) = exp [β0 + β1X ] ⇐⇒ log (E(Y |X )) = β0 + β1X

Since E[log(Y )|X ] 6= log(E[Y |X ]), we cannot simply take loga-
rithms of Y and apply OLS. However, we can apply MLE.



The likelihood function of Y is:

L(β|y,X) =
N∏

i=1

exp (yi · (β0 + β1xi )) · exp (− exp (β0 + β1xi ))
yi !

and the log-likelihood:

`(β|y,X) =
N∑

i=1
(yi · (β0 + β1xi )− exp (β0 + β1xi )− log(yi !))

We notice that the parameters β0 and β1 only appear in the first
two terms. Since our goal is to estimate β0 and β1, we can drop∑N

i=1 log(yi !) from our equation. This does not impact the maxi-
mization - removing (or adding) a constant value from an additive
equation will not impact the optimization.

On the other hand, the initial likelihood function L(β|y,X) is a
multiplicative equation - all the different terms are multiplied
across i = 1, ...,N.



This simplifies our expression to:

`(β|y,X) =
N∑

i=1
(yi · (β0 + β1xi )− exp (β0 + β1xi ))

Unfortunately, calculating ∂`(β|y,X)
∂β

will not yield a closed-form solution.
Nevertheless, we can use the standard optimization functions to find the
optimal parameter values.

Example: Let:
I Y - the number of people who visited a cafe,
I X - the rate of advertising done by a cafe (from 0 to 1).

We will generate an example with β0 = 1, β1 = 0.5 and N = 100.



set.seed(123)
#
N = 500
beta_0 <- 1
beta_1 <- 0.5
#
x <- seq(from = 0, to = 1,

length.out = N)
mu <- exp(beta_0 + beta_1 * x)
y <- rpois(n = N,

lambda = mu)

np.random.seed(123)
#
N = 500
beta_0 = 1
beta_1 = 0.5
#
x = np.linspace(start = 0, stop = 1,

num = N)
mu = np.exp(beta_0 + beta_1 * x)
y = np.random.poisson(lam = mu,

size = N)
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Next, we specify the log-likelihood functions:
from scipy.stats import poisson

log_lik <- function(par_vec, y, x) {
# The likelihood function values:
lik <- dpois(y,

lambda = exp(par_vec[1] + par_vec[2] * x))
# If all logarithms are zero,
# return a large value
if(all(lik == 0)) return(1e8)
# Logarithm of zero = -Inf
return(-sum(log(lik[lik != 0])))

}

def log_lik(par_vec, y, x):
# The likelihood function values:
lik = poisson.pmf(y,

mu = np.exp(par_vec[0] + par_vec[1] * x))
# If all logarithms are zero,
# return a large value
if all(v == 0 for v in lik):

return(1e8)
# Logarithm of zero = -Inf
return(-sum(np.log(lik[np.nonzero(lik)])))



Now, we can optimize the function and estimate the parameters:
coef_est <- optim(

par = c(0, 0),
fn = log_lik, hessian = T,
y = y, x = x)

print(coef_est)

## $par
## [1] 1.0120727 0.4729256
##
## $value
## [1] 994.7103
##
## $counts
## function gradient
## 57 NA
##
## $convergence
## [1] 0
##
## $message
## NULL
##
## $hessian
## [,1] [,2]
## [1,] 1758.9687 948.8248
## [2,] 948.8248 657.3466



import scipy.optimize as optimize
#
opt_res = optimize.minimize(

fun = log_lik,
x0 = [0, 0],
args = (y, x))

print(opt_res)

## fun: 1005.4483712482812
## hess_inv: array([[ 0.00793944, -0.01120125],
## [-0.01120125, 0.0168012 ]])
## jac: array([6.10351562e-05, 3.81469727e-05])
## message: 'Desired error not necessarily achieved due to precision loss.'
## nfev: 327
## nit: 8
## njev: 79
## status: 2
## success: False
## x: array([0.97663587, 0.52574927])



We see that the Maximum Likelihood (ML) estimates are close to the true
parameter values. In conclusion, the MLE is quite handy for estimating
more complex models, provided we know the true underlying
distribution of the data.

Since we don’t know this in practical applications, we can always look at
the histogram of the data, to get some ideas:
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As the data seems skewed to the right (indicating a non-normal
distribution), the values are non-negative and integer valued, we should
look-up possible distributions for discrete data, and examine, whether our
sample is similar to (at least one) of them.

Though in practice, this is easier said than done.



Let our process Y be a mixture of normal processes X1 ∼ N (1, (0.5)2)
and X2 ∼ N (4, 12) with equal probability and further assume that we
do not obeserve X1 and X2.
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As we can see from the histogram (which has two peaks) and
run-sequence plot (which appears to have values clustered around two
means), Y seems to be from a mixture of distributions.

For evaluating such cases, see Racine, J.S. (2008), Nonparametric
Econometrics: A Primer.

For example, the data could contain information from:
I two shifts at work;
I sales on weekdays and weekends;
I two factories, etc.

https://socialsciences.mcmaster.ca/racinej/ECO0301.pdf
https://socialsciences.mcmaster.ca/racinej/ECO0301.pdf


Confidence Intervals

We will continue to examine the univariate linear regression model:

Y = Xβ + ε

and assume that assumptions (UR.1) - (UR.4) hold.

In this section we will introduce the notion of interval estimation - a
procedure for creating ranges of values, called confidence intervals, in
which the unknown parameters are likely to be located.

Confidence interval creation procedures rely heavily on (UR.4) assumption.



Interval Estimation for Parameters
We used the OLS to estimate the unknown parameter vector:

β̂ =
(
X>X

)−1 X>Y

The estimates β̂ are called point estimates - we obtain a single value for
each parameter via OLS. In contrast interval estimates are ranges of
values, in which the true parameters β0 and β1 are likely to fall (the
interval estimates are calculated separately for each coefficient).
Interval estimation not only allows us to evaluate, what other possible
values could be obtainable, but also the precision with which the current
parameters are estimated. These interval estimates are also known as
confidence intervals.



As we have seen, if assumptions (UR.1) - (UR.4) hold true, then the OLS
estimators have a normal conditional distribution:

β̂|X ∼ N
(
β, σ2 (X>X)−1)

If you remember, we also mentioned how we can standardize any normal
distribution by subtracting its mean (in our case E(β̂i ) = βi , i = 0, 1) and
dividing by its standard deviation:

Zi = β̂i − βi√
Var(β̂i)

∼ N (0, 1)

Note that Zi distribution is not conditional on X . This means that when
we make statements about Zi , we do not have to worry, whether X is a
random variable, or not.

Since Zi ∼ N (0, 1), we can use a table of normal probabilities from any
statistical book, or online, and have that:

P(−1.96 ≤ Zi ≤ 1.96) = 0.95



Substituting the expression of Zi yields:

P

−1.96 ≤ β̂i − βi√
Var(β̂i)

≤ 1.96

 = 0.95

which we can rewrite as:

P
(
β̂i − 1.96

√
Var(β̂i) ≤ βi ≤ β̂i + 1.96

√
Var(β̂i)

)
= 0.95

This defines the interval which has a 0.95 probability of con-
taining the parameter βi . In other words the end-points:

β̂i ± 1.96
√
Var(β̂i), i = 0, 1

provide an interval estimator. If we construct intervals this way
using all possible samples of size N from a population, then 95%
of the intervals will contain the true parameter βi , i = 0, 1. Note
that this assumes that we know the true variance Var(β̂i).



As we have mentioned previously, we do not know the true variance of the
error term in Var(β̂) = σ2 (X>X)−1, but we can estimate it. However,
estimation and substitution of σ̂2 instead of σ2 changes the probability
distribution of Zi from a standard normal to a t-distribution with N − 2
degrees of freedom:

ti = β̂i − βi

se(β̂i )
∼ t(N−2)

where se(β̂i ) =
√
V̂ar(β̂i). This is known as the t-ratio (or t-statistic)

and it is the basis for interval estimation and hypothesis testing in the
univariate linear regression model.



Proof.
The proof of this can be seen from the fact that:

εi ∼ N (0, σ2) ⇐⇒ εi
σ
∼ N (0, 1)

then the sum of squared independent standardized residuals has the
chi-squared distribution with N degrees of freedom:

N∑
i=1

(εi
σ

)2
∼ χ2

N

Since the true errors are unobservable, we replace them by the OLS
residuals, then the random variable σ̂2 has a chi-squared distribution with
N − 2 degrees of freedom:

V =
∑N

i=1 ε̂
2
i

σ2 = (N − 2)σ̂2

σ2 =
(
N − 2
σ2

)
σ̂2 ∼ χ2

N−2



Proof (Cont.)
From the previously defined Zi = ... ∼ N (0, 1) and the newly defined
V ∼ χ2

N−2 we can define the following random variable:

ti = Zi√
V /(N − 2)

∼ t(N−2)

substituting the expressions of Zi and V , it can be shown that:

ti = β̂i − βi

se(β̂i )



For the 95th percentile of the t-distribution with N − 2 degrees of freedom
the value t(0.95,N−2) has the property that 0.95 of the probability falls to
its left: P

(
t(N−2) ≤ t(0.95,N−2)

)
= 0.95, where t(N−2) is from a

t-dsitribution with N − 2 degrees of freedom.

If we look at a statistical table of the percentile values for the
t-distribution, we can find a critical value tc , such that:

P(ti ≥ tc) = P(ti ≤ −tc) = α

2

where α is a probability, usually α = 0.01, α = 0.05 or α = 0.1. The
critical value tc for N − 2 degrees of freedom is the percentile value of
the t-distribution t(1−α/2,N−2).



We can illustrate this graphically for N = 10:
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Consequently, we can write the probability for the critical value tc as:

P(−tc ≤ ti ≤ tc) = 1− α

For a 95% confidence interval, the critical values define a region of the
t-distribution, with probability 1− α = 0.95. The remaining probability
α = 0.05 is divided equally (α/2 = 0.025) between two tails:

P(−t(0.975,N−2) ≤ ti ≤ t(0.975,N−2)) = 0.95

For the univariate linear regression case, the probability becomes:

P

(
−tc ≤

β̂i − βi

se(β̂i )
≤ tc

)
= 1− α

which we can rewrite as:

P
(
β̂i − tc · se(β̂i ) ≤ βi ≤ β̂i + tc · se(β̂i )

)
= 1− α



The interval estimator of βi is defined by these endpoints:

β̂i ± tc · se(β̂i )

Furthermore:
I the interval endpoints β̂i ± tc · se(β̂i ) are random because they

depend on the data sample;
I the interval β̂i ± tc · se(β̂i ) has probability 1− α of containing

the true unknown parameter βi . this is also known as interval
estimate of β̂i , or the 100 · (1− α)% confidence interval;



This also highlights a few very important points about confidence intervals
for OLS estimates:

I If we collect all possible samples of size N from a population,
calculate the OLS estimates β̂i , their standard errors se(β̂i )
and construct the confidence interval β̂i ± tc · se(β̂i ) for each
sample, then 100 · (1−α)% of all intervals constructed would
contain the true parameter βi .

I For a single sample, the interval estimate may of may not
contain the true parameter βi . Since βi is unknown, we will
never know whether this is true or not;

I When talking about confidence intervals, take note that we
are talking about the confidence in the procedure used to
construct these interval estimates, and not any one interval
estimate, which was calculated from a single sample of data.



We can also use confidence intervals in our interpretation of the
coefficients:

For a linear-linear univariate regression Ŷ = β̂0 + β̂1X we can
say, with 95% confidence that from an additional unit of X , the
dependent variable Y will exhibit a change between β̂1 − tc · se(β̂1)
and β̂1 + tc · se(β̂1).

See the lecture notes for an example.

The main takeaway from the example is that we do not know if β1 is
actually in the estimated interval. Newertheless, if we applied this
procedure to all possible data samples of size N from the same population,
then 95% of all constructed interval estimates will contain the true
parameter value β1.

Hence, the interval estimation procedure “works” 95% of the time.
Consequently, we only have one sample, but given the reliability of our
interval construction procedure, we would be “surprised” if the true
parameter value β1 is not in the calculated interval.



To sum up:
I We use the OLS estimators to obtain point estimates of unknown

parameters;
I The estimated variance and standard error se(β̂i ) =

√
V̂ar(β̂i)

provide information about the sampling variability of the OLS
estimators from one sample to another.

I Interval estimators combine point estimation with sampling variability
to provide a range of values, in which the true unknown parameter
value may fall.

I If an interval estimate is wide (which would imply a large standard
error), then it implies that we do not have enough information in the
sample to draw meaningful conclusions about β1.



Interval Estimation for the Mean Response
In additional to confidence intervals for β0 and β1, we can calculate a
confidence interval for the mean response. We would like an interval
estimate for the mean Ê(Y|X = X̃) = Ŷ = X̃β̂ for some value of X = X̃.
The expected value of Ŷ is an unbiased estimator of E(Y|X = X̃):

E(Ŷ) = E(X̃β̂) = X̃
(
E(β̂)

)
= X̃β

= E(Y|X = X̃)

The variance of the mean response is:

Var(Ŷ) = Var(X̃β̂)

= X̃Var(β̂)X̃>

= X̃σ2 (X>X)−1 X̃>

= σ2X̃
(
X>X

)−1 X̃>

Note that the variance of the mean response includes both X and
X̃, which may have different element values.



Like we have previously seen, if (UR.4) assumption holds true, then Ŷ
follows a normal distribution:(

Ŷ|X̃,X
)
∼ N

(
X̃β, σ2X̃

(
X>X

)−1 X̃>
)

where we can again, replace σ2, with its estimate σ̂2 = 1
N − 2

∑N
i=1 ε̂

2
i .

Let se(Ŷi ) =
√
V̂ar(Ŷi ) be the square root of the corresponding i-th

diagonal element of V̂ar(Ŷ). Then, the 100 · (1− α)% confidence
interval for the mean response can be calculated as:

Ŷi ± t(1−α/2,N−2) · se(Ŷi )

See the lecture notes for the continuation of the previous example.

Note that the confidence interval for the mean response is different
from the prediction interval for new observations, which we will
cover in a later section.



Rule of Thumb For Confidence Interval Construction
As we have seen, confidence intervals for the estimated parameters, or for
the mean response, can be computed for any sample size N > 2 and any
confidence level 0 ≤ α ≤ 1. Furthermore, the t-distribution approaches
the standard normal distribution as the degrees of freedom increases
(i.e. as the sample size N gets larger).
In particular for α = 0.05 we have that t1−α/2,N → 1.96 as N →∞:

import scipy.stats as stats

NN <- c(10, 100, 1000, 1e5, 1e6)
for(i in 1:length(NN)){

tmp_val <- qt(1 - 0.05 / 2,
NN[i])

print(paste0("N = ", NN[i],
" crit.val. = ",
round(tmp_val, 4)))

}
## [1] "N = 10 crit.val. = 2.2281"
## [1] "N = 100 crit.val. = 1.984"
## [1] "N = 1000 crit.val. = 1.9623"
## [1] "N = 1e+05 crit.val. = 1.96"
## [1] "N = 1e+06 crit.val. = 1.96"

NN = [10, 100, 1000, 1e5, 1e6]
for i in range(0, len(NN)):

tmp_val=stats.t.ppf(q=1-0.05/2,
df = NN[i])

print("N = " + str(NN[i]) +
" crit.val. = " +
str(np.round(tmp_val, 4)))

#
## N = 10 crit.val. = 2.2281
## N = 100 crit.val. = 1.984
## N = 1000 crit.val. = 1.9623
## N = 100000.0 crit.val. = 1.96
## N = 1000000.0 crit.val. = 1.96



In some cases, the population is clearly non-normal. In such cases, as
long as the sample size is sufficiently large then the OLS estimators,
and the sample mean estimators are approximately normal. This lets us
compute an approximate 95% confidence interval.

Let our estimate be (either an estimate of some model parameter,
or an estimate of other population parameters, like the process
mean) defined as b. Then a rule of thumb for an approximate
95% confidence interval is:[

b ± 1.96 · se(b)
]

Sometimes, an even more generalized rule of thumb
[
b ± 2 · se(b)

]
may

be used.



Hypothesis Testing

We have seen how to calculate OLS estimates and evaluate their
confidence intervals (which we can also interpret). However, in practice,
we usually want to answer very specific questions about the effects of
specific variables:
I Does income effect expenditure?
I Do more years in education lead to an increase in wage?

Hypothesis tests use the information about a parameter from the sample
data to answer such yes/no questions (though not necessarily in such
strong certainty).



Hypothesis Tests consist of:
I Specification of the null hypothesis, H0;
I Specification of the alternative hypothesis, H1;
I Specification of the test statistic and its distribution under the

null hypothesis;
I Selection of the significance level α in order to determine the

rejection region;
I Calculation of the test statistic from the data sample;
I Conclusions, which are based on the test statistic and the

rejection region;

We will look into each point separately.

As we have done throughout this course, assume that our linear regression
model is of the following form:

Y = Xβ + ε, where β =
[
β0
β1

]
and assume that (UR.1)-(UR.4) hold true.



The Null Hypothesis
The null hypothesis is denoted by H0, and for the univariate regression
can be stated as:

H0 : βi = c

where c is a constant value, which we are interested in. When testing the
null hypothesis, we may either reject or fail to reject the null hypothesis.

The null hypothesis, is presumed to be true, until the data
provides sufficient evidence that it is not.

If we fail to reject the null hypothesis, it does not mean the null hypothesis
is true. A hypothesis test does not determine which hypothesis is true, or
which is most likely: it only assesses whether available evidence exists to
reject the null hypothesis.



The Alternative Hypothesis
Once, we state our null hypothesis, we must test it against and
alternative hypothesis, denoted H1.
For the null hypothesis H0 : βi = c we may specify the alternative
hypothesis in thee possible ways:

I H1 : βi > c - rejecting H0, leads us to “accept” the conclusion that
βi > c. Economic theory frequently provides information about the
signs of the variable parameters. For example: economic theory
strongly suggests that food expenditure will rise if income increases,
so we would test H0 : βINCOME = 0 against H1 : βINCOME > 0.

I H1 : βi < c - rejecting H0, leads us to “accept” the conclusion that
βi < c.

I H1 : βi 6= c - rejecting H0, leads us to “accept” the conclusion that βi
is either greater or smaller than c.

We usually talk about hypothesis testing in terms of the null,
i.e. we either reject or fail to reject the null - we never accept
the null. As such, if we reject the null, then we “accept” (i.e. we
are left with) the alternative.



The Test Statistic
The test statistic is calculated under the null hypothesis (i.e. assuming
the null hypothesis is true). Under the null hypothesis the distribution of
the statistic is known. Based on the value of the test statistic, we decide
whether to reject, or fail to reject the null.

Under the null hypothesis H0 : βi = c of our univariate regression model,
we can calculate the following t-statistic:

ti = β̂i − c
se(β̂i )

∼ t(N−2)

If the null hypothesis is not true, then the t-statistic does not have a
t-distribution with N − 2 degrees of freedom, but some other distribution.



The Rejection Regions
The rejection region consists of values that have low probability of
occurring when the null hypothesis is true. The rejection region depends
on the specification of the alternative hypothesis. If the calculated test
statistic value falls in the rejection region (i.e. an unlikely event to occur
under the null), then it is unlikely that the null hypothesis is holds.

The size of the rejection regions are determined by choosing a level of
significance α - a probability of the unlikely event, usually 0.01, 0.05, 0.1.

To determine, whether to reject the null hypothesis or not, we will
compare the calculated t-statistic ti to the critical value tc .



Type I and Type II Errors
When deciding whether to reject the null hypothesis or not, we may
commit one of two types of errors:
I Type I error - to reject the null hypothesis when it is true. The

probability of committing Type I error is
P(H0 rejected|H0 is true) = α. Any time we reject the null
hypothesis, it is possible that we have made such an error. We can
specify the amount of Type I error, that we can tolerate, by setting
the level of significance α. If we want to avoid making a Type I error,
then we set α to a very small value.

I Type II error - to not reject the null hypothesis when it is false.
We cannot directly calculate the probability of this type of error, since
it depends on the unknown parameter βi . However, we do know that
by making α smaller we increase the probability of Type II error.

It is believed that a Type I error is more severe, hence, it is recommended
to make the probability α small.



The p-value
When reporting the outcome of statistical hypothesis tests, we usually
report the p-value of the test. The p-value is defined as the probability,
under the null hypothesis, of obtaining a result, which is equal to, or more
extreme, than what was actually observed.

Having the p-value allows us to easier determine the outcome of the test,
as we do not need to directly compare the critical values.

I If p ≤ α, we reject H0.
I If p ≥ α, we do not reject H0.



One Tail Tests
One tail tests involve testing the null hypothesis against an alternative
hypothesis, where the true regression parameter is greater, or H1 where it
is less than the specified constant c from the null H0 : βi = c.

Alternative, >
We are testing the null hypothesis H0 : βi = c against the alternative
H1 : βi > c: {

H0 : βi = c
H1 : βi > c

We reject H0 and accept the alternative H1, if ti ≥ t(1−α,N−2),
where tc = t(1−α,N−2).

Regarding p-value - it is the probability to the right of the calculated
t-statistic and can be calculated as:

p-value = P(T ≥ ti ) = P(T > ti ) = 1− P(T ≤ ti ) = 1−
∫ ti

−∞
p(x)dx

where p(x) is the density function of the distribution of t-statistic under
the null hypothesis. For the univariate regression, under the null
hypothesis it is Students t-distribution with N − 2 degrees of freedom.



See the lecture notes for the code.
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If we see that the p-value is less than the 5% significance level (as well as
the fact that the calculated t-statistic is greater than the critical value) -
we reject the null hypothesis and conclude that β1 is statistically
significantly greater than zero.



Alternative, <
We are testing the null hypothesis H0 : βi = c against the alternative
H1 : βi < c: {

H0 : βi = c
H1 : βi < c

We reject H0 and accept the alternative H1, if ti ≤ t(α,N−2),
where tc = t(α,N−2).

Regarding p-value - it is the probability to the left of the calculated
t-statistic and can be calculated as:

p-value = P(T ≤ ti ) =
∫ ti

−∞
p(x)dx

where p(x) is the density function of the distribution of t-statistic under
the null hypothesis. For the univariate regression, under the null
hypothesis it is Students t-distribution with N − 2 degrees of freedom.



See the lecture notes for the code.
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If we see that the p-value is less than the 5% significance level (as well as
the fact that the calculated t-statistic is less than the critical value) - we
reject the null hypothesis and conclude that β1 is statistically significantly
less than zero.



Two Tail Tests, 6=
We are testing the null hypothesis H0 : βi = c against the alternative
H1 : βi 6= c: {

H0 : βi = c
H1 : βi 6= c

We reject H0 and accept the alternative H1, if ti ≤ t(α/2,N−2)
or if ti ≥ t(1−α/2,N−2).

Regarding p-value - it is the sum of probabilities to the right of |ti | and to
the left of −|ti | and can be calculated as:

p-value = P(T ≤ −|ti |) + P(T ≥ |ti |)

= 1− P(−|ti | ≤ T ≤ |ti |) = 1−
∫ |ti |

−|ti |
p(x)dx

= 2 · P(T ≤ −|ti |) = 2 ·
∫ −|ti |

−∞
p(x)dx

where p(x) is the density function of the distribution of t-statistic under
the null hypothesis. For the univariate regression, under the null
hypothesis it is Students t-distribution with N − 2 degrees of freedom.



See the lecture notes for the code.
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We see that the p-value is greater than the 5% significance level (as well
as the fact that the calculated t-statistic is greater than the critical value),
so we have no grounds to reject the null hypothesis that β1 is not
statistically significantly different zero.



Conclusions of the Test
After completing the hypothesis test, we need to draw our conclusions -
whether we reject, or fail to reject the null hypothesis.

Having estimated a model, our first concern is usually to determine,
whether there is a relationship between the dependent variable Y ,
and the independent variable X . If β1 = 0 in a univariate regression,
then there is no linear relationship between Y and X .

In other words, are usually interested in determining if a coefficient of
a predictor is significantly different from zero, that is H0 : βi = 0.
This is also called a test of significance.

I If we reject H0, then we say that β1 is statistically
significantly different from zero. Usually we want our
model to have only significant variables included.

I If we fail to reject H0, then we say that βi is not statistically
significant. In such a case, we usually want to remove the
insignificant variable (or replace it with another, hopefully
significant, variable).



Statistical Significance versus Economical significance
We have emphasized statistical significance throughout this section.
However, we should also pay attention to the magnitude of the estimated
coefficient. In other words:
I The statistical significance of a parameter β̂i is determined by the

size of the t-statistic ti .
I The economic (or practical) significance of a variable is related to

the size and sign of β̂i .



Example
Let’s say our estimated model is:

Ŷ
(se)

= 2000
(200)

+ 0.0001
(0.00001)

X

where Y - is the total value of ice cream sales in EUR, and X is the
expenditure on advertising in EUR.

Then the t-statistic for H0 : β1 = 0 against H1 : β1 6= 0 is
t1 = β̂1/se(β̂1) = (0.01)/(0.001) = 10, which would be much greater than
any critical value with α = 0.05. This means that an additional EUR spent
in advertising would result in 0.01 EUR of ice cream sales.

While this is statistically significantly different from zero, it may
not be economically significantly different from zero.

If advertisement increases by 10000 EUR, then the average value on ice
cream sales increases by 1 EUR - would it be worth for an ice cream
company to increase their spending on advertisement in this specific case?



Null Hypothesis and The Parameter Confidence Interval
The two-tail tests and parameter confidence intervals are closely related.
Assume that we want to test the following:{

H0 : βi = c
H1 : βi 6= c

Looking back at the parameter confidence interval estimation, we have
that:

P
(
β̂i − tc · se(β̂i ) ≤ βi ≤ β̂i + tc · se(β̂i )

)
= 1− α

Which leads to the 100 · (1− α) confidence interval:[
β̂i − tc · se(β̂i ); β̂i + tc · se(β̂i )

]
Under the null hypothesis we would have that βi = c.



So, if we test the null hypothesis against the two-tailed alternative, then
we should check if c belongs to the confidence interval:

I If c ∈
[
β̂i − tc · se(β̂i ); β̂i + tc · se(β̂i )

]
, we will (most likely) not

reject H0 at the level of significance α.
I If c /∈

[
β̂i − tc · se(β̂i ); β̂i + tc · se(β̂i )

]
, we will (most likely)

reject H0.

Note that this is not an alternative to hypothesis testing - you
should still carry our the tests by calculating the critical values and
t-statistics. This is a neat trick to have a preliminary view of what would
most likely be the outcome of the tests.

Null Hypothesis with inequalities: ≤ or ≥
See lecture notes on this topic, which highlights the fact that we never
accept, but rather do not reject the null hypothesis as it not only does
not give us a concrete answer (in this case multiple null hypothesis are
compatible with our data sample) but also depends on the specification of
both the null and the alternative hypothesis.



I We have reviewed a few frequently encountered distributions in
econometrics;

I We have examined another estimation method, which relies on (UR.4)
and as such, on the distribution of the dependent variable as well.

I We have examined how confidence intervals are constructed for the
estimated parameters, as well as for the mean response.

I We have analysed the steps required to carry out a hypothesis test,
starting from hypothesis specification, and ending with drawing
conclusions based on test results.

I We have presented various ways to plot the data in order to determine
the relations between different variables, or to examine the residuals.

Examples using empirical data
From the Lecture notes Ch. 3.10 continue with the dataset(-s) that you
have used from the previous exercise set and do the tasks from Exercise
Set 3 from Ch 3.10. See Ch. 3.11 for an example.


