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Introduction
Panel data combines cross-sectional and time series data: the same
individuals (persons, firms, cities, etc.) are observed at several points in
time (days, years, before and after treatment etc.).

Panel data allows you to control for variables you cannot observe or
measure like:

I cultural (like country or region specific) factors;
I difference in business practices across companies;
I etc.

or variables that change over time but not across entities:

I national policies;
I federal regulations;
I international agreements;
I etc.

This is, it accounts for individual heterogeneity (individual effects).



## country year Y X1 X2 X3
## C1 2000 8.8790 4.1087 3.7014 1.1534
## C1 2001 9.5396 7.4482 2.5272 -0.1381
## C1 2002 13.1174 5.7196 1.9322 2.2538
## C2 2000 10.1410 5.8015 2.7820 1.4265
## C2 2001 10.2586 5.2214 1.9740 0.7049
## C2 2002 13.4301 3.8883 2.2711 1.8951
## C3 2000 10.9218 8.5738 2.3750 1.8781
## C3 2001 7.4699 5.9957 1.3133 1.8216
## C3 2002 8.6263 1.0668 3.8378 1.6886

The above data presentation is termed a stacked time series (one time
series is stacked above another). If one cross-section is above another,
this is called a stacked cross section. If we remove the individual and
year attributes and do not make any distinction between cross section
and time series, this is called a pooled data organization.



The Econometric Model
Consider the multiple linear regression model for individual i = 1, ...,N
who is observed at several time periods t = 1, ...,T :

yit = α + x ′itβ + z ′i γ + ci + uit

where:

I yit - the dependent variable;
I xit - a K − dimensional row vector of time-varying explanatory

variables;
I zi - an M − dimensional row vector of time-invariant explanatory

variables, excluding the constant;
I α - the intercept;
I β - a K − dimensional column vector of parameters;
I γ - a M − dimensional column vector of parameters;
I ci - an individual-specific effect;
I uit - a idiosyncratic error term (observation-specific zero-mean

random-error term, analogous to the random-error term of
cross-sectional regression analysis).



If each individual in the data set is observed the same number of times,
the data set is a balanced panel. An unbalanced panel data set is one
in which individuals may be observed different numbers of times. Some
functions are operational only for balanced data.

The T observations for an individual i can be summarized as follows:

Yi =


yi1
...

yit
...

yiT


T×1

, Xi =


x ′i1
...

x ′it
...

x ′iT


T×K

, Zi =


z ′i
...
z ′i
...
z ′i


T×M

, uit =


ui
...

uit
...

uiT


T×1

The NT observations for all individuals and all time periods can be
summarized as follows:

Y =


Y1
...

Yi
...

YN


NT×1

, X =


X1
...

Xi
...

XN


NT×K

, Z =


Z1
...
Zi
...

ZN


NT×M

, u =


u1
...
ui
...

uN


NT×1



The data generation process (DGP) is described by:

1. PL1: Linearity

yit = α + x ′itβ + z ′i γ + ci + uit , where E[uit ] = 0, and E[ci ] = 0

i.e. the model is linear in parameters α, β, γ, effect ci and error uit .
2. PL2: Independence

{Xi , zi ,Yi}N
i=1, i.i.d. (independent and identcally distributed)

The observations are independent across individuals but not
necessarily across time. This is guaranteed by random sampling of
individuals.



3. PL3: Strict Exogeneity

E[uit |Xi , zi , ci ] = 0, (mean independent)

The idiosyncratic error term uit is assumed uncorrelated with the
explanatory variables of all past, current and future time periods of
the same individual. This is a strong assumption which e.g. rules
out lagged dependent variables. It also assumes that the
idiosyncratic error is uncorrelated with the individual specific effect.

4. PL4: Error Variance
4.1 Var [ui |Xi , zi , ci ] = σ2

uI, σ2
u > 0 and finite (i.e. homoscedastic and

no serial correlation);
4.2 Var [uit |Xi , zi , ci ] = σ2

u,it I, σ2
u,it > 0 and finite and

Cov [uit , uis |Xi , zi , ci ] = 0, ∀s 6= t (i.e. no serial correlation);
4.3 Var [ui |Xi , zi , ci ] = Ωu,i is positive-defined and finite.

The remaining assumptions are divided into two sets of assumptions:

I The random effects model;
I The fixed effects model.



The Random Effects Model
In the random effects model, the individual-specific effect, ci is a random
variable, that is uncorrelated with the explanatory variable.

1. RE1: Unrelated effects

E[ci |Xi , zi ] = 0

RE1 assumes that the individual-specific effect is a random variable
that is uncorrelated with the explanatory variables of all past,
current and future time periods of the same individual.

2. RE2: Effect Variance
2.1 Var [ci |Xi , zi ] = σ2

c < ∞ (homoscedastic, assumes constant variance
of the individual specific effect);

2.2 Var [ci |Xi , zi ] = σ2
c,i < ∞ (heteroscedastic).

RE2.1 assumes constant variance of the individual specific effect.
3. RE3: Indentifiability

3.1 rank(W ) = K + M + 1 < NT and E[WiW ′
i ] = QWW is

positive-defined and finite. The typical element w ′it = [1 x ′it z ′i ].
3.2 rank(W ) = K + M + 1 < NT and E[Wi Ω−1

v,uW ′
i ] = QWW is positive

defined and finite.
RE3 assumes that the regressors including a constant are not perfectly collinear, that all regressors (but the constant) have
non-zero variance and not too many extreme values.



The random effects model can be rewritten as:
yit = α + x ′itβ + z ′i γ + vit

where vit = ci + uit . Assuming PL2, PL4 and RE1. In special versions of
PL4.1 and RE2.1 leads to:

Ωv = Var [v |X ,Z ] =


Ωv ,1 . . . 0 . . . 0

...
. . .

...
0 Ωv ,i 0
...

. . .
...

0 . . . 0 . . . Ωv ,N


NT×NT

with element:

Ωv ,i = Var [vi |Xi , zi ] =


σ2

v σ2
c . . . σ2

c
σ2

c σ2
v . . . σ2

c
...

...
. . .

...
σ2

c σ2
c . . . σ2

v


T×T

where σ2
v = σ2

c + σ2
u.

The Random Effects approach takes ci to be a group-specific random
term (similar to uit) except that for each group, there is but a single draw
that enters the regression identically in each period.



The Fixed Effects Model
In the fixed model, the individual-specific effect is a variable that is
allowed to be correlated with the explanatory variables.

1. FE1: Related effects
E[ci |Xi , zi ] 6= 0

Explicitly states the absence of the unrelatedness assumption in RE1.
2. RE2: Effect Variance

Because of assumption FE1, FE2 states the absence of the
assumption in RE2.

3. RE3: Indentifiability
rank(Ẍ ) = K < NT and E[ẍ ′i ẍi ] is positive-defined and finite, where
the typical element ẍit = xit − x̄i and x̄i = 1/T

∑
t xit .

FE3 assumes that the time-varying explanatory variables are not perfectly
collinear, that they have non-zero within-variance (i.e. variation over time
for a given individual) and not too many extreme values. Hence, Xit
cannot include a constant or any time-invariant variables. Note that only
the parameters β but neither α, nor γ are identifiable in the fixed effects
model.

The Fixed Effects approach takes ci to be a group-specific constant term.



Autoregressive Panel Models (of order 1)

Panel data models are after all regression models, therefore we can
analyze dynamic regression models as well, for example:

yit = α + y ′i,t−1δ + x ′itβ + z ′i γ + ci + uit

However, some specific problems arise when a lag of the dependent
variable is included among the regressors in a panel model (this is
connected with the fact that yit is found to be correlated with the error
term. In this case, the OLS estimators of the coefficients will be biased
and inconsistent).



I One strategy for handling this problem is to take first differences for
sweeping out the group effects:

∆yit = δ∆yi,t−1 + ∆x ′itβ + (uit − ui,t−1)

To remove the still existing correlation between ∆yi,t−1 and
uit − ui,t−1, it is suggested to use an instrument for ∆yi,t−1 (it can
be yi,t−2 or ∆yi,t−2).

I Another, is to use the DPD (Dynamic Panel Data) approach.
I The so-called Arellano-Bond estimator is based on the notion that

the instrumental variables approach noted above does not exploit all
of the information available in the sample. By doing so in a
Generalized Method of Moments (GMM) context, we may construct
more efficient estimates of the dynamic panel data model.

I The GMM estimator which was suggested by Arellano and Bond is
known to be rather inefficient when instruments are weak because
making use of the information contained in differences only. Blundell
and Bond suggest making use of additional level information besides
the differences. The combination of moment restrictions for
differences and levels results in an estimator which was called
GMM-system-estimator by Arrellano and Bond (or The
Blundell-Bond estimator).



Pooled OLS (POLS) Estimation
The pooled OLS estimator ignores the panel structure of the data and
simply estimates α, β and γ as:α̂POLS

β̂POLS
γ̂POLS

 = (W ′W )−1W ′Y

where W = [1NT×1 X Z ].

I Random Effects Model:
The pooled OLS estimator of α, β and γ is unbiased under the
assumptions PL1, PL2, PL3 and RE3 in small samples.However, the
pooled OLS estimators is not efficient. More importantly, the usual
standard errors of the pooled OLS estimator are incorrect and tests
(t − test, F − test, z − test, Wald − test) based on them are not
valid.

I Fixed Effects Model:
The pooled OLS estimator of α, β and γ are biased and
inconsistent, because the variable ci is omitted and potentially
correlated with the other regressors.



Random Effects (RE) Estimation
The random effects estimator is the feasible generalized least squares
(GLS) estimator: α̂RE

β̂RE
γ̂RE

 = (W ′Ω̂−1
v W )−1W ′Ω̂−1

v Y

where W = [1NT×1 X Z ].

I Random Effects Model:
We cannot establish small sample properties for the RE estimator.
The RE estimator is consistent and asymptotically normally
distributed when N →∞ if T is fixed.

I Fixed Effects Model:
Under the assumptions of the fixed effects model (FE1, i.e. RE1 is
violated), the random effects estimator of α, β and γ are biased and
inconsistent, because the variable ci is omitted and potentially
correlated with the other regressors.



Fixed Effects (FE) Estimation

Subtracting time averages ȳi = 1/T
∑

t yit from the initial model:

yit = α + x ′itβ + z ′i γ + ci + uit

yields the within model:

ÿit = ẍ ′itβ + üit

where ÿit = yit − ȳi , ẍitk − xitk − x̄ik and üit = uit − ūi . Note that the
individual-specific effect ci , the intercept α and the time-invariant
regressors zi cancel.

The fixed effects estimator or the within estimator of the slope coefficient
β estimates the within model by OLS:

β̂FE =
(
Ẍ ′Ẍ

)−1 Ẍ Ÿ

Note that the parameters α and γ are not estimated by the within
estimator.



First Differences (FD) Estimator
Subtracting the lagged value yi,t−1 from the initial model:

yit = α + x ′itβ + z ′i γ + ci + uit

yields the first-difference model:

ẏit = ẋ ′itβ + u̇it

where ẏit = yit − yi,t−1, ẋit = xit − xi,t−1 and u̇it = uit − ui,t−1. Note
that the individual-specific effect ci , the intercept α and the
time-invariant regressors zi cancel. The first-difference estimator (FD) of
the slope coefficient β estimates the first-difference model by OLS:

β̂FD =
(
Ẋ ′Ẋ

)−1 Ẋ ′Ẏ

Note that the parameters α and γ are not estimated by the FD estimator.

In the special case, T = 2, the FD estimator is numerically identical to
the FE estimator.

The FD estimator is a consistent estimator of β under the same
assumptions as the FE estimator. it is less efficient than the FE estimator
if uit is not serially correlated (PL4.1).



Random Effects vs. Fixed Effects Estimation
The random effects model can be consistently estimated by both the RE
estimator or the FE estimator. We would prefer the RE estimator if we
can be sure that the individual-specific effect really is an unrelated effect
(RE1)

The Hausman test can be used to differentiate between fixed effects
model and random effects model in panel data. In this case, Random
effects (RE) is preferred under the null hypothesis due to higher efficiency
(i.e. has the smallest asymptotic variance, at least compared to the FE
estimator), while under the alternative Fixed effects (FE) is at least
consistent and thus preferred:

H0 is true H1 is true
β̂RE Consistent Inconsistent

Efficient
β̂FE Consistent Consistent

Inefficient



Example

Example panel data in a stacked cross-section form, where y - is the
output and x1 is the predictive variable. This is a balanced panel
example:

suppressPackageStartupMessages({
library("readxl")
library("plm")
library("gplots")

})
txt1 <- "http://web.vu.lt/mif/a.buteikis/wp-content/"
txt2 <- "uploads/2018/05/pp.xlsx"
tmp = tempfile(fileext = ".xlsx")
download.file(url = paste0(txt1, txt2),

destfile = tmp, mode = "wb")
ex.dt <- data.frame(read_excel(path = tmp))



We can explore our data (left-most graph in the bottom line is for
country A, next to the right is for B etc.):

coplot(y ~ year | country, type = "b", data = ex.dt)
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par(mfrow = c(1,2))
plotmeans(y ~ country, main="Heterogeneity across countries",

data = ex.dt)
plotmeans(y ~ year, main="Heterogeneity across years",

data = ex.dt)

In the plots below: The country effect on the mean of y (left) and the
year (progress) effect on y (right) (95% confidence interval around the
means is included).
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The main purpose of the panel data analysis is to quantify the x1 effect
on y.



Some modelling using ‘lm’
We start either with the pooled model:

yit = α + βx1it + εit , i = 1, ...,N, t = 1, ...,T

pooled = lm(y ~ x1, data = ex.dt)
round(summary(pooled)$coef, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1524319070 621072624 2.4543 0.0167
## x1 494988914 778861261 0.6355 0.5272

or with OLS models, restricted to individual countries. For example:

countryB=lm(y ~ x1, data = ex.dt[ex.dt$country=="B",])
round(summary(countryB)$coef, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3453776646 1059056889 -3.2612 0.0115
## x1 7139367737 1755562974 4.0667 0.0036

note the difference in the coefficients.



In the Pooled OLS case, we assume the same coefficients across all
countries whereas in the second case, we estimate a model on the data
from country B only.

Both approaches have some drawbacks - the pooled model does not take
into account heterogeneity across countries while individual model are
based on small number of observations and do not consider common
features of the countries (all they interact and experience the same
influence of the progress). One possibility to take this common
environment into account is to use the fixed effects (FE) model. To allow
for the country effect, we introduce dummy variables Di =
factor(country):

yit = α + βx1it +
N∑

i=1
νiDi + εit =


α + βx11t + ν1 + ε1t , i = 1
α + βx12t + ν2 + ε2t , i = 2
...

α + βx1Nt + νN + εNt , i = N



fixed = lm(y ~ x1 + factor(country) - 1, data = ex.dt)
round(summary(fixed)$coef, 4)

## Estimate Std. Error t value Pr(>|t|)
## x1 2475617827 1106675594 2.2370 0.0289
## factor(country)A 880542404 961807052 0.9155 0.3635
## factor(country)B -1057858363 1051067684 -1.0065 0.3181
## factor(country)C -1722810755 1631513751 -1.0560 0.2951
## factor(country)D 3162826897 909459150 3.4777 0.0009
## factor(country)E -602622000 1064291684 -0.5662 0.5733
## factor(country)F 2010731793 1122809097 1.7908 0.0782
## factor(country)G -984717493 1492723118 -0.6597 0.5119

Note that now, when we take into account country, the coefficient at
x1 is significant and quite different from that of the pooled model.



To compare the models visually, we use:

par(mfrow = c(1, 2))
plot(ex.dt$x1, ex.dt$y, col = as.factor(ex.dt$country),

pch = 15, main = "POOLED OLS")
abline(pooled, lwd = 5, lty = 2)

plot(ex.dt$x1, ex.dt$y, col = as.factor(ex.dt$country),
pch = 15, main = "Fixed Effects")

lines(ex.dt$x1[ex.dt$country=="A"],
predict(fixed, newdata=ex.dt[ex.dt$country=="A",]),
col=1,lwd=3)

lines(ex.dt$x1[ex.dt$country=="B"],
predict(fixed, newdata=ex.dt[ex.dt$country=="B",]),
col=2,lwd=3)

And we continue adding lines()’s for countries A through G:

lines(ex.dt$x1[ex.dt$country=="G"],
predict(fixed, newdata=ex.dt[ex.dt$country=="G",]),
col=7,lwd=3)



Pooled model (left) and fixed effects model (right):
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Individual countries models:

car::scatterplot(y ~ x1 | country, data = ex.dt,
legend.coords="topleft",
smoother = FALSE, lwd=3, reset.par = FALSE)
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Using ‘plm’ function to estimate panel data models

To use a more systematic approach, we shall apply the plm (linear model
for panel data) package.

suppressPackageStartupMessages({library(plm)})

I Pooled OLS:

pooled = plm(y ~ x1, data = ex.dt, index = c("country", "year"),
model = "pooling")

round(summary(pooled)$coef, 4)

## Estimate Std. Error t-value Pr(>|t|)
## (Intercept) 1524319070 621072624 2.4543 0.0167
## x1 494988914 778861261 0.6355 0.5272



I Fixed Effects Estimator:

fixed = plm(y ~ x1, data = ex.dt, index = c("country", "year"),
model="within")

round(summary(fixed)$coef, 4)

## Estimate Std. Error t-value Pr(>|t|)
## x1 2475617827 1106675594 2.237 0.0289

We can also extract the individual-specific (fixed) effects:

fixef(fixed)

## A B C D E F
## 880542404 -1057858363 -1722810755 3162826897 -602622000 2010731793
## G
## -984717493



Should we even include fixed effects in our model? We can test this by
comparing Fixed Effects (with individual-specific effects) and Pooled
models (no individual effects).

We will use the F − test to test the null hypothesis:

H0 : all the constants (i.e. the fixed effects) equal 0

pFtest(fixed, pooled)

##
## F test for individual effects
##
## data: y ~ x1
## F = 2.9655, df1 = 6, df2 = 62, p-value = 0.01307
## alternative hypothesis: significant effects

Because p-value = 0.01307 < 0.05, we reject the null hypothesis.
So, the fixed effects model is better.



As we know, we have two cases of individual-specific effect model
specification: FE and RE.

Usually, there are too many parameters in the FE model and the loss of
degrees of freedom can be avoided if ci in yit = α + x ′itβ + z ′i γ + ci + εit
are assumed random. More specifically, ci ∼ i .i .d(0, σ2

v ),
εit ∼ i .i .d .(0, σ2

ε ), E(ci + εit |X ) = σ2
v + σ2

ε , E(ci + εit)(cj + εjt)|X ) = σ2
v .

The just presented conditions mean that the random effects (RE) model
fits into the framework of a generalized LS model with autocorrelated
within a group disturbances. In particular, the parameters of the RE
model can be estimated consistently, though not efficiently, by OLS.

The RE model is an appropriate specification if we are drawing N
individuals randomly from a large population (this is usually the case for
household panel studies; in this case, N is usually large and a fixed effects
model would lead to an enormous loss of degrees of freedom).



I Random Effects Estimator:

random = plm(y ~ x1, data = ex.dt, index = c("country", "year"),
model = "random")

round(summary(random)$coef, 4)

## Estimate Std. Error t-value Pr(>|t|)
## (Intercept) 1037014284 790626206 1.3116 0.1941
## x1 1247001782 902145601 1.3823 0.1714

Interpretation of the coefficient is tricky since it includes both the effects
inside a country and between countries. In the case of time series-cross
sectional data, it represents the average effect of X over Y when X
changes across time and between countries by one unit.



Which of the three models to use? One hint is given by the Effects
summary:

summary(random)$ercomp

## var std.dev share
## idiosyncratic 7.815e+18 2.796e+09 0.873
## individual 1.133e+18 1.065e+09 0.127
## theta: 0.3611

Here idiosyncratic = σ̂2
ε , individual = σ̂2

c .

Specifically, by the quantity theta= θ = 1− σε√
σ2
ε + Tσ2

v
:

I We always have 0 ≤ θ ≤ 1;
I If θ = 0, the model becomes a pooled model;
I If θ = 1, the model becomes a FE model.

As a rule, σ2
c is much bigger than σ2

ε , thus θ, or, more specifically,
θ̂ = 1−

√
σ̂2
ε/(σ̂2

ε + T σ̂2
c ) must be close enough to 1.

The same applies, when T is big: in both cases, FE and RE models are
close.



To formally decide between fixed or random effects, you can run a
Hausman test where the null hypothesis is that the preferred model is RE
vs. the FE alternative.

It basically tests whether the unique errors νi are correlated with the
regressors (the null hypothesis is they are not), thus if the p-value is
small, for example <0.05, then use fixed effects, if not use random
effects.

phtest(fixed, random)

##
## Hausman Test
##
## data: y ~ x1
## chisq = 3.674, df = 1, p-value = 0.05527
## alternative hypothesis: one model is inconsistent

We note that p-value = 0.05527 which is very close to 0.05. On the
other hand, since we have to choose one, because p-value > 0.05, we
do not reject the null hypothesis. As such both models are consistent,
but the RE estimator is also efficient, so we choose the RE model.



Summary

In short, in order to estimate a panel data model:

yit = α + x ′itβ + z ′i γ + ci + uit

we use the Least-Squared (OLS) Methods:

I In the Pooled regression case, we assume ci = 0;
I In the Fixed Effect case, we treat ci as individual dummy variables;
I In the Random Effect case, the errors ci + εit are autocorrelated,

thus, we apply a Generalized Least-Squares (GLS) method.


