
Time Series: Issues with R

Andrius Buteikis, andrius.buteikis@mif.vu.lt
http://web.vu.lt/mif/a.buteikis/

mailto:andrius.buteikis@mif.vu.lt
http://web.vu.lt/mif/a.buteikis/

R Issues

There are various (sometimes little, sometimes more serious) issues and
function specifics which may do always seem to make sense. A number of
them are mentioned at the homepage of Time Series, 4th Edition

https://www.stat.pitt.edu/stoffer/tsa4/Rissues.htm

Issue No. 1: Functions with the same names override one
another
There are two quite popular packages are plyr and dplyr. First, look at
what happens when you load ‘dplyr:

library(dplyr)

Warning: package 'dplyr' was built under R version 3.5.2

##
Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
##
filter, lag

The following objects are masked from 'package:base':
##
intersect, setdiff, setequal, union

As you can see, functions like filter and lag are overloaded with the new
ones from the package.

Now assume that we want to load plyr:

library(plyr)

You have loaded plyr after dplyr - this is likely to cause problems.
If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
library(plyr); library(dplyr)

##
Attaching package: 'plyr'

The following objects are masked from 'package:dplyr':
##
arrange, count, desc, failwith, id, mutate, rename, summarise,
summarize

In addition to function overloading we now get an additional warning
specifically for this package.

https://en.wikipedia.org/wiki/Function_overloading

I If we want to have both plyr and dplyr, we need to firstly load
plyr and THEN dplyr;

I We need to be careful in regards to function names - we might
override functions from some packages with newer ones from
different packages.

I You can load specific functions by referencing the package, like
plyr::some_function(...) and dplyr::another_function() -
this prevents errors, though for more advanced functions and/or
expressions, additional functions from the package may need to be
loaded, see import package.

I plyr and dplyr may have additional conflicts with some
Multivariate AR (VAR) model packages.

https://cran.r-project.org/web/packages/import/vignettes/import.html

Issue No. 2: dplyr and the lag() function
Assume that our data Yt starts at time t = 1

x <- ts(1:5)
x

Time Series:
Start = 1
End = 5
Frequency = 1
[1] 1 2 3 4 5

Assume that we want to automatically create Yt−1.
By default the lag() function is a forward shift (i.e. into the future):

cbind(x, lag(x), lag(x, -1))

Time Series:
Start = 0
End = 6
Frequency = 1
x lag(x) lag(x, -1)
0 NA 1 NA
1 1 2 NA
2 2 3 1
3 3 4 2
4 4 5 3
5 5 NA 4
6 NA NA 5

I lag(x) - in this case, instead of lagging the values back, we append the series at time t = 0. At time t = 1, we have Y1 = 1
and we would assume that Yt−1 = Y0 = NA. However, by default we would get the future value, i.e. Yt+1 = Y2 = 2.

I lag(x, -1) - in this case at t = 1 we get an NA value - a BACKWARD shift - as we would expect.

Firstly, if we wanted to load dplyr and run the same function, we would
get an error:

suppressPackageStartupMessages({# supress the package warnings if we are ABSOLUTELY sure about what we are doing
library(dplyr)

})
lag(x)

Error: `x` must be a vector, not a ts object, do you want `stats::lag()`?

dplyr::lag(x) # alternatively, without loading

This does not work for ts(...) variables - it results in an error. If we use the
value as a vector:

lag(c(x))

[1] NA 1 2 3 4

We get what would be the equivalent of stats::lag(x, -1) - a
BACKWARD shift

Issue No. 3 Overreliance on auto.arima
suppressPackageStartupMessages({

library(astsa)
library(forecast)

})
tmp_mdl <- auto.arima(UnempRate)

tmp_mdl

Series: UnempRate
ARIMA(3,0,1)(2,1,2)[12]
##
Coefficients:

Warning in sqrt(diag(x$var.coef)): NaNs produced

ar1 ar2 ar3 ma1 sar1 sar2 sma1 sma2
1.6852 -0.5763 -0.1204 -0.6106 -0.2849 0.0376 -0.4645 -0.2408
s.e. 0.0379 0.0657 0.0394 0.0461 0.0464 0.0510 0.0392 NaN
##
sigma^2 estimated as 0.05465: log likelihood=25.52
AIC=-33.03 AICc=-32.81 BIC=9.3

We even get a warning - the standard errors for the last coefficient are not
calculated.

forecast::tsdisplay(tmp_mdl$residuals)

tmp_mdl$residuals

1950 1960 1970 1980 1990 2000 2010

−
0.

5
0.

0
0.

5
1.

0

0 5 10 15 20 25 30 35

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Lag

A
C

F

0 5 10 15 20 25 30 35

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Lag

PA
C

F

tsdiag(tmp_mdl)

Standardized Residuals

Time

1950 1960 1970 1980 1990 2000 2010

−
4

−
2

0
2

4

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of Residuals

2 4 6 8 10

0.
0

0.
4

0.
8

p values for Ljung−Box statistic

lag

p
va

lu
e

We can manually specify a model:

tmp_mdl_manual <- forecast::Arima(UnempRate, order = c(2, 1, 1), seasonal = c(0, 1, 1))
tmp_mdl_manual

Series: UnempRate
ARIMA(2,1,1)(0,1,1)[12]
##
Coefficients:
ar1 ar2 ma1 sma1
0.5897 0.1342 -0.4831 -0.7676
s.e. 0.1105 0.0465 0.1090 0.0254
##
sigma^2 estimated as 0.05587: log likelihood=15.69
AIC=-21.38 AICc=-21.3 BIC=2.13

Note:

I The BIC is smaller for the manually specified model - the penalty for
including more variables in the auto.arima model is harsher.

I The AIC is smaller for the auto.arima model.

forecast::tsdisplay(tmp_mdl_manual$residuals)

tmp_mdl_manual$residuals

1950 1960 1970 1980 1990 2000 2010

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 5 10 15 20 25 30 35

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Lag

A
C

F

0 5 10 15 20 25 30 35

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Lag

PA
C

F

tsdiag(tmp_mdl_manual)

Standardized Residuals

Time

1950 1960 1970 1980 1990 2000 2010

−
4

0
2

4

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
4

0.
8

Lag

A
C

F

ACF of Residuals

2 4 6 8 10

0.
0

0.
4

0.
8

p values for Ljung−Box statistic

lag

p
va

lu
e

The residuals are not that much different in terms of their similarity to a
WN process.

Issue # 4: intercept vs mean
Remember that:
I for MA(q) models: Yt = α+ θ(L)εt , the mean is the intercept:

E(Yt) = α.
I for stationary AR(p) or ARMA(p, q) models φ(L)Yt = α+ θ(L)εt ,

the mean is µ = α/(1− φ1 − ...− φp), or α = µ · (1− φ1 − ...− φp).
In other words when there is an AR term in the model, the intercept is
NOT the mean.

set.seed(1)
x = arima.sim(list(order = c(1,0,0), ar= 0.4), n = 1000) + 10

The true mean of the process is 50, which translates to
α = 10 · (1− 0.4) = 6.

mean(x)

[1] 9.978789

Verify this via manual simulation:

set.seed(1)
epsilon <- rnorm(1000, mean = 0, sd = 1)
x <- NULL
x[1] <- 6 + epsilon[1]
for(j in 2:length(epsilon)){

x[j] <- 6 + 0.4 * x[j - 1] + epsilon[j]
}

mean(x)

[1] 9.974864

If we estimate using stats::arima:

mdl_1 <- arima(x, order = c(1, 0, 0))
mdl_1

##
Call:
arima(x = x, order = c(1, 0, 0))
##
Coefficients:
ar1 intercept
0.3541 9.9717
s.e. 0.0299 0.0510
##
sigma^2 estimated as 1.085: log likelihood = -1459.74, aic = 2925.48

The naming is incorrect - the intercept is actually the mean.

On the other hand, if we use forecast::Arima:
mdl_2 <- forecast::Arima(x, order = c(1, 0, 0))
mdl_2

Series: x
ARIMA(1,0,0) with non-zero mean
##
Coefficients:
ar1 mean
0.3541 9.9717
s.e. 0.0299 0.0510
##
sigma^2 estimated as 1.087: log likelihood=-1459.74
AIC=2925.48 AICc=2925.51 BIC=2940.21

The naming appears correct … unless we extract the coefficients:

coef(mdl_2)

ar1 intercept
0.3541427 9.9716752

Then the naming is again incorrect.

Issue # 5.1: stats::arima vs forecast::Arima for
Yt ∼ I(d)

set.seed(1)
v = rnorm(100, mean = 1, sd = 1)
x = ts(cumsum(v))
plot.ts(x)

Time

x

0 20 40 60 80 100

0
20

40
60

80
10

0

The stats package is one of the default packages, which come with the
installation of R.
mdl_stats <- arima(x, order = c(1, 1, 0), include.mean = TRUE)
mdl_stats

##
Call:
arima(x = x, order = c(1, 1, 0), include.mean = TRUE)
##
Coefficients:
ar1
0.6031
s.e. 0.0793
##
sigma^2 estimated as 1.294: log likelihood = -153.46, aic = 310.91

mdl_forcast <- forecast::Arima(x, order = c(1, 1, 0), include.drift = TRUE)
mdl_forcast

Series: x
ARIMA(1,1,0) with drift
##
Coefficients:
ar1 drift
-0.0031 1.1163
s.e. 0.1002 0.0897
##
sigma^2 estimated as 0.8178: log likelihood=-129.51
AIC=265.01 AICc=265.26 BIC=272.8

Note that when we are differencing the series:

I stats::arima() fits ∆Yt = φ∆Yt−1 + εt (no constant);
I forecast::Arima() fits ∆Yt = α + φ∆Yt−1 + εt (constant).

Consequently, if we want to fit a I(d) series with a drift using stats::arima(), there are two ways to go about this:

I fit the differenced series, diff(x), with a constant:

arima(diff(x), order = c(1, 0, 0), include.mean = TRUE)

##
Call:
arima(x = diff(x), order = c(1, 0, 0), include.mean = TRUE)
##
Coefficients:
ar1 intercept
-0.0031 1.1163
s.e. 0.1002 0.0897
##
sigma^2 estimated as 0.8012: log likelihood = -129.51, aic = 265.01

In this case, for the AR model, the intercept is actually the mean of diff(x).

I specify the constant as an exogeneous variable:
arima(x, order = c(1, 1, 0), xreg = 1:length(x))

##
Call:
arima(x = x, order = c(1, 1, 0), xreg = 1:length(x))
##
Coefficients:
ar1 1:length(x)
-0.0031 1.1163
s.e. 0.1002 0.0897
##
sigma^2 estimated as 0.8012: log likelihood = -129.51, aic = 265.01

In this case, the exogeneous variable is the intercept of diff(x).

I alternatively, use forecast::Arima() (where it is named drift).

Issue # 5.2: Forecasting with Yt ∼ I(d)
Assume that we want to forecast via the default predict() function
and we ignore the fact that we do not include a drift in our model:

mdl_stats_wrong <- arima(x, order = c(1, 1, 0), include.mean = TRUE)
mdl_stats_correct <- arima(x, order = c(1, 1, 0), xreg = 1:length(x))
#
forc_1 <- predict(mdl_stats_wrong, 15)
forc_2 <- predict(mdl_stats_correct, 15,

newxreg = (length(x) + 1):(length(x) + 15))

par(mfrow = c(2, 1), mai = c(1, 0.5, 0.2, 0.2))
ts.plot(x, forc_1$pred, col = 1:2, main = "stats::arima, incorrect")
ts.plot(x, forc_2$pred, col = 1:2, main = "stats::arima, correct")

stats::arima, incorrect

Time

0 20 40 60 80 100

0
40

80

stats::arima, correct

Time

0 20 40 60 80 100

0
40

80
12

0

mdl_forcast <- forecast::Arima(x, order = c(1, 1, 0), include.drift = TRUE)
#
forc_3 <- forecast(mdl_forcast, 15)

par(mfrow = c(2, 1), mai = c(1, 0.5, 0.2, 0.2))
ts.plot(x, forc_3$mean, col = 1:2, main = "forecast::Arima, correct")
plot(forc_3, cmain = "stats::arima, correct")

forecast::Arima, correct

Time

0 20 40 60 80 100

0
20

40
60

80
10

0

Forecasts from ARIMA(1,1,0) with drift

0 20 40 60 80 100

0
20

40
60

80
10

0

Issue # 6: Tests for Residuals autocorrelation of an
ARMA(p, q) model
The null hypothesis:

H0 : ρ(1) = ... = ρ(k) = 0
H1 : ∃j : ρ(j) 6= 0

The Ljung-Box test:

Q(k) = T (T + 2)
k∑

m=1

ρ̂2(m)
T −m

Box-Pierce test:

QBP = T
k∑

m=1
ρ̂2(m)

I If we are testing whether Yt exhibits significant autocorrelation, then
we reject the null hypothesis if

Q(k) > χ2
1−α, k

where k are the degrees of freedom.
I If we are testing the residuals of an estimated ARIMA(p, q) model

(without constant), the degrees of freedom need to be adjusted to
reflect the parameter estimation. In such cases the degrees of
freedom should be set to k − p − q > 0.

The same applies to QBP

tsdiag(mdl_forcast)

Standardized Residuals

Time

0 20 40 60 80 100

−
2

0
1

2

0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

ACF of Residuals

2 4 6 8 10

0.
0

0.
4

0.
8

p values for Ljung−Box statistic

lag

p
va

lu
e

out <- data.frame(INCORRECT = rep(NA, 7), CORRECT = rep(NA, 7))
for(i in 3:10){

out[i - 2, 1] <- Box.test(mdl_forcast$residuals, lag = i,
type = "Ljung-Box")$p.value

out[i - 2, 2] <- Box.test(mdl_forcast$residuals, lag = i,
fitdf = length(coef(mdl_forcast)), type = "Ljung-Box")$p.value

}
rownames(out) <- paste0("Lag_", 3:10)
print(out)

INCORRECT CORRECT
Lag_3 0.7796620 0.2966303
Lag_4 0.6572870 0.2967712
Lag_5 0.6105057 0.3098529
Lag_6 0.5171249 0.2663823
Lag_7 0.5677989 0.3300712
Lag_8 0.6452965 0.4212575
Lag_9 0.7323974 0.5310294
Lag_10 0.7948932 0.6205997

