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Recap: Time series Types
Time series can be divided into two categories

I Trend Stationary (TS) series:

φ(L)Yt = µt+wt , where µt = Tt+St , wt - stationary, e.g. ARMA(p, q)

I The mean component is deterministic;
I The original series, Yt , is non-stationary (if µt 6= const). Once we

estimate and remove the deterministic component, the residuals
êt = Yt − µ̂t are stationary.

I TS series revert to the trend in the long run (the effects of shocks
are eventually eliminated). Forecast intervals have constant width.

I Difference Stationary (DS) series:

φ(L)(1− L)dYt = α + θ(L)εt
I The mean component is stochastic;
I The original series, Yt , is non-stationary. Furthermore, estimation

and removal of a deterministic component does not produce a
stationary series. On the other hand, Differencing produces a
stationary series.

I DS series never recover from shocks to the system (the effects of
shocks are permanent). Forecast intervals grow over time.



Recap: The ARIMA(p, d, q) Process

If the series of dth differences is a stationary ARMA(p, q) process, then
the series Yt is the dth order integrated series and denoted by I(d).

Then, we say that Yt is described by an autoregressive integrated moving
average model of order p, d, q, i.e. an ARIMA(p,d,q) model:

Φ(L)(1− L)dYt = α + Θ(L)εt

The following are variations, which we can use to describe the process1:

I ∆dYt is described by a stationary ARMA(p, q) process;
I Yt is described by a (stationary) ARIMA(p,d, q) process;
I The ARMA(p + d, q) process Yt has a unit root of multiplicity d .

The symbol I(0) is used to denote a stationary series.

1[Click here for a quick summary of ARIMA models]

https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average


Recap: Rewriting an AR(p) Model for Differences
If we add and subtract Yt−1 and various combinations of φj and Yt−j
from a process Yt ∼ AR(p):

Yt = α + φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt , εt ∼WN(0, σ2)

we get an equivalent AR(p) model, written in differences:

∆Yt = α + ρYt−1 + γ1∆Yt−1 + ...+ γp−1∆Yt−p+1 + εt

where:
ρ = φ1 + ...+ φp − 1
γj = − [φj+1 + ...+ φp] , j = 1, ..., p − 1

Note that both equations are AR models. Then:

I ρ = 0 implies that the AR(p) time series contains a unit root.
I −2 < ρ < 0 implies that the AR(p) series is stationary.

If ρ = 0, then our equation involves only differences of Yt−j -
i.e. an ∆Yt ∼ AR(p− 1) process:

∆Yt = α + γ1∆Yt−1 + ...+ γp−1∆Yt−p+1 + εt



Remarks
I We say that the ARMA(p + 1, q) process Yt has a unit root if at

least one of the p + 1 autoregressive roots φ(x) = 0 equals 1.
I A drifting unit root series exhibits trend behavior.
I Unfortunately, for any finite amount of data there is a deterministic

and stochastic trend that fits the data equally well (Hamilton,
1994).2

I In order to asses the presence of a stochastic trend in an observed
series one should carry out unit root tests.

I Remember that a stationary ARMA(p, q), or a stationary
ARIMA(p, d , q) can be written as an infinite order polynomial,
AR(∞), which can be approximated by a finite order AR(k) process.

I The popular Dickey-Fuller unit root test always interprets the
process under consideration as an AR process, which can be
generalized to

∆Yt = α + δt + ρYt−1 + γ1∆Yt−1 + ...+ γp−1∆Yt−p+1 + εt

which we can use to test the hypothesis for a unit root, H0 : ρ = 0.
2Hamilton, J. D. Time Series Analysis. Princeton, NJ: Princeton University Press,

1994.



AR(p) order selection for ∆Yt
Sequential procedure (based on coefficient significance):

1. Estimate an AR(pmax) (begin with a fairly high order, say pmax ≈ 5):

∆Yt = α + δt + ρYt−1 + γ1∆Yt−1 + ...+ γpmax ∆Yt−pmax + εt

2. If the pmax-th lag coefficient, φpmax , is insignificant, reduce the model
order and estimate AR(pmax − 1);

3. If the pmax − 1-th lag coefficient, φpmax−1, is insignificant, further
reduce the model lag order to pmax − 2 etc. until the largest lag is
significant.

A useful rule of thumb for determining pmax, suggested by Schwert
(1989)3, is

pmax =
⌊
12 ·

(
T

100

)1/4
⌋

where b·c denotes the integer part (i.e. the floor value).
Alternatively, instead of significance, we could use the information
criteria, like AIC, or BIC.

3Schwert, W. (1989). Test for Unit Roots: A Monte Carlo Investigation, Journal of
Business and Economic Statistics, 7, 147-159.



For example, examine the connection between Yt and ∆Yt process lag
order - it is easy to verify that the process

Yt = α + φ1Yt−1 + φ2Yt−2 + δt + wt

can be expressed as

∆Yt = α + (φ1 + φ2 − 1)Yt−1 − φ2∆Yt−1 + δt + εt

where φ1 + φ2 − 1 =: ρ.

Testing for the significance of the trend coefficient, δ

4. Once the right lag order is determined, look at the trend coefficient
δ̂ - if it is insignificant - drop it from the model.

Unit Root Hypothesis
Next, the null hypothesis:

H0 : the process has a unit root

can be restated as:
H0 : ρ = 0



Augmented Dickey-Fuller (ADF) test
1. Determine the AR lag order for ∆Yt ;
2. Determine whether the trend, δ, is significant;
3. Test the null hypothesis H0 : ρ = 0 by checking whether ρ̂ is

significant. The significance of ρ̂ is tested in a different ways:
3.1 If the final model contains the term δ · t - the 5% Dickey-Fuller

critical value is ≈ −3.45. If the t-ratio of the term Yt−1, (NOT
∆Yt−1) is less than −3.45, then the null hypothesis
H0 : the process has a unit root is rejected and we conclude that
the AR process is stationary.

3.2 If the final model does not contain a trend term, the Dickey-Fuller
critical value ≈ −2.89. If the t-statistic of ρ̂ is more negative than
−2.89, we reject the null hypothesis of a unit root and conclude
that the series is stationary.

Note: the ADF test removes all the structural effects (autocorrelation) in
the time series and then tests using the same procedure as the original
Dickey-Fuller (DF) test, which only considered cases when Yt was an
AR(1) process.



Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests
An alternative test for unit root testing. The main differences from the
ADF are:
I The null hypothesis is for the absence of a unit root -

H0 : H0 : the process does not have a unit root;
I The absence of a unit root is not a proof of stationarity, but of

trend-stationarity.
Dickey-Fuller test is based on a null hypothesis that a unit root exists,
which biases results towards more differencing of the series.

Philips-Perron (PP) test
It builds on the Dickey-Fuller test:
I Like the ADF test, the PP test addresses the issue that the Yt

process might have a higher order autocorrelation;
I While the ADF introduces additional lags of ∆Yt−j , the PP test

instead makes a non-parametric correction to the ttest statistic.
I The test is robust with respect to unspecified autocorrelation and

heteroscedasticity in the disturbance process of the test equation.



I KPSS-type tests are intended to complement unit root tests, such
as the ADF tests. By testing both the unit root hypothesis and the
stationarity hypothesis, one can distinguish series that appear to be
stationary, series that appear to have a unit root, and series for
which the data are not sufficient to be sure whether they are
stationary or integrated.

I According to Davidson and MacKinnon (2004)4, the PP test
performs worse in finite samples than the ADF test (we examine
whether this always holds true in the next slide).

There are a number of ways to carry out the tests in R:

I ADF: using dynlm::dynlm(...) to estimate the models manually
and carry out an ADF unit root test;

I ADF: using urca::ur.df(...) or tseries::adf.test(...) to
carry out the ADF test of unit root;

I KPSS: using urca::ur.kpss(...) (tau - trend, mu - drift) or
tseries::kpss.test(...) to carry out the KPSS test of trend
stationarity;

I PP: using stats::PP.test(...), urca::ur.pp() or
tseries::pp.test(...) to carry out the PP test of unit root;

4Davidson, Russell, MacKinnon, James G. (2004). Econometric Theory and Methods. New York: Oxford University Press. p. 623.



Test Comparison for simulated data
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The ADF test behaves quite poorly for smaller samples (from tseries
package) - it concluded that roughly 50% of samples exhibit a unit root,
when the AR(1) coefficient φ1 = 0.7.



Recap: Seasonal ARIMA models
A seasonal ARIMA model is formed by including additional seasonal terms
in the ARIMA models we have seen so far: SARIMA(p, d , q)(P,D,Q)S :

Φ(LS)φ(L)(1− L)d (1− LS)D(Yt − µ) = Θ(LS)θ(L)εt

where d is the integration order of the non-seasonal part of the model,
and D is the integration order of the seasonal part of the model and:

I The non-seasonal components are:

AR: φ(L) = 1− φ1L− ...− φpLp

MA: θ(L) = 1 + θ1L + ...+ θqLq

I The seasonal components are:

Seasonal AR: Φ(LS) = 1− Φ1LS − ...− ΦpLS·P

Seasonal MA: Θ(LS) = 1 + Θ1LS + ...+ ΘqLS·Q

See the previous lecture slides - they contain an example of how either
only differencing, or only seasonally differencing the series still results in a
presence of a unit root.



Part II: Box-Jenkins method

Box-Jenkins modelling involves identifying an appropriate ARIMA
process, fitting it to the data, and then using the fitted model for
forecasting.

Since ARIMA model processes are a very rich class of models, which
usually make it is possible to find an adequate model to fit the data, the
Box-Jenkins modelling approach is quite attractive.

It is recommended to modify the original Box-Jenkins iterative three-step
procedure by adding a preliminary data preparation stage and a final
model forecasting stage.



Step (1): Data Preparation
This step involves variable transformations and differencing.
In order to determine, whether transformations are necessary,
visualizations may be employed:
I Time series plots, i.e. the run-sequence plots, which can help identify

trend, seasonality and heteroskedasticity;
I ACF plots should be examined - non-stationarity is often indicated

by an autocorrelation plot with very slow decay.
From the plots, we may determine which transformations and differencing
are needed:
I Variable transformations (logarithms, square roots, etc.) can be used

to stabilize the variance (e.g. if a series exhibits exponential growth);
I The data are (non-seasonally and/or seasonally) differenced until

there are no obvious trend or seasonality patterns left.
After we have verified that the transformed data is stationary, we more
on to the second step.



Step (2): Model Selection
Once stationarity and seasonality have been addressed, the next step is to
identify the order (i.e. the lag orders p and q) of the autoregressive and
moving average terms which might provide a good fit to the data. To
select the order, we do the following:
I Examine the ACF and PACF plots of the transformed series to

determine a possible lag order;
I Try various combinations of p and q and select the combination,

which produces the smallest AIC, or BIC criterion value.

Step (3): Parameter Estimation
The main approaches to fitting Box-Jenkins models are nonlinear least
squares or maximum likelihood estimation (which is usually preferred).
The parameter estimation procedures are usually implemented in
statistical software and are readily available.



Step (4): Model Diagnostics
This step involves testing the model assumptions to identify whether the
model in question is adequate. Usually this step involves the error term -
the residuals should be a white noise process - constant mean, constant
variance and no autocorrelation. this is usually done via time series plots,
ACF and PACF plots as well as autocorrelation significance tests, like
the Jlung − Box test.
If these assumptions are not satisfied, one needs to go back to Step (2)
and select a different model (this is assuming that the transformations in
Step (1) were adequate).

Step (5): Forecasting
This is usually not only just the last step, but also the goal of the model.
Once the model is selected, estimated and verified to be adequate - one
should compute the forecasts.



Cross-validation (out-of-sample testing)
Furthermore, in order to asses whether the forecasts are adequate for the
data, we can carry out cross validation on the data. For example:

time

In this chart
I the blue observations form the training sets;
I the red observations form the test sets (one observation per set);

The forecast accuracy is computed by averaging over the test sets.



In short, we repeat Steps (3) and (5) on smaller subsets, by
re-estimating the model on each subset and calculating a one-step
ahead forecast. These tests not only verify the robustness of your
model, but also allow examining whether the parameters are stable
(i.e. whether their signs and magnitude remain unchanged throughout
different samples).

I In this procedure, we use the initial dataset to create a series of
testing sets. The corresponding training set consists only of
observations that occurred prior to the observation that forms the
test set. Thus, no future observations can be used in constructing
the forecast.

I With time series forecasting, one-step forecasts may not be as
relevant as multi-step forecasts. In this case, the cross-validation
procedure can be modified so that the test sets include more than
one observation.



Example: 4-step-ahead forecast cross validation.

time

[Source]

https://robjhyndman.com/hyndsight/tscv/


The underlying Box-Jenkins methodology provides a convenient
framework, which is applicable to a wide variety of statistical modelling
applications. It allows one to think about the data and find appropriate
statistical model(-s) which can be used to help answer various relevant
questions about the data.
k- fold Cross validation on cross-sectional data
The original sample is randomly partitioned into k equal sized
subsamples, with one subsample acting as the testing/validation set and
k − 1 subsamples acting as the training set. The process is then repeated
k times, with each of the k subsamples used exactly once as the
validation data.


