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Seasonal ARMA models
The seasonal ARIMA model incorporates both non-seasonal and seasonal
factors in a multiplicative model: SARIMA(p, d , q)(P,D,Q)S .

For now, we will restrict our analysis to non-differenced data SARMA
models (i.e. d = 0 and D = 0), where p, q are the ARMA orders of the
non-seasonal components and P,Q are the ARMA orders of the seasonal
components.

For example, our series could be described as a seasonal (e.g. quarterly)
process:

Yt = ΦYt−1 + wt + Θwt−4

while our shocks wt could also be a non-seasonal MA process:

wt = εt + θεt−1

So, while the seasonal term is additive, the combined model is
multiplicative:

Yt = ΦYt−1 + wt + Θwt−4

= ΦYt−1 + εt + θεt−1 + Θεt−4 + θΘεt−5



We can write the general model formally as:

Φ(LS)φ(L)(Yt − µ) = Θ(LS)θ(L)εt

where φ(z) = 0,∀|zi | > 1 and Φ(z) = 0,∀|zj | > 1, and:

I The non-seasonal components are:

AR: φ(L) = 1− φ1L− ...− φpLp

MA: θ(L) = 1 + θ1L + ...+ θqLq

I The seasonal components are:

Seasonal AR: Φ(LS) = 1− Φ1LS − ...− ΦpLS·P

Seasonal MA: Θ(LS) = 1 + Θ1LS + ...+ ΘqLS·Q

Note that on the left side of equation the seasonal and non-seasonal AR
components multiply each other, and on the right side of equation the
seasonal and non-seasonal MA components multiply each other.



For example, a SARIMA(1, 0, 1)(0, 0, 1)12 model could be written:

(1− φL)Yt = (1 + θL) · (1 + ΘL12)εt
(1− φL)Yt = (1 + θL + ΘL12 + θΘL12+1)εt

Yt = φYt−1 + εt + θεt−1 + Θεt−12 + θΘεt−13

where φ = 0.4, θ = 0.2 and Θ = 0.5.

Generated Y ~ SARIMA(1,0,1)x(0,0,1)[12]
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There is seasonality, but no trend.



Examine the ACF and PACF of the data:
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Overall, both ACF and PACF plots seem to be declining - a possible
ARMA(1, 1) model for the non-seasonal model component.

From the ACF plot - the first 12th lag is significant and every other 12th
lag (24, 36, etc.) is not (i.e. seasonal cut-off after the first period lag).
From the PACF plot - the 12th, 24th, 36th, etc. lags are declining. Also
note the 13th lag, εt−13. This means that the seasonality could be a
MA(1) model.



seas_mdl <- Arima(Y,
order = c(1, 0, 1),
seasonal = list(order = c(0, 0, 1), period = 12),
include.mean = FALSE)

seas_mdl

## Series: Y
## ARIMA(1,0,1)(0,0,1)[12] with zero mean
##
## Coefficients:
## ar1 ma1 sma1
## 0.4148 0.1870 0.4802
## s.e. 0.1369 0.1432 0.0902
##
## sigma^2 estimated as 0.7888: log likelihood=-156.28
## AIC=320.56 AICc=320.91 BIC=331.71

Our estimated model coefficients are: φ̂ = 0.4919, θ̂ = 0.2058 and
Θ̂ = 0.4788. Note Y is a ts() object, i.e. Y <- ts(Y, freq = 12).



In comparison, the auto.arima suggests a slightly different ARMA
model:
capture.output(summary(seas_mdl_auto <- auto.arima(Y)))[2]

## [1] "ARIMA(2,0,0)(0,0,1)[12] with zero mean "

plot.ts(Y, lwd = 1)
lines(fitted(seas_mdl), col = "red", lty = 2)
lines(fitted(seas_mdl_auto), col = "blue", lty = 2)
legend(x = 1, y = 3, c("actual", "fitted", "fitted_auto"),

col = c("black", "red", "blue"), lty = c(1, 2, 2), cex = 0.7)
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Residuals of SARIMA model
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From the ACF and PACF plots the manually specified
SARIMA(1, 0, 1)(0, 0, 1)12 model residuals are very close to the
SARIMA(2, 0, 0)(0, 0, 1)12 residuals from the auto.arima function.



Example: SARIMA(0, 0, 1)(0, 0, 1)12 model

Yt = (1 + θL) · (1 + ΘL12)εt ⇐⇒ Yt = (1 + θL + ΘL12 + θΘL12+1)εt
⇐⇒ Yt = εt + θεt−1 + Θεt−12 + θΘεt−13

where θ = 0.7 and Θ = 0.6.
Note that:

Yt−11 = εt−11 + θεt−12 + Θεt−23 + θΘεt−24

Yt−12 = εt−12 + θεt−13 + Θεt−24 + θΘεt−25

Yt−13 = εt−13 + θεt−14 + Θεt−25 + θΘεt−26

which means that the covariance between Yt and Yt−11 is non-zero:

Cov(Yt ,Yt−11)
= Cov (εt + θεt−1 + Θεt−12 + θΘεt−13, εt−11 + θεt−12 + Θεt−23 + θΘεt−24)
= Cov (Θεt−12, θεt−12) = Θθ · σ2 6= 0

It can also be shown that Cov(Yt ,Yt−12) 6= 0, Cov(Yt ,Yt−13) 6= 0 and
the remaining terms, like Cov(Yt ,Yt−10) = Cov(Yt ,Yt−14) = 0.



SARIMA(0, 0, 1)(0, 0, 1)_[12]
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I the spikes at lags 1, 11, 12 and 13 in the ACF. Remember that the
feature of a moving-average process - ACF has a sharp cutoff;

I this model has non-seasonal and seasonal MA terms, so the PACF
tapers nonseasonally, following lag 1, and tapers seasonally that is
near lag = 12, and again near lag = 2*12=24 and so on.



Example: SARIMA(1, 0, 0)(1, 0, 0)12 model

(1− ΦL12)(1− φL)Yt = εt ⇐⇒ (1− φL− ΦL12 + φΦL13)Yt = εt

⇐⇒ Yt = φYt−1 + ΦYt−12 − φΦYt−13 + εt

where φ = 0.6 and Φ = 0.5.
SARIMA(1, 0, 0)(1, 0, 0)_[12]
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I there are distinct spikes at lags 1, 12 and 13 in the PACF.
Remember that the feature of an autoregressive process - PACF has
a sharp cutoff.



Revisiting Time Series Smoothing

In some cases, linear regression cannot clarify relationships between
variables and cannot detect the trend of a data series. For this reason, we
can apply other regression methods in statistics.

A smoother is a function or procedure for drawing a smooth curve
through a scatter diagram. Similarly to linear regression (in which the
“curve” is a straight line), the smooth curve is drawn in such a way as to
have some desirable properties.

In general, the properties are that:

I the curve is indeed smooth;
I locally, the curve minimizes the variance of the residuals, or

prediction error.

Depending on the method, we can either attempt to specify the function
ourselves to control the degree of smoothing (e.g. moving average, single
or double exponential smoothing), or we can estimate the optimal
parameters (e.g. Holt-Winters exponential smoothing).



I The SOI measures changes in air pressure, related to sea surface temperatures in the central Pacific Ocean.
I The central Pacific warms every three to seven years due to the El Niño effect, which has been blamed for various global extreme

weather events.
I Periodic behavior is of interest because underlying processes of interest may be regular and the rate or frequency of oscillation

characterizing the behavior of the underlying series would help to identify them.

Southern Oscillation Index, monthly data
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I Do you notice any trends in the data?
I Do you notice any seasonalities in the data?
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Think about the differences between:

I An autoregressive process with oscillating ACF (e.g.
Yt = 1.5 · Yt−1 − 0.9 · Yt−2 + εt);

I An ACF of a SARMA model;
I An ACF of a process with a seasonal component;
I An ACF of a process with a Trend component;



Additional Time Series Smoothing Methods
Previously we discussed using a moving average smoothing method,
which is useful for discovering certain traits in a time series, such as
trend and/or seasonal components.

Southern Oscillation Index, monthly data
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While the moving average seems to work quite well, it appears to be too
choppy. We can obtain a smoother fit using the normal distribution
for the weights



MA smoothing residuals
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Since we have eliminated the trend component - the seasonality is more
pronounced in the residuals.



Kernel smoothing
Kernel smoothing - a moving average smoothing method that uses a
kernel as the weight function to average the observations.

T̂t =
T∑

i=1
wi (t)Yi , wi (t) = K

(
t − i

b

)/ T∑
j=1

K
(

t − j
b

)

where K (·) is a kernel function. This estimator is often called the
Nadaraya-Watson estimator.

Southern Oscillation Index, monthly data
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Typically, the normal kernel K (z) = 1√
2π

exp
(
−z2/2

)
is used.



Kernel smoothing residuals
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Since we have eliminated the trend component - the seasonality is more
pronounced in the residuals.



Lowess Smoothing
Another approach to smoothing a time plot is nearest neighbor regression.
The technique is based on k-nearest neighbors (k − NN) regression,
where we use only data points in the vicinity of Yt – namely
Yt−k/2, ...,Yt , ...,Yt+k/2 – and predict Yt via regression, then set
T̂t = Ŷt .
The locally weighted scatterplot smoothing (LOWESS) method makes
no assumptions about the form of the relationship, and allows the form
to be discovered using the data itself.
Note: the next slide will have a general outline of the process -
try to get the basic idea behind it.



The basic idea of LOWESS is close to the nearest neighbor regression (see here
and here):

I start with a local polynomial (i.e. k − NN) least squares fit and then to
use robust methods to obtain the final fit. Specifically, one can first fit a
polynomial regression in a neighborhood of Yt :

1
T

T∑
i=1

Wk,i(Yt)

(
Yi −

p∑
j=0

βjY j
t

)2

−→ min
β0,...,βp

where Wk,i(Yt) are the k − NN weights:

Wk,i(Yt) = Tri
(Yi − Yt

h

)
where h is the k th smallest distance |Yi − Yt |, i = 1, ...,T and
Tri(x) = (1− |x |3)3 if |x | < 1 and Tri = 0 otherwise.

I Calculate the residuals ε̂t and the scale parameter σ̂ = Median(ε̂t);

I Define robustness weights δi = K
(
ε̂i

6σ̂

)
, where K(u) = (15/16)(1− u)2,

if |u| ≤ 1 and K(u) = 0 otherwise.
I Use δiWk,i(Yt) instead of Wk,i(Yt) and estimate new parameters
β̂0, ..., β̂p ;

I Repeat the process a predefined number of times.
Recommended to use p = 1 for computational efficiency.

https://vsp.pnnl.gov/help/vsample/LOWESS_Plot.htm
https://www.ime.unicamp.br/~dias/loess.pdf


The larger the fraction of nearest neighbors included, the smoother the
fit will be.

Southern Oscillation Index, monthly data
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Insight from the decomposition: a decreasing (or, negative) trend in
SOI indicates the long-term warming of the Pacific Ocean.



LOWESS Smoothing of Trend Data using 5% of the data for NN
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Since we have eliminated the trend component - the seasonality is more
pronounced in the residuals.



Southern Oscillation Index, monthly data
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Q: Which method is better?

A: Depends on whether we can decompose seasonality after removing the
trend.



Seasonal Decomposition of Time Series by Loess
To decompose the seasonal component, use the stl() function in R.
t.window controls the ‘wiggliness’ of the trend components and s.window controls the variation on the seasonal component.
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It is a very versatile and robust decomposition method - the seasonal
component is allowed to change over time, the smoothness of the trend cycle
can also be controlled by the user.
This method is robust to outliers, however it is only available for additive
decompositions.



soi_stl$time.series[, "remainder"]
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I No more seasonality;
I No more trend;

In R the two main robust “user-friendly” methods are:

I stl() - does not allow forecasting. To remedy this forecast::forecast() can be used, which applies a non-seasonal
forecasting method to the seasonally adjusted data and re-seasonalizes using the last year of the seasonal component. See here.

I ets() - Holt-Winters Exponential smoothing, allows forecasting.

https://www.rdocumentation.org/packages/forecast/versions/8.5/topics/forecast.stl


Remarks on LOWESS (or LOESS)
Advantages:
I LOWESS does not require specification of a functional form to fit a

model to the data sample;
I LOWESS is very flexible, making it ideal for modeling complex

processes for which no theoretical models exist.
Disadvantages:
I LOWESS makes less efficient use of data than other least squares

methods. It requires fairly large, densely sampled data sets in order
to produce good models;

I LOWESS does not produce a regression function that is easily
represented by a mathematical formula. This can make it difficult to
transfer the results of an analysis to other people;

I LOWESS is a computationally intensive method that is also prone to
the effects of outliers in the data set, like other least squares
methods.



Local Linear Forecast Using Smoothing (Cubic) Splines
Suppose that our time series Yt , t = 1, ...,T exhibits a non-linear trend.
We are interested in forecasting this series by extrapolating the trend
using a linear function, which we estimate from the historical data.

An obvious way to smooth data would be to fit a polynomial regression
in terms of time. For example, a cubic polynomial would have
Yt = Tt + Et , where

Tt = β0 + β1 · t + β2 · t2 + β3 · t3

In practice we would fit this cubic polynomial on Yt via OLS to obtain T̂t .

I An extension of polynomial regression is to first divide time
t = 1, ...,T into k intervals: [t0, t1] , [t1 + 1, t2] , ..., [tk−1 + 1, tk ]
with t0 = 1 and tk = T . The values t0, ..., tk are called knots. Each
interval fits a polynomial regression, typically of order 3, and this is
called cubic splines.

I A similar method is called smoothing splines, which minimizes a
compromise between the fit and the degree of smoothness.



For equally spaced time series, a cubic smoothing spline can be defined
as the function f̂ (t), which minimizes:

T∑
t=1

(Yt − f (t))2 + λ

∫
S

(f ′′(u))2du

over all twice differentiable functions f on S where [1,T ] ⊆ S ⊆ R. The
smoothing parameter λ is controlling the trade-off between fidelity to the
data and roughness of the function estimate. The larger the value of λ,
the smoother the fit.

I Link to the paper presenting this method can be found [here].
I The cubic smoothing spline model is equivalent to an

ARIMA(0, 2, 2) model (this model will be presented later) but with a
restricted parameter space.

I The advantage of the cubic smoothing spline approach over the full
ARIMA model is that it provides a smooth historical trend as well as
a linear forecast function.

https://robjhyndman.com/papers/splinefcast.pdf


Southern Oscillation Index, monthly data
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Results appear similar to other trend estimation methods.



Southern Oscillation Index, monthly data
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data(shampoo)
fcast <- splinef(shampoo, h = 12)
fcast.l <- splinef(log(shampoo), h = 12)
par(mfrow = c(1, 2))
plot(fcast, main = "Cubic smoothing spline for \n Sales of shampoo over a three year period.")
plot(fcast.l, main = "Cubic smoothing spline for logarithm of \n Sales of shampoo over a three year period.")
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The X-12-ARIMA or X-13-ARIMA-SEATS Seasonal
Adjustment

Link to R package documentation [here] and [here].

X-13ARIMA-SEATS is a seasonal adjustment software produced,
distributed, and maintained by the United States Census Bureau.

X-13ARIMA-SEATS combines the current filters used in X-12-ARIMA
with ARIMA-model-based adjustment as implemented in the program
SEATS.

In SEATS, the seasonal and trend filters are estimated simultaneously
based on the ARIMA model.

The new program still provides access to all of X-12-ARIMA’s seasonal
and trend filters and to the diagnostics.

https://cran.r-project.org/web/packages/seasonal/vignettes/seas.pdf
http://www.seasonal.website/seasonal.html


X_13 <- seasonal::seas(x = AirPassengers)
capture.output(summary(X_13))[6:11]

[1] " Estimate Std. Error z value Pr(>|z|) "
[2] "Weekday -0.0029497 0.0005232 -5.638 1.72e-08 ***"
[3] "Easter[1] 0.0177674 0.0071580 2.482 0.0131 * "
[4] "AO1951.May 0.1001558 0.0204387 4.900 9.57e-07 ***"
[5] "MA-Nonseasonal-01 0.1156205 0.0858588 1.347 0.1781 "
[6] "MA-Seasonal-12 0.4973600 0.0774677 6.420 1.36e-10 ***"

We can generate a nice .html output of our model with:

seasonal::out(X_13)



where (using the [documentation, Tables 4.1 and 7.28]):

I Weekday - One Coefficient Trading Day, the difference between the
number of weekdays and the 2.5 times the number of Saturdays and
Sundays

I AO1951.May - Additive (point) outlier variable, AO, for the given
date or observation number. In this case it is the regARIMA
(regression model with ARIMA residuals) outlier factor for the point
at time 1951-May of the series;

I Easter[1] - Easter holiday regression variable for monthly or
quarterly flow data which assumes the level of daily activity changes
on the [1]-st day before Easter and remains at the new level
through the day before Easter.

I MA-Nonseasonal-01 - coefficients of the non-seasonal components
of the ARMA model for the differenced residuals, ∇εt .

I MA-Seasonal-12 - coefficients of the seasonal components of the
ARMA model for the differenced residuals ∇12εt .

https://www.census.gov/ts/x13as/docX13ASHTML.pdf


Looking at ?series, we can extract different data:

#Estimate of the Seasonal factors:
X_13.seas <- seasonal::series(X_13, "history.sfestimates")

## specs have been added to the model: history

#Estimate of the seasonally adjusted data
X_13.deseas <- seasonal::series(X_13, "history.saestimates")

## specs have been added to the model: history

#Estimate of the trend component
X_13.trend <- seasonal::series(X_13, "history.trendestimates")

## specs have been added to the model: history

#Forecasts:
X_13.forc <- seasonal::series(X_13, "forecast.forecasts")

## specs have been added to the model: forecast



plot(X_13)
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plot(AirPassengers, main = "Data and trend")
lines(X_13$data[, "trend"], col = "blue")
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layout(matrix(c(1, 1, 1, 2, 3, 4), 2, 3, byrow = TRUE))
plot.ts(resid(X_13), main = "Residuals")
forecast::Acf(resid(X_13)); forecast::Pacf(resid(X_13))
qqnorm(resid(X_13)); qqline(resid(X_13), lty = 2, col = "red")
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We can also plot the forecasts along with their confidence intervals:

#Set the x and y axis separtely
x.lim = c(head(time(AirPassengers), 1), tail(time(X_13.forc), 1))
y.lim = c(min(AirPassengers), max(X_13.forc[,"upperci"]))

#Plot the time series:
plot.ts(AirPassengers, xlim = x.lim, ylim = y.lim,

main = "X-13ARIMA-SEATS Forecasts")
#Plot the shaded forecast confidence area:
polygon(c(time(X_13.forc), rev(time(X_13.forc))),

c(X_13.forc[,"upperci"], rev(X_13.forc[,"lowerci"])),
col = "grey90", border = NA)

#Plot the forecasts along with their lwoer and upper bounds:
lines(X_13.forc[,"forecast"], col = "blue")
lines(X_13.forc[,"lowerci"], col = "grey70", lty = 2)
lines(X_13.forc[,"upperci"], col = "grey70", lty = 2)
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Looking back at our SOI example

soi_X_13 <- seasonal::seas(x = soi)

It may sometimes be the case that seasonal::series(...) will not
work, so the relevant results can always be extracted directly.

print(head(soi_X_13$data))

final seasonal seasonaladj trend irregular
Jan 1950 0.10145039 0.2755496 0.10145039 0.1316089 -0.02457600
Feb 1950 -0.08329878 0.3292988 -0.08329878 0.1452373 -0.16458940
Mar 1950 0.13144671 0.1795533 0.13144671 0.1808291 -0.02679486
Apr 1950 0.28609804 -0.1820980 0.28609804 0.2264334 0.04469685
May 1950 0.34707990 -0.3630799 0.34707990 0.2641907 0.07335916
Jun 1950 0.47731379 -0.2423138 0.47731379 0.2810873 0.17002810

adjustfac
Jan 1950 0.2755496
Feb 1950 0.3292988
Mar 1950 0.1795533
Apr 1950 -0.1820980
May 1950 -0.3630799
Jun 1950 -0.2423138



Southern Oscillation Index, monthly data
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Residuals of X13−ARIMA appllied to SOI dataset
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Recap: Seasonality

I Seasonality in a time series is a regular pattern, which repeats over d
time units, where d is called the (seasonality) period - the number
of time units/periods, until the pattern repeats again. This can be
written as St = St+d ;

I Seasonality usually causes the series to be nonstationary, since the
average values from particular seasonal periods (e.g. summer) may
be different than the average values at other times (e.g. winter);
I We can remove the trend by differencing the series, e.g. by

transforming the series to (1− L)Yt ;
I We can remove the seasonality by seasonally differencing the series,

e.g. by transforming the series to (1− Ld)Yt ;
I To remove both trend and seasonality by applying both non-seasonal

and seasonal differencing, e.g. (1− L)(1− Ld)Yt ;
I The seasonal ARMA model incorporates both non-seasonal and

seasonal factors in a multiplicative model. In a seasonal ARMA
model, the seasonal AR and MA terms predict Yt using lagged
values, where the lags are multiples of d .



Recap: Time Series Decomposition
I Decomposition procedures are used in time series to describe the

trend and seasonal factors in a time series. More extensive
decompositions might also include long-run cycles, holiday effects,
day of week effects and so on (see X − 13ARIMA− SEATS).

I Decomposition can be used to estimate and remove seasonality in
order to calculate seasonally adjusted values. These adjusted values
allow to see the trend more clearly. For instance, U.S. unemployment
tends to decrease in the summer due to increased employment in
agricultural areas. So, it would appear that unemployment decreased
from winter to summer, however, this does not indicate that there is
a trend toward lower unemployment in the country.

I Decomposition is usually done in three steps: (i) trend estimation;
(ii) seasonality estimation on the de-trended series; (ii) remainder
(i.e. random) component estimation by removing the seasonal and
trend component from the original series. The decomposition
method depends on whether the series is additive or multiplicative.

I The random component can be analyzed for such things as the
mean, variance, or possibly even for whether the component is
actually random or might be modeled with an ARIMA model.



Recap: Time Series Smoothing
I Smoothing is usually done to help us better see patterns in the time

series. The term filter is sometimes used to describe a smoothing
procedure.
I For Series with a trend, we may smooth out the irregular roughness

to see a clearer signal.
I For non-seasonal data you should experiment with moving averages

of different spans. Those spans of time could be relatively short. The
objective is to knock off the rough edges to see what trend or pattern
might be there.

I For seasonal data, we might smooth out the seasonality so that we
can identify the trend.

I To take away seasonality from a series, so we can better see the
trend, we would use a moving average with a length equal to d (the
seasonal length). If d is even, then a centered moving average is
needed.

I Some possible smoothing methods include - moving average
smoothing; single, double or triple (Holt-Winters) exponential
smoothing. Additional methods include kernel smoothing, lo(w)ess
smoothing, cubic smoothing splines and more.

I Smoothing doesn’t provide us with a model, but it can be a good
first step in describing various components of the series.


