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Forecasting
So far we thought of the information set as containing the available past
history of the series, ΩT = {YT ,YT−1, ...}, where we imagined the
history as having begun in the infinite past. Based upon that information
set, we want to find the optimal forecast of Y at some future time T + h.

If Yt is a stationary process, then the forecast tends to the process mean
as h increases. Therefore, the forecast is only interesting for several small
values of h.

Our forecast method is always the same: write out the process for the
future time period, T + h and project it on what is known at time T
when the forecast is made. We denote the forecast as YT+h|T , h ≥ 1.

Point forecasts can be calculated using the following three steps.

1. If needed, expand the equation so that Yt is on the left hand side
and all other terms are on the right;

2. Rewrite the equation by replacing T by T + h;
3. On the right hand side of the equation, replace future observations

by their forecasts, future errors (εT+j , 0 < j ≤ h) by zero, and past
errors by the corresponding residuals.



Forecasting MA(q) process

Consider, for example, an MA(1) process:

Yt = µ+ εt + θεt−1, εt ∼WN(0, σ2)

We have:

YT+1 = µ+ εT+1 + θεT ⇒ YT+1|T = µ+ 0 + θεT

YT+2 = µ+ εT+2 + θεT+1 ⇒ YT+2|T = µ+ 0 + 0
...

YT+h|T = µ

The forecast quickly approaches the (sample) mean of the process and
starting at h = q + 1 - coincides with it. When h increases, the accuracy
of the forecast diminishes up to the moment h = q + 1, whereupon it
becomes constant.



An example of an MA(1) process: Yt = εt + 0.5εt−1:

Forecasts from ARIMA(0,0,1) with zero mean
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Forecasting AR(p) process

Consider, for example, an AR(1) process:

Yt = φYt−1 + εt , εt ∼WN(0, σ2)

We have:

YT+1 = φYT + εT+1 ⇒ YT+1|T = φYT + 0
YT+2 = φYT+1 + εT+2 ⇒ YT+2|T = φYT+1 + 0 = φ2YT

...

YT+h|T = φhYT

The forecast tends to the (sample) mean exponentially fast, but never
reaches it. When h increases, the accuracy of the forecast diminishes but
never reaches the limit.



An example of an AR(1) process: Yt = 0.85Yt−1 + εt :

Forecasts from ARIMA(1,0,0) with zero mean
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Forecasting ARMA(p,q) process

Consider, for example, an ARMA(1,1) process:

Yt = φYt−1 + εt + θεt−1, εt ∼WN(0, σ2)

We have:

YT+1 = φYT + εT+1 + θεT ⇒ YT+1|T = φYT + 0 + θεT

YT+2 = φYT+1 + εT+2 + θεT+1 ⇒ YT+2|T = φYT+1 + 0 + 0 = φ2YT + φθεT

...

YT+h|T = φhYT + φh−1θεt

Similar to the AR(p) process, the ARMA(p,q) process tends to the
average, but never reaches it.



An example of an ARMA(1,1) process: Yt = 0.85Yt−1 + εt + 0.5εt−1:

Forecasts from ARIMA(1,0,1) with zero mean
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- The forecast YT+h|T of an MA(q) process in h = q steps reaches
its average and then does not change anymore;
- The forecast YT+h|T of an AR(p) or ARMA(p,q) process tends
to the average, but never reaches it. The speed of convergence
depends on the coefficients;



Financial Volatility
Consider Yt growing annually at rate r :

Yt = (1 + r)Yt−1 = (1 + r)2Yt−2 = ... = (1 + r)tY0 = et·log(1+r)Y0

The values of Yt lie on an exponent:

Yt with Y0 = 1 and r = 0.05
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In order for the model to represent a more realistic growth, let us
introduce an economic shock component, εt ∼WN(0, σ2).



Thus, our model is now:

Yt = (1 + r + εt)Yt−1 = Πt
s=1(1 + r + εs) · Y0 = e

∑t
s=1

log(1+r+εs ) · Y0

The values of Yt are again close to the exponent:

Yt with Y0 = 1, r = 0.05 and εt ~ WN(0, 0.052)
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Note: EYt = et·log(1+r)Y0, thus Yt is not stationary.



We can take the differences: ∆Yt = Yt − Yt−1 but they are also not
stationary. We can also take the logarithms and use the equality
log(1 + x) ≈ x (using Taylor’s expansions of a function around 0):

Ỹt = logYt = logY0 +
t∑

x=1
log(1 + r + εs) ≈ logY0 + rt +

t∑
s=1

εs
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Ỹt is still not stationary, however its differences ∆Ỹt = r + εt are
stationary.



∆log(Yt)
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The differences, in this case, also have an economic interpretation - it is
the series of (logarithmic) returns, i.e. annual growth of Yt .



Stock and bond returns (or similar financial series) can be described as
having an average return of r but otherwise seemingly unpredictable from
the past values (i.e. resembling WN): Yt = r + εt , εt ∼WN(0, σ2).
Although the sequence may initially appear to be WN, there is strong
evidence to suggest that it is not an independent process.

As such, we shall try to create a model of residuals: et = ε̂t , i.e. centered
returns Yt − Ȳt = Yt − r̂ of real stocks that posses some interesting
empirical properties:

I high volatility events tend to cluster in time (i.e. persistency or
inertia of volatility);

I Yt is uncorrelated with its lags, but Y 2
t is correlated with

Y 2
t−1,Y 2

t−2, ...;
I Yt is heavy-tailed, i.e. the right tail of its density decreases slower

than that of the Gaussian density (this means that Yt take big
values more often than Gaussian random variables).

Note: volatility = the conditional standard deviation of the stock return:
σ2

t = Var(rt |Ωt−1), where Ωt−1 - the information set available at time
t − 1.



An introductory example:
Let’s say Pt denote the price of a financial asset at time t. Then, the log
returns:

Rt = log(Pt)− log(Pt−1)

could be typically modeled as a stationary time series. An ARMA model
for the series Rt would have the property that the conditional variance Rt
is independent of t. However, in practice this is not the case. Lets say
our Rt data is generated by the following process:

set.seed(346)
n = 1000
alpha = c(1, 0.5)
epsilon = rnorm(mean = 0, sd = 1, n = n)
R.t = NULL
R.t[1] = sqrt(alpha[1]) * epsilon[1]
for(j in 2:n){

R.t[j] = sqrt(alpha[1] + alpha[2] * R.t[j-1]^2) * epsilon[j]
}

i.e., Rt , t > 1, nonlinearly depends on its past values.



If we plot the data and the ACF and PACF plots:

forecast::tsdisplay(R.t)

R.t
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and perform the Ljung-Box test

Box.test(R.t, lag = 10, type = "Ljung-Box")$p.value

## [1] 0.9082987

Box.test(R.t, lag = 20, type = "Ljung-Box")$p.value

## [1] 0.3846643

Box.test(R.t, lag = 25, type = "Ljung-Box")$p.value

## [1] 0.4572007

We see that for all cases p-value > 0.05, so we do not reject the null
hypothesis that the autocorrelations are zero. The series appears to be
WN.

But we know that this is not the case from the data generation code.



If we check the ACF and PACF of the squared log-returns, R2
t :

forecast::tsdisplay(R.t^2)

R.t^2
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The squared log-returns are autocorrelated in the first couple of lags.



From th Ljung-Box test:

Box.test(R.t^2, lag = 10, type = "Ljung-Box")

##
## Box-Ljung test
##
## data: R.t^2
## X-squared = 174.37, df = 10, p-value < 2.2e-16

we do not reject the null hypothesis that the squared log-returns are
autocorrelated.

In comparison, for a simple εt ∼WN(0, 1) process:

set.seed(123)
epsilon = rnorm(mean = 0, sd = 1, n = 5000)



The εt process is not serially correlated:
par(mfrow = c(1, 2))
forecast::Acf(epsilon, lag.max = 20)
forecast::Pacf(epsilon, lag.max = 20)
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Box.test(epsilon, lag = 10, type = "Ljung-Box")$p.val

## [1] 0.872063



The ε2t process is also not serially correlated:
par(mfrow = c(1, 2))
forecast::Acf(epsilon^2, lag.max = 20)
forecast::Pacf(epsilon^2, lag.max = 20)
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Box.test(epsilon^2, lag = 10, type = "Ljung-Box")$p.val

## [1] 0.7639204

So, Rt only appeared to be a WN process, unless we also analyse R2
t .



The following example stock data contains weekly data for logarithms of
stock prices, log(Pt):
suppressPackageStartupMessages({require(readxl)})
txt1 <- "http://uosis.mif.vu.lt/~rlapinskas/(data%20R&GRETL/"
txt2 <- "stock.xls"
tmp = tempfile(fileext = ".xls")
#Download the file
download.file(url = paste0(txt1, txt2),

destfile = tmp, mode = "wb")
#Read it as an excel file
stocks <- read_excel(path = tmp)
plot.ts(stocks$lStock)
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The differences do not pass WN checks:
tsdisplay(diff(stocks$lStock))

diff(stocks$lStock)
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Box.test(diff(stocks$lStock), lag = 10)$p.value

## [1] 3.014097e-05

The basic idea behind volatility study is that the series is serially
uncorrelated, but it is a dependent series.



Let us calculate the volatility as û2
t from ∆log(Yt) = α + ut

mdl <- lm(diff(stocks$lStock) ~ 1)
u <- residuals(mdl)
u2<- u^2
plot.ts(data.frame(diff(stocks$lStock), u2),

main = "returns and volatility")
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Note the small volatility in stable times and large volatility in fluctuating
return periods.



We have learned that the AR process is able to model persistency, which,
in our case, may be called clustering of volatility. Consider an
AR(1) model of volatility (for this example we assume u2

t is WN):

u2
t = α + φu2

t−1 + wt , wt ∼WN

library(forecast)
u2.mdl <- Arima(u2, order = c(1, 0, 0), include.mean = TRUE)
coef(u2.mdl)

## ar1 intercept
## 7.335022e-01 9.187829e-06

Remember that for a stationary process u2
t : Eu2

t = µ. So µ = α/(1− φ).
The Arima function returns the intercept, however, if the model has
an autoregressive part, it is actually the process mean.

#To get the alpha coefficient of an AR process:
#alpha = mu *(1-phi)
unname(coef(u2.mdl)[2] * (1 - coef(u2.mdl)[1]))

## [1] 2.448536e-06



The resulting model:

u2
t = 0.00000245 + 0.7335u2

t−1 + wt

Might be of great interest to an investor wanting to purchase this stock.

I Suppose an investor has just observed that u2
t−1 = 0, i.e. the stock

price changes by its average amount in period t − 1. The investor is
interested in predicting volatility in period t in order to judge the
likely risk involved in purchasing the stock. Since the error is
unpredictable, the investor ignores it (it could be positive or
negative). So, the predicted volatility in period t is 0.00000245.

I If the investor observed u2
t−1 = 0.0001, then he would have

predicted the volatility at period t to be 0.00000245 +
0.00007335 = 7.58e-05, which is almost 31 times bigger.

This kind of information can be incorporated into financial models of
investor behavior.



Weak WN and Strong WN

I A sequence of uncorrelated random variables (with zero mean and
constant variance) is called a weak WN;

I A sequence of independent random variables (with zero mean and
constant variance) is called a strong WN;

If εt is a strong WN then so is ε2t or any other function of εt .

Let Ωs = F(εs , εs−1, ...) be the set containing all the information on the
past of the process.

If εt is a strong WN, then:

I conditional mean E(εt |Ωt−1) = 0;
I conditional variance Var(εt |Ωt−1) = E(ε2t |Ωt−1) = σ2

Now we shall present a model of weak WN process (its variance is
constant) such that its conditional variance or volatility may change over
time. The simplest way to model this kind of phenomenon is to use the
ARCH(1) model.



From the rules for the mean :

E(X + α) = µ+ α

and the variance

Var(β · X + α) = β2 · σ2

we can modify the random variables to have different mean and variance:

εt ∼ N (0, 1)⇒ (β · εt + µ) ∼ N (µ, β2 · 1)

If we take β = σt , we can have the variance change depending on the
time t. We can then specify the volatility (i.e. standard deviation) as a
separate equation and estimate its parameters.



Auto Regressive Conditional Heteroscedastic (ARCH)
model

The core idea of the ARCH model is to effectively describe the
dependence of volatility on recent (centered) returns rt .

The ARCH(1) model can be written as:


rt = εt

εt = σtzt

σ2
t = E(ε2t |Ωt−1) = ω + α1ε

2
t−1

where:

I zt are (0,1) - Gaussian or Student (or similar symmetric) i.i.d.
random variables (strong WN);

I ω, α1 > 0;
I E(εt) = 0, Var(εt) = ω/(1− α1), Cov(εt+h, εt) = 0,∀t ≥ 0 and
|h| ≥ 1. Also, Var(εt) ≥ 0⇒ 0 ≤ α1 < 1.

An ARCH process is stationary. If the returns are not centered, then the
first equation is rt = µ+ εt .



ARCH(q):
The ARCH process can also be generalized:

rt = µ+ εt

εt = σtzt

σ2
t = ω + α1ε

2
t−1 + ...+ αqε

2
t−q

AR(P)− ARCH(q):
It may also be possible that the returns rt themselves are autocorrelated:

rt = µ+ φ1rt−1 + ...+ φprt−P + εt

εt = σtzt

σ2
t = ω + α1ε

2
t−1 + ...+ αqε

2
t−q



Continuing the stock example (1)
Recall that our ‘naive’ log stock return data volatility model was:

û2t = 0.00000245 + 0.7335û2t−1

Because the coefficient of u2
t−1 was significant - it could indicate that u2

t
is probably an ARCH(1) process.

suppressPackageStartupMessages({library(fGarch)})
mdl.arch <- garchFit(~ garch(1,0), diff(stocks$lStock),

trace = FALSE)
mdl.arch@fit$matcoef

## Estimate Std. Error t value Pr(>|t|)
## mu 1.048473e-03 1.132355e-04 9.259222 0.000000e+00
## omega 2.400242e-06 3.904157e-07 6.147914 7.850864e-10
## alpha1 6.598808e-01 1.571422e-01 4.199260 2.677887e-05



So, our model looks like:


̂∆log(stockt) = µ = 0.001048

σ̂2t = ω + α1σ̂2t−1 = 2.4 · 10−6 + 0.660σ̂2t−1

Recall from tsdisplay(diff(stocks$lStock)) that the returns are
not WN (they might be an AR(6) process). To find the proper
conditional mean model for the returns, we use auto.arima function.

mdl.ar <- auto.arima(diff(stocks$lStock), max.p = 10, max.q = 0)
mdl.ar$coef #AR(7) model is recommended

## ar1 ar2 ar3 ar4 ar5
## -0.134997783 0.249189502 -0.095223779 -0.167506460 -0.024943351
## ar6 ar7 intercept
## 0.159953621 -0.028619401 0.000983335



We combine it with ARCH(1) to create a AR(7)-ARCH(1) model:

mdl.arch.final <- garchFit(~ arma(7,0) + garch(1,0),
diff(stocks$lStock),
trace = FALSE)

mdl.arch.final@fit$matcoef

## Estimate Std. Error t value Pr(>|t|)
## mu 1.193945e-03 1.730481e-04 6.8994954 5.218714e-12
## ar1 -1.236738e-01 7.070313e-02 -1.7491979 8.025682e-02
## ar2 8.081154e-02 4.427947e-02 1.8250341 6.799588e-02
## ar3 -3.825929e-02 4.558812e-02 -0.8392383 4.013356e-01
## ar4 -1.069443e-01 3.932896e-02 -2.7192253 6.543502e-03
## ar5 7.208729e-03 3.970051e-02 0.1815777 8.559141e-01
## ar6 1.635547e-01 3.580176e-02 4.5683442 4.915924e-06
## ar7 -1.124515e-01 3.388652e-02 -3.3184725 9.051122e-04
## omega 2.045548e-06 3.566767e-07 5.7350195 9.750115e-09
## alpha1 6.503373e-01 1.721740e-01 3.7772104 1.585947e-04



The Generalized ARCH (GARCH) model
Although the ARCH model is simple, it often requires many parameters
to adequately describe the volatility process of an asset return. To reduce
the number of coefficients, an alternative model must be sought.

If an ARMA type model is assumed for the error variance, then a
GARCH(p, q) model should be considered:


rt = µ+ εt

εt = σtzt

σ2
t = ω +

∑q
j=1 αjε

2
t−j +

∑p
i=1 βiσ

2
t−i

A GARCH model can be regarded as an application of the ARMA idea to
the series ε2t .

Both ARCH and GARCH are (weak) WN processes with a special
structure of their conditional variance.

Such processes are described by an almost endless family of ARCH
models: ARCH, GARCH, TGARCH, GJR − GARCH, EGARCH,
GARCH −M, AVGARCH, APARCH, NGARCH, NAGARCH, IGARCH
etc.



Volatility Model Building
Building a volatility model consists of the following steps:

1. Specify a mean equation of rt by testing for serial dependence in
the data and, if necessary, build an econometric model (e.g. ARMA
model) to remove any linear dependence.

2. Use the residuals of the mean equation, êt = rt − r̂t to test for
ARCH effects.

3. If ARCH effects are found to be significant, one can use the PACF of
ê2

t to determine the ARCH order (may not be effective when the
sample size is small). Specifying the order of a GARCH model is not
easy. Only lower order GARCH models are used in most applications,
say, GARCH(1, 1), GARCH(2, 1), and GARCH(1, 2) models.

4. Specify a volatility model if ARCH effects are statistically significant
and perform a joint estimation of the mean and volatility equations.

5. Check the fitted model carefully and refine it if necessary.



Testing for ARCH Effects
Let εt = rt − r̂t be the residuals of the mean equation. Then ε2t are used
to check for conditional heteroscedasticity (i.e. the ARCH effects). Two
tests are available:

1. Apply the usual Ljung-Box statistic Q(k) to ε2t . The null hypothesis
is that the first k lags of ACF of ε2t are zero:
H0 : ρ(1) = 0, ρ(2) = 0, ..., ρ(k) = 0

2. The second test for the conditional heteroscedasticity is the Lagrange
Multiplier (LM) test, which is equivalent to the usual F − statistic
for testing H0 : α1 = ... = αk = 0 in the linear regression:

ε2t = α0 +
k∑

j=1
ε2t−j + et , t = k + 1, ...,T



Continuing the stock example (2)
Going through each of the steps:

tsdisplay(diff(stocks$lStock))

The log-returns are autocorrelated. So we need to specify an ARMA
model for the mean equation via auto.arima:

mdl.auto <- auto.arima(diff(stocks$lStock))
rbind(names(mdl.auto$coef)[1:3], names(mdl.auto$coef)[4:6])

## [,1] [,2] [,3]
## [1,] "ar1" "ar2" "ar3"
## [2,] "ar4" "ma1" "intercept"

The output is and ARMA(3,2) model:

rt = µ+ φ1rt−1 + φ2rt−2 + φ3rt−3 + εt + θ1εt−1 + θ2εt−2



Now, we examine the residuals of this model:

par(mfrow = c(1,3))
forecast::Acf(mdl.auto$residuals)
forecast::Acf(mdl.auto$residuals^2)
forecast::Pacf(mdl.auto$residuals^2)
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We see that the ACF of the residuals are not autocorrelated, however the
squared residuals are autocorrelated. So, we need to create a volatility
model. Because the first lag of the PACF plot of the squared residuals is
significantly different from zero, we need to specify an ARCH(1) model
for the residuals.



The final model is an ARMA(3, 2)− ARCH(1):

mdl.arch.final <- garchFit(~ arma(3, 2) + garch(1, 0),
diff(stocks$lStock),
trace = FALSE)

mdl.arch.final@fit$matcoef

## Estimate Std. Error t value Pr(>|t|)
## mu 1.980586e-03 3.367634e-04 5.8812393 4.072058e-09
## ar1 -2.743818e-01 1.943599e-01 -1.4117200 1.580324e-01
## ar2 -6.001322e-01 1.365386e-01 -4.3953299 1.106047e-05
## ar3 -1.065850e-01 8.060903e-02 -1.3222460 1.860863e-01
## ma1 1.258717e-01 1.831323e-01 0.6873265 4.918770e-01
## ma2 7.018161e-01 1.486765e-01 4.7204244 2.353530e-06
## omega 2.488709e-06 4.030309e-07 6.1749835 6.617036e-10
## alpha1 6.216022e-01 1.525975e-01 4.0734767 4.631649e-05

mdl.arch.final@fit$ics

## AIC BIC SIC HQIC
## -9.359004 -9.230203 -9.361846 -9.306918



Finally, we check the standardized residuals ŵt = ε̂t/σ̂t to check if ŵt
and ŵ2

t are WN:
par(mfrow = c(2,2))
stand.res = mdl.arch.final@residuals / mdl.arch.final@sigma.t
forecast::Acf(stand.res); forecast::Pacf(stand.res)
forecast::Acf(stand.res^2); forecast::Pacf(stand.res^2)
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Unfortunately, the residuals ŵt still seem to be autocorrelated. In this
case, more complex models should be considered, like the ones mentioned
in the GARCH model slide … But this may not be necessary!



These tests are performed and provided in the model output:
capture.output(summary(mdl.arch.final))[46:56]

## [1] "Standardised Residuals Tests:"
## [2] " Statistic p-Value "
## [3] " Jarque-Bera Test R Chi^2 2.981865 0.2251626"
## [4] " Shapiro-Wilk Test R W 0.9941911 0.6029121"
## [5] " Ljung-Box Test R Q(10) 14.81308 0.1390265"
## [6] " Ljung-Box Test R Q(15) 17.92572 0.2665907"
## [7] " Ljung-Box Test R Q(20) 21.14201 0.3888168"
## [8] " Ljung-Box Test R^2 Q(10) 5.334754 0.8677243"
## [9] " Ljung-Box Test R^2 Q(15) 8.492303 0.9025344"
## [10] " Ljung-Box Test R^2 Q(20) 12.02647 0.9151619"
## [11] " LM Arch Test R TR^2 8.228338 0.7670416"

We see that Jarque-Bera Test and Shapiro-Wilk Test p-values >
0.05, so we do NOT reject the null hypothesis of normality of the
standardized residuals R. The Ljung-Box Test for the standardized
residuals R and Rˆ2 p-values > 0.05, so the residuals form a WN.
Finally, the LM Arch Test p-value > 0.05 shows that there are no
more ARCH effects in the residuals. So, our estimated model is
correctly specified in the sense that the residual autocorrelation
from the ACF/PACF plots is relatively weak!



To explore the predictions of volatility, we calculate and plot 51
observations from the middle of the data along with the one-step-ahead
predictions of the corresponding volatility σ̂2t :
d_lstock <- ts(diff(stocks$lStock))
sigma = mdl.arch.final@sigma.t
plot(window(d_lstock, start = 75, end = 125),

ylim = c(-0.02, 0.035), ylab = "diff(stocks$lStock)",
main = "returns and their +- 2sigma confidence region")

lines(window(d_lstock - 2*sigma, start = 75, end = 125),
lty = 2, col = 4)

lines(window(d_lstock + 2*sigma, start = 75, end = 125),
lty = 2, col = 4)
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predict(mdl.arch.final, n.ahead = 2, mse ="cond", plot = T)
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Prediction with confidence intervals

X̂t+h

X̂t+h − 1.96 MSE
X̂t+h + 1.96 MSE

## meanForecast meanError standardDeviation lowerInterval upperInterval
## 1 0.0008520921 0.002132817 0.002132817 -0.003328152 0.005032337
## 2 0.0010536363 0.002327369 0.002305715 -0.003507924 0.005615196



Data Sources
A useful R package for downloading financial data directly from open
sources, like Yahoo Finance, Google Finance, etc., is the quantmod
package. Click here for some examples.

suppressPackageStartupMessages({library(quantmod)})
suppressMessages({

getSymbols("GOOG", from = "2007-01-03", to = "2018-01-01")
})
tail(GOOG, 3)

## [1] "GOOG"

## GOOG.Open GOOG.High GOOG.Low GOOG.Close
## 2017-12-27 1057.39 1058.37 1048.05 1049.37
## 2017-12-28 1051.60 1054.75 1044.77 1048.14
## 2017-12-29 1046.72 1049.70 1044.90 1046.40
## GOOG.Volume GOOG.Adjusted
## 2017-12-27 1271900 1049.37
## 2017-12-28 837100 1048.14
## 2017-12-29 887500 1046.40

http://www.quantmod.com/examples/


Time plots of daily closing price and trading volume of Google from the
last 365 trading days:

chartSeries(tail(GOOG, 365), theme = "white", name = "GOOG")
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GOOG.rtn = diff(log(GOOG[, "GOOG.Adjusted"]))
chartSeries(GOOG.rtn, theme = "white",

name = "Daily log return data of GOOGLE stocks")
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Example of getting non-financial data. Unemployment rates from FRED:
getSymbols("UNRATE", src = "FRED")

## [1] "UNRATE"

chartSeries(UNRATE, theme = "white", up.col = 'black')
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https://fred.stlouisfed.org/


Summary of Volatility Modelling (1)

Quite often, the process we want to investigate for the ARCH effects is
stationary but not WN.

I Let εt be a weak WN(0, σ2) and consider the model Yt = r + εt , or
Yt = β0 + β1Xt + εt or Yt = α + φYt−1 + εt or similar.

I Test whether the WN shocks εt make an ARCH process: plot the
graph of e2

t ( = ε̂2t ) - if εt is an ARCH process, this graph must
show a clustering property.

I Further test whether the shocks εt form an ARCH process: test
them for normality (the hypothesis must be rejected) (e.g. using
Shapiro-Wilk test of normality).

I Further test whether the shocks εt form an ARCH process: draw the
correlogram of et - the correlogram must indicate WN, but that of
e2

t must not (it should be similar to the correlogram of an AR(p)
process).



Summary of Volatility Modelling (2)

I To formally test whether the shocks εt form ARCH(q), test the null
hypothesis H0 : α1 = ... = αq = 0 (i.e. no ARCH in
σ2

t = ω +
∑q

j=1 αjε
2
t−j):

1. Choose the proper AR(q) model of the auxiliary regression
e2

t = α+ α1e2
t−1 + ...+ αqe2

t−1 + wt (proper means minimum AIC
and WN residuals wt);

2. To test H0, use the F − test (or the LM test).
I Instead of using ARCH(q) with a high order q, an often more

parsimonious description of εt is usually given by GARCH(1,1) (or
a similar lower order GARCH process);

I In order to show that the selected ARCH(q) or GARCH(1,1) model
is ‘good’, test whether the residuals ŵt = ε̂t/σ̂t and ŵ2

t make WN
(as they are expected to).


