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Introduction

Most economic models involve more than one equation. We know how to
estimate each equation in, say, supply and demand models, but given the
links between the equations, we might reasonably ask whether it is
possible to estimate the equations jointly (it turns out that it is possible).
Sometimes this improves the efficiency of the estimators, sometimes it
has no effect on their efficiency, and sometimes it makes things worse.

There are two useful types of relationships between equations.

First, there may be a relationship between the error terms of the model.

Second, there may be relationships between the parameters of the model
themselves, either because two parameters take the same value or
because some more general mathematical relationship exists between two
or more parameters.



Seemingly Unrelated Regression (SUR)
In the example below, we consider five firms: GM, Chrysler, GE,
Westinghouse, and U.S. Steel. The data consist of time series of 20
yearly observations for these firms and three variables:

I Iit - gross investment;
I Fit - market value of the firm at the end of the previous year;
I Cit - value of the stock of plant and equipment at the end of the

previous year.

where i = 5, …, 5, t = 1935, …, 1954. At any moment t we can write
five equations:


I1t = β10 + β11F1t + β12C1t + ε1t

.................................

I5t = β50 + β51F5t + β52C5t + ε5t

Each equation can be estimated individually taking t = 1935, …, 1954
(each firm performs its own investment policy, therefore we can treat
these equations as unrelated).



On the other hand, all the economic activities take place in the same
economic environment, therefore the five shocks ε1t , …, ε5t can be
correlated. The procedure which takes into account this correlation is
called SUR. Generally, it differs from OLS except for the two cases:

1. The equations are really uncorrelated, i.e., cov(εit , εjs) = 0, t 6= s
(and also cov(εit , εjs) = (δij) does not depend on t).

2. All the equations in the above equation system have the same
explanatory variables on the right-hand-side, i.e.,

F1t = ... = F5t = Ft etc (this is not true in our case).

The difference between two estimating methods is hardly noticeable,
probably, because of a small correlation between the errors. Generally,
using SUR to jointly estimate the equations of the system, allowing for
correlation between the errors of the equations, will improve the
efficiency of the estimation, but usually not much.



Potential Drawbacks of estimating SUR instead of
individual OLS

There is one potential problem with simultaneous equations, which is
that it requires the Gauss-Markov assumptions to be true for all
equations. Suppose that the Gauss-Markov assumptions are true for one
equation but not for another.

For example, one equation might have an omitted right-hand-side
variable or an endogenous one. Then estimating by SUR will generally no
longer be unbiased or consistent for any of the equations.

In such a case, OLS would remain unbiased and consistent for those
equations for which the Gauss Markov assumptions help.

Estimating equation by equation has the advantage that, if there is a
problem with one equation, the problem is limited to that equation and
cannot spill over to the estimates of the parameters of the other
equations.



Up to now, we have not made use of the economic connection between
the equations in the system. We have allowed for the error terms to be
correlated, and we have some economic ideas about why the errors would
be correlated, but the errors might well be correlated by coincidence even
if there was no economic link between the equations at all.

We may do better if we can use economic theory to suggest direct links
between the parameters of the equations of the system. for example,
conditions

β2 = γ2(= δ)

is called a cross-equation restriction. If we use OLS to estimate
individually both equations from the above system, we have to minimize

RSS = RSS1(β0, β1, δ, β3) + RSS2(γ0, γ1, δ, γ3)

In this case where we use SUR to estimate the parameters, we have to
generalize RSS and to include the effects of the correlation of the error
terms.



Multiple Equations with Endogenous Right-hand-sede
Variables

SUR is a useful technique for models that can be estimated by least
squares.

However, it cannot be used if the Gauss-Markov assumptions are not
satisfied.

In particular, if the equations contain endogenous right-hand-side
variables, SUR will be biased and inconsistent.

Any time we have two equations solving for the values of two variables,
such as the supply and demand model, there will be endogenous
right-hand-side variables and SUR will not be appropriate.



Simultaneous Estimation via Three-Stage Least Squares

Fortunately, we can simultaneously estimate equations by two-stage
least squares in exactly the same way that we can simultaneously
estimate them by ordinary least squares. Doing so requires a three-step
process:

1. Regress each endogenous variable on all exogenous variables in the
system of equations, and calculate predicted values for the
endogenous variables.

2. Estimate the structural equations by least squares, replacing the
endogenous right-hand-side variables with their predicted values
from Step 1.

3. Calculate the estimated variances and covariances of the residuals
from Step 2, and re-estimate the structural equations using the
SUR method.

This technique, known as three-stage least squares, is the instrumental
variables equivalent to SUR.



It has the same general relationship to two-stage least squares that SUR
has to OLS. Its advantage is that it will be more efficient than two-stage
least squares for large samples, as long as the right-hand-side variables of
the equations are not the same in all equations.

It is not unbiased - but two-stage least squares is not unbiased either - so
that is not a disadvantage of three-stage least squares.

Its main disadvantage is that, as with SUR, simultaneous estimation
permits a violation of the Gauss-Markov assumptions in one of the
equations to spread to the other equations



We have already discussed the problem of the endogenous
right-hand-side variables and we presented three methods to deal with it.

The first one was a rather cumbersome indirect least squares method, the
other were two - and three-stages least square methods.

Now we shall briefly describe two more methods.

The single equation or limited-information methods (specifically, the
limited information maximum likelihood method) was introduced in 1949
and was popular until the advent of 2SLS. Computationally it is rather
complicated but if the equation under consideration is exactly identified,
then LIML and 2SLS give identical estimates.

To estimate the coefficients of an equation, LML uses the information of
that equation only. In contrast, in system or full-information methods we
use information on the restrictions on all equations.



Example
In 1950, L. Klein proposed the dynamic model of macroeconomics which
was later called Klein Model 1. It is described by the following system:



Ct = α0 + α1Pt + α2Pt−1 + α3(W p
t + W g

t ) + ε1t (consumption)
It = β0 + β1Pt + β2Pt−1 + β3Kt−1 + ε2t (investment)
W p

t = γ0 + γ1Xt + γ2Xt−1 + γ3At + ε3t (demand for labor)
Xt = Ct + It + Gt (equilibrium demand)
Pt = Xt − Tt −W p

t (private sector revenue)
Kt = Kt−1 + It (capital)

where

I C - consumption expenditure; I - investment expenditure;
I G - government expenditure; P - profits;
I W p - private wage bill; W g - government wage bill;
I K - capital stock; A - time trend.
I T - taxes; X - income after tax;



In the preceding model, the left-hand-side variables C , I, W , Y , P, and
K are treated as jointly dependent, or endogenous, variables,

G , T , W g , and A as exogenous, and the variables Pt−1, Kt−1, and Xt−1
are treated as predetermined.

In all, there are six equations (including the three identities) to study the
interdependence of six endogenous variables.

Note that because of the interdependence among the endogenous
variables, in general they are not independent of the stochastic
disturbance terms, which therefore makes it inappropriate to apply the
method of OLS to an individual equation in the system (estimators thus
obtained are inconsistent, they do not converge to their true population
values even when the sample size is very large).



suppressPackageStartupMessages({
library(readxl)
require(systemfit)
require(AER)

})
data("KleinI", package = "systemfit")

Specifying the equations in R (while coefficient restrictions can be
specified, value restrictions/identities - cannot, so we do not specify them
here):

eqConsump <- consump ~ corpProf + corpProfLag + wages
eqInvest <- invest ~ corpProf + corpProfLag + capitalLag
eqPrivWage <- privWage ~ gnp + gnpLag + trend
inst <- ~ govExp + taxes + govWage + trend +

capitalLag + corpProfLag + gnpLag

eq.sys <- list( Consumption = eqConsump,
Investment = eqInvest,
PrivateWages = eqPrivWage )



We can estimate the equation system via a variety of estimation
techniques:

I OLS (ignoring the equation system structure - equivalent to
single-equation estimation)

k.OLS <- systemfit(eq.sys, data = KleinI, method = "OLS")

I 2SLS (equivalent to single-equation instrumental variable estimation)

k.2SLS <- systemfit(eq.sys, data = KleinI,
inst = inst, method = "2SLS")

I SUR (residuals are correlated throughout the equations, not
accounted for predictor endogeneity problems)

k.SUR <- systemfit(eq.sys, data = KleinI, method = "SUR")

I 3SLS (takes into account both the contemporaneous residual
correlation and the predictor endogeneity)

k.3SLS <- systemfit(eq.sys, data = KleinI,
inst = inst, method = "3SLS")



Estimation method coefficient comparison:

cof <- cbind(coef(k.OLS), coef(k.2SLS),
coef(k.SUR), coef(k.3SLS))

colnames(cof) <- c("OLS", "2SLS", "SUR", "3SLS")
round(cof, 4)

## OLS 2SLS SUR 3SLS
## Consumption_(Intercept) 16.2366 16.5548 15.9805 16.4408
## Consumption_corpProf 0.1929 0.0173 0.2302 0.1249
## Consumption_corpProfLag 0.0899 0.2162 0.0673 0.1631
## Consumption_wages 0.7962 0.8102 0.7962 0.7901
## Investment_(Intercept) 10.1258 20.2782 12.9293 28.1778
## Investment_corpProf 0.4796 0.1502 0.4429 -0.0131
## Investment_corpProfLag 0.3330 0.6159 0.3655 0.7557
## Investment_capitalLag -0.1118 -0.1578 -0.1253 -0.1948
## PrivateWages_(Intercept) 1.4970 1.5003 1.6347 1.7972
## PrivateWages_gnp 0.4395 0.4389 0.4098 0.4005
## PrivateWages_gnpLag 0.1461 0.1467 0.1744 0.1813
## PrivateWages_trend 0.1302 0.1304 0.1558 0.1497



Estimation method coefficient p-value comparison:

p.val <- cbind(summary(k.OLS)$coefficient[, 4], summary(k.2SLS)$coefficient[, 4],
summary(k.SUR)$coefficient[, 4], summary(k.3SLS)$coefficient[, 4])

colnames(p.val) <- c("OLS", "2SLS", "SUR", "3SLS")
round(p.val, 4)

## OLS 2SLS SUR 3SLS
## Consumption_(Intercept) 0.0000 0.0000 0.0000 0.0000
## Consumption_corpProf 0.0495 0.8966 0.0152 0.3133
## Consumption_corpProfLag 0.3353 0.0874 0.4422 0.1621
## Consumption_wages 0.0000 0.0000 0.0000 0.0000
## Investment_(Intercept) 0.0814 0.0271 0.0269 0.0017
## Investment_corpProf 0.0001 0.4460 0.0002 0.9429
## Investment_corpProfLag 0.0042 0.0034 0.0019 0.0004
## Investment_capitalLag 0.0006 0.0011 0.0002 0.0000
## PrivateWages_(Intercept) 0.2547 0.2558 0.2055 0.1655
## PrivateWages_gnp 0.0000 0.0000 0.0000 0.0000
## PrivateWages_gnpLag 0.0011 0.0034 0.0001 0.0002
## PrivateWages_trend 0.0008 0.0009 0.0001 0.0002



Estimation method coefficient standard error comparison:

s.e <- cbind(summary(k.OLS)$coefficient[, 2], summary(k.2SLS)$coefficient[, 2],
summary(k.SUR)$coefficient[, 2], summary(k.3SLS)$coefficient[, 2])

colnames(s.e) <- c("OLS", "2SLS", "SUR", "3SLS")
round(s.e, 4)

## OLS 2SLS SUR 3SLS
## Consumption_(Intercept) 1.3027 1.4680 1.2989 1.4499
## Consumption_corpProf 0.0912 0.1312 0.0852 0.1202
## Consumption_corpProfLag 0.0906 0.1192 0.0855 0.1116
## Consumption_wages 0.0399 0.0447 0.0392 0.0422
## Investment_(Intercept) 5.4655 8.3832 5.3364 7.5509
## Investment_corpProf 0.0971 0.1925 0.0957 0.1799
## Investment_corpProfLag 0.1009 0.1809 0.0994 0.1700
## Investment_capitalLag 0.0267 0.0402 0.0261 0.0362
## PrivateWages_(Intercept) 1.2700 1.2757 1.2418 1.2402
## PrivateWages_gnp 0.0324 0.0396 0.0303 0.0354
## PrivateWages_gnpLag 0.0374 0.0432 0.0347 0.0380
## PrivateWages_trend 0.0319 0.0324 0.0307 0.0310



Summary

The set of economic variables Y1, …, Yk is determined through a market
equilibrium mechanism and we want to analyze the structure of
relationships that determines the equilibrium. Suppose that

~Y = (Y1, ...,Yn)

is a vector consisting of n economic variables, among which there exist n
relationships that determine the equilibrium levels of the variables. We
also suppose that there exist x variables

~Z = (Z1, ...,Zx )

that are independent of the economic relations but affect the equilibrium.

The variables Ŷ are called endogenous variables, and the Ẑ are called
exogenous variables.



If we assume linear relationships among them, we have an expression
such as

~Y = B ~Y + Γ~Z + ~u

where B and Γ are matrices with constant coefficients and ~u is a vector
of disturbances or errors.

The mentioned system is called the linear structural equation system and
is a system of simultaneous equations. By solving the equations formally,
we get the so-called reduced form

~Y = Π~Z + ~v

where
Π = (I − B)−1Γ,

~v = (I − B)−1~u

The relation of ~Y to ~Z is determined through the reduced form, and if
we have enough data on ~Y and ~Z , we can estimate Π.

The problem of identification is to decide whether we can determine the
unknown parameters in B and Γ uniquely from the parameters in the
reduced form.



A necessary condition for the parameters in one of the equations in the
first system (~Y = B ~Y + Γ~Z + ~u) to be identifiable is that the number of
unknown variables in the equation not be greater than x + 1.

If it is exactly equal to x + 1, the equation is said to be just identified,
and if it is less than x + 1, the equation is said to be overidentified.

I If all the equations in the system are just identified, for arbitrary Π
there exist unique B and Γ that satisfy

Π = (I − B)−1Γ

Therefore, if we denote the least squares estimator of Π by Π̂, we
can estimate B and Γ from the equation

(I − B̂)Π̂ = Γ̂

This procedure is called the indirect least squares method and is
equivalent to the maximum likelihood method if we assume
normality for ~u



I When some of the equations are overidentified, the estimation
problem becomes complicated. Three kinds of procedures have been
proposed:

1. Full system methods
2. Single equation methods
3. Subsystem methods

In full system methods all the parameters are considered simultaneously,
and if normality is assumed, the maximum likelihood estimator can be
obtained by minimizing

|(~Y − Π~Z )(~Y − Π~Z )′|

Since it is usually difficult to compute the maximum likelihood estimator,
a simpler, but asymptotically equivalent, three stage least squares
method has been proposed.



The single equation methods and the subsystem methods take into
consideration only the information about the parameters in one equation
or in a subset of the equations, and estimate the parameters in each
equation separately.

There is a single equation method, called the limited information
maximum likelihood method, based on the maximum likelihood
approach, and also a two-stage squares method, which estimated Π first
by least squares, computes ~̂Y = Π̂~Z , and then applies the least squares
method to the model ~Y = B ~̂Y + Γ~Z + ~u. These two and also some
others are asymptotically equivalent.

Among asymptotically equivalent classes of estimators corresponding to
different information structures it has been established that the maximum
likelihood estimators have asymptotically higher-order efficiency than
other estimators, and Monte Carlo and numerical studies show that they
are in most cases better than others if properly adjusted for the biases.



In many simultaneous equation models which have been applied to actual
macroeconomic data, the values of endogenous variables obtained in the
past appear on the right-hand sides of equations ~Y = B ~Y + Γ~Z + ~u.

Such variables are called lagged variables, and they can be treated, at
least in the asymptotic theory of inference, as though they were
exogenous.

Hence exogenous variables and lagged endogenous variables are jointly
called predetermined variables. When many lagged variables appear over
many time periods and when some structure among the coefficients of
those lagged variables can be assumed, such a model is called a
distributed lag model.



Summary

Simultaneous Equations Model
The model:

I Consists of a set of equations.
I Has two, or more, dependent variables;

Simultaneous equations models require special statistical methods for
parameter estimation as the least squares estimation is not appropriate
for these models.



For example, price and quantity are determined by the interaction of the
two equations - one for supply, and one for demand:

Demand: Q = α1P + α2X + εdemand

Supply: Q = β1P + εsupply

where:

I Q - the quantity demanded;
I P - the price;
I X - the income;
I Cov(εdemand , εsupply ) = 0.

Two equations are used to describe the supply and demand equilibrium;
Two equilibrium values (price P∗ and quantity Q∗) are determined at the
same time.

In this case, P and Q are the endogeneous variables (and are therefore
random variables) since their values are determined within the specified
system. The income variable X is determined outside the system and,
hence, is called an exogeneous variable.



Note that we usually assume that the left-hand-side explanatory
variables are fixed (i.e. non-random). Because P is on the left and is an
endogeneous variable and is therefore a random variable, this means that
P and Q are correlated which means that εsupply is correlated with P. To
show this, we need to rewrite the equation system.

Reduced-Form Equations
The previously mentioned equations can be solved to express the
endogeneous variables P and Q as functions of the remaining exogeneous
variables (in our case it is only one - X ).This reformulated model is called
the reduced form of the structural equation system.



I To solve for P, we set Q in the demand and supply equations to be
equal:

β1P + εsupply = α1P + α2X + εdemand

Then we solve for P:

P = α2
β1 − α1

X + εdemand − εsupply
β1 − α1

= π1X + v1

I To solve for Q, we substitute the new expression of P into either
demand of supply equations. Let’s substitute it into the supply eq.
to get:

Q = β1P + εsupply

= β1

[
α2

β1 − α1
X + εdemand − εsupply

β1 − α1

]
+ εsupply

= β1α2
β1 − α1

X + +β1εdemand − α1εsupply
β1 − α1

= π2X + v2



The parameters π1 and π2 are called the reduced-form parameters.
The error terms v1 and v2 are called the reduced-form errors.

The reduced form equations can be estimated consistently by OLS to get
π̂1 and π̂2. Because X is determined outside of the equation, it is not
correlated with v1 and v2.

What if we want to estimate the original α1 and β1 with the original
system unchanged?

I OLS produces incorrect estimates because as mentioned:

Cov(P, εsupply ) = Cov(π1X + v1, εsupply )

= Cov
(
εdemand − εsupply

β1 − α1
, εsupply

)
= 1
β1 − α1

Cov (−εsupply , εsupply )

=
−σ2

ε,supply
β1 − α1

< 0

Note that for β1P + εsupply = α1P + α2X + εdemand to hold, we need
β1 ≥ α1, because X ≥ 0.



The reduced-form equations are important for economic analysis. These
equations relate the equilibrium values of the endogenous variables to the
exogenous variables. This lets us analyse what magnitude an increase in
X could have to price, and what would be the new equilibrium of the
adjusted market in terms of P and Q.

The estimated reduced-form equations can be used to predict values of
equilibrium price and quantity for different levels of income.

Identification
In a system of M simultaneous equations, which jointly determine M
endogeneous variables, at least M − 1 variables must be excluded from
one of the of the equations for estimation of its parameters to be
possible. Then, such an equation is said to be identified and its
parameters can be estimated consistently.

If fewer than M − 1 variables are omitted from an equation, then it is said
to be unidentified and its parameters cannot be consistently estimated.



In our example there are M = 2 equations, so we need M − 1 = 1
variable to be omitted from an equation to identify it. There are a total
of three variables: P, Q and X .

The demand equation does not have any variables omitted - it is
unidentified and its parameters cannot be estimated consistently.

The supply equation does not have the variable X , so it is identified and
its parameters can be estimated.

The number of instrumental variables required for estimation of an
equation within a simultaneous equations model is equal to the number
of right-hand-side endogenous variables.

Two-Stage Least Squares Estimation
Assume that we have M endogeneous variables Y1, ...,YM , K exogeneous
variables X1, ...,XK and suppose that the first structural equation is:

Y1 = α2Y2 + α3Y3 + β1X1 + β2X2 + e1



If the equation is identified, then its parameters can be estimated in two
steps:

1. Estimate the parameters of the reduced form equations by OLS:

Y2 = π12X1 + π22X2 + ...+ πK2XK + v2

Y3 = π13X1 + π23X2 + ...+ πK3XK + v3

and obtain the predicted values:

Ŷ2 = π̂12X1 + π̂22X2 + ...+ π̂K2XK

Ŷ3 = π̂13X1 + π̂23X2 + ...+ π̂K3XK

2. Replace the endogeneous variables Y2 and Y3 on the right-hand-side
of the structural equation of Y1 with their predicted values:

Y1 = α2Ŷ2 + α3Ŷ3 + β1X1 + β2X2 + e∗1

Estimate the parameters of this equation by OLS.



install.packages("devtools")
library(devtools)
install_git("https://github.com/ccolonescu/PoEdata")

Example
We will try to predict the supply and demand for truffles.

data("truffles", package="PoEdata")
head(truffles)

## p q ps di pf
## 1 29.64 19.89 19.97 2.103 10.52
## 2 40.23 13.04 18.04 2.043 19.67
## 3 34.71 19.61 22.36 1.870 13.74
## 4 41.43 17.13 20.87 1.525 17.95
## 5 53.37 22.55 19.79 2.709 13.71
## 6 38.52 6.37 15.98 2.489 24.95



Here p - the price of truffles, q - is the quantity of truffles traded in a
particular French market, ps - price of substitute for real truffles, di - per
capita monthly disposable income, pf - price factor of production (in this
case - hourly rental price of truffle-pigs used in the search process).

Economic theory says that the price of a factor of production should
affect supply but not demand, and that the price of substitute goods and
income should affect demand and not supply. The specifications we use
are based on the microeconomic theory of supply and demand. So, our
supply and demand model for truffles is:

Supply: Qi = β1 + β2Pi + β3PFi + εsi

Demand: Qi = α1 + α2Pi + α3PSi + α4DIi + εdi

Here i indicates a French market i . In this model we assume that P and
Q are endogeneous variables and PS, DI, PF and the intercept are
exogeneous variables.

In this case we have M = 2 equations. So, at least M − 1 = 1 variables
must be excluded from each equation in order for it to be identified. In
the demand equation - PF is not included; in the supply equation - PS
and DI are not included. So, the system is identified.



The reduced-form equations express the endogeneous variables P and Q
as a function of the exogeneous variables PS, DI, OF and the intercept:

Qi = π11 + π21PSi + π31DIi + π41PFi + vi1

Pi = π12 + π22PSi + π32DIi + π42PFi + vi2

We can estimate these equations by least squares since the
right-hand-side variables are exogenous and uncorrelated with the random
errors vi1 and vi2.



#Estimate reduced-form parameters
q.lm <- lm(q ~ ps + di + pf, data = truffles)
p.lm <- lm(p ~ ps + di + pf, data = truffles)
round(summary(q.lm)$coefficients, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.8951 3.2434 2.4342 0.0221
## ps 0.6564 0.1425 4.6051 0.0001
## di 2.1672 0.7005 3.0938 0.0047
## pf -0.5070 0.1213 -4.1809 0.0003

round(summary(p.lm)$coefficients, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -32.5124 7.9842 -4.0721 4e-04
## ps 1.7081 0.3509 4.8682 0e+00
## di 7.6025 1.7243 4.4089 2e-04
## pf 1.3539 0.2985 4.5356 1e-04



The reduced-form equations are used to obtain P̂:

P̂ = −32.51 + 1.71PS + 7.6DI + 1.36PF

that will be used in place of P on the right-hand side of the supply and
demand equations in the second stage of two-stage least squares.

truffles$p_hat <- p.lm$fitted.values
demand.lm <- lm(q ~ p_hat + ps + di, data = truffles)
supply.lm <- lm(q ~ p_hat + pf, data = truffles)



round(summary(demand.lm)$coefficients, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.2795 3.0138 -1.4199 0.1675
## p_hat -0.3745 0.0896 -4.1809 0.0003
## ps 1.2960 0.1931 6.7119 0.0000
## di 5.0140 1.2414 4.0389 0.0004

round(summary(supply.lm )$coefficients, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.0328 2.1657 9.2500 0
## p_hat 0.3380 0.0441 7.6599 0
## pf -1.0009 0.1461 -6.8496 0

Note that by applying two least squares regressions using ordinary least
squares regression software, the standard errors and t-values reported in
the second regression are not correct for the 2SLS estimator.
To get around this, we should use specialized functions for 2SLS
estimation, like tsls() from sem package, or the ivreg() function from
AER package.



suppressPackageStartupMessages({library(sem)})
demand <- tsls(q ~ p + ps + di, ~ ps + di + pf, data = truffles)
supply <- tsls(q ~ p + pf, ~ ps + di + pf, data = truffles)
round(summary(demand)$coefficients, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.2795 5.5439 -0.7719 0.4471
## p -0.3745 0.1648 -2.2729 0.0315
## ps 1.2960 0.3552 3.6488 0.0012
## di 5.0140 2.2836 2.1957 0.0372

round(summary(supply)$coefficients, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.0328 1.2231 16.3785 0
## p 0.3380 0.0249 13.5629 0
## pf -1.0009 0.0825 -12.1281 0



suppressPackageStartupMessages({library(AER)})
demand <- ivreg(q ~ p + ps + di | ps + di + pf, data = truffles)
supply <- ivreg(q ~ p + pf | ps + di + pf, data = truffles)
round(summary(demand)$coefficients, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.2795 5.5439 -0.7719 0.4471
## p -0.3745 0.1648 -2.2729 0.0315
## ps 1.2960 0.3552 3.6488 0.0012
## di 5.0140 2.2836 2.1957 0.0372

round(summary(supply)$coefficients, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.0328 1.2231 16.3785 0
## p 0.3380 0.0249 13.5629 0
## pf -1.0009 0.0825 -12.1281 0



The estimated equations are:

Ŝupply = 20.03 + 0.34P̂ − 1.00PF

D̂emand = −4.28− 0.37P̂ + 1.30PS + 5.01DI

Note that both tsts() and ivreg() produce the same results, but the t
value and p value of the estimated coefficients in lm() are different!

The most common technique of solving for simultaneous equation models
is a technique called two-staged least squares. This method transforms a
set of simultaneous equations into functional forms that use the
endogenous variables as a function of the system’s exogenous variables.
You can then use least squares to get the estimators for the reduced-form
equations. The final step is to plug one of the fitted values into the
right-hand side of one of your structural equations to get the correct
estimates of your equations.



Seemingly Unrelated Regressions
Lets say we have two equations of different firm investments:

INV1,t = β11 + β12V1,t + β13K1,t + e1,t

INV2,t = β21 + β22V2,t + β23K2,t + e2,t

Where INVi,t is the gross investment for firm i at time t; Vi,t is the stock
market value of firm i at time t and Ki,t is the actual capital stock of
firm i at time t.

The two investment equations appeared unrelated and we may estimate
them separately.

suppressPackageStartupMessages({library(plm)})
data("grunfeld2", package="PoEdata")
grun <- pdata.frame(grunfeld2, index = c("firm","year"))
head(grun)

## inv v k firm year
## 1-1935 33.1 1170.6 97.8 1 1935
## 1-1936 45.0 2015.8 104.4 1 1936
## 1-1937 77.2 2803.3 118.0 1 1937
## 1-1938 44.6 2039.7 156.2 1 1938
## 1-1939 48.1 2256.2 172.6 1 1939
## 1-1940 74.4 2132.2 186.6 1 1940



inv1_lm <- lm(inv ~ v + k, data = grun[grun$firm == 1, ])
inv2_lm <- lm(inv ~ v + k, data = grun[grun$firm == 2, ])
round(summary(inv1_lm)$coefficients, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9.9563 31.3742 -0.3173 0.7548
## v 0.0266 0.0156 1.7057 0.1063
## k 0.1517 0.0257 5.9015 0.0000

round(summary(inv2_lm)$coefficients, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.5094 8.0153 -0.0636 0.9501
## v 0.0529 0.0157 3.3677 0.0037
## k 0.0924 0.0561 1.6472 0.1179



The equations have different coefficients and their error variances:

var(resid(inv1_lm))

## [1] 695.6099

var(resid(inv2_lm))

## [1] 93.3281

are also different. If additionally, the errors in one equation are
uncorrelated to the errors in the other equation, then we do indeed have
nothing to link the two equations together - combining the data from the
two firms brings no gain.

On the other hand, if Cov(e1,t , e2,t) 6= 0, i.e. if the error terms in the two
equations are correlated, then we should employ a different approach.



In the context of this dataset, the errors contain the influence on
investment of factors that have been omitted from the equations. Such
factors might include:

I capacity utilization;
I current and past interest rates;
I liquidity;
I the general state of the economy.

If the two firms are similar in many respects (if both of them are
operating in the same markets), it is likely that the effects of the omitted
factors on investment by one company will be similar to their effect on
investment by the other company.

If so, then the error terms will be capturing similar effects and will be
correlated.

Adding the contemporaneous correlation (correlation between the
realizations of two time series variables in the same time period)
assumption has the effect of introducing additional information that is
not included when we carry out separate least squares estimation of the
two equations.



The seemingly unrelated regressions (SUR) estimation generalizes the
leas squares estimation procedure - it estimates the two investment
equations jointly, taking into account that:

I the variances of the error terms are different for the two equations;
I the errors in the two equations are contemporaneously correlated.

There are three stages in the SUR estimation procedure:

1. Estimate the equations separately using OLS.
2. Use the residuals from step 1 to estimate Var(e1,t), Var(e2,t),

Cov(e1,t , e2,t).
3. Use the estimates from step 2 to estimate the two equations jointly

within a generalized least squares (GLS) framework.

In general, if our equation is Y = Xβ + ε and the error
variance-covariance matrix is E(ε′ε) = σ2Ω, then:

I using OLS we estimate the parameters via:

β̂ = (X′X)−1 X′Y
I using GLS we estimate the parameters via:

β̂ =
(
X′Ω−1X

)−1 X′Ω−1Y



colnames(grun) <- c("inv", "val", "cap", "firm", "year")

We can estimate the parameters via systemfit() from the package of
the same name:

suppressPackageStartupMessages({library("systemfit")})
grunf.SUR <- systemfit(inv ~ val + cap,

method = "SUR",
data = grun)

round(summary(grunf.SUR)$coefficients, 4)

## Estimate Std. Error t value Pr(>|t|)
## 1_(Intercept) -27.7193 29.3212 -0.9454 0.3577
## X1_val 0.0383 0.0144 2.6576 0.0166
## X1_cap 0.1390 0.0250 5.5647 0.0000
## 2_(Intercept) -1.2520 7.5452 -0.1659 0.8702
## X2_val 0.0576 0.0145 3.9618 0.0010
## X2_cap 0.0640 0.0530 1.2062 0.2443



Residual correlation matrix estimate:

summary(grunf.SUR)$residCor

## 1 2
## 1 1.0000000 0.7650429
## 2 0.7650429 1.0000000

The SUR estimation procedure is optimal under the contemporaneous
correlation assumption, so no standard error adjustment is necessary.

Since the SUR technique utilizes the information on the correlation
between the error terms, it is more precise than the OLS - the standard
errors of the SUR estimates are lower than those of the OLS.

You should be cautious, when making judgments about precision on the
basis of standard errors. Standard errors are themselves estimates; it is
possible for a standard error for SUR to be greater than a corresponding
least squares standard error even when SUR is a better estimator than
least squares.



So, the equations seemed to be unrelated, but the additional information
provided by the correlation between the equation errors means that joint
GLS estimation is better than single-equation OLS estimation.

There are two situations in which separate least squares estimation is just
as good as the SUR technique:

1. when the equation errors are not contemporaneously correlated;
2. when the same explanatory variables (i.e. with the same observation

values) appear in each equation.


