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Introduction

Consider a simple regression model:

Yt = α+ βXt + ut

I Under the classical Gauss-Markov conditions, the OLS estimators of
its coefficients are BLUE (Best Linear Unbiased Estimator).

I However, if it happens that Xt is correlated with ut , then the OLS
estimator become biased, inconsistent and inefficient.

This situation often arises when one or more of the explanatory variables
is jointly determined with the dependent variable, typically through an
equilibrium mechanism (this is called a simultaneous equations model).

The leading method for estimating simultaneous equations models is the
method of instrumental variables (IV) and we start its exposition in a
one equation case.



One Equation

Consider a simple model written as:

Yt = α+ βXt + ut ,

where we think that Xt and ut are correlated: cov(Xt , ut) 6= 0 (thus, Xt
is an endogenous variable). In order to obtain consistent estimators of α
and β, suppose that we have an observable variable Zt that satisfies two
assumptions:

1. Zt is uncorrelated with ut , that is, cov(Zt , ut) = 0 (we say that Z is
exogenous variable).

2. Zt is correlated with Xt , that is, cov(Zt ,Xt) 6= 0 (we call Zt an
instrumental variable for Xt , or sometimes simply an instrument for
Xt).



Recall that under the classical assumptions the usual

β̂LS = ĉov(Xt ,Yt)
v̂ar(Xt)

is the solution of the following two moments equations:{∑
(Yt − (α+ βXt)) = 0 ∼ Eε = 0∑
(Yt − (α+ βXt))Xt = 0 ∼ Cov(ε,X ) = 0

Now, as the second equation fails, we replace X in it by the instrument Z
and obtain the consistent instrumental variable estimator:

β̂IV = ĉov(Zt ,Yt)
ĉov(Zt ,Xt)



Note on Instrument selection

I Quite often the lag Xt−1 serves as a good instrument to Xt

I Xt−1 will be a “good” instrument if the correlation between Xt−1
and Xt is sufficiently high or, what is almost the same, the
coefficient δ1 in the regression:

Xt = δ0 + δ1Xt−1

is significant.



In what follows, we shall use Y to denote endogenous variables and Z
exogenous. Thus our previous model can be rewritten as:

Y1,t = α+ βY2,t + ut

we also assume that we know Zt .

The model can be generalized to (1 endo. & 1 exo var.):

Y1,t = α+ β1Y2,t + β2Z1,t + ut

In order to use the IV method, we need another exogenous variable, call
it Z2,t , that does not appear in our equation.



The last model can be further generalized to (1 endo. & k-1 exo. var.):

Y1,t = α+ β1Y2,t + β2Z1,t + ...+ βkZk−1,t + ut ,

where we again assume that we have an instrument to Y2,t , say Zk,t .

Now, to get the IV estimators of β’s, one has to solve the system:


∑

(Yt − (α+ β1Y2,t + β2Z1,t + ...+ βkZk−1,t)) = 0∑
(Yt − (α+ β1Y2,t + β2Z1,t + ...+ βkZk−1,t))Z1,t = 0

...∑
(Yt − (α+ β1Y2,t + β2Z1,t + ...+ βkZk−1,t))Zk,t = 0

What if we have two instruments for Y2,t : Zk,t and Zk+1,t? We can get
two IV estimators of β’s, and neither of these would, in general, be
efficient.

To find the best IV, we choose the linear combination of all exogenous
variables that are best correlated with Y2,t . This turns our to be given by:

Ŷ2,t = π̂0 + π̂1Z1,t + ...+ π̂k−1Zk−1,t + π̂kZk,t + π̂k+1Zk+1,t ,

where π̂’s are the OLS estimates in respective model.



Two-Stage Least Squares Estimation

We can use Ŷ2,t as an instrument to Y2,t or, alternatively, apply the
following two stage least squares (2SLS) procedure:

1. Obtain the above mentioned estimator Ŷ2.
2. Replace Y2 with Ŷ2 in:

Y1,t = α+ β1Y2,t + β2Z1,t + ...+ βkZk−1,t + ut

and once again apply OLS.

The 2SLS estimator is less efficient than OLS when the explanatory
variables are exogenous. Therefore, it is useful to have a test for
endogeneity of an explanatory variable that shows whether 2SLS is
necessary.

It is common to use the Hausman test to test for exogeneity.



Note that 2SLS can also be used in models with more than one
endogenous explanatory variable. For example, consider the model:

Y1,t = α+ β1Y2,t + β2Y3,t + β3Z1,t + β4Z2,t + β5Z3,t + ut

To estimate β’s we need at least two more exogenous variables Z4,t and
Z5,t that do not appear in this equation but that are correlated with Y2,t
and Y3,t .

1. On the first stage, we apply OLS and estimate:

Ŷ2,t = π̂
(2)
0 + π̂

(2)
1 Z1,t + ...+ π̂

(2)
5 Z5,t

and
Ŷ3,t = π̂

(3)
0 + π̂

(3)
1 Z1,t + ...+ π̂

(3)
5 Z5,t

2. On the second stage, replace Y2,t and Y3,t with, respectively, Ŷ2,t

and Ŷ3,t and estimate α and β’s with OLS.



Endogeneity test
Lets say, we want to estimate the following model:

Y1,t = α+ β1Y2,t + β2Zt + εt

where: Y1,t and Y2,t are endogenous variables; Zt - exogenous variable; It
- instrumental variables, which are not included in the regression.

To perform the Housman test:

1. Regress Y2,t on Zt and the instruments It and save the residuals:

Y2,t = π0 + π1It + π2Zt + νt

Because Zt and It are exogenous (i.e. uncorrelated with εt), Y2,t is
exogenous if, and only if, εt and νt are uncorrelated (this is what we
need to test). This leads to the next step:

2. Run the Hausman test by regressing Y1,t on Y2,t , Zt and ν̂t :

Y1,t = α+ β1Y2,t + β2Zt + δν̂t + ωt

For this test H0 : δ = 0 . If δ is significant, we can conclude, that Y2,t
was in fact endogenous, because the error terms were correlated.



The first case where endogenous variable on the right-hand-side emerges
is a measurement error in explanatory variable.

Assume that the right model is

Yt = α+ βXt + ut

but instead of Xt we observe X∗
t = Xt + νt where Eνt = 0 and νt does

not depend on ut . Thus, our regression model is of the form:

Yt = α+ βX∗
t + (ut − βνt) = α+ βX∗

t + ε∗t

where X∗
t is endogenous because

cor(X∗
t , ε

∗
t ) = E(Xt + νt)(ut − βνt) = −βEν2

t 6= 0

Recall that we want to estimate β in Yt = α+ βXt + ut but since we do
not have X , we replace it by X∗. Consequently, we have to look for an
instrument for X∗.



System of Equations

Another important source of endogeneity is simultaneity. The reason that
there are two equations in a supply and demand model is that there are
two variables - Q for equilibrium quantity and P for equilibrium price -
whose values the model explains:

QD
t = β0 + β1Pt + β2It + εDt (demand equation)

QS
t = γ0 + γ1Pt + γ2Wt + εSt (supply equation)

QD
t = QS

t = Qt (equilibrium condition)

the model can also contain some extra variables, it is I (the income of
buyers) and W (the wage rate of seller’s employees). Note that the
supply equation can be rewritten as:{

Qt = β0 + β1Pt + β2It + εDt (demand equation)
Qt = γ0 + γ1Pt + γ2Wt + εSt (supply equation)



I A variable (such as Q and P) is endogenous to an economic model if
its value is defined within the model.

I A variable (such as I and W ) is exogenous to the model if its value
is taken as given (i.e., is treated as a fixed parameter) by the model
(the market forces bring Q and P to equilibrium together, but
market forces do not influence neither I or W ).

These definitions are equivalent to the following ones: the right-hand-side
variable of an equation is called endogenous if it is correlated (and
exogenous if it is uncorrelated) with the error term ε.



Recall that the OLS estimates of the coefficients of an equation are
BLUE only if certain (Gauss -Markov) conditions are met, in particular, if
all the right-hand-side variables are exogenous. But what happens if one
of the right-hand-side variables is endogenous?

I If all the Gauss-Markov assumptions are true except the one of
exogeneity then the OLS estimators of the coefficients become
biased, inconsistent and inefficient.

Thus, we cannot apply the OLS to neither demand nor supply equation.
to cure the structural (or economic) system, solve the model for its
endogenous variables - the new reduced (or econometric) system of the
model will take the form of:

{
Qt = δ0 + δ1Wt + δ2It + εQ,t

Pt = π0 + π1Wt + π2It + εP,t



Since W and I are exogenous, respective estimates are BLUE. They
provide a simple description of the equilibrium of the model and of how it
changes when the exogenous variables change.

However, δ’s and π’s are not the slopes of the supply and demand lines.
One possibility is to work backward from these values to slopes but
sometimes it is rather complicated or even impossible (in any case, it will
not provide estimates of the standard errors of the β and γ parameters
which are necessary to test hypothesis about them).

Therefore, to estimate the coefficients of the original equation, we apply
a two-stage least squares procedure:

Let K be the number of all the exogenous variables in the model
(including a constant) and Hj the number of (unknown) coefficients in
the j th structural equation. The necessary condition for the equation to
be identified (or estimable) is:

K ≥ Hj

We shall explain the procedure by means of example.



Example

In the first system
QD

t = β0 + β1Pt + β2It + εDt (demand equation)
QS

t = γ0 + γ1Pt + γ2Wt + εSt (supply equation)
QD

t = QS
t = Qt (equilibrium condition)

the list of exogenous variables consists of a constant, I, and W ,
therefore, K = 3. In the demand equation, we have three β’s, in the
supply equation three γ’s, thus according to the order condition, we can
proceed with both equations.



Stage 1. Using OLS, regress the endogenous variables on all of the
exogenous variables (you have to estimate both equations in the system):

{
Qt = δ0 + δ1Wt + δ2It + εQ,t

Pt = π0 + π1Wt + π2It + εP,t

Stage 2. Now estimate the structural equations in the first system by
OLS, replacing the endogenous variables with their predicted values, Q̂t
and P̂t , from Stage 1:

{
Q̂t = β0 + β1P̂t + β2It + ε

(1)
t

Q̂t = γ0 + γ1P̂t + γ2Wt + ε
(2)
t

It can be proved that the estimated β̂’s and γ̂’s from the second-stage
regression are consistent estimators of the true β and γ parameters.
They are biased, but the bias diminishes as the sample grows larger.



Note that in a similar system{
Qt = β0 + β1Pt + εDt
Qt = γ0 + γ1Pt + γ2Wt + εDt

K = 2, H1 = 2, and H2 = 3, thus the second equation is not identified
(i.e., we cannot consistently estimate γ’s from our data by any
estimation method).
Finally, in the system {

Qt = β0 + β1Pt + εDt
Qt = γ0 + γ1Pt + εDt

both equations are unidentified (i.e., if our data consists of the
equilibrium data (Q1, P1),…,(QT , PT ) only, there is no way to estimate
β’s and γ’s). Indeed, we can solve the system as{

Qt = δQ + εQ,t

Pt = δP + εP,t

but we cannot restore four parameters β0, β1, γ0, and γ1 from two
parameters δQ and δP .



Example
Consider the following IS-LM model:

{
Rt = β11 + β12Mt + β13Yt + β14Mt−1 + u1t

Yt = β21 + β22Rt + β23It + u2t

Where Rt denotes the interest rates; Mt denotes the money stock; Yt is
GDP; It is investment expenditure.

In this model, Rt and Yt are endogenous variables and Mt , Mt−1 and It
are exogenous variables. The first (LM) equation is exactly identified and
the second (IS) one is overidentified (i.e. more exogenous variables than
coefficients to estimate).



The example data are annual time series from 1969 to 1977 for the UK
economy:

suppressPackageStartupMessages({
library(readxl)
require(systemfit)
require(AER)

})
txt1 <- "http://uosis.mif.vu.lt/~rlapinskas/(data%20R&GRETL/"
txt2 <- "simult.xls"
tmp = tempfile(fileext = ".xls")
download.file(url = paste0(txt1, txt2),

destfile = tmp, mode = "wb")
sim.dt <- data.frame(read_excel(path = tmp))
data1 <- ts(sim.dt[, -1], frequency = 1, start = 1969)
data1 <- data.frame(data1,

M.L1 = c(NA, data1[-nrow(data1), 2]))



Because some of the equations have endogenous variables on the
right-hand-side, we also define the instrumental variables (in this case
these are the exogenous variables) after the model equation:

lm.R <- ivreg(R ~ M + Y + M.L1 | M + M.L1 + I, data = data1)
lm.Y <- ivreg(Y ~ R + I | M + M.L1 + I, data = data1)



round(summary(lm.R)$coefficients, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 27.5275 11.1348 2.4722 0.0209
## M 0.0019 0.0019 1.0091 0.3230
## Y -0.2647 0.2241 -1.1809 0.2492
## M.L1 -0.0017 0.0018 -0.9855 0.3342

The coefficients of Y as well as M are insignificant, suggesting that the
LM function is very flat.



round(summary(lm.Y)$coefficients, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 98.7996 68.7067 1.4380 0.1628
## R -4.0430 3.1306 -1.2914 0.2084
## I 0.0002 0.0004 0.5329 0.5988

Interpreting this model, we can say that income and the rate of interest
are negatively related, according to the theoretical prediction, and income
is quite sensitive to changes in the rate of interest. Also, a change in
investment is would cause the function to shift to the right, again as
theory suggests.

However, the p-values indicate that the coefficients are not statistically
significant from zero.

Alternatively, systemfit can be used to estimate the equation system
(more on the eq. system estimation in the next lecture slides).


