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Introduction

In the present chapter, we discuss methods which involve more than one
equation. To motivate why multiple equation methods are important, we
begin by discussing Granger causality. Later, we move to discussing the
most popular class of multiple-equation models: so-called Vector
Autoregressive (VAR) models. VARs can be used to investigate Granger
causality, but are also useful for many other things in finance.

Time series models for integrated series are usually based on applying
VAR to first differences. However, differencing eliminates valuable
information about the relationship among integrated series - this is where
Vector Error Correction model (VECM) is applicable.



Granger Causality
In our discussion of regression, we were on a little firmer ground, since we
attempted to use common sense in labeling one variable the dependent
variable and the others the explanatory variables. In many cases, because
the latter ‘explained’ the former it was reasonable to talk about X
‘causing’ Y. For instance, the price of the house can be said to be
‘caused’ by the characteristics of the house (e.g., number of bedrooms,
number of bathrooms, etc.).

However, one can run a regression of Y = stock prices in Country B on X
= stock prices in Country A. It is possible that stock price movements in
Country A cause stock markets to change in Country B (i.e., X causes Y
). For instance, if Country A is a big country with an important role in
the world economy (e.g., the USA), then a stock market crash in Country
A could also cause panic in Country B. However, if Country A and B
were neighboring countries (e.g., Thailand and Malaysia) then an event
which caused panic in either country could affect both countries.

In other words, the causality could run in either direction - or both!
Hence, when using the word ‘cause’ with regression or correlation results
a great deal of caution has to be taken and common sense has to be used.



However, with time series data we can make slightly stronger statements
about causality simply by exploiting the fact that time does not run
backward! That is, if event A happens before event B, then it is possible
that A is causing B. However, it is not possible that B is causing A. In
other words, events in the past can cause events to happen today. Future
events cannot.

These intuitive ideas can be investigated through regression models
incorporating the notion of Granger or regressive causality. The basic
idea is that a variable X Granger causes Y if past values of X can help
explain Y.

Of course, if Granger causality holds this does not guarantee that X
causes Y. This is why we say ‘Granger causality’ rather than just
‘causality’. Nevertheless, if past values of X have explanatory power for
current values of Y, it at least suggests that X might be causing Y.

Granger causality is only relevant with time series variables.



To illustrate the basic concepts we will consider Granger causality
between two variables (X and Y ) which are both stationary. A
nonstationary case, where X and Y have unit roots but are cointegrated,
will be mentioned below. Since X and Y are both stationary, an ADL
model is appropriate. Suppose that the following simple ADL (only lags
on the right hand side!) model holds:

Yt = α + φYt−1 + β1Xt−1 + εt

This model implies that last period’s value of X has explanatory power
for the current value of Y . The coefficient β1 is a measure of the
influence of Xt−1 on Yt . If β1 = 0, then past values of X have no effect
on Y and there is no way that X could Granger cause Y.

In other words, if β1 = 0 then X does not Granger cause Y.

Since we know how to estimate the ADL and carry out hypothesis tests,
it is simple to test Granger causality or, in other words, to test
H0 : β1 = 0: if β̂1 is statistically significant (i.e. its p − value < 0.05 ),
then we conclude that X Granger causes Y. Note that the null hypothesis
being tested here is hypothesis that Granger causality does not occur.
We will refer to this procedure as a Granger causality test.



In general, we could assume that the (X ,Y) interaction is described by
an ADL(p, q) model of the form (only lags on the right hand side!) [this
is also called the unrestricted model]:

Yt = α + δt + φ1Yt−1 + ...+ φpYt−p + β1Xt−1 + ...+ βqXt−q + εt

we say that X does not Granger cause Y if all βi = 0. Using the
previously described lag selection technique for an ADL model, we can
test the joint significance of β̂i : we conclude that X Granger causes Y if
any (or all) of β̂1, ..., β̂q are statistically significant. If X at any time in
the past has explanatory power for the current value of Y, then we say
that X Granger causes Y. Since we are assuming X and Y do not contain
unit roots, OLS regression analysis can be used to estimate this model
[also called the restricted model]:

Yt = α + δt + φYt−1 + ...+ φpYt−p + εt

We do not reject the null hypothesis H0 : β1 = 0, ..., βq = 0 if the models
are ‘more or less the same’, i.e. if SSRUR ≈ SSRR .



The most popular here is the F test: if test statistic

F = (SSRR − SSRUR)/q
SSRUR/(T − Q − (p + 2))

is greater than the 0.95 quantile of the F distribution with
(q,T − q − (p + 2)), we say that X Granger causes Y.

In many cases, it is not obvious which way causality should run. For
instance, should stock markets in country A affect markets in country B
or should the reverse hold?

In such cases, when causality may be in either direction, it is important
that you check for it. If Y and X are the two variables under study, in
addition to running a regression of Y on lags of itself and lags of X (as
above), you should also run a regression of X on lags of itself and lags of
Y.

In other words, you should work with two separate equations: one with Y
being the dependent variable and one with X being the dependent
variable.



This brief discussion of Granger causality has focused on two variables, X
and Y . However, there is no reason why these basic techniques cannot
be extended to the case of many variables.

For instance, if we had three variables, X , Y and Z , and were interested
in investigating whether X or Z Granger cause Y, we would simply regress
Y on lags of Y , lags of X and lags of Z .

If, say, the lags of Z were found to be significant and the lags of X not,
then we could say that Z Granger causes Y, but X does not.



Testing for Granger causality among cointegrated variables is very
similar to the method outlined above. Remember that, if variables are
found to be cointegrated (something which should be investigated using
unit root and cointegration tests), then you should work with an error
correction model (ECM) involving these variables. In the case where you
have two variables, this is given by:

∆Yt = φ+δt+λet−1+γ1∆Yt−1+...+γp∆Yt−p+ω1∆Xt−1+...+ωq∆Xt−q+εt

This is essentially an ADL model except for the presence of the term
λet−1, where et−1 = Yt−1 − α− βXt−1.

X Granger causes Y if past values of X have explanatory power for
current values of Y. Applying this intuition to the ECM, we can see that
past values of X appear in the terms ∆Xt−1, ...,∆Xt−q and et−1. This
implies that X does not Granger cause Y if ω1 = ... = ωq = λ = 0.

t-statistics and p-values can be used to test for Granger causality in the
same way as the stationary case. Also, the F - tests can be used to carry
out a formal test of H0 : ω1 = ... = ωq = λ = 0

The bottom line - if X Granger-causes Y , this does not mean that
X causes Y , it only means that X improves Y ’s predictability (i.e.,
reduces residuals of the model).



VAR: Estimation and forecasting

Our discussion of Granger causality naturally leads us to an interest in
models with several equations and the topic of Vector Autoregressions
or VARs.

Initially, we will assume that all variables are stationary. If the original
variables have unit roots, then we assume that differences have been
taken such that the model includes the changes in the original variables
(which do not have unit roots). The end of this section will consider the
extension of this case to that of cointegration.



When we investigated Granger causality between X and Y, we began with
an ADL(p, q) model for Y as the dependent variable. We used it to
investigate if X Granger caused Y. We then went on to consider causality
in the other direction, which involved switching the roles of X and Y in
the ADL. In particular, X became the dependent variable. We can write
the two equations as follows:

Yt = α1 + δ1t + φ11Yt−1 + ...+ φ1pYt−p + β11Xt−1 + ...+ β1qXt−q + ε1t

Xt = α2 + δ2t + φ21Yt−1 + ...+ φ2pYt−p + β21Xt−1 + ...+ β2qXt−q + ε2t

The first of these equations tests whether X Granger causes Y; the
second, whether Y Granger causes X. Note that now the coefficients have
subscripts indicating which equation they are in. The errors now have
subscripts to denote the fact that they will be different in the two
equations.

These two equations comprise a VAR. A VAR is the extension of the
autoregressive (AR) model to the case in which there is more than one
variable under study. A VAR has more than one dependent variable (e.g.,
Y and X ) and, thus, has more than one equation. Each equation uses as
its explanatory variables lags of all the variables under study (and
possibly a deterministic trend).



The term ‘VAR’ becomes more transparent if we use a matrix notation.
A first order VAR in two variables would be given by:

Yt = α1 + φ11Yt−1 + φ12Xt−1 + ε1t

Xt = α2 + φ21Yt−1 + φ22Xt−1 + ε2t

where ε1t and ε2t are two white noise processes (independent of the
history of X and Y) that may be correlated.
If, for example φ12 6= 0 , this means that the history of X helps explaining
Y, that is, X is a Granger cause of Y . The system can be written as:(

Yt
Xt

)
=
(
α1
α2

)
+
(
φ11 φ12
φ21 φ22

)(
Yt−1
Xt−1

)
+
(
ε1t
ε2t

)
or, with relevant definitions, as:

~Yt = ~α + Θ1~Yt−1 + ~εt

This extends the first order autoregressive model AR(1) to the higher
dimensional case. In general, a VAR(p) model for a d - dimensional
vector ~Yt is given by:

~Yt = ~α + ~δt + Θ1~Yt−1 + ...+ Θp ~Yt−p + ~εt

where Θj is a d × d matrix and ~εt is a d - dimensional vector of white
noise terms with a covariance matrix Σ.



Similarly to one-dimensional case, a VAR(p) is stationary if all the roots
of the equation det(Ik −Θ1z −Θ2z2 − ...−Θpzp) = 0 are outside a unit
complex circle. The VAR is said to have a single unit root if the above
equation has exactly one root z = +1, i.e.

det(Ik −Θ1 −Θ2 − ...−Θp) = 0

This will hold, if at least one of the variables in the VAR contains a unit
root.

Why we would want to work with such models? One reason has to be
Granger causality testing. That is, VARs provide a framework for testing
for Granger causality between each set of variables.

Determining the lag length p in an empirical application is not always
easy and univariate autocorrelation or partial autocorrelation functions
will not help. A reasonable strategy is to estimate a VAR model for
different values of p and then select on the basis of the Akaike or
Schwarz information criteria.



Once the order p has been established, we have to estimate the
coefficients. It appears that to get BLUE estimators, we can apply OLS
to every equation individually (this is what, in R, VAR of the the package
vars or lineVar of the package tsDyn, do).

Below we shall examine forecasting a VAR(2) model, but at first we
present a brief introduction to some of the practical issues and intuitive
ideas relating to forecasting. All our discussion will relate to forecasting
with VARs but it is worth noting that the ideas also relate to forecasting
with univariate time series models. After all, an AR model is just a VAR
with only one equation.



Forecasting
Forecasting is usually done using time series variables. The idea is that
you use your observed data to predict what you expect to happen in the
future. In more technical terms, you use data for periods t = 1, ...,T to
forecast periods T + 1,T + 2, .... To provide some intuition for how
forecasting is done, consider a VAR(1) involving two variables, Y and X:

Yt = α1 + δ1t + φ11Yt−1 + φ12Xt−1 + ε1t

Xt = α2 + δ2t + φ21Yt−1 + φ22Xt−1 + ε2t

You cannot observe YT +1 but you want to make a guess of what it is
likely to be. Using the first equation of the VAR and setting t = T + 1,
we obtain an expression for YT +1:

YT +1 = α1 + δ1(T + 1) + φ11YT + φ12XT + ε1,T +1

This equation cannot be directly used to obtain YT +1 since we don’t
know what unpredictable shock ε1,T +1 or surprise will hit the economy
next period. Furthermore, we do not know what the coefficients are.



However, if we ignore the error term (which cannot be forecast since it is
unpredictable) and replace the coefficients by their estimates we obtain a
forecast which we denote as ŶT +1:

ŶT +1 = α̂1 + δ̂1(T + 1) + φ̂11YT + φ̂12XT

We can use the same strategy for two periods, provided that we make
one extension - since our data only runs until period T, we do not know
what YT +1 and XT +1 are. Consequently, we replace YT +1 and XT +1 by
ŶT +1 and X̂T +1 (this called a dynamic forecast). The same can be done
to calculate X̂T +2:

ŶT +2 = α̂1 + δ̂1(T + 2) + φ̂11ŶT +1 + φ̂12X̂T +1

X̂T +2 = α̂2 + δ̂2(T + 2) + φ̂21ŶT +1 + φ̂22X̂T +1

We can use the general strategy of ignoring the error, replacing
coefficients by their estimates and replacing lagged values of variables
that are unobserved by forecasts, to obtain forecasts for any number of
periods in the future for any VAR(p).



VAR: Summary

Building a VAR model involves three steps:

1. use some information criterion to identify the order,
2. estimate the specified model by using the least squares method and,

if necessary, re-estimate the model by removing statistically
insignificant parameters

3. use the Portmanteau test statistic of the residuals to check the
adequacy of a fitted model (this is a multivariate analogue of the
Ljung-Box Q-stat in an ARIMA model and is to test for
autocorrelation and cross-correlation in residuals). If the fitted
model is adequate, then it can be used to obtain forecasts.



Example

The data file us-tbill.txt contains monthly, 1964:01 through 1993:12,
interest rates of US treasure bills for maturities of one month Y_1M and
five years Y_5Y. Both series are integrated, therefore we fit a VAR(p)
model to the first differences.

suppressPackageStartupMessages({
library(forecast)
library(urca)
library(vars)

})
txt1 <- "http://uosis.mif.vu.lt/~rlapinskas/(data%20R&GRETL/"
txt2 <- "us-tbill.txt"
rate <- read.table(paste0(txt1, txt2), header = TRUE)
rate <- ts(rate, start = 1964, frequency = 12)
rate <- rate[, c(2,4)]



plot.ts(rate, main = "Interest rates of 1M & 5Y US T-bills")
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To select the order of the VAR process, we use the VARselect function
and Schwarz’s SC statistic:

d.rate = diff(rate)
VARselect(d.rate, lag.max = 4, type="const")

## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
## 4 1 1 4
##
## $criteria
## 1 2 3 4
## AIC(n) -2.34112246 -2.34704986 -2.34649802 -2.3542181
## HQ(n) -2.31508701 -2.30365745 -2.28574864 -2.2761117
## SC(n) -2.27567822 -2.23797612 -2.19379478 -2.1578853
## FPE(n) 0.09621965 0.09565129 0.09570471 0.0949698

The $selection shows the selected VAR order for different statistics.
Since SC(n) = -2.3022769 and it is the smallest SC(n) value, when
n = 1, we are going with a VAR(1) model.



plot.ts(d.rate, main = "diff(rate)")
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Because d.rate does not have a drift, we will create a VAR model
without one:

var.diff = VAR(d.rate, p = 1, type = "none")
coefficients(var.diff)

## $Y_1M
## Estimate Std. Error t value Pr(>|t|)
## Y_1M.l1 -0.2341646 0.05524366 -4.238760 2.867202e-05
## Y_5Y.l1 0.6343748 0.10732304 5.910891 7.970641e-09
##
## $Y_5Y
## Estimate Std. Error t value Pr(>|t|)
## Y_1M.l1 -0.007842584 0.02987634 -0.2625015 0.7930866
## Y_5Y.l1 0.074123953 0.05804140 1.2770876 0.2024036

We note that the estimation results show that Y_5Y is the Granger cause
of Y_1M (in the 1st model the p-value of Y_5Y.l1 is < 0.05) but not
vice versa (in the 2nd model the p-value of Y_5Y.l1 is > 0.05) (the
R-squared is also larger in the 1st equation).



The model var.diff is for differences. Since
YT +h = ∆YT +h + ...+ ∆YT +1 + YT , the forecast YT +h,T equals the
cumulative sum of the forecasts for differences:

N <- 120 #forecast for 120 periods
NN <- nrow(rate)
var.pred = predict(var.diff, n.ahead = N, ci = 0.95)
R1.d = numeric(NN+N); R2.d = numeric(NN+N)
# insert historical data
R1.d[1:NN] = rate[,1]
R2.d[1:NN] = rate[,2]
# predict levels from differences
R1.d[(NN+1):(NN+N)]= R1.d[NN]+cumsum(var.pred$fcst[["Y_1M"]][,1])
R2.d[(NN+1):(NN+N)]= R2.d[NN]+cumsum(var.pred$fcst[["Y_5Y"]][,1])
#Transform to a time series
Ra1.d=ts(R1.d,start=1964,freq=12)
Ra2.d=ts(R2.d,start=1964,freq=12)



plot(Ra1.d,ylab="Rates",main="VAR in differences")
lines(Ra2.d,col=2)
legend(1992,15,c("Y_1M","Y_5Y"),lty=1,col=1:2)
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Note that VAR model should always include variables with the same
order of integration - this allows us to create a model in levels (instead
of differences).

VARselect(rate, lag.max = 4, type="const")

## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
## 2 2 2 2
##
## $criteria
## 1 2 3 4
## AIC(n) -2.33873185 -2.41654626 -2.41234643 -2.40861749
## HQ(n) -2.31275339 -2.37324883 -2.35173002 -2.33068212
## SC(n) -2.27342403 -2.30769989 -2.25996151 -2.21269403
## FPE(n) 0.09644995 0.08922959 0.08960571 0.08994149

For the levels, a VAR(2) model is more appropriate.



var.lev=VAR(rate, p = 2, type = "const")
coefficients(var.lev)

## $Y_1M
## Estimate Std. Error t value Pr(>|t|)
## Y_1M.l1 0.7103028 0.05664413 12.5397410 4.364259e-30
## Y_5Y.l1 0.7025051 0.10873206 6.4608826 3.455831e-10
## Y_1M.l2 0.1796765 0.05690023 3.1577469 1.726953e-03
## Y_5Y.l2 -0.6292672 0.10615386 -5.9278785 7.305456e-09
## const 0.1209171 0.13943867 0.8671706 3.864376e-01
##
## $Y_5Y
## Estimate Std. Error t value Pr(>|t|)
## Y_1M.l1 0.01033561 0.03085654 0.3349568 7.378566e-01
## Y_5Y.l1 1.03517258 0.05923111 17.4768387 1.016894e-49
## Y_1M.l2 0.02965198 0.03099604 0.9566375 3.394049e-01
## Y_5Y.l2 -0.09011028 0.05782665 -1.5582829 1.200623e-01
## const 0.17660319 0.07595834 2.3250005 2.063839e-02



var.pred.lev=predict(var.lev, n.ahead = N, ci = 0.95)
R1.lev=numeric(NN+N)
R2.lev=numeric(NN+N)
R1.lev[1:NN]=rate[,1]
R2.lev[1:NN]=rate[,2]
R1.lev[(NN+1):(NN+N)]=var.pred.lev$fcst[["Y_1M"]][,1]
R2.lev[(NN+1):(NN+N)]=var.pred.lev$fcst[["Y_5Y"]][,1]
Ra1.lev=ts(R1.lev,start=1964,freq=12)
Ra2.lev=ts(R2.lev,start=1964,freq=12)



plot(Ra1.lev,ylab="Rates",main="VAR in levels")
lines(Ra2.lev,col=2)
legend(1992,15,c("Y_1M","Y_5Y"),lty=1,col=1:2)
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VAR in differences
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Both levels revert to (the values close to) their means (i.e. a stationary
behavior) which contradicts the unit root (i.e. non-stationary) behavior of
each series. The explanation lies in the fact that we estimated an
unrestricted VAR model while actually the coefficients should reflect
cointegration and obey some constrains (this will be later discussed in
the VECM section).



VAR: Impulse-Response Function

The impulse-response function is yet another device that helps us to
learn about the dynamic properties of vector autoregressions of interest
to forecasters. The question of interest is simple and direct: How does a
unit innovation to a series affect it, now and in the future?

To clarify the issue, let us start with one-dimensional case. Let
Y1 = ... = YT−1 = 0, ε1 = ... = εT−1 = 0 and at moment t = T a unit
shock comes: εT = σ, εT +1 = ... = 0.

I If Yt = εt , i.e. Yt is a WN, then YT = σ, YT +1 = εT +1 = 0 and
YT +h = εT +h = 0 - WN has no memory, no dynamics;

I If Yt = φYt−1 + εt , |φ| < 1, i.e. Yt is an AR(1), then
YT = φ · 0 + σ = σ, YT +1 = φσ + 0 = φσ, …, YT +h = φhσ as
h→∞ - the impulse response is dying down.



Now consider again the two-variable, first-order system:

Yt = φ11Yt−1 + φ12Xt−1 + ε1t

Xt = φ21Yt−1 + φ22Xt−1 + ε2t

I A perturbation in ε1t has an immediate one-for-one effect on Yt , but
no effect on Xt .

I In period t + 1, that perturbation in Yt affects Yt+1 through the 1st
equation, and also affects Xt+1, through the 2nd equation.

I These effects work through to period t + 2 etc.

Thus a perturbation in one innovation in the VAR sets up a chain
reaction over time in all variables in the VAR. Impulse response functions
calculate these chain reactions.



Example (continued):
The IRF (impulse-response function) can be calculated in R. The reaction
to the unit Y_1M impulse:

plot(irf(var.diff, impulse = "Y_1M"))
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The reaction to the unit Y_5Y impulse:

plot(irf(var.diff, impulse = "Y_5Y"))
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Example 2
Suppose our VAR(1) model is:

(
Yt
Xt

)
=
(

0.4 0.1
0.2 0.5

)(
Yt−1
Xt−1

)
+
(
ε1,t
ε2,t

)
,

(
ε1,t
ε2,t

)
∼ N

((
0
0

)
,

(
16 14
14 25

))
We can show that this model is stationary:

det
([

1 0
0 1

]
−
[
0.4 0.1
0.2 0.5

]
z
)

= det
([

1− 0.4z −0.1z
−0.2z 1− 0.5z

])
= 1− 0.5z − 0.4z + 0.2z2 − 0.02z2 = 0.18z2 − 0.9z + 1

# Find roots of equation: 1 - 0.9 * z + 0.18 * z^2 = 0
roots <- polyroot(c(1, -0.9, 0.18))
paste0("Absolute: |z_i| = ", round(abs(roots), 4))

## [1] "Absolute: |z_i| = 1.6667" "Absolute: |z_i| = 3.3333"

Because the roots are greater than one in absolute value, the VAR(1)
process is stationary.



If we set:
(Y0,X0) = (0, 0), ~ε1 = (4, 0)′, ~εj = 0, j > 1

i.e. initialize ~Yt values at zero and set a one-standard-deviation
innovation in the first equation and a zero innovation in the second
equation in period one and assume no further shocks from innovations.

The first few ~Yt values are:(
Y1
X1

)
=
(

4
0

)
,

(
Y2
X2

)
= Θ1

(
Y1
X1

)
+ ~ε2 =

(
1.6
0.8

)
,

(
Y3
X3

)
=
(

0.72
0.72

)
If we set:

(Y0,X0) = (0, 0), ~ε1 = (0, 5)′, ~εj = 0, j > 1
Then:(

Y1
X1

)
=
(

0
5

)
,

(
Y2
X2

)
= Θ1

(
Y1
X1

)
+ ~ε2 =

(
0.5
2.5

)
,

(
Y3
X3

)
=
(

0.45
1.35

)
An objection to the procedure just illustrated for the computation irf is
that the innovations in the VAR are, in general, not contemporaneously
independent of one another, i.e. the shock covariance matrix Σ is not
diagonal. So cases when one innovation receives a perturbation and the
other does not is implausible. Ignoring this gives incorrect irf results!



A widely used solution is to transform ~εt to produce a new set of
uncorrelated unit variance innovations ~ut (i.e. diagonalization of ~εt).

Let: E(u1,t , u2,t) = (0, 0) and Σu = I. We want to find a matrix P such
that: (

ε1,t
ε2,t

)
= P~ut =

(
p11 0
p21 p22

)(
u1,t
u2,t

)
⇓

ε1,t = p11u1,t , ε2,t = p21u1,t + p22u2,t

And the covariance matrix of P~ut is the same as the (sample) covariance
matrix, i.e. Σ (or Σ̂). So, we need to solve:

Var(ε1,t) = p2
11 = σ2

1

Var(ε2,t) = p2
21 + p2

22 = σ2
2

Cov(ε1,t , ε2,t) = E [p11u1,t · (p21u1,t + p22u2,t)] = p11p21 = σ12

its solution is: p11 = σ1, p21 = σ12/σ1, p22 =
√
σ2

2 − (σ12/σ1)2.

In higher-dimensional VAR’s, the equation that is 1st in the ordering has
only one uncorrelated innovation, u1,t . The equation that is 2nd has only
u1,t and u2,t , the equation that is 3rd has only u1,t , u2,t and u3,t , etc.



Error Covariance Matrix Cholesky Decomposition
What is really important here are the equations relating ~ε and ~u:

~ut = P−1~εt ⇐⇒ ~εt = P~ut

These relations imply the Cholesky decomposition (factorization) of
the (sample) covariance matrix:

Σ = PP′

where P - a lower triangular matrix and P′ - an upper triangular matrix.

This imposes an ordering of the variables in the VAR and attributes all of
the effect of any common component to the variable that comes first in
the VAR system.

Note that this method is called the error orthogonalization (or error
covariance matrix diagonalization) procedure.

Note that responses can change dramatically if you change the ordering
of the variables.



Example 2 (continued)

We can decompose our covariance matrix via Cholesky decomposition
using R:

Sigma = matrix(c(16, 14, 14, 25), ncol = 2, byrow = TRUE)
print(Sigma)

## [,1] [,2]
## [1,] 16 14
## [2,] 14 25

round(P_mat <- t(chol(Sigma)), 4)

## [,1] [,2]
## [1,] 4.0 0.0000
## [2,] 3.5 3.5707

(We can also calculate this manually from Σ = PP′)



So:
P =

(
4 0

3.5 3.5707

)
Suppose, that we postulate ~u1 = (1, 0)′ and ~uj = (0, 0)′, j > 1. This
vector gives a one standard deviation perturbation in the first component.
This results in:

~ε1 = P~u1 =
(

4 0
3.5 3.5707

)(
1
0

)
=
(

4
3.5

)
So, the second element in ~ε1 is now non-zero compared to the case,
where we ignored the non-diagonal nature of the error covariance matrix.

We can calculate the values ~Y1, ~Y2, ... as we did before.



Theta_1 = matrix(c(0.4, 0.1, 0.2, 0.5), ncol = 2, byrow = TRUE)
#Y_1:
print(Y_1 <- P_mat %*% c(1, 0))

## [,1]
## [1,] 4.0
## [2,] 3.5

#Y_2:
print(Y_2 <- Theta_1 %*% Y_1)

## [,1]
## [1,] 1.95
## [2,] 2.55

#Y_3:
print(Y_3 <- Theta_1 %*% Y_2)

## [,1]
## [1,] 1.035
## [2,] 1.665



Y_j <- matrix(0, nrow = 10, ncol = 2)
Y_j[1, ] <- Y_1
for(j in 2:10){

Y_j[j, ] <- Theta_1 %*% Y_j[j - 1, ]
}
colnames(Y_j) <- c("Y", "X")
plot.ts(Y_j, col = "red",

main = "Orthogonal Impulse Response from (1, 0)")
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Compared with the earlier assumption of a one standard deviation in just
ε11, there is now an important impact on X in the first period, followed
by noticeably greater impacts in subsequent periods.
If a perturbation of 1 standard deviation in the second innovation of ~ε2,
then:

~ε1 = P~u1 =
(

4 0
3.5 3.5707

)(
0
1

)
=
(

0
3.5707

)
print(t(Y_1 <- P_mat %*% c(0, 1)))

## [,1] [,2]
## [1,] 0 3.570714

print(t(Y_2 <- Theta_1 %*% Y_1))

## [,1] [,2]
## [1,] 0.3570714 1.785357

print(t(Y_3 <- Theta_1 %*% Y_2))

## [,1] [,2]
## [1,] 0.3213643 0.9640928



Y_j <- matrix(0, nrow = 10, ncol = 2)
Y_j[1, ] <- P_mat %*% c(0, 1)
for(j in 2:10){

Y_j[j, ] <- Theta_1 %*% Y_j[j - 1, ]
}
colnames(Y_j) <- c("Y", "X")
plot.ts(Y_j, col = "red",

main = "Orthogonal Impulse Response from (0, 1)")
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If we switch the variable order, so we have (Xt ,Yt), instead of (Yt ,Xt),
then, because P is a lower triangular matrix, the effects also change:

Sigma = matrix(c(25, 14, 14, 16), ncol = 2, byrow = TRUE)
round(P_mat <- t(chol(Sigma)), 4)

## [,1] [,2]
## [1,] 5.0 0.0000
## [2,] 2.8 2.8566

Theta_1 = matrix(c(0.5, 0.2, 0.1, 0.4), ncol = 2, byrow = TRUE)
Y_1 <- P_mat %*% c(1, 0); Y_2 <- Theta_1 %*% Y_1
Y_3 <- Theta_1 %*% Y_2
print(cbind(Y_1, Y_2, Y_3))

## [,1] [,2] [,3]
## [1,] 5.0 3.06 1.854
## [2,] 2.8 1.62 0.954



Uncorrelated innovations were developed to deal with the problem of
non-zero correlations between the original innovations.

However, the solution of one problem creates another. The new problem
is that the order in which the ~u variables are entered can have dramatic
effects on the numerical results.

The interpretation of impulse response functions is thus a somewhat
hazardous operation, and there has been intense debate on their possible
economic significance.

One way to deal with it (for the case when P is the lower triangular
matrix) is to order with a decreasing order of exogeneity. That is, put
first the equation with the largest number of exogenous variables, then
the second, and so on, until you put last the variable, for which all the
previous variables have effect on it (i.e. the last variable has the least
amount of exogeneous variables).

The exogeneity property can also be formulated in terms of economic
theory (i.e. which of the variables is the most and the least exogenous).



VECM
Recall that the AR(p) process:

Yt = µ+ δt + φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt

can be rearranged into

∆Yt = µ+ δt + ρYt−1 + γ1∆Yt−1 + ...+ γp−1∆Yt−p+1 + εt

the latter form is more convenient for the unit root testing: H0 : ρ = 0
implies that Yt has unit root. Similarly, the d - dimensional VAR process:

~Yt = ~µt + Θ1~Yt−1 + ...+ Θp ~Yt−p + ~εt

where ~µt = ~µ or ~µt = ~µ+ ~δt or ~µt = ~µ+ ~δt + ~γt2, can be rewritten in
VEC form:

∆~Yt = ~µt + Π~Yt−1 + Γ1∆~Yt−1 + ...+ Γp−1∆~Yt−p+1 + ~εt

where the long-run matrix Π =
∑p

i=1 Θi − I and Γi = −
∑p

j=i+1 Θj .
Note: if rank(Π) = r (i.e. r linearly independent cointegrating relations), it can be written as Πd×d = αd×rβ

T
r×d .

The rows of the matrix βT form a basis for the r cointegrating vectors and the elements of α distribute the impact of the cointegrating
vectors to the evolution of ∆Yt (they are usually interpreted as speed of adjustment to equilibrium coefficients).



Multivariate unit root test
For the equation:

∆~Yt = ~µt + Π~Yt−1 + Γ1∆~Yt−1 + ...+ Γp−1∆~Yt−p+1 + ~εt

We shall use the Johansen test to test whether Π equals 0 in some
sense: in det(Π) = 0 or in rank(Π) = r < d sense. The test is aimed to
test the number r of cointegrating relationships. thus, the Johansen
approach can be interpreted as a multivariate unit root test.

I In the previous discussion of VARs, we assumed that all variables
were stationary.

I If all of the original variables have unit roots and are not
cointegrated, then they should be differenced and the resulting
stationary variables should be used in the VAR.

I This covers every case except one where the variables have unit
roots and are cointegrated. Recall that in this case in the
discussion of Granger causality, we recommended that you work
with an ECM. The same strategy can be employed here. In
particular, instead of working with a vector autoregression (VAR),
you should work with a vector error correction model (VECM).



To outline the strategy of dealing with multivariate time series, it is
better to start with two-dimensional case: ~Yt = (Yt ,Xt)′ and recall the
Engle-Granger (EG) procedure:

1. Test whether each series, Yt and Xt , is integrated of the same order.
2. If both series are I(0), estimate VAR model in levels (no need for

VECM).
3. If both series are I(1), estimate the cointegration regression

Yt = γ0 + γ1Xt + Zt , then test whether the residuals Ẑt are
stationary (this is called the Engle-Granger (EG) test, it is close to
the ADF test).

4. If Zt is I(1), estimate a VAR model in differences, ∆Yt and ∆Xt .
5. If Zt is stationary, Yt and Xt are cointegrated - in this case,

estimate the VEC model:{
∆Yt = α2 Ẑt−1 + µ2 + γ21,1∆Xt−1 + γ22,1∆Yt−1 + ... + γ21,p ∆Xt−p + γ22,p ∆Yt−p + εY ,t
∆Xt = α1 Ẑt−1 + µ1 + γ11,1∆Xt−1 + γ12,1∆Yt−1 + ... + γ11,p ∆Xt−p + γ12,p ∆Yt−p + εX,t

The order p of this VEC model is chosen such that VAR(p + 1) model
fitted to the levels has a minimum AIC or SC. If ρ = 0, i.e. a level
VAR(1) has minimum, this may indicate that the original series is
stationary.



6. If necessary, use the model obtained to forecast Yt and Xt (this can
be done by rewriting the VEC model as a VAR model). For example,
the model:

∆~Yt = αβT ~Yt−1 + Γ1∆~Yt−1 + ~εt

can be expressed as a VAR(2):

~Yt = (I + Γ1 + αβT )~Yt−1 − Γ1~Yt−2 + ~εt

I Thus, in the case where our data consists of two I(1) components,
we use the EG test for cointegration.

I In a multidimensional case we use another cointegration test called
the Johansen test.

The first thing to note is that it is possible for more than one
cointegrating relationship to exist if you are working with several time
series variables (all of which you have tested and found to have unit
roots). To be precise, if you are working with d variables, then it is
possible to have up to d − 1 cointegrating relationships (and, thus, up to
d − 1 cointegrating residuals included in the VECM).



To begin with, let us return to equation:

∆~Yt = ~µt + αβT ~Yt−1 + Γ1∆~Yt−1 + ...+ Γt−p∆~Yt−p+1 + ~εt

I If rank(β) = 0, then only βT ~Yt−1 = 0 · Y1,t−1 + ...+ 0 · Yd,t−1 = 0
is stationary. In other words, ~Yt is not cointegrated and VECM
reduces to VAR(p − 1) in differences.

I If 0 < rank(β) = r < d , ~Yt is I(1) with r linearly independent
cointegrating vectors and βt ~Yt−1 ∼ I(0).

I If rank(β) = d , then Π has full rank and is invertible, therefore ~Yt−1
will be a linear combination of stationary differences, therefore,
stationary itself.

Thus, it is often of interest to test, not simply for whether cointegrating
is present or not, but also for the number of cointegrating
relationships. Recall that any hypothesis is rejected if the test statistics
exceeds the critical value. However, these critical values depend on the
deterministic components of VECM such as constants and linear trends.



In a similar situation when testing for a unit root, i.e., the hypothesis
H0 : ρ = 0, we used two different critical values for the t − statistics of ρ̂
depending on the presence, or absence, of a deterministic trend. Now we
have five different variants for calculating p − values. The five cases are:

1. ~µt = ~0 (no constant) - all the series in ~Yt are I(1) without a drift
and the cointegrating relations: βT ~Yt = β1Y1,t + ...+ βMYM,t have
zero mean:

∆~Yt = αβT ~Yt−1 +
p−1∑
i=1

Γi ∆~Yt−i + ~εt

(no components have a drift)
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2. ~µt = ~µ0 = α~ρ0 (restricted constant) - the series series in ~Yt are
I(1) without a drift and the cointegrating relations βT ~Yt have a
non-zero mean:

∆~Yt = α(βT ~Yt−1 + ~ρ0) +
p−1∑
i=1

Γi ∆~Yt−i + ~εt

(no components have a drift)

Restricted constant

Time

Y

2 4 6 8

−
6

−
4

−
2

0
2

4
6



3. ~µt = ~µ0 (unrestricted constant) - the series series in ~Yt are I(1)
with a drift vector ~µ0 and the cointegrating relations βT ~Yt have a
non-zero mean:

∆~Yt = ~µ0 + αβT ~Yt−1 +
p−1∑
i=1

Γi ∆~Yt−i + ~εt

(at least one component drifts)
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4. ~µt = ~µ0 + α~ρ1t (restricted trend) - the series series in ~Yt are I(1)
with a drift vector ~µ0 and the cointegrating relations βT ~Yt have a
linear trend ~ρt:

∆~Yt = ~µ0 + α(βT ~Yt−1 + ~ρ1t) +
p−1∑
i=1

Γi ∆~Yt−i + ~εt

(at least one component drifts)
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5. ~µt = ~µ0 + ~µ1t (unrestricted constant and trend) - the series series
in ~Yt are I(1) with a linear trend in VECM (and a quadratic trend
in levels) and the cointegration relations βT ~Yt have a linear trend:

∆~Yt = ~µ0 + ~µ1t + αβT ~Yt−1 +
p−1∑
i=1

Γi ∆~Yt−i + ~εt

(at least one component has a quadratic trend)
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Note: if no components of ~Yt drift - we use Cases 1 or 2. If at least one
component of ~Yt drifts - we use Case or 4. If at least one component of
~Yt has a quadratic trend - we use Case 5.

I Case 1 is not really relevant for empirical work.
I The restricted constant Case 2 is appropriate for non-trending I(1)

data like interest rates and exchange rates.
I The unrestricted constant Case 3 is appropriate for trending I(1)

data like asset prices, macroeconomic aggregates (real GDP,
consumption, employment etc).

I The restricted trend case 4 is also appropriate for trending I(1) as in
Case 3. However, notice the deterministic trend in the cointegrating
residual in Case 4 as opposed to the stationary residuals in Case 3.

I The unrestricted trend Case 5 is appropriate for I(1) data with a
quadratic trend. An example might be nominal price data during
times of extreme inflation.



The above-given figures and considerations are important in choosing the
right variant to define critical values of the Johansen test. The basic
steps in Johansen’s methodology are (we assume that all the series in ~Yt
are I(1)):

1. Choose the right order p for a VAR(p) model for levels.
2. Choose the right case out of five ones (use graphs of ~Yt).
3. Apply Johansen’s test and find the number of cointegrating relations.
4. Create a VECM
5. Use it to forecast ~Yt .



Example
Following the above comments, we will estimate the VECM of the
following data:

txt1 <- "http://uosis.mif.vu.lt/~rlapinskas/(data%20R&GRETL/"
txt2 <- "VECM3.txt"
data3 <- data.frame(read.table(paste0(txt1, txt2), header = T))
data3 <- ts(data3, frequency = 12)

plot.ts(data3)
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0. Test for a unit root

mdl1 <- dynlm::dynlm(d(Y1) ~ L(Y1) + L(d(Y1), 1) + time(Y1),
data = data3)

round(summary(mdl1)$coeff, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2282 0.4782 0.4772 0.6343
## L(Y1) -0.2598 0.0962 -2.6996 0.0082
## L(d(Y1), 1) -0.6426 0.0797 -8.0619 0.0000
## time(Y1) 0.9663 0.3828 2.5239 0.0133

t-statistic = -2.6996 > 3.45 so we do not reject the null
hypothesis H0 : the process has a unit root .



mdl2 <- dynlm::dynlm(d(Y2) ~ L(Y2) + L(d(Y2), 1) + time(Y2),
data = data3)

round(summary(mdl2)$coeff, 4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6287 0.4360 -1.4418 0.1527
## L(Y2) -0.4141 0.1205 -3.4374 0.0009
## L(d(Y2), 1) -0.5792 0.0852 -6.7950 0.0000
## time(Y2) 0.9290 0.2823 3.2906 0.0014

t-statistic = -3.4374 > 3.45 so we do not reject the null
hypothesis H0 : the process has a unit root .



1. Select the VAR lag order

VARselect(data3, lag.max = 5, type="both")

## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
## 1 1 1 1
##
## $criteria
## 1 2 3 4 5
## AIC(n) 0.3492889 0.4014374 0.4698795 0.5101213 0.5599392
## HQ(n) 0.4361906 0.5317899 0.6436829 0.7273756 0.8206444
## SC(n) 0.5643522 0.7240323 0.9000061 1.0477796 1.2051292
## FPE(n) 1.4182001 1.4944737 1.6010811 1.6681027 1.7553224

The recommended VAR order is p = 1.

2. Choosing the right Case out of 5
As both Y1 and Y2 are drifting, we should try both Case 3 and Case 4
and choose the better one.



3. Find the number of cointegrating relationships
To find the number of cointegrating relationships (the rank of the matrix
Π) (in our two dimensional case, it can be zero or one), we shall apply
Johansen’s test.

If there are a couple of competing models, select the one with the
smallest AIC value, i.e. estimate VECM(..., estim="ML", LRinclude
= c("none", "const", "trend", "both") for different competing
Cases and compare the AIC:

I Case 1 include = 'none'
I Case 2 LRinclude = 'const'
I Case 3 include = 'const', thus no need for parameters
I Case 4 LRinclude = 'trend'
I Case 5 include = 'both'



For Case 3:

suppressWarnings({
library(tsDyn)
C3 <- VECM(data3, lag = 1, estim = "ML", include = 'const')
summary(rank.test(C3))

})

## r trace trace_pval trace_pval_T eigen eigen_pval
## 1 0 62.222227 <0.001 <0.001 60.802033 <0.001
## 2 1 1.420193 0.2334 0.2398 1.420193 0.2334

The output of the test allows us to determine the rank r of Π. The
estimated eigenvalues, λi , are sorted from largest to smallest and we
apply a sequential procedure: both trace_pval_T and eigen_pval
rejects the null hypothesis H0 : r = 0, but accepts the next null
hypothesis H0 : r = 1.



Thus, if we decide to describe our data with Case 3, we should take
r = 1:

C3

ECT Intercept Y1 -1 Y2 -1
Equation Y1 -0.7073693 1.852102 -0.03455440 0.11606697
Equation Y2 0.6451750 -1.217922 -0.07083753 0.06764216

For Case 4:

suppressWarnings({
library(tsDyn)
C4 <- VECM(data3, lag = 1, estim = "ML", LRinclude = 'trend')
summary(rank.test(C4))

})

## r trace trace_pval trace_pval_T eigen eigen_pval
## 1 0 70.586968 <0.001 <0.001 63.063750 <0.001
## 2 1 7.523218 0.302 0.3027 7.523218 0.3024

we derive the same conclusion, i.e. r = 1.



C4

ECT Intercept Y1 -1 Y2 -1
Equation Y1 -0.6509582 1.767273 -0.06022577 0.1081974
Equation Y2 0.6502533 -1.276647 -0.05833625 0.1501910

data.frame(AIC = AIC(C3), BIC = BIC(C3))

## AIC BIC
## 1 40.21628 63.48098

data.frame(AIC = AIC(C4), BIC = BIC(C4))

## AIC BIC
## 1 37.95456 61.21927

We note that the AIC of the Restricted Trend case is lower than the AIC
of Case 3. So, the model from Case 4 is our final VEC model.



Alternatively, we can use the ca.jo test:

I At r = 0 we have test = 63.0 > 18.96, so we reject H0 : r = 0;
I At r <= 1 we have ‘test = 7.52 < 12.25, so we do not reject

H0 : r ≤ 1, i.e. we do not reject H0 : r = 1

H1 <- ca.jo(data3, ecdet = "trend", K = 2)
capture.output(summary(H1))[c(2:4, 6:11, 13:15)]

[1] “######################”
[2] “# Johansen-Procedure #”
[3] “######################”
[4] “Test type: maximal eigenvalue statistic (lambda max) , with linear
trend in cointegration” [5] “”
[6] “Eigenvalues (lambda):”
[7] “[1] 4.745539e-01 7.389488e-02 2.003298e-17”
[8] “”
[9] “Values of teststatistic and critical values of test:”
[10] " test 10pct 5pct 1pct"
[11] “r <= 1 | 7.52 10.49 12.25 16.26”
[12] “r = 0 | 63.06 16.85 18.96 23.65”



While ca.jo in package urca and rank.test both implement Johansen
tests, there are a few differences:

I rank.test gives p-values, while ca.jo gives only critical values.
I rank.test allows for five different specifications of deterministic

terms, ca.jo for only three.
I ca.jo allows for seasonal and exogenous regressors, which is not

available in rank.test.
I The lag is specified differently: K from ca.jo corresponds to lag +

1 in rank.test.

The last point is the reason why we set K = 2 in ca.jo, because it
corresponds to lag = 1.



4. Create a VECM

C4$coefficients

## ECT Intercept Y1 -1 Y2 -1
## Equation Y1 -0.6509582 1.767273 -0.06022577 0.1081974
## Equation Y2 0.6502533 -1.276647 -0.05833625 0.1501910

t(C4$model.specific$beta)

## Y1 Y2 trend
## r1 1 -1.883276 0.03712441

{
∆Y1,t = 1.767 − 0.65 · (Y1,t−1 − 1.88Y2,t−1 + 0.0371(t − 1))
∆Y2,t = −1.277 + 0.65 · (Y2,t−1 − 1.88Y2,t−1 + 0.0371(t − 1))

Coefficient (α =) ECT = 0.65 is called an adjustment coefficient. It
indicates that Y2 will return to equilibrium in 1/0.65 ∼ 2 steps, ceteris
paribus.



5. Forecast

pred_C4 <- predict(C4, n.ahead = 20)
ee4 = rbind(data3, pred_C4)
matplot(ee4, type = "l")
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Remarks

I If we have two variables, both Engle-Granger and Johansen tests are
appropriate for cointegration.In a multidimensional case, the EG
suffers from omitted variable bias, so in those cases it is better to
use Johansen test.

I The most restricted model (Case 1) is unlikely to find general use,
because at least a constant will usually be included in the
cointegration equation.

I The least restricted model (Case 5) allows for quadratic trends in
the data which occurs quite rarely.

I The choice between Case 2 and Case 3 rests upon whether there is
a need to allow for the possibility of linear trends in the data, a
preliminary graphing of the data is often helpful in this respect.



I If Case 3 is preferred to Case 2, only then does Case 4 need to be
considered since the data has to have a linear trend if we are to
consider allowing a trend in the cointegration equation.

I As a rough guide, use Case 2 if none of the series appear to have a
trend.

I For trending series, use Case 3 if you believe all trends are
stochastic.

I If you believe some of the series are trend stationary, use Case 4.

However, the simplest way that also allows one to “automate” selection
is to choose the case according to the minimum of AIC of BIC of the
model.



Multivariate VAR is a complicated model. Below we present some useful
facts without proofs:

I To estimate the coefficients of
~Yt = ~α + ~δt + Θ1~Yt−1 + ...+ Θp ~Yt−p + ~εt use the (conditional)
maximum likelihood estimation method, assuming tat the
innovations ~εt have a multivariate normal distribution. This is
equivalent to OLS method applied to each equation separately.

I Maximum likelihood estimates are consistent even if the true
innovations are non-Gaussian.

I Standard OLS t and F statistics applied to the coefficients of any
single equation of the VAR are asymptotically valid.

I The goal of unit root tests is to find a parsimonious representation
of the data that gives a reasonable approximation of the true
process, as opposed to determining whether or not the true process
is literally I(1).

I If ~Yt is cointegrated, a VAR estimated in levels is not misspecified
but involves a loss of efficiency.



I Let ~Yt have a unit root, but no cointegration. A VAR in levels is not
subject to the spurious regression problem discussed above for single
equation regressions.

I Even if there is no cointegration among the variables in ~Yt ,
equation-by-equation OLS estimation of VAR in levels delivers
consistent estimates of the VAR parameters. Unlike a univariate
regression, differencing is not required to obtain consistent
estimates. Nevertheless, the small sample properties of the estimator
may be improved by estimating the VAR in differences.

I Suppose that some of the M variables are stationary while the other
variables are each individually I(1) and also cointegrated by, say, a
single cointegration relation. One can find an explanation of how to
construct a VEC model in this case. For example, if M = 4,
Y (1)

t = Y1,t is stationary and ~Y (2)
t = (Y2,t ,Y3,t ,Y4,t) are

cointegrated I(1), then the VEC representation will be:
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