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Introduction
The goal of a researcher working with time series data does not differ too
much from that of a researcher working with cross-sectional data: they
both aim to develop a regression relating a dependent variable to some
explanatory variable.

However, the analyst using time series data will face two problems that
the analyst using cross-sectional data will not encounter:

1. One time series variable can influence another with a time lag;
2. If the variable is nonstantionary, a problem known as spurious

regression may arise.

One should always keep in mind this general rule: if you have
nonstationary time series variables then you should not include
them in a regression model. The appropriate route is to transform
the variables before running a regression in order to make them
stationary. An exception to this rule, which will be presented in a later
topic, occurs when the variables in a regression model are non-stationary
and cointegrated.

In this chapter we will assume all variables in the regression are
stationary.



The Distributed Lag Model

We say that the value of the dependent variable, at a given point in time,
should depend not only on the value of the explanatory variable at that
time period, but also on the values of the explanatory variable in the
past. A simple model to incorporate such dynamic effects has the form:

Yt = α + β0Xt + ...+ βqXt−q + εt

Since the effect of the explanatory variable does not happen all at once
but rather over several time periods. This model is sometimes referred to
as a distributed (or weighted) lag model. Coefficients can be
interpreted as measures of the influence of the explanatory variable on
the dependent variable. In this case, we have to be careful with timing.

For instance, we interpret results as ’β2 measures the effect of the
explanatory variable two periods ago on the dependent variable, ceteris
paribus‘.



Selection of Lag Order
When working with distributed lag models, we rarely know a priori
exactly how many lags we should include. Appropriately, the issue of lag
length selection becomes a data-based one where we use statistical
means to decide how many lags to include. There are many different
approaches to lag length selection in econometrics literature. Here we
outline a common one that does not require any new statistical
techniques. This method uses t-tests for whether βq = 0 to decide the
length. A common strategy is to:

I Begin with a fairly large lag length, qmax , and test whether the
coefficients on the maximum lag is equal to zero, i.e. test whether
βqmax = 0;

I If it is, drop the highest lag and re-estimate the model with the
maximum lag equal to qmax − 1;

I If you find βqmax−1 = 0 in this new regression, then lower the lag
order by one and re-estimate the mode;

I Keep on dropping the lag order by one and re-estimating the model
until you reject the hypothesis that the coefficient on the longest lag
is equal to zero.



Exmaple: The Effect of Bad News on Market
Capitalization

The share price of a company can be sensitive to bad news.

Suppose that Company B is in an industry which is particularly sensitive
to the price of oil. If the price of oil goes up, then the profits of Company
B will tend to go down and some investors, anticipating this, will sell their
shares in Company B driving its price (and market capitalization) down.

However, this effect might not happen immediately. For instance, if
Company B holds large inventories produced with cheap oil, it can sell
these and maintain its profits for a while. But when new production is
required, the higher oil price will lower profits.

Furthermore, the effect of the oil price jump might not last forever, since
Company B also has some flexibility in its production process and can
gradually adjust to higher oil prices. Hence, news about the oil price
should affect the market capitalization of Company B, but the effect
might not happen immediately and might not last too long.



Say we have data collected on a monthly basis over five years (i.e., 60
months) on the following variables:

I Y market capitalization of Company B ($000)
I X the price of oil (dollars per barrel) above the benchmark price
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Since this is time series data and it is likely that previous months news
about the oil price will affect current market capitalization, it is necessary
to include lags of X in the regression. Below are present OLS estimates
of the coefficients in a distributed lag model in which market
capitalization is allowed to depend on present news about the oil price
and news up to qmax = 4 months ago. That is:

Yt = α + β0Xt + β1Xt−1 + ...+ β4Xt−4 + εt

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 91173.3150 1949.8502 46.7591 0.0000
## L(X, 0:4)0 -131.9943 47.4361 -2.7826 0.0076
## L(X, 0:4)1 -449.8597 47.5566 -9.4595 0.0000
## L(X, 0:4)2 -422.5183 46.7778 -9.0324 0.0000
## L(X, 0:4)3 -187.1041 47.6409 -3.9274 0.0003
## L(X, 0:4)4 -27.7710 47.6619 -0.5827 0.5627



Just looking at the coefficient values, what can we conclude about the
effect of news about the oil price on Company B’s market capitalization?

Increasing the oil price by one dollar per barrel in a given month is
associated with:

1. An immediate reduction in market capitalization of $ 131’994,
ceteris paribus.

2. A reduction in market capitalization of $ 449’860 on month later,
ceteris paribus.

and so on. To provide some intuition about what the ceteris paribus
condition implies in this context, note that, for example, we can also
express the second statement as: ‘Increasing the oil price by one dollar in
a given month will tend to reduce the market capitalization in the
following month by $ 449’860, assuming that no other change in the
oil price occurs’.



Since the p-value corresponding to the explanatory variable Xt−4 is
greater than 0.05, we cannot reject the null hypothesis that β4 = 0 at
the 5% level of significance. Accordingly we drop this variable from the
model and re-estimate the lag length equal to 3, yielding the following
results:

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 90402.2210 1643.1828 55.0165 0.0000
## L(X, 0:3)0 -125.9000 46.2405 -2.7227 0.0088
## L(X, 0:3)1 -443.4918 45.8816 -9.6660 0.0000
## L(X, 0:3)2 -417.6089 45.7332 -9.1314 0.0000
## L(X, 0:3)3 -179.9043 46.2520 -3.8896 0.0003

The p-value for testing β3 = 0 is 0.0003, which is much less than 0.05.
We therefore conclude that the variable Xt−3 does indeed belong in the
distributed lag model. Hence q = 3 is the lag length we select for this
model.

In a formal report, we would present this table of results. Since these
results are similar to those discussed above, we will not repeat their
interpretation.



Dynamic Models with Stationary Variables

In regression analysis, researches are typically interested in measuring the
effect of an explanatory variable (or variableS) on a dependent variable.
However, this goal is complicated when the researcher uses time series
data since an explanatory variable may influence a dependent variable
with a time lag.

This often necessitates the inclusion of lags of the explanatory variable in
the regression. Furthermore, the dependent variable may be correlated
with lags of itself, suggesting that lags of the dependent variable should
also be included in the regression.



These considerations motive the commonly used autoregressive
distributed lag (ADL) model:

Yt = α + δt + φ1Yt−1 + ...+ φpYt−p + β0Xt + ...+ βqXt−q + εt

In this model:

I The dependent variable Y depends on p lags of itself;
I Y also depends on the current value of an explanatory variable X as

well as q lags of X .;
I The model also allows for a deterministic trend t.

Since the model contains p lags of Y and q lags of X , we denote it by
ADL(p, q).

In this chapter, we focus on the case where there is only one explanatory
variable X . Note however, that we could equally allow for many
explanatory variables in the analysis.



Let us consider two stationary variables Yt and Xt and assume that it
holds that:

Yt = α + φYt−1 + β0Xt + β1Xt−1 + εt , 0 < φ < 1

As an illustration, we can think of Yt as ‘company sales’ and Xt as
‘advertising’, both in month t. If we assume that εt is a white noise
process, independent of Xt , Yt and Xt−1 and Yt−1, the above relation
can be estimated by the use of ordinary least squares.

The interesting element in this equation is that it describes the dynamic
effects of a change in Xt upon current and future values of Yt .



Taking the partial derivatives, we can derive that the immediate response
is given by ∂Yt/∂Xt = β0. Sometimes this is referred to as the impact
(or short-run) multiplier. An increase in X with one unit has an
immediate impact on Y of β0 units.

The effect after one period is:

∂Yt+1/∂Xt = φ∂Yt/∂Xt + β1 = φβ0 + β1

Note: this can also be derived in a more explicit way:

Yt+1 = α + φYt + β0Xt+1 + β1Xt + εt+1

= α + φ(α + φYt−1 + β0Xt + β1Xt−1 + εt) + β0Xt+1 + β1Xt + εt+1

= α(1 + φ) + φ2Yt−1 + β0Xt+1 + (φβ0 + β1)Xt + φβ1Xt−1 + φεt + εt+1

Similarly, after two periods:

∂Yt+2/∂Xt = φ∂Yt+1/∂Xt = φ(φβ0 + β1)

and so on. This shows that after the first period, the effect is decreasing
if |φ| < 1.



Imposing this so-called stability condition allows us to determine the
long-run effect of a unit change in Xt . It is given by the long-run
multiplier (or equilibrium multiplier):

β0+(φβ0+β1)+φ(φβ0+β1)+... = β0+(1+φ+φ2+...)(φβ0+β1) = β0 + β1
1− φ

This says that if advertising Xt increases with one unit for one moment,
the expected cumulative increase (or decrease) in sales is given by
(β0 + β1)/(1− φ).
On the other hand, if the increase in Xt is permanent, the long-run
multiplier also has the interpretation of the expected long-run permanent
increase in Yt . The long-run equilibrium relation between Y and X can
be seen (imposing Yt−1 = Yt = Yt+1... = Y , Xt−1 = Xt = Xt+1... = X ,
εt = εt+1 = ... = 0, or taking the expectations of both sides, which,
under stationarity, give E(Yt) = E(Yt−1) = Y and
E(Xt) = E(Xt−1) = X ) to be:

Y = α + φY + β0X + β1X

or
Y = α

1− φ + β0 + β1
1− φ X

which presents an alternative derivation of the long-run multiplier.



We shall write Y = α/(1− φ) + (β0 + β1)/(1− φ)X concisely as
Y = α̃ + β̃X , with obvious definitions of α̃ and β̃. Thus, if X changes to
a new constant X ′, Y will finally change to Y ′ = α̃ + β̃X ′ (but it will
take some time!).

There is an alternative way to formulate the autoregressive distributed
lag model by subtracting Yt−1 from both sides of:

Yt = α + φYt−1 + β0Xt + β1Xt−1 + εt

Some rewriting gives us:

∆Yt = α− (1− φ)Yt−1 + β0∆Xt + (β0 + β1)Xt−1 + εt

or
∆Yt = β0∆Xt − (1− φ)

[
Yt−1 − α̃− β̃Xt−1

]
+ εt



This formulation:

∆Yt = β0∆Xt − (1− φ)
[
Yt−1 − α̃− β̃Xt−1

]
+ εt

is an example of an error-correction model (ECM).

It says that the change in Yt is due to the current change in Xt plus an
error-correction term: if Yt−1 is above the equilibrium value
corresponding to Xt−1, that is, if the ‘disequilibrium error’ in the square
brackets is positive, then a ‘go to equilibrium’ mechanism generates
additional negative adjustment in Yt .

The speed of adjustment is determined by 1− φ, which is the adjustment
parameter. Note that stability assumption ensures that 0 < 1− φ < 1.
Therefore only a part of any disequilibrium is made up for in the current
period.



Notice that without prior knowledge of the long-run parameters, we
cannot estimate the above ECM in its current form. This is because
without knowing α̃ and β̃, we cannot construct the disequilibrium error
Yt−1− α̃− β̃Xt−1. In the absence of such knowledge, to direct;y estimate
the ECM, we must first multiply out the term in parenthesis to obtain:

∆Yt = (1− φ)α̃ + β0∆Xt − (1− φ)Yt−1 + (1− φ)β̃Xt−1 + εt

and ∆Yt can now be OLS-regressed on ∆Xt , Yt−1 and Xt−1, obtaining
estimates of all short-run and long-run parameters.



We can further generalize. For example, if:

Yt = α + φ1Yt−1 + φ2Yt−2 + β0Xt + β1Xt−1 + β2Xt−2 + εt

then, the ECM is:

∆Yt = −φ2∆Yt−1+β0∆Xt−1−β2∆Xt−2−(1−φ1−φ2)
[
Yt−1 − α̃− β̃Xt−1

]
+εt

Note that the original model must be rewritten in differences plus a
disequilibrium error. To estimate this model, it is again necessary to
express it by multiplying out the term in parenthesis.



It is possible for more than two variables to enter into an equilibrium
relationship. For example:

Yt = α + β0Xt + β1Xt−1 + γ0Zt + γ1Zt−1 + φYt + εt

This equation then can be transformed to:

∆Yt = β0∆Xt + γ0∆Zt − (1− φ)
[
Yt−1 − α̃− β̃Xt−1 − γ̃Zt−1

]
+ εt

All the ECM’s may be consistently estimated via OLS provided all the
predictors are stationary.

As long as it can be assumed that the error term εt is a white noise
process, or - more generally - is stationary and independent of
Xt ,Xt−1, ... and Yt−1,Yt−2, ..., the ADL models can be estimated
consistently by ordinary least squares (OLS). Problems may arise,
however, if, along with Yt and Xt , the implied εt is also non-stationary.

This will be discussed in the next topic.


