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Statistical Data

The most common economic data comes in thee types:

I Cross-sectional data
I Time series data
I Panel data



Cross-sectional data
This type of data is characterized by individual units (e.g. companies,
people, countries).

I The ordering of data points usually does not matter;
I Observations run from unit i = 1 to N;
I Data notations for the pair (Xi ,Yi) are used to indicate an

observation for the i-th individual.

data(Salaries, package = "car")
head(Salaries)

rank discipline yrs.since.phd yrs.service sex salary
Prof B 19 18 Male 139750
Prof B 20 16 Male 173200
AsstProf B 4 3 Male 79750
Prof B 45 39 Male 115000
Prof B 40 41 Male 141500
AssocProf B 6 6 Male 97000



In many cases a researcher is interested in establishing a relationship
between two or more cross-sectional variables. For example, it may be
interesting to check whether Y, the nine-month academic salary, depends
on variables like years of service - we would expect that longer years of
service would increase the salary. To digitize this belief one can create a
regression model:

salaryi = α+ β · yrs.servicei + εi

We want to choose the estimates of α and β to minimize the distance
between the data points and the fitted value - we want to minimize the
error sum of squares:

SSE =
∑N

i=1(salaryi − (α+ β · yrs.servicei))2

mdl <- lm(salary ~ yrs.service, data = Salaries)
summary(mdl)



##
## Call:
## lm(formula = salary ~ yrs.service, data = Salaries)
##
## Residuals:
## Min 1Q Median 3Q Max
## -81933 -20511 -3776 16417 101947
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 99974.7 2416.6 41.37 < 2e-16 ***
## yrs.service 779.6 110.4 7.06 7.53e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 28580 on 395 degrees of freedom
## Multiple R-squared: 0.1121, Adjusted R-squared: 0.1098
## F-statistic: 49.85 on 1 and 395 DF, p-value: 7.529e-12



After estimating our coefficients:

ŝalaryi = 99974.7 + 779.6 · yrs.servicei

In this case it means that for 1 additional years of service the average
nine-month academic salary increases by 779.6 dollars. The intercept, α,
can only be interpreted if yrs.servicei can be zero. Let’s check:

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 7.00 16.00 17.61 27.00 60.00

Because yrs.servicei can attain a zero value, we can interpret it that
99974.7 dollars is the average salary of someone starting in academia
without any previous experience.

In case that yrs.servicei never attains a zero value, the intercept has no
meaningful interpretation. The same applies if any other predictor
variables, besides yrs.servicei are included in the regression - if at least
one of them never attains a zero value, then the intercept has no
meaningful interpretation.



The constant term is in part estimated by the omission of predictors from
a regression analysis. In essence, it serves as a garbage bin for any bias
that is not accounted for by the terms in the model. The constant
guarantees that the residuals don’t have an overall positive or negative
bias, but also makes it harder to interpret the value of the constant
because it absorbs the bias - it guarantees that the model residuals have
a mean of zero.
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However, salary cannot be explained by years of experience alone - we
can extend the model by including additional explanatory variables - we
will estimate a multiple regression model:

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 65955.2324 4588.6009 14.373713 6.810626e-38
## rankAssocProf 12907.5879 4145.2783 3.113805 1.983251e-03
## rankProf 45065.9987 4237.5233 10.634985 2.296130e-23
## disciplineB 14417.6256 2342.8753 6.153817 1.878412e-09
## yrs.since.phd 535.0583 240.9941 2.220213 2.697855e-02
## yrs.service -489.5157 211.9376 -2.309717 2.142543e-02
## sexMale 4783.4928 3858.6684 1.239675 2.158412e-01

We are testing the hypothesis H0 : βj = 0, thus the t-statistic

t = β̂j
std .errβj

. If p − value < 0.05 (i.e. if t − statistic is ‘big’), we reject

the null hypothesis and Xj influences the dependent variable, yrs.servicei .
The rule of thumb says - if the modulus of t exceeds 2, reject H0.



We remove insignificant coefficients and re-estimate the model:

mdl <- lm(salary ~ rank + discipline +
yrs.since.phd + yrs.service, data = Salaries)

summary(mdl)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 69869.0110 3332.1448 20.968180 5.828862e-66
## rankAssocProf 12831.5375 4147.6685 3.093675 2.118982e-03
## rankProf 45287.6890 4236.6534 10.689496 1.436047e-23
## disciplineB 14505.1514 2343.4181 6.189741 1.523745e-09
## yrs.since.phd 534.6313 241.1593 2.216922 2.720308e-02
## yrs.service -476.7179 211.8312 -2.250461 2.497485e-02

We note that from our model, having more experience lowers the salary
but the more time since PhD - the higher the salary.



Sometimes explanatory variables are tightly connected (e.g. linear
relationship) and it is impossible to disentangle the individual influences
of explanatory variables. A popular measure of multicollinearity is the
Variance Inflation Factor (VIF): VIF = 1

1 − R2
k
, where R2

k is the R2 from

regressing the variable xk on all the remaining regressors.

mdl <- lm(salary ~ ., data = Salaries)
car::vif(mdl)

## GVIF Df GVIF^(1/(2*Df))
## rank 2.013193 2 1.191163
## discipline 1.064105 1 1.031555
## yrs.since.phd 7.518936 1 2.742068
## yrs.service 5.923038 1 2.433729
## sex 1.030805 1 1.015285

The general rule of thumb is that VIFs exceeding 4 warrant further
investigation, while VIFs exceeding 10 are signs of serious
multicollinearity requiring correction. We can check that the correlation
between yrs.service and yrs.since.phd is 0.9096491, so we can try to
remove either one of them and also include a polynomial term.



The resulting model includes yrs.since.phd with its quadratic term:

mdl <- lm(salary ~ rank + discipline
+ yrs.since.phd + I(yrs.since.phd^2), data = Salaries)

summary(mdl)$coefficients[, c(1,4)]

## Estimate Pr(>|t|)
## (Intercept) 64919.67653 3.386603e-43
## rankAssocProf 5800.88482 2.500129e-01
## rankProf 34848.87453 3.064268e-08
## disciplineB 14297.08049 2.153495e-09
## yrs.since.phd 1460.65638 1.006698e-02
## I(yrs.since.phd^2) -23.91633 1.205955e-02

Note: multicollinearity inflates all the variances of β̂j , thus deflates all
respective t − values and makes the coefficients insignificant. One of
the solutions is to use the F-test: if seemingly insignificant parameters
are truly zero, the F-test should not reject the joint null hypothesis:
H0 : βi = 0, βj = 0. If it rejects H0, we have an indication that the low
t − values are due to multicollinearity.



Our final model states that the nine-month academic salary depends on
the academic rank as well as the discipline as well as the years since PhD
with its quadratic form. While the coefficient of yrs.since.phd is positive,
the coefficient of yrs.since.phd2 is negative, which indicates that as a
person gets older, the effect of yrs.since.phd is lessened.

We now test the residuals of our model. The model form is accepted as
correct if there are no changes in the variance of the residuals (residual
variance must be constant) and there is no pattern to the residuals with
respect to the predicted values.



mdl <- lm(salary ~ rank + discipline
+ yrs.since.phd + I(yrs.since.phd^2),
data = Salaries)

par(mfrow = c(1,2))
plot(mdl, which= c(1, 2))
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The residual plot shows increasing residual variance with increased value
of predicted salary. We need to correct the model form. We will use the
assumption that there is a known variance for each rank and discipline
groups.

wGrp <- aggregate(list(var = Salaries$salary),
by = list(rank = Salaries$rank,

discipline = Salaries$discipline),
FUN = var
)

SalariesW <- merge(Salaries, wGrp)
SalariesW$wght <- (1 / SalariesW$var) /

mean((1/SalariesW$var))
#Weighted Least Squares (minimizing sum(w*e^2))
mdl2 <- lm(salary ~ rank + discipline,

weights = wght,
data = SalariesW)

summary(mdl2)$coefficients



## Estimate Pr(>|t|)
## (Intercept) 72553.795441 2.617142e-149
## rankAssocProf 13453.649288 2.183407e-09
## rankProf 48070.051889 5.024442e-38
## disciplineB 12397.584733 1.543305e-21
## yrs.since.phd 147.822620 6.117016e-01
## I(yrs.since.phd^2) -4.773308 3.839775e-01
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We see that the weighted residual variance is more consistent. From the
quantile-quantile plot the residuals appear to be normal.



Time series data
A time series is a sequence of observations that are arranged according to
the time of their outcome. Time series data can be observed at many
frequencies: annual crop yield, quarterly financial reports, daily stock
prices, hourly wind speeds, etc.
The characteristic property of a time series is the fact that the data are
not generated independently, their dispersion varies in time, they are
often governed by a trend and they might have cyclic components.

Quarterly production of woollen yarn in Australia
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In this course, we will use the notation Yt to indicate an observation on
variables Y at time t = 1, ...,T .

One objective of analyzing economic data is to predict the future values
of economic variables. One approach to do this is to build an
econometric model, describing the relationship between the variable of
interest and other economic quantities, then estimate the model using
sample data and use it as a basis for forecasting. However, this approach
is not always useful.

For example, it may be possible to adequately model the
contemporaneous relationship between unemployment and the inflation
rate, but as long as we cannot predict future inflation rates we are also
unable to forecast future unemployment.



In the first part of this course we will follow a pure time series approach -
we will assume that the current values of an economic variable are
related to its past values only. The emphasis is purely on making use of
the information in past values of a variable for forecasting its future. In
addition to producing forecasts, time series models also produce the
distribution of future values, conditional upon the past, and can thus be
used to evaluate the likelihood of certain events.

In the second part of this course we shall get to know different variants of
regressions with time series variables.

Finally, the most interesting results in econometrics are obtained in the
intersection of cross-sectional and time series methods…



Panel data
A dataset containing observations on multiple phenomena observed over
multiple time periods. Panel data aggregates all individuals and analyses
them in a period of time. Whereas time series and cross-sectional data
are one-dimensional, panel data sets are two dimensional.

require(plm)
#data(package = "plm")
data(Grunfeld)

firm year inv value capital
1 1937 410.6 5387.1 156.9
1 1938 257.7 2792.2 209.2
2 1937 469.9 2676.3 118.1
2 1938 262.3 1801.9 260.2
3 1937 77.2 2803.3 118.0
3 1938 44.6 2039.7 156.2



Time Series Examples

Stock returns
Let Pt be the price of an asset at time t. Then, the one-period return is:

Rt = Pt − Pt−1
Pt−1

suppressPackageStartupMessages({require("TSA")})
data("google")
plot.ts(google, main = "Daily returns of the google stock")
abline(0, 0, col = "red")



Daily returns of the google stock
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Sales of shampoo

suppressPackageStartupMessages({require("fma")})
data(shampoo)
plot.ts(shampoo,

main = "Sales of shampoo over a three year period")

Sales of shampoo over a three year period
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Air passenger numbers 1949 - 1960

require("datasets")
data("AirPassengers")
plot.ts(AirPassengers,

main = "Monthly totals of international airline passengers")

Monthly totals of international airline passengers
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Exchange rates

suppressPackageStartupMessages({require("Ecdat")})
data(Forward)
plot.ts(Forward$usdeuro,

main = "Monthly exchange rate USD/Euro")
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plot.ts(diff((Forward$usdeuro)),
main = "First Differences of USD/Euro exchagne rate")

abline(0, 0, col = "red")

First Differences of USD/Euro exchagne rate
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Forecasting

One of the main applications of time series theory is prediction. If we
consider our examples, we can:

I Forecast the stock return using its mean;
I Forecast shampoo sales using its trend;
I Forecast air passenger numbers using its trend and a seasonal

component;
I The trends of the USD/Euro exchange rates seem to change

directions at unpredictable times. They are also known as stochastic
(random) trends whereas some of the previous examples exhibit
deterministic trends. A random walk or a Difference stationary time
series can sometimes provide a good fit for this kind of data.


