
Database
Solutions
Database
Solutions

A step-by-step guide to building databases

The authors

Thomas Connolly was a designer
of RAPPORT, the world’s first
commercial portable DBMS, and of
the LIFESPAN configuration
management tool – a winner of the
British Design Award.

Carolyn Begg specializes in the
application of database systems in
biological research. They are both
authors of the best selling
Database Systems, also published
by Pearson Education, which has
sold nearly 200,000 copies since
publication in 1995.

www.pearson-books.com

D
atabase Solutions

Connolly & Begg

Are you responsible for designing and
creating the databases that keep your
business running? Or are you studying for
a module in database design? If so,
Database Solutions is for you! This fully
revised and updated edition will make the
database design and build process
smoother, quicker and more reliable.

Recipe for database success

• Take one RDMS – any of the major
commercial products will do: Oracle,
Informix, SQL Server, Access, Paradox

• Add one thorough reading of Database
Solutions if you are an inexperienced
database designer, or one recap of the
methodology if you are an old hand

• Use the design and implementation
frameworks to plan your timetable, use
a common data model that fits your
requirements and adapt as necessary

Features

• Includes hints and tips for success with
comprehensive guidance on avoiding
pitfalls and traps

• Shows how to create data models using
the UML design notation

• Includes two full-length coded example
databases written on Microsoft Access
2002 and Oracle 9i, plus 15 sample data
models to adapt to your needs, chosen
from seven common business areas

New for this edition!

• New chapters on SQL (Structured Query
Language) and QBE (Query by Example),
plus a chapter on database adminis-
tration and security. A new chapter on
current and emerging trends in the area
ensures that the book is up to date

• The database design methodology has
been improved and simplified

• A companion website contains an
implementation of the StayHome
database that runs throughout the
book, plus SQL scripts for 15 sample
data models, lecture slides, sample
solutions for all exercises from the
book, suggested exam questions and
answers, and a variety of possible
courseworks

Database Solutions
A step-by-step guide to building databases
second edition

Connolly &
 B

egg

second edition

Use the online resources
for this book at

www.booksites.net

Thomas Connolly & Carolyn BeggThomas Connolly & Carolyn Begg

www.booksites.net

www.booksites.net

second
edition

Connolly_ppr 9/19/07 5:25 PM Page 1

Database Solutions
A step-by-step guide to building databases

We work with leading authors to develop the
strongest educational materials in computing,
bringing cutting-edge thinking and best
learning practice to a global market.

Under a range of well-known imprints, including
Addison-Wesley, we craft high-quality print and
electronic publications which help readers to understand
and apply their content, whether studying or at work.

To find out more about the complete range of our
publishing, please visit us on the World Wide Web at:
www.pearsoned.co.uk

Database Solutions
A step-by-step approach to building databases

Second edition

Thomas M. Connolly

Carolyn E. Begg

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsoned.co.uk

First published 2000
Second edition published 2004

© Pearson Education Limited 2000, 2004

The rights of Thomas Connolly and Carolyn Begg to be identified as authors of this
work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without either the prior written permission of the
publisher or a licence permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP.

The programs in this book have been included for their instructional value. They have been tested
with care but are not guaranteed for any particular purpose. The publisher does not offer any
warranties or representations nor does it accept any liabilities with respect to the programs.

All trademarks used herein are the property of their respective owners. The use of any trademark
in this text does not vest in the author or publisher any trademark ownership rights in such
trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this
book by such owners.

Screen shots reprinted by permission from Microsoft Corporation.

ISBN 0 321 17350 3

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

10 9 8 7 6 5 4 3 2 1
09 08 07 06 05 04

Typeset by 30
Printed and bound in Great Britain by Biddles Ltd, Guildford and King’s Lynn

The publisher's policy is to use paper manufactured from sustainable forests.

Sheena,

and to my three beautiful children Kathryn, Michael, and little Stephen,
all of whom I owe so much to and love dearly.

Carolyn, for her friendship.

Thomas M. Connolly

Neil,

and to our sons Calum and David.

Carolyn E. Begg

To

To

To

Part 1 Background

1 Introduction 3
2 The relational model 21
3 SQL and QBE 37
4 The database system development lifecycle 78
5 Database administration and security 97

Part 2 Database analysis and design techniques

6 Fact-finding 115
7 Entity–Relationship modeling 146
8 Normalization 171

Part 3 Logical database design

9 Logical database design – Step 1 191
10 Logical database design – Step 2 219
11 Enhanced ER modeling techniques 246

Part 4 Physical database design

12 Physical database design – Step 3 261
13 Physical database design – Step 4 278
14 Physical database design – Steps 5 and 6 296
15 Physical database design – Step 7 305
16 Physical database design – Step 8 319

Brief contents

Part 5 Second worked example

17 PerfectPets – Logical database design 331
18 PerfectPets – Physical database design 350

Part 6 Current and emerging trends

19 Current and emerging trends 377

Appendices

Appendix A Alternative data modeling notations 413
Appendix B Summary of the database design

methodology 420
Appendix C Advanced logical database design 428
Appendix D File organizations and indexes 442
Appendix E Common data models 462

Glossary 503
References 513
Index 515

viii ■ Brief contents

Preface xvii

Part 1 Background

1 Introduction 3
1.1 Examples of the use of database systems 4
1.2 Database approach 7

1.2.1 The database 7
1.2.2 The Database Management System (DBMS) 8
1.2.3 (Database) application programs 8
1.2.4 Views 8
1.2.5 Components of the DBMS environment 10
1.2.6 DBMS architectures 10

1.3 Functions of a DBMS 12
1.4 Database design 17
1.5 Advantages and disadvantages of DBMSs 17
Chapter summary 19
Review questions 20

2 The relational model 21
2.1 What is a data model? 22
2.2 Terminology 22

2.2.1 Relational data structure 22
2.2.2 Properties of relational tables 26
2.2.3 Relational keys 26
2.2.4 Representing relational databases 29

2.3 Relational integrity 32
2.3.1 Nulls 32
2.3.2 Entity integrity 33
2.3.3 Referential integrity 33

Contents

2.3.4 Other business rules 34
2.4 Relational languages 34
Chapter summary 35
Review questions 35

3 SQL and QBE 37
3.1 Structured Query Language (SQL) 38

3.1.1 Objectives of SQL 39
3.1.2 Terminology 39
3.1.3 Writing SQL commands 40

3.2 Data manipulation 41
3.2.1 Simple queries 42
3.2.2 Row selection (WHERE clause) 45
3.2.3 Sorting results (ORDER BY clause) 50
3.2.4 Using the SQL aggregate functions 51
3.2.5 Grouping results (GROUP BY clause) 53
3.2.6 Subqueries 56
3.2.7 Multi-table queries 58
3.2.8 INSERT, UPDATE, and DELETE statements 61

3.3 Data definition 63
3.3.1 CREATE TABLE 63
3.3.2 CREATE VIEW 67

3.4 Query-by-Example (QBE) 67
Chapter summary 73
Review questions 75
Exercises 75

4 The database system development lifecycle 78
4.1 The software crisis 78
4.2 The information systems lifecycle 79
4.3 The database system development lifecycle 80
4.4 Database planning 80
4.5 System definition 82

4.5.1 User views 83
4.6 Requirements collection and analysis 83
4.7 Database design 86
4.8 DBMS selection 88
4.9 Application design 89

4.9.1 Transaction design 89
4.9.2 User interface design 90

4.10 Prototyping 90
4.11 Implementation 91
4.12 Data conversion and loading 92
4.13 Testing 93
4.14 Operational maintenance 94
Chapter summary 94
Review questions 96

x ■ Contents

5 Database administration and security 97
5.1 Data administration and database administration 98

5.1.1 Data administration 98
5.1.2 Database administration 99
5.1.3 Comparison of data and database administration 99

5.2 Database security 100
5.2.1 Threats 102
5.2.2 Countermeasures – computer-based controls 103

Chapter summary 111
Review questions 112

Part 2 Database analysis and design techniques

6 Fact-finding 115
6.1 When are fact-finding techniques used? 116
6.2 What facts are collected? 116
6.3 Fact-finding techniques 118

6.3.1 Examining documentation 118
6.3.2 Interviewing 118
6.3.3 Observing the business in operation 120
6.3.4 Research 120
6.3.5 Questionnaires 121

6.4 The StayHome case study 123
6.4.1 The StayHome case study – an overview 123
6.4.2 The StayHome case study – database planning 126
6.4.3 The StayHome case study – system definition 133
6.4.4 The StayHome case study – requirements

collection and analysis 135
6.4.5 The StayHome case study – database design 143
Chapter summary 144
Review questions 144

7 Entity–Relationship modeling 146
7.1 Entities 147
7.2 Relationships 148

7.2.1 Degree of a relationship 149
7.2.2 Recursive relationships 150

7.3 Attributes 151
7.3.1 Simple and composite attributes 151
7.3.2 Single-valued and multi-valued attributes 152
7.3.3 Derived attributes 152
7.3.4 Keys 153

7.4 Strong and weak entities 155

Contents ■ xi

7.5 Multiplicity constraints on relationships 155
7.5.1 One-to-one (1:1) relationships 156
7.5.2 One-to-many (1:*) relationships 157
7.5.3 Many-to-many (*:*) relationships 159
7.5.4 Multiplicity for complex relationships 159
7.5.5 Cardinality and participation constraints 162

7.6 Attributes on relationships 162
7.7 Design problems with ER models 163

7.7.1 Fan traps 163
7.7.2 Chasm traps 165

Chapter summary 168
Review questions 169
Exercises 169

8 Normalization 171
8.1 Introduction 172
8.2 Data redundancy and update anomalies 172

8.2.1 Insertion anomalies 174
8.2.2 Deletion anomalies 174
8.2.3 Modification anomalies 174

8.3 First normal form (1NF) 175
8.4 Second normal form (2NF) 177
8.5 Third normal form (3NF) 180
Chapter summary 185
Review questions 186
Exercises 186

Part 3 Logical database design

9 Logical database design – Step 1 191
9.1 Introduction to the database design methodology 192

9.1.1 What is a design methodology? 192
9.1.2 Phases of database design 192
9.1.3 Critical success factors in database design 193

9.2 Overview of the database design methodology 194
9.3 Introduction to Step 1 of the logical database

design methodology 196
Step 1 Create and check ER model 197

Step 1.1 Identify entities 197
Step 1.2 Identify relationships 199
Step 1.3 Identify and associate attributes with entities

or relationships 204
Step 1.4 Determine attribute domains 208
Step 1.5 Determine candidate, primary, and alternate

key attributes 209

xii ■ Contents

Step 1.6 Specialize/Generalize entities (optional step) 211
Step 1.7 Check model for redundancy 212
Step 1.8 Check model supports user transactions 215
Step 1.9 Review model with user 217

Chapter summary 217
Review questions 218
Exercise 218

10 Logical database design – Step 2 219
Step 2 Map ER model to tables 219

Step 2.1 Create tables 220
Step 2.2 Check table structures using normalization 234
Step 2.3 Check tables support user transactions 235
Step 2.4 Check business rules 239
Step 2.5 Review logical database design with users 242

Chapter summary 243
Review questions 244
Exercise 245

11 Enhanced ER modeling techniques 246
11.1 Specialization/Generalization 247

11.1.1 Superclasses and subclasses 247
11.1.2 Superclass/Subclass relationships 247
11.1.3 Attribute inheritance 249
11.1.4 Specialization process 249
11.1.5 Generalization process 250
11.1.6 Constraints on superclass/subclass relationships 252

11.2 Creating tables to represent specialization/generalization 254
Chapter summary 256
Review questions 257
Exercises 257

Part 4 Physical database design

12 Physical database design – Step 3 261
12.1 Comparison of logical and physical database design 262
12.2 Overview of the physical database design methodology 263
Step 3 Translate logical database design for target DBMS 264

Step 3.1 Design base tables 265
Step 3.2 Design representation of derived data 270
Step 3.3 Design remaining business rules 272

Chapter summary 276
Review questions 277
Exercise 277

Contents ■ xiii

13 Physical database design – Step 4 278
Step 4 Choose file organizations and indexes 279

Step 4.1 Analyze transactions 280
Step 4.2 Choose file organizations 286
Step 4.3 Choose indexes 287

13.1 File organizations and indexes for StayHome with
Microsoft Access 2002 292
13.1.1 Guidelines for indexes 292
13.1.2 Indexes for StayHome 293

Chapter summary 294
Review questions 295
Exercise 295

14 Physical database design – Steps 5 and 6 296
Step 5 Design user views 296
Step 6 Design security mechanisms 298
Chapter summary 303
Review questions 304
Exercise 304

15 Physical database design – Step 7 305
Step 7 Consider the introduction of controlled redundancy 305
Chapter summary 318
Review questions 318
Exercise 318

16 Physical database design – Step 8 319
Step 8 Monitor and tune the operational system 320

Understanding system resources 321
Summary 324
New requirement from StayHome 325

Chapter summary 326
Review questions 327

Part 5 Second worked example

17 PerfectPets – Logical database design 331
17.1 PerfectPets 331

17.1.1 Data requirements 331
17.1.2 Transaction requirements 334

17.2 Using the logical database design methodology 335

18 PerfectPets – Physical database design 350
18.1 Using the physical database design methodology 350

xiv ■ Contents

Part 6 Current and emerging trends

19 Current and emerging trends 377
19.1 Advanced database applications 378
19.2 Weaknesses of Relational DBMSs (RDBMSs) 381
19.3 Distributed DBMSs and replication servers 383

19.3.1 Advantages and disadvantages of DDBMSs 385
19.3.2 Replication servers 388

19.4 Object-oriented DBMSs and object-relational DBMSs 390
19.4.1 Object-oriented DBMSs (OODBMSs) 391
19.4.2 Object-relational DBMSs (ORDBMSs) 393

19.5 Data warehousing 395
19.5.1 Data marts 397

19.6 OnLine Analytical Processing (OLAP) 399
19.7 Data mining 401
19.8 Web–database integration and XML 402

19.8.1 Static and dynamic Web pages 403
19.8.2 Requirements for Web–DBMS integration 404
19.8.3 Approaches to integrating the Web and DBMSs 405
19.8.4 XML 405

Chapter summary 407
Review questions 409

Appendices

A Alternative data modeling notations 413
A.1 ER modeling using the Chen notation 413
A.2 ER modeling using the Crow’s Feet notation 413

B Summary of the database design methodology 420

C Advanced logical database design 428
C.1 The Business user views of StayHome 429

C.1.1 Users’ requirements specification 429
C.1.2 Local logical data model 431

Step 2.6 Build and check global logical data model 431
Appendix summary 441

D File organizations and indexes 442
D.1 Basic concepts 443
D.2 Heap files 445
D.3 Ordered files 445
D.4 Hash files 447
D.5 Indexes 448

Contents ■ xv

D.5.1 Types of indexes 448
D.5.2 Secondary indexes 449
D.5.3 Multilevel indexes 450
D.5.4 B+-Trees 451
D.5.5 Bitmap indexes 452
D.5.6 Join indexes 453

D.6 Guidelines for selecting file organizations 453
D.7 Clustered and non-clustered tables 456

D.7.1 Index clusters 457
D.7.2 Hash clusters 459

Appendix summary 460

E Common data models 462
E.1 Customer order entry 463
E.2 Inventory control 466
E.3 Asset management 468
E.4 Project management 469
E.5 Course management 472
E.6 Human resource management 475
E.7 Payroll management 478
E.8 Vehicle rentals 481
E.9 Student accommodation 483
E.10 Client transportation 486
E.11 Publisher printing 488
E.12 County library 490
E.13 Real estate rentals 493
E.14 Travel agent 496
E.15 Student results 499

Glossary 503
References 513

Index 515

xvi ■ Contents

Background
The database is now the underlying framework of the information system and
has fundamentally changed the way many companies and individuals work.
The developments in this technology over the last few years have produced
database systems that are more powerful and more intuitive to use, and users
are creating databases and applications without the necessary knowledge to
produce an effective and efficient system. Looking at the literature, we found
many excellent books that examine a part of the database system development
lifecycle. However, we found very few that covered analysis, design, and imple-
mentation and described the development process in a simple-to-understand
way that could be used by both technical and non-technical readers.

Our original concept therefore was to provide a book for both the academic
and business community that explained as clearly as possible how to analyze,
design, and implement a database. This would cover both simple databases con-
sisting of a few tables and large databases containing tens to hundreds of tables.
During the initial reviews that we carried out, it became clear that the book
would also be useful for the academic community and provide a very simple and
clear presentation of a database design methodology that would complement a
more extensive recommended textbook, such as our own book Database Systems.

The methodology we present in this book for relational Database
Management Systems (DBMSs) – the predominant system for business applica-
tions at present – has been tried and tested over the years in both industrial and
academic environments. The methodology is divided into two phases:

■ a logical database design phase, in which we develop a model of what we’re
trying to represent while ignoring implementation details;

Preface

xvii

■ a physical database design phase, in which we decide how we’re going to
realize the implementation in the target DBMS, such as Microsoft Access,
Microsoft SQL Server, Oracle, DB2, or Informix.

We present each phase as a series of simple-to-follow steps. For the inexperi-
enced designer, we expect that the steps will be followed in the order described,
and guidelines are provided throughout to help with this process. For the expe-
rienced designer, the methodology can be less prescriptive, acting more as a
framework or checklist.

Helping to understand database design
To help you use the methodology and understand the important issues, we pro-
vide a comprehensive worked example that is integrated through the book
based on a video rental company called StayHome. To reinforce the methodol-
ogy we work through a second case study in Chapters 17 and 18 based on a
veterinary clinic called PerfectPets.

To help you further, we have included additional database solutions in
Appendix E (with corresponding SQL scripts included on the accompanying
Website). Each solution has a small introduction, which you may like to read
and then try to produce the database design yourself before looking at our
sample solution.

Common data models
As well as providing you with additional experience of designing databases,
Appendix E also provides you with many common data models that you may
find useful. In fact, it has been estimated that one-third of a data model consists
of common constructs that are applicable to most companies and the remain-
ing two-thirds are either industry-specific or company-specific. Thus, most
database design work consists of re-creating constructs that have already been
produced many times before in other companies. The models featured may not
represent your company exactly, but they may provide a starting point from
which you can develop a more suitable model that matches your company’s
specific requirements. Some of the models we provide cover the following
common business areas:

■ Customer Order Entry

■ Inventory Control

■ Asset Management

■ Project Management

xviii ■ Preface

■ Course Management

■ Human Resource Management

■ Payroll Management.

UML (Unified Modeling Language)
Increasingly, companies are standardizing the way in which they model data by
selecting a particular approach to data modeling and using it throughout their
database development projects. A popular high-level data model used in logical
database design, and the one we use in this book, is based on the concepts of
the Entity–Relationship (ER) model. Currently there is no standard notation for
an ER model. Most books that cover database design for relational DBMSs tend
to use one of two conventional notations:

■ Chen’s notation, consisting of rectangles representing entities and diamonds
representing relationships, with lines linking the rectangles and diamonds;

■ Crow’s Feet notation, again consisting of rectangles representing entities and
lines between entities representing relationships, with a crow’s foot at the
end of a line representing a one-to-many relationship.

Both notations are well supported by current CASE tools. However, they can
be quite cumbersome to use and a bit difficult to explain. In this book, we
instead use the class diagram notation from the latest object-oriented modeling
language called UML (Unified Modeling Language). UML is a notation that
combines elements from the three major strands of object-oriented design:
Rumbaugh’s OMT modeling, Booch’s Object-Oriented Analysis and Design, and
Jacobson’s Objectory. It is anticipated that UML will become a standard and the
Object Management Group (OMG) has adopted UML as the standard notation
for object methods.

We believe you will find this notation easier to understand and use.

What’s new in the second edition
The first edition of the book has been revised to improve readability, to update
or extend the coverage of existing material, and to include new material. The
major changes in the second edition are as follows:

■ New tutorial-style chapter on SQL (Structured Query Language) and QBE
(Query-by-Example). SQL and QBE are the two main languages for relational
DBMSs.

■ New chapter on database administration and security.

Preface ■ xix

ER modeling
covered in
Chapter 7

xx ■ Preface

■ Improvements to the database design methodology. In particular, the merg-
ing of user views during logical database design has been moved to an
appendix to keep the basic methodology simple.

■ New chapter on current and emerging trends, discussing the requirements
for advanced database applications and why current relational systems are
not well suited to these requirements, and then providing an introduction to
distributed DBMSs, data replication, object-oriented DBMSs, object-relational
DBMSs, data warehousing, OnLine Analytical Processing (OLAP) and data
mining, and approaches for integrating databases into the Web environment.

■ A more academic presentation with review questions at the end of most
chapters and an accompanying Website with additional review questions,
exercises, exam questions, transparencies, databases, and SQL scripts for the
common data models in Appendix E.

Showing how to implement a design
We believe it is important to show you how to convert a database design into a
physical implementation. In this book, we show how to implement the first case
study (the video rental company called StayHome) in the Microsoft Access 2002
DBMS. In contrast, we show how to map the database design for the second case
study (the veterinary clinic called PerfectPets) in the Oracle 9i DBMS.

Who should read this book?
Who should read this book? We have tried to write this book in a self-contained
way. The exception to this is physical database design, where you need to have
a good understanding of how the target DBMS operates. Our intended audience
is anyone who needs to develop a database, including but not limited to the
following:

■ information modelers and database designers;

■ database application designers and implementers;

■ database practitioners;

■ data and database administrators;

■ information systems, business IT, and computing science professors specializ-
ing in database design;

■ database students, namely undergraduate, advanced undergraduate, and graduate;

■ anyone wishing to design and develop a database system.

Structure of this book
We have divided the book into six parts and a set of five appendices:

■ Part 1 – Background. We provide an introduction to DBMSs, the relational
model, and a tutorial-style chapter on SQL and QBE in Chapters 1, 2, and 3.
We also provide an overview of the database system development lifecycle in
Chapter 4 and a discussion of database administration and security in
Chapter 5.

■ Part 2 – Database Analysis and Design Techniques. We discuss techniques for
database analysis in Chapter 6 and show how to use some of these tech-
niques to analyze the requirements for the video rental company StayHome.
We show how to draw Entity–Relationship (ER) diagrams using UML in
Chapter 7 and how to apply the rules of normalization in Chapter 8. ER
models and normalization are important techniques that are used in the
database design methodology we describe in Part 3.

■ Part 3 – Logical Database Design. We describe a step-by-step approach for
logical database design. In Step 1 presented in Chapter 9, we create an ER
model for the video rental company StayHome. In Step 2 presented in
Chapter 10, we map the ER model to a set of database tables. To support the
design of more complex databases, we present the main concepts associated
with enhanced ER modeling in Chapter 11. Also in this chapter, we describe
how such concepts are mapped to tables.

■ Part 4 – Physical Database Design. We describe a step-by-step approach for
physical database design. In Step 3 presented in Chapter 12, we design a set
of base tables for the target DBMS. In Step 4 presented in Chapter 13, we
choose file organizations and indexes. In Steps 5 and 6 presented in Chapter
14, we consider the design of user views and the design of security mecha-
nisms that will protect the data from unauthorized access. In Step 7
presented in Chapter 15, we describe how the introduction of controlled
redundancy into a database can achieve improved performance. Finally, in
Step 8 presented in Chapter 16, we monitor and tune the operational system.
As we’ve just mentioned, we show you how to implement the design for the
StayHome database system in Microsoft Access 2002.

■ Part 5 – Second Worked Example. In Chapters 17 and 18, we work through a
second case study about the veterinary clinic PerfectPets. We show you how
to implement the design for the PerfectPets database application in Oracle 9i.

■ Part 6 – Current and Emerging Trends. In Chapter 19, we discuss the require-
ments for advanced database applications and why current relational systems
are not well suited to these requirements. We then provide an introduction
to Distributed DBMSs (DDBMSs), data replication, Object-oriented DBMSs
(OODBMSs), Object-relational DBMSs (ORDBMSs), data warehousing,

Preface ■ xxi

OnLine Analytical Processing (OLAP) and data mining, and approaches for
integrating databases into the Web environment.

■ Appendices. Appendix A examines the two main alternative ER notations:
Chen’s notation and the Crow’s Feet notation. Appendix B provides a sum-
mary of the methodology as a quick reference guide. Appendix C presents an
extension to the basic logical database design methodology for database sys-
tems with multiple user views that have requirements which are managed
using the view integration approach. Appendix D provides some background
information on file organization and storage structures that may help you
understand some aspects of the physical database design methodology pre-
sented in Part 3. Appendix E provides a set of 15 common data models.

Pedagogy
To make the book as readable as possible, we have adopted the following style
and structure:

■ A set of objectives for each chapter, clearly highlighted at the start of the
chapter.

■ A summary at the end of each chapter covering the main points introduced.

■ Review questions at the end of most chapters.

■ Each important concept that is introduced is clearly defined and highlighted
by placing the definition in a box.

■ A series of notes and tips – you’ll see these throughout the book with an
adjacent icon to highlight them.

■ Diagrams liberally used throughout to support and clarify concepts.

■ A very practical orientation. Each chapter contains many worked examples
to illustrate the points covered.

■ A glossary at the end of the book, which you may find useful as a quick refer-
ence guide. We also tend to use the margins to give you a reference to the
section of the book that defines a concept we’re discussing.

Accompanying Instructor’s Guide and Website
A comprehensive supplement containing numerous instructional resources is
available for this textbook, upon request to Pearson Education. The accompanying
Instructor’s Guide includes:

■ Teaching suggestions These include lecture suggestions, teaching hints, and
student project ideas that make use of the chapter content.

xxii ■ Preface

■ Solutions Sample answers are provided for all review questions.

■ Examination questions Examination questions (similar to the questions at the
end of each chapter), with solutions.

■ Transparency masters (created using PowerPoint) containing the main points
from each chapter, enlarged illustrations, and tables from the text are pro-
vided to help the instructor associate lectures and class discussion to the
material in the textbook.

■ An implementation of the StayHome database system in Microsoft Access
2002.

■ An SQL script to create an implementation of the PerfectPets database system.
This script can be used to create a database in many relational DBMSs, such
as Oracle, Informix, and SQL Server.

■ An SQL script for each common data model defined in Appendix E to create
the corresponding set of base tables for the database system. Once again,
these scripts can be used to create a database in many relational DBMSs.

Additional information about the Instructor’s Guide and the book can be found
on the Pearson Education Website at:

http://www.booksites.net/connbegg

Corrections and suggestions
As this type of textbook is so vulnerable to errors, disagreements, omissions,
and confusion, your input is solicited for future reprints and editions.
Comments, corrections, and constructive suggestions should be sent to Pearson
Education, or by electronic mail to:

thomas.connolly@paisley.ac.uk

Acknowledgements
This book is the outcome of many years of work by the authors in industry,
research, and academia. It is therefore difficult to name all the people who have
directly or indirectly helped us in our efforts; an idea here and there may have
appeared insignificant at the time but may have had a significant causal effect.
For those people we are about to omit, we apologize now. However, special
thanks and apologies must first go to our families, who over the years have
been neglected, even ignored, while we have been writing our books.

We would first like to thank Kate Brewin, our editor, and Mary Lince, our desk
editor. We should also like to thank the reviewers of this book, who contributed

Preface ■ xxiii

their comments, suggestions, and advice. In particular, we would like to men-
tion Stuart Anderson and Andy Osborn, who reviewed the first edition, Aurélie
Bechina and Nick Measor, who reviewed the second edition, and Willie Favero
who reviewed both editions.

We should also like to thank our secretaries Lyndonne MacLeod and June
Blackburn, for their help and support during the years.

Thomas M. Connolly
Carolyn E. Begg

Glasgow, May 2003

xxiv ■ Preface

Part 1

Background

1 Introduction 3

2 The relational model 21

3 SQL and QBE 37

4 The database system development lifecycle 78

5 Database administration and security 97

The database is now such an integral part of our day-to-day life that often we’re
not aware we are using one. To start our discussion of database systems, we
briefly examine some of their applications. For the purposes of this discussion,
we consider a database to be a collection of related data and the Database
Management System (DBMS) to be the software that manages and controls
access to the database. We also use the term application program to be a com-
puter program that interacts with the database in some way and we use the
more inclusive term database system to be the collection of application pro-
grams that interact with the database along with the DBMS and the database
itself. We provide more accurate definitions in Section 1.2. Later in the chapter,
we’ll look at the typical functions of a modern DBMS and briefly review the
main advantages and disadvantages of DBMSs.

Chapter 1

Introduction

In this chapter you will learn:

Some common uses of database systems.

The meaning of the term database.

The meaning of the term Database Management System (DBMS).

The major components of the DBMS environment.

The typical functions and services a DBMS should provide.

The advantages and disadvantages of DBMSs.

1.1 Examples of the use of database systems
Purchases from the supermarket

When you purchase goods from your local supermarket, it’s likely that a data-
base is accessed. The checkout assistant uses a bar code reader to scan each of
your purchases. This is linked to an application program that uses the bar code
to find the price of the item from a product database. The program then
reduces the number of such items in stock and displays the price on the cash
register. If the reorder level falls below a specified threshold, the database
system may automatically place an order to obtain more stocks of that item.

Purchases using your credit card

When you purchase goods using your credit card, the assistant normally checks
that you have sufficient credit left to make the purchase. This check may be car-
ried out by telephone or it may be done automatically by a card reader linked
to a computer system. In either case, there is a database somewhere that con-
tains information about the purchases that you’ve made using your credit card.
To check your credit, there is a database application program that uses your
credit card number to check that the price of the goods you wish to buy,
together with the sum of the purchases you’ve already made this month, is
within your credit limit. When the purchase is confirmed, the details of your
purchase are added to this database. The application program also accesses the
database to check that the credit card is not on the list of stolen or lost cards
before authorizing the purchase. There are other database application programs
to send out monthly statements to each cardholder and to credit accounts
when payment is received.

Booking a holiday at the travel agents

When you make inquiries about a holiday, the travel agent may access several
databases containing holiday and flight details. When you book your holiday,
the database system has to make all the necessary booking arrangements. In
this case, the system has to ensure that two different agents don’t book the
same holiday or overbook the seats on the flight. For example, if there is only
one seat left on the flight from London to New York and two agents try to
reserve the last seat at the same time, the system has to recognize this situation,
allow one booking to proceed, and inform the other agent that there are now
no seats available. The travel agent may have another, usually separate, data-
base for invoicing.

4 ■ Background

G
O

LD
 C

A
R

D
A

M
ER

IC
A

N
 E

X
PR

ES
S

M
A

ST
ER

C
A

RD

Using the local library

Whenever you visit your local library, there is probably a database containing
details of the books in the library, details of the readers, reservations, and so on.
There will be a computerized index that allows readers to find a book based on
its title, or its authors, or its subject area, or its ISBN. The database system han-
dles reservations to allow a reader to reserve a book and to be informed by post
when the book is available. The system also sends out reminders to borrowers
who have failed to return books on the due date. Typically, the system will have
a bar code reader, similar to that used by the supermarket described earlier,
which is used to keep track of books coming in and going out of the library.

Renting a video

When you wish to rent a video from a video rental company, you will probably
find that the company maintains a database consisting of the video titles that it
stocks, details on the copies it has for each title, whether the copy is available
for rent or whether it is currently on loan, details of its members (the renters)
and which videos they are currently renting and date they are returned. The
database may even store more detailed information on each video, such as its
director and its actors. The company can use this information to monitor stock
usage and predict future buying trends based on historic rental data. For exam-
ple, Figure 1.1 shows some sample data for such a company.

Using the Internet

Many of the sites on the Internet are driven by database applications. For exam-
ple, you may visit an online bookstore that allows you to browse and buy
books, such as Amazon.com. The bookstore allows you to browse books in dif-
ferent categories, such as computing or management, or it may allow you to
browse books by author name. In either case, there is a database on the organi-
zation’s Web server that consists of book details, availability, shipping
information, stock levels, and on-order information. Book details include book
titles, ISBNs, authors, prices, sales histories, publishers, reviews, and in-depth
descriptions. The database allows books to be cross-referenced: for example, a
book may be listed under several categories, such as computing, programming
languages, bestsellers, and recommended titles. The cross-referencing also
allows Amazon to give you information on other books that are typically
ordered along with the title you are interested in.

Introduction ■ 5

QUIET
PLEASE

These are only a few of the applications for database systems, and you’ll no
doubt be aware of plenty of others. Although we take many of these applica-
tions for granted, behind them lies some highly complex technology. At the
center of this technology is the database itself. For the system to support the
applications that the end-users want, in as efficient a manner as possible,
requires a suitably structured database. Producing this structure is known as
database design, and it’s this important activity that we’re going to concentrate
on in this book. Whether the database you wish to build is small, or large like
the ones above, database design is a fundamental issue, and the methodology
presented in this book will help you build your database correctly with relative
ease. Having a well-designed database will allow you to produce a system that
satisfies the requirements of the users and, at the same time, provides accept-
able performance.

6 ■ Background

Figure 1.1

Sample data for a
video rental
company.

catalogNo title category dailyRental price directorNo

207132 Die Another Day Action 5.00 21.99 D1001

902355 Harry Potter Children 4.50 14.50 D7834

330553 Lord of the Rings Fantasy 5.00 31.99 D4576

781132 Shrek Children 4.00 18.50 D0078

445624 Men in Black II Action 4.00 29.99 D5743

634817 Independence Day Sci-Fi 4.50 32.99 D3765

Video

directorNo directorName

D1001 Lee Tamahori

D7834 Chris Columbus

D4576 Peter Jackson

D0078 Andrew Adamson

D5743 Barry Sonnenfeld

D3765 Roland Emmerick

Director

actorNo actorName

A1002 Pierce Brosnan

A3006 Elijah Wood

A2019 Will Smith

A7525 Tommy Lee Jones

A4343 Mike Myers

A8401 Daniel Radcliffe

Actor actorNo catalogNo character

A1002 207132 James Bond

A3006 330553 Frodo Baggins

A3006 902355 Harry Potter

A2019 330553 Captain Steve Hiller

A2019 445624 Agent J

A7525 634817 Agent K

A4343 781132 Shrek

Role

1.2 Database approach
In this section, we provide a more formal definition of the terms database,
Database Management System (DBMS), and application program than we used in
the last section.

1.2.1 The database

Let’s examine the definition of a database in detail to understand this concept
fully. The database is a single, possibly large repository of data, which can be
used simultaneously by many departments and users. All data that is required
by these users is integrated with a minimum amount of duplication. And
importantly, the database is normally not owned by any one department or
user but is a shared corporate resource.

As well as holding the organization’s operational data, the database also
holds a description of this data. For this reason, a database is also defined as a
self-describing collection of integrated records. The description of the data, that is
the meta-data – the ‘data about data’ – is known as the system catalog or data
dictionary. It is the self-describing nature of a database that provides what’s
known as data independence. This means that if new data structures are added
to the database or existing structures in the database are modified then the
application programs that use the database are unaffected, provided they don’t
directly depend upon what has been modified. For example, if we add a new
column to a record or create a new table, existing applications are unaffected.
However, if we remove a column from a table that an application program uses,
then that application program is affected by this change and must be modified
accordingly.

The final term in the definition of a database that we should explain is ‘logi-
cally related’. When we analyze the organization’s information needs, we
attempt to identify the important objects that need to be represented in the
database and the logical relationships between these objects. The methodology
we’ll present for database design will give you guidelines for identifying these
important objects and their logical relationships.

Introduction ■ 7

Database

A shared collection of logically related data (and a description of this data), designed

to meet the information needs of an organization.

Methodology
covered in
Chapters 9 to 16

1.2.2 The Database Management System (DBMS)

The DBMS is the software that interacts with the users, application programs,
and the database. Among other things, the DBMS allows users to insert, update,
delete, and retrieve data from the database. Having a central repository for all
data and data descriptions allows the DBMS to provide a general inquiry facility
to this data, called a query language. The provision of a query language (such as
SQL) alleviates the problems with earlier systems where the user has to work
with a fixed set of queries or where there is a proliferation of programs, giving
major software management problems. We’ll discuss the typical functions and
services of a DBMS in the next section.

1.2.3 (Database) application programs

Users interact with the database through a number of application programs
that are used to create and maintain the database and to generate information.
These programs can be conventional batch applications or, more typically
nowadays, they will be online applications. The application programs may be
written in some programming language or in some higher-level fourth-genera-
tion language. Figure 1.2 illustrates the database approach. It shows the Sales
and Stock Control Departments using their application programs to access the
database through the DBMS. Each set of departmental application programs
handles data entry, data maintenance, and the generation of reports. The physical
structure and storage of the data are managed by the DBMS.

1.2.4 Views

With the functionality described above, the DBMS is an extremely powerful
tool. However, as end-users are not too interested in how complex or easy a task

8 ■ Background

DBMS

A software system that enables users to define, create, and maintain the database and

also provides controlled access to this database.

SQL covered in
Chapter 3

The Structured Query Language (SQL – pronounced ‘S-Q-L’ or sometimes ‘See-

Quel’) is the main query language for relational DBMSs, like Microsoft Access,

Microsoft SQL Server, and Oracle.

Application program

A computer program that interacts with the database by issuing an appropriate request

(typically an SQL statement) to the DBMS.

is for the system, it could be argued that the DBMS has made things more com-
plex because users may now see more data than they actually need, or want, to
do their job. In recognition of this problem, a DBMS provides another facility
known as a view mechanism, which allows each user to have his or her own cus-
tomized view of the database, where a view is some subset of the database.

A view is usually defined as a query that operates on the base tables to pro-
duce another virtual table. As well as reducing complexity by letting users see
the data in the way they want to see it, views have several other benefits:

■ Views provide a level of security. Views can be set up to exclude data that some
users should not see. For example, we could create a view that allows a
branch manager and the Payroll Department to see all staff data, including
salary details. However, we could create a second view that excludes salary
details, which other staff use.

Introduction ■ 9

Figure 1.2

The database
approach showing
Sales and Stock
Control
Departments
accessing the
database through
application
programs and the
DBMS.

Tables of data

Meta-data

DBMS
Application programs

Database

Sales Dept Stock Control
Dept

View

A virtual table that does not necessarily exist in the database but is generated by the

DBMS from the underlying base tables whenever it’s accessed.

■ Views provide a mechanism to customize the appearance of the database. For
example, the Stock Control Department may wish to call the Daily Rental Rate
column for videos by the simpler name, Daily Rental.

■ A view can present a consistent, unchanging picture of the structure of the
database, even if the underlying database is changed (for example, columns
added or removed, relationships changed, data files split, restructured, or
renamed). If columns are added or removed from a data file, and these
columns are not required by the view, the view is not affected by this
change. Thus, a view helps provide additional data independence to that
provided by the system catalog, as we described in Section 1.2.1.

1.2.5 Components of the DBMS environment

We can identify five major components in the DBMS environment: hardware,
software, data, procedures, and people:

(1) Hardware The computer system(s) that the DBMS and the application pro-
grams run on. This can range from a single PC, to a single mainframe, to a
network of computers.

(2) Software The DBMS software and the application programs, together with
the operating system, including network software if the DBMS is being used
over a network.

(3) Data The data acts as a bridge between the hardware and software compo-
nents and the human components. As we’ve already said, the database
contains both the operational data and the meta-data (the ‘data about data’).

(4) Procedures The instructions and rules that govern the design and use of
the database. This may include instructions on how to log on to the DBMS,
make backup copies of the database, and how to handle hardware or soft-
ware failures.

(5) People This includes the database designers, database administrators
(DBAs), application programmers, and the end-users.

1.2.6 DBMS architectures

Before the advent of the Web, generally a DBMS would be divided into two parts:

■ a client program that handles the main business and data processing logic
and interfaces with the user;

■ a server program (sometimes called the DBMS engine) that manages and
controls access to the database.

This is known as a (two-tier) client–server architecture. Figure 1.3 illustrates a
simplified client–server architecture for a video rental company called StayHome

10 ■ Background

that has offices throughout the US. It shows a centralized database and server
located at the company’s headquarters in Seattle and a number of clients
located at some of the branches around the US.

In the mid-1990s, as applications became more complex and potentially
could be deployed to hundreds or thousands of end-users, the client side of this
architecture gave rise to two problems:

■ A ‘fat’ client, requiring considerable resources on the client’s computer to run
effectively (resources include disk space, RAM, and CPU power).

■ A significant client-side administration overhead.

By 1995, a new variation of the traditional two-tier client–server model
appeared to solve these problems, called the three-tier client–server architecture.

Introduction ■ 11

StayHome is used
throughout this book and
described in detail in
Chapter 6

Figure 1.3

Simplified two-tier client–server configuration for StayHome.

WAN

Portland New York

Denver Washington

Database

Seattle

Tier 2Tier 1 Tier 1
Database serverClients Clients

Data access
logic

Business and
data processing

logic + user
interface

Business and
data processing

logic + user
interface

This new architecture proposed three layers, each potentially running on a
different platform:

(1) The user interface layer, which runs on the end-user’s computer (the client).

(2) The business logic and data processing layer. This middle tier runs on a server
and is often called the application server. One application server is
designed to serve multiple clients.

(3) A DBMS, which stores the data required by the middle tier. This tier may run
on a separate server called the database server.

The three-tier design has many advantages over the traditional two-tier design,
such as:

■ A ‘thin’ client, which requires less expensive hardware.

■ Simplified application maintenance, as a result of centralizing the business
logic for many end-users into a single application server. This eliminates the
concerns of software distribution that are problematic in the traditional two-
tier client–server architecture.

■ Added modularity, which makes it easier to modify or replace one tier with-
out affecting the other tiers.

■ Easier load balancing, again as a result of separating the core business logic
from the database functions. For example, a Transaction Processing
Monitor (TPM) can be used to reduce the number of connections to the
database server. (A TPM is a program that controls data transfer between
clients and servers in order to provide a consistent environment for Online
Transaction Processing (OLTP).)

An additional advantage is that the three-tier architecture maps quite naturally
to the Web environment, with a Web browser acting as the ‘thin’ client, and a
Web server acting as the application server. The three-tier client–server architec-
ture is illustrated in Figure 1.4.

1.3 Functions of a DBMS
In this section, we briefly look at the functions and services we would expect a
full-scale DBMS to provide nowadays.

Data storage, retrieval, and update

This is the fundamental function of a DBMS. From our earlier discussion,
clearly in providing this functionality the DBMS should hide the internal physi-
cal implementation details (such as file organization and storage structures)
from the user.

12 ■ Background

A user-accessible catalog

A key feature of a DBMS is the provision of an integrated system catalog to hold
data about the structure of the database, users, applications, and so on. The cat-
alog is expected to be accessible to users as well as to the DBMS. The amount of
information and the way the information is used vary with the DBMS.
Typically, the system catalog stores:

■ names, types, and sizes of data items;

■ integrity constraints on the data;

■ names of authorized users who have access to the data.

Introduction ■ 13

Figure 1.4

Simplified three-tier client–server configuration for StayHome.

Portland New York

Denver Washington

Database

Seattle

Data access
logicBusiness and

data processing
logic

Tier 3
Application

server (with TPM)

Tier 2
Database

server

Tier 1
Clients

Tier 1
Clients

Internet

User
interface

User
interface

Transaction support

For example, some simple transactions for the StayHome video rental company
might be to add a new member of staff to the database, to update the salary of a
particular member of staff, or to delete a member from the register. A more
complicated example might be to delete a manager from the database and to
reassign the branch that he or she managed to another member of staff. In this
case, there is more than one change to be made to the database. If the transac-
tion fails during execution, perhaps because of a computer crash, the database
will be in an inconsistent state: some changes will have been made and others
not. For example, a branch is not allocated a new manager. Consequently, the
changes that have been made will have to be undone to return the database to
a consistent state again.

To overcome this, a DBMS should provide a mechanism that will ensure
either that all the updates corresponding to a given transaction are made or
that none of them are made.

Concurrency control services

One major objective in using a DBMS is to enable many users to access shared
data concurrently; this is known as concurrency control. Concurrent access is
relatively easy if all users are only reading data, as there is no way that they can
interfere with one another. However, when two or more users are accessing the
database simultaneously and at least one of them is updating data, there may be
interference that can result in inconsistencies. For example, consider two trans-
actions T1 and T2 that are executing concurrently as illustrated in Figure 1.5.

T2 is withdrawing $20 from a StayHome member’s account (with a balance,
balx, currently $50) and T1 is crediting $5 to the same account. If these transac-
tions were executed one after the other with no interleaving of operations, the
final balance would be $35 regardless of which was performed first. Transactions

14 ■ Background

Transaction

An action, or series of actions, carried out by a single user or application program,

which accesses or changes the contents of the database.

Figure 1.5

The lost update
problem.

Time

t1
t2
t3
t4
t5

T1

read(balx)
balx = balx + 5
write(balx)

T2

read(balx)
balx = balx – 20
write(balx)

balx

50
50
30
55

T1 and T2 start at nearly the same time and both read the balance as $50. T2

decreases balx by $20 to $30 and stores the update in the database. Meanwhile,
transaction T1 increases its copy of balx by $5 to $55 and stores this value in the
database, overwriting the previous update and thereby ‘losing’ $20.

When multiple users are accessing the database, the DBMS must ensure that
interference like this cannot occur.

Recovery services

When discussing transaction support, we mentioned that if the transaction fails
the database has to be returned to a consistent state; this is known as recovery
control. This may be the result of a system crash, media failure, a hardware or
software error causing the DBMS to stop, or it may be the result of the user
detecting an error during the transaction and aborting the transaction before it
completes. In all these cases, the DBMS must provide a mechanism to recover
the database to a consistent state.

Authorization services

It’s not difficult to envisage instances where we would want to protect some of
the data stored in the database from being seen by all users. For example, we
may want only branch managers and the Payroll Department to see salary-
related information for staff and prevent all other users from seeing this data.
Additionally, we may want to protect the database from unauthorized access.
The term security refers to the protection of the database against unauthorized
access, either intentional or accidental. We expect the DBMS to provide mecha-
nisms to ensure the data is secure.

Support for data communication

Most users access the database from terminals. Sometimes, these terminals are
connected directly to the computer hosting the DBMS. In other cases, the ter-
minals are at remote locations and communicate with the computer hosting
the DBMS over a network. In either case, the DBMS must be capable of integrat-
ing with networking/communication software. Even DBMSs for PCs should be
capable of being run on a local area network (LAN) so that one centralized data-
base can be established for users to share, rather than having a series of
disparate databases, one for each user.

Integrity services

Database integrity refers to the correctness and consistency of stored data. It
can be considered as another type of database protection. While it’s related to

Introduction ■ 15

Security covered in
Chapter 5 and Step 6 in
Chapters 14 & 18

security, it has wider implications; integrity is concerned with the quality of
data itself. Integrity is usually expressed in terms of constraints, which are con-
sistency rules that the database is not permitted to violate. For example, we
may specify a constraint that no member of StayHome can rent more than 10
videos at the one time. Here, we want the DBMS to check when we assign a
video to a member that this limit is not being exceeded and to prevent the
rental from occurring if the limit has been reached.

Services to promote data independence

Data independence is normally achieved through a view mechanism, as we dis-
cussed in Section 1.2.4. There are usually several types of changes that can be
made to the physical characteristics of the database without affecting the views,
such as using different file organizations or modifying indexes. This is called
physical data independence. However, complete logical data independence is more
difficult to achieve. The addition of a new table or column can usually be
accommodated, but not their removal. In some systems, any type of change to
a table’s structure is prohibited.

Utility services

Utility programs help the DBA to manage the database effectively. Some exam-
ples of utilities are:

■ import facilities, to load the database from flat files, and export facilities, to
unload the database to flat files;

■ monitoring facilities, to monitor database usage and operation.

The above discussion is intentionally brief but should be sufficient to provide
a general overview of DBMS functionality. For more information, the interested
reader is referred to Connolly and Begg (2002).

16 ■ Background

The above discussion is general. The actual level of functionality offered by a

DBMS differs from product to product. For example, a DBMS for a PC may not

support concurrent shared access, and it may only provide limited security,

integrity, and recovery control. However, modern, large multi-user DBMS

products offer all the above functions and much more. Modern systems are

extremely complex pieces of software consisting of millions of lines of code,

with documentation comprising many volumes.

1.4 Database design
Until now, we’ve taken it for granted that there is a structure to the data in the
database. But how do we get this structure? The answer is quite simple: the
structure of the database is determined during database design. However, car-
rying out database design can be extremely complex. To produce a system that
will satisfy the organization’s information needs requires a data-driven
approach, which means we think of the data first and the applications second.
For the system to be acceptable to the end-users, database design is crucial. A
poorly designed database will generate errors that may lead to bad decisions
being made, with potentially serious repercussions for the organization. On the
other hand, a well-designed database produces a system that provides the cor-
rect information for the decision-making process to succeed, in an efficient way.

We devote several chapters to the presentation of a complete methodology
for database design (see Chapters 9–16). We present it as a series of simple-to-
follow steps, with guidelines provided throughout. In these chapters, we use a
case study based on a video rental company called StayHome. To help reinforce
the methodology, in Chapters 17 and 18 we go through a second case study,
this time a veterinary clinic called PerfectPets. In addition, in Appendix E we
provide a number of common business data models that you are likely to
encounter in one form or another.

Unfortunately, database design methodologies are not very popular, which
may be a major cause of failure in the development of database systems. Owing
to the lack of structured approaches to database design, the time and resources
required for a database project are typically underestimated, the databases
developed are inadequate or inefficient in meeting the demands of users, docu-
mentation is limited, and maintenance is difficult.

We hope the methodology presented in this book will help change this attitude.

1.5 Advantages and disadvantages of DBMSs
The fact that you are reading this book probably means that you already know
many of the advantages of DBMSs, such as:

■ Control of data redundancy The database approach eliminates redundancy
where possible. However, it does not eliminate redundancy entirely, but con-
trols the amount of redundancy inherent in the database. For example, it’s
normally necessary to duplicate key data items to model relationships
between data, and sometimes it’s desirable to duplicate some data items to
improve performance. The reasons for controlled duplication will become
clearer when you read the chapters on database design.

Introduction ■ 17

■ Data consistency By eliminating or controlling redundancy, we’re reducing
the risk of inconsistencies occurring. If data is stored only once in the data-
base, any update to its value has to be performed only once and the new
value is immediately available to all users. If data is stored more than once
and the system is aware of this, the system can ensure that all copies of the
data are kept consistent. Unfortunately, many of today’s DBMSs don’t auto-
matically ensure this type of consistency.

■ Sharing of data In a file-based approach (the predecessor to the DBMS
approach), typically files are owned by the people or departments that use
them. On the other hand, the database belongs to the entire organization
and can be shared by all authorized users. In this way, more users share more
of the data. Furthermore, new applications can build on the existing data in
the database and add only data that is not currently stored, rather than
having to define all data requirements again. The new applications can also
rely on the functions provided by the DBMS, such as data definition and
manipulation, and concurrency and recovery control, rather than having to
provide these functions themselves.

■ Improved data integrity As we’ve already stated, database integrity is usually
expressed in terms of constraints, which are consistency rules that the data-
base is not permitted to violate. Constraints may apply to data within a single
record or they may apply to relationships between records. Again, data integra-
tion allows users to define, and the DBMS to enforce, integrity constraints.

■ Improved maintenance through data independence Since a DBMS separates the
data descriptions from the applications, it helps make applications immune
to changes in the data descriptions. This is known as data independence and
its provision simplifies database application maintenance.

Other advantages include: improved security, improved data accessibility and
responsiveness, increased productivity, increased concurrency, and improved
backup and recovery services. There are, however, some disadvantages of the
database approach, such as:

■ Complexity As we’ve already mentioned, a DBMS is an extremely complex
piece of software, and all users (database designers and developers, DBAs,
and end-users) must understand the DBMS’s functionality to take full advan-
tage of it.

■ Cost of DBMS The cost of DBMSs varies significantly, depending on the
environment and functionality provided. For example, a single-user DBMS
for a PC may cost only $100. However, a large mainframe multi-user DBMS
servicing hundreds of users can be extremely expensive, perhaps $100,000 to
$1,000,000. There is also the recurrent annual maintenance cost, which is
typically a percentage of the list price.

18 ■ Background

■ Cost of conversion In some situations, the cost of the DBMS and any extra
hardware may be insignificant compared with the cost of converting existing
applications to run on the new DBMS and hardware. This cost also includes
the cost of training staff to use these new systems, and possibly the employ-
ment of specialist staff to help with the conversion and running of the
system. This cost is one of the main reasons why some companies feel tied to
their current systems and cannot switch to more modern database technol-
ogy. The term legacy system is sometimes used to refer to an older, and
usually inferior, system (such as file-based, hierarchical, or network systems).

■ Performance Typically, a file-based system is written for a specific applica-
tion, such as invoicing. As a result, performance is generally very good.
However, a DBMS is written to be more general, to cater for many applica-
tions rather than just one. The effect is that some applications may not run
as fast using a DBMS as they did before.

■ Higher impact of a failure The centralization of resources increases the vul-
nerability of the system. Since all users and applications rely on the
availability of the DBMS, the failure of any component can bring operations
to a complete halt until the failure is repaired.

Chapter summary
A database is a shared collection of logically related data (and a
description of this data), designed to meet the information needs of an
organization. A DBMS is a software system that enables users to define,
create, and maintain the database, and also provides controlled access
to this database. An application program is a computer program that
interacts with the database by issuing an appropriate request (typically
an SQL statement) to the DBMS. The more inclusive term database
system is used to define a collection of application programs that inter-
act with the database, along with the DBMS and the database itself.

All access to the database is through the DBMS. The DBMS provides
facilities that allow users to define the database, and to insert, update,
delete, and retrieve data from the database.

The DBMS environment consists of hardware (the computer), software
(the DBMS, operating system, and applications programs), data, proce-
dures, and people. The people include database administrators (DBAs),
database designers, application programmers, and end-users.

In the Web environment, the traditional two-tier client–server model
has been replaced by a three-tier model, consisting of a user interface

Introduction ■ 19

layer (the client), a business logic and data processing layer (the appli-
cation server), and a DBMS (the database server), distributed over
different machines.

The DBMS provides controlled access to the database. It provides secu-
rity, integrity, concurrency and recovery control, and a user-accessible
catalog. It also provides a view mechanism to simplify the data that
users have to deal with.

Some advantages of the database approach include control of data
redundancy, data consistency, sharing of data, and improved security
and integrity. Some disadvantages include complexity, cost, reduced per-
formance, and higher impact of a failure.

Review questions
1.1 List four examples of database systems other than those listed in Section

1.1.

1.2 Discuss the meaning of each of the following terms:

(a) data;
(b) database;
(c) database management system;
(d) application program;
(e) data independence;
(f) views.

1.3 Describe the main characteristics of the database approach.

1.4 Describe the five components of the DBMS environment and discuss how
they relate to each other.

1.5 Describe the problems with the traditional two-tier client–server architec-
ture and discuss how these problems were overcome with the three-tier
client–server architecture.

1.6 Describe the functions that should be provided by a modern full-scale
multi-user DBMS.

1.7 Of the functions described in your answer to Question 1.6, which ones do
you think would not be needed in a standalone PC DBMS? Provide justifi-
cation for your answer.

1.8 Discuss the advantages and disadvantages of DBMSs.

20 ■ Background

The Relational Database Management System (often called RDBMS for short)
has become the dominant DBMS in use today, with estimated sales of approxi-
mately $15–$20 billion per year ($50 billion with tools sales included), and
growing at a rate of about 25 percent per year. The RDBMS represents the
second generation of DBMS and is based on the relational data model proposed
by Dr E.F. Codd in his seminal paper ‘A Relational Model of Data for Large
Shared Data Banks’ in 1970. In the relational model, all data is logically struc-
tured within relations (tables). A great strength of the relational model is this
simple logical structure. Yet, behind this simple structure is a sound theoretical
foundation that is lacking in the first generation of DBMSs (the network and
hierarchical DBMSs typified by systems such as IDMS/R from Computer
Associates and IMS from IBM).

The design methodology we present in this book is based on the relational
data model, as this is the one most of you will be using. In this chapter, we dis-
cuss the basic principles of the relational data model. Let’s start by first looking
at what a data model is.

Chapter 2

The relational model

In this chapter you will learn:

What a data model is and its uses.

The terminology of the relational model.

How tables are used to represent data.

Properties of database relations.

How to identify candidate, primary, alternate, and foreign keys.

The meaning of entity integrity and referential integrity.

That SQL and QBE are the two most widely used relational languages.

2.1 What is a data model?

A model is a representation of ‘real world’ objects and events, and their associa-
tions. It concentrates on the essential, inherent aspects of an organization and
ignores the accidental properties. A data model attempts to represent the data
requirements of the organization, or the part of the organization, that you wish
to model. It should provide the basic concepts and notations that will allow
database designers and end-users to communicate their understanding of the
organizational data unambiguously and accurately. A data model can be
thought of as comprising three components:

(1) a structural part, consisting of a set of rules that define how the database is
to be constructed;

(2) a manipulative part, defining the types of operations (transactions) that are
allowed on the data (this includes the operations that are used for updating
or retrieving data and for changing the structure of the database);

(3) possibly a set of integrity rules, which ensures that the data is accurate.

The purpose of a data model is to represent data and to make the data under-
standable. If it does this, then it can be easily used to design a database. In
the remainder of this chapter, we examine one such data model: the relational
data model.

2.2 Terminology
The relational model is based on the mathematical concept of a relation, which
is physically represented as a table. Codd, a trained mathematician, used termi-
nology taken from mathematics, principally set theory and predicate logic. In
this section, we explain the terminology and structural concepts of the rela-
tional model. In Section 2.3, we’ll discuss the integrity rules for the model and
in Section 2.4 we’ll examine the manipulative part of the model.

2.2.1 Relational data structure

22 ■ Background

Data model

An integrated collection of concepts for describing data, relationships between data,

and constraints on the data used by an organization.

Relation

A table with columns and rows.

A relational DBMS requires only that the database be perceived by the user as
tables.

In the relational model, we use relations to hold information about the objects
that we want to represent in the database. We represent a relation as a table in
which the rows of the table correspond to individual records and the table
columns correspond to attributes. Attributes can appear in any order and the
relation will still be the same relation, and therefore convey the same meaning.

For example, in the StayHome video rental company, the information on
branches is represented by the Branch relation, with columns for attributes
branchNo (the branch number), street, city, state, zipCode, and mgrStaffNo (the staff
number corresponding to the manager of the branch). Similarly, the information
on staff is represented by the Staff relation, with columns for attributes staffNo
(the staff number), name, position, salary, and branchNo (the number of the branch
the staff member works at). Figure 2.1 shows instances of the Branch and Staff
relations. As you can see from this figure, a column contains values for a single
attribute; for example, the branchNo columns contain only numbers of branches.

Domains are an important feature of the relational model. Every attribute in
a relational database is associated with a domain. Domains may be distinct for
each attribute, or two or more attributes may be associated with the same
domain. Figure 2.2 shows the domains for some of the attributes of the Branch
and Staff relations.

The relational model ■ 23

Note that this perception applies only to the way we view the database; it does

not apply to the physical structure of the database on disk, which we can imple-

ment using a variety of storage structures (such as a heap file or hash file).

Storage structures
discussed in
Appendix D

Attribute

A named column of a relation.

StayHome is used
throughout this book
and discussed more fully
in Chapter 6

Domain

The set of allowable values for one or more attributes.

Note that, at any given time, typically there will be values in a domain that

don’t currently appear as values in the corresponding attribute. In other

words, a domain describes possible values for an attribute.

24 ■ Background

branchNo street city state zipCode mgrStaffNo

B001 8 Jefferson Way Portland OR 97201 S1500

B002 City Center Plaza Seattle WA 98122 S0010

B003 14 – 8th Avenue New York NY 10012 S0415

B004 16 – 14th Avenue Seattle WA 98128 S2250

Tuples
(records) { Branch

relation

staffNo name position salary branchNo

S1500 Tom Daniels Manager 46000 B001

S0003 Sally Adams Assistant 30000 B001

S0010 Mary Martinez Manager 50000 B002

S3250 Robert Chin Supervisor 32000 B002

S2250 Sally Stern Manager 48000 B004

S0415 Art Peters Manager 41000 B003

Related columns

Tuples
(records) { Staff

relation

Figure 2.1

An example of the Branch and Staff relations.

Foreign keys

Attributes (columns)

Primary keys

The domain concept is important because it allows us to define the meaning
and source of values that attributes can hold. As a result, more information is
available to the system and it can (theoretically) reject operations that don’t
make sense. For example, it would not be sensible for us to compare a staff
number with a branch number, even though the domain definitions for both
these attributes are character strings. Unfortunately, you’ll find that most
RDBMSs don’t currently support domains.

The fundamental elements of a relation are the tuples or records in the
table. In the Staff relation, each record contains five values, one for each
attribute. As with attributes, tuples can appear in any order and the relation will
still be the same relation, and therefore convey the same meaning.

Finally, we have the definition:

A relational database consists of tables that are appropriately structured.
The appropriateness is obtained through the process of normalization, which
we’ll discuss in Chapter 8.

The relational model ■ 25

Figure 2.2

Domains for some attributes of the Branch and Staff relations.

Attribute Domain name Meaning Domain definition

branchNo Branch_Numbers Set of all possible branch numbers. Alphanumeric: size 4, range B001–B999

street Street_Names Set of all possible street names. Alphanumeric: size 60

staffNo Staff_Numbers Set of all possible staff numbers. Alphanumeric: size 5, range S0001–S9999

position Staff_Positions Set of all possible staff positions. One of Director, Manager, Supervisor,
Assistant, Buyer

salary Staff_Salaries Possible values of staff salaries. Monetary: 8 digits, range
$10,000.00–$100,000.00

Tuple

A record of a relation.

Relational database

A collection of normalized tables.

Alternative terminology

The terminology for the relational model can be quite confusing. In this chap-
ter, we’ve introduced two sets of terms: (relation, attribute, tuple) and (table,
column, record). Other terms that you may encounter are file for table, row for
record, and field for column. You may also find various combinations of these
terms, such as table, field, and row.

2.2.2 Properties of relational tables

A relational table has the following properties:

■ The table has a name that is distinct from all other tables in the database.

■ Each cell of the table contains exactly one value. (For example, it would be
wrong to store several telephone numbers for a single branch in a single cell.
In other words, tables don’t contain repeating groups of data. A relational table
that satisfies this property is said to be normalized or in first normal form.)

■ Each column has a distinct name.

■ The values of a column are all from the same domain.

■ The order of columns has no significance. In other words, provided a column
name is moved along with the column values, we can interchange columns.

■ Each record is distinct; there are no duplicate records.

■ The order of records has no significance, theoretically. (However, in practice,
the order may affect the efficiency of accessing records, as we’ll see in
Chapter 13.)

2.2.3 Relational keys

As we’ve just stated, each record in a table must be unique. This means that we
need to be able to identify a column or combination of columns (called rela-
tional keys) that provides uniqueness. In this section, we explain the terminology
used for relational keys.

26 ■ Background

From now on, we will tend to drop the formal terms of relation, tuple,

and attribute, and instead use the more frequently used terms table, column,

and record.

Superkey

A column, or set of columns, that uniquely identifies a record within a table.

Since a superkey may contain additional columns that are not necessary for
unique identification, we’re interested in identifying superkeys that contain
only the minimum number of columns necessary for unique identification.

A candidate key for a table has two properties:

■ Uniqueness In each record, the values of the candidate key uniquely iden-
tify that record.

■ Irreducibility No proper subset of the candidate key has the uniqueness
property.

Consider the Branch table shown in Figure 2.1. For a given value of city, we
would expect to be able to determine several branches (for example, Seattle has
two branches). This column, therefore, cannot be selected as a candidate key.
On the other hand, since StayHome allocates each branch a unique branch
number, then for a given value of the branch number, branchNo, we can deter-
mine at most one record, so that branchNo is a candidate key. Similarly, as no
two branches can be located in the same zip code, zipCode is also a candidate key
for the Branch table.

There may be several candidate keys for a table. Consider, for example, a
table called Role, which represents the characters played by actors in videos. The
table comprises an actor number (actorNo), a catalog number (catalogNo), and the
name of the character played (character), as shown in Figure 2.3. For a given
actor number, actorNo, there may be several different videos the actor has
starred in. Similarly, for a given catalog number, catalogNo, there may be several
actors who have starred in this video. Therefore, actorNo by itself or catalogNo by

The relational model ■ 27

Candidate key

A superkey that contains only the minimum number of columns necessary for unique

identification.

Figure 2.3

An example of the
Role table.

actorNo catalogNo character

A1002 207132 James Bond

A3006 330553 Frodo Baggins

A8401 902355 Harry Potter

A2019 634817 Captain Steve Hiller

A2019 445624 Agent J

A7525 445624 Agent K

A4343 781132 Shrek

Role

itself cannot be selected as a candidate key. However, the combination of
actorNo and catalogNo identifies at most one record. When a key consists of more
than one column, we call it a composite key.

Since a table has no duplicate records, it’s always possible to uniquely iden-
tify each record. This means that a table always has a primary key. In the worst
case, the entire set of columns could serve as the primary key, but usually some
smaller subset is sufficient to distinguish the records. The candidate keys that
are not selected to be the primary key are called alternate keys. For the Branch
table, if we choose branchNo as the primary key, zipCode would then be an alter-
nate key. For the Role table, there is only one candidate key, comprising actorNo
and catalogNo, so these columns would automatically form the primary key.

28 ■ Background

Be careful not to look at sample data and try to deduce the candidate

key(s), unless you are certain the sample is representative of the data that will

be stored in the table. Generally, an instance of a table cannot be used to

prove that a column or combination of columns is a candidate key. The fact

that there are no duplicates for the values that appear at a particular moment

in time does not guarantee that duplicates are not possible. However, the pres-

ence of duplicates in an instance can be used to show that some column

combination is not a candidate key. Identifying a candidate key requires that

we know the ‘real world’ meaning of the column(s) involved so that we can

decide whether duplicates are possible. Only by using this semantic informa-

tion can we be certain that a column combination is a candidate key.

For example, from the data presented in Figure 2.1, we may think that a

suitable candidate key for the Staff table would be name, the employee’s name.

However, although there is only a single value of Tom Daniels in this table just

now, a new member of staff with the same name could join the company,

which would therefore prevent the choice of name as a candidate key.

TIP

Primary key

The candidate key that is selected to identify records uniquely within the table.

Foreign key

A column, or set of columns, within one table that matches the candidate key of some

(possibly the same) table.

When a column appears in more than one table, its appearance usually rep-
resents a relationship between records of the two tables. For example, in Figure
2.1 the inclusion of branchNo in both the Branch and Staff tables is quite deliber-
ate and links branches to the details of staff working there. In the Branch table,
branchNo is the primary key. However, in the Staff table the branchNo column
exists to match staff to the branch they work in. In the Staff table, branchNo is a
foreign key. We say that the column branchNo in the Staff table targets or refer-
ences the primary key column branchNo in the home table, Branch. In this
situation, the Staff table is also known as the child table and the Branch table as
the parent table.

2.2.4 Representing relational databases

A relational database consists of one or more tables. The common convention
for representing a description of a relational database is to give the name of
each table, followed by the column names in parentheses. Normally, the pri-
mary key is underlined. The description of the relational database for the
StayHome video rental company is:

Branch (branchNo, street, city, state, zipCode, mgrStaffNo)

Staff (staffNo, name, position, salary, branchNo)

Video (catalogNo, title, category, dailyRental, price, directorNo)

Director (directorNo, directorName)

Actor (actorNo, actorName)

Role (actorNo, catalogNo, character)

Member (memberNo, fName, lName, address)

Registration (branchNo, memberNo, staffNo, dateJoined)

RentalAgreement (rentalNo, dateOut, dateReturn, memberNo, videoNo)

VideoForRent (videoNo, available, catalogNo, branchNo)

Figure 2.4 shows an instance of the StayHome database.

The relational model ■ 29

You may recall from Chapter 1 that one of the advantages of the DBMS

approach was control of data redundancy. This is an example of ‘controlled

redundancy’ – these common columns play an important role in modeling

relationships, as we’ll see in later chapters.

Figure 2.4

An example of the
StayHome video
rental database.

30 ■ Background

branchNo street city state zipCode mgrStaffNo

B001 8 Jefferson Way Portland OR 97201 S1500

B002 City Center Plaza Seattle WA 98122 S0010

B003 14 – 8th Avenue New York NY 10012 S0415

B004 16 – 14th Avenue Seattle WA 98128 S2250

Branch

staffNo name position salary branchNo

S1500 Tom Daniels Manager 46000 B001

S0003 Sally Adams Assistant 30000 B001

S0010 Mary Martinez Manager 50000 B002

S3250 Robert Chin Supervisor 32000 B002

S2250 Sally Stern Manager 48000 B004

S0415 Art Peters Manager 41000 B003

Staff

catalogNo title category dailyRental price directorNo

207132 Die Another Day Action 5.00 21.99 D1001

902355 Harry Potter Children 4.50 14.50 D7834

330553 Lord of the Rings Fantasy 5.00 31.99 D4576

781132 Shrek Children 4.00 18.50 D0078

445624 Men in Black II Action 4.00 29.99 D5743

634817 Independence Day Sci-Fi 4.50 32.99 D3765

Video

directorNo directorName

D1001 Lee Tamahori

D7834 Chris Columbus

D4576 Peter Jackson

D0078 Andrew Adamson

D5743 Barry Sonnenfeld

D3765 Roland Emmerick

Director

actorNo actorName

A1002 Pierce Brosnan

A3006 Elijah Wood

A2019 Will Smith

A7525 Tommy Lee Jones

A4343 Mike Myers

A8401 Daniel Radcliffe

Actor actorNo catalogNo character

A1002 207132 James Bond

A3006 330553 Frodo Baggins

A3006 902355 Harry Potter

A2019 634817 Captain Steve Hiller

A2019 445624 Agent J

A7525 445624 Agent K

A4343 781132 Shrek

Role

The relational model ■ 31

Figure 2.4

ContinuedmemberNo fName lName address

M250178 Bob Adams 57 – 11th Avenue, Seattle, WA 98105

M166884 Art Peters 89 Redmond Rd, Portland, OR 97117

M115656 Serena Parker 22 W. Capital Way, Portland, OR 97201

M284354 Don Nelson 123 Suffolk Lane, Seattle, WA 98117

Member

branchNo memberNo staffNo dateJoined

B002 M250178 S3250 1-Jul-01

B001 M166884 S0003 4-Sep-02

B001 M115656 S0003 12-May-00

B002 M284354 S3250 9-Oct-01

Registration

rentalNo dateOut dateReturn memberNo videoNo

R753461 4-Feb-03 6-Feb-03 M284354 245456

R753462 4-Feb-03 6-Feb-03 M284354 243431

R668256 5-Feb-03 7-Feb-03 M115656 199004

R668189 2-Feb-03 M115656 178643

RentalAgreement

videoNo available catalogNo branchNo

199004 Y 207132 B001

245456 Y 207132 B002

178643 N 634817 B001

243431 Y 634817 B002

VideoForRent

2.3 Relational integrity
In the previous section, we discussed the structural part of the relational data
model. As we mentioned in Section 2.1, a data model has two other parts: a
manipulative part, defining the types of operations that are allowed on the
data, and a set of integrity rules, which ensure that the data is accurate. In this
section, we discuss the relational integrity rules and in the following section,
we discuss the main relational manipulation languages.

Since every column has an associated domain, there are constraints (called
domain constraints) in the form of restrictions on the set of values allowed for
the columns of tables. In addition, there are two important integrity rules,
which are constraints or restrictions that apply to all instances of the database.
The two principal rules for the relational model are known as entity integrity and
referential integrity. Before we define these terms, we need first to understand the
concept of nulls.

2.3.1 Nulls

A null can be taken to mean ‘unknown’. It can also mean that a value is not
applicable to a particular record, or it could just mean that no value has yet
been supplied. Nulls are a way to deal with incomplete or exceptional data.
However, a null is not the same as a zero numeric value or a text string filled
with spaces; zeros and spaces are values, but a null represents the absence of a
value. Therefore, nulls should be treated differently from other values.

For example, suppose it was possible for a branch to be temporarily without
a manager, perhaps because the manager has recently left and a new manager
has not yet been appointed. In this case, the value for the corresponding
mgrStaffNo column would be undefined. Without nulls, it becomes necessary to
introduce false data to represent this state or to add additional columns that
may not be meaningful to the user. In this example, we may try to represent
the absence of a manager with the value ‘None at present’. Alternatively, we
may add a new column ‘currentManager?’ to the Branch table, which contains a
value Y (Yes), if there is a manager, and N (No), otherwise. Both these
approaches can be confusing to anyone using the database.

Having defined nulls, we’re now in a position to define the two relational
integrity rules.

32 ■ Background

Domains defined
in Section 2.2.1

Null

Represents a value for a column that is currently unknown or is not applicable for this

record.

2.3.2 Entity integrity

The first integrity rule applies to the primary keys of base tables.

From an earlier definition, we know that a primary key is a minimal identi-
fier that is used to identify records uniquely. This means that no subset of the
primary key is sufficient to provide unique identification of records. If we allow
a null for any part of a primary key, we’re implying that not all the columns are
needed to distinguish between records, which contradicts the definition of the
primary key. For example, as branchNo is the primary key of the Branch table, we
should not be able to insert a record into the Branch table with a null for the
branchNo column.

2.3.3 Referential integrity

The second integrity rule applies to foreign keys.

In Figure 2.1, branchNo in the Staff table is a foreign key targeting the branchNo
column in the home (parent) table, Branch. It should not be possible to create a
staff record with branch number B300, for example, unless there is already a
record for branch number B300 in the Branch table. However, we should be able
to create a new staff record with a null in the branchNo column to allow for the
situation where a new member of staff has joined the company but has not yet
been assigned to a particular branch.

The relational model ■ 33

Entity integrity

In a base table, no column of a primary key can be null.

A base table is a named table whose records are physically stored in the data-

base. This is in contrast to a view, which we mentioned in Section 1.2.4. A

view is a ‘virtual table’ that does not actually exist in the database but is gener-

ated by the DBMS from the underlying base tables whenever it’s accessed.

Referential integrity

If a foreign key exists in a table, either the foreign key value must match a candidate

key value of some record in its home table or the foreign key value must be wholly null.

2.3.4 Other business rules

Examples of business rules include domains, which constrain the values that a
particular column can have, and the relational integrity rules that we have just
discussed. Another example is multiplicity, which defines the number of occur-
rences of one entity (such as a branch) that may relate to a single occurrence of
an associated entity (such as a member of staff). It’s also possible for users to
specify additional constraints that the data must satisfy. For example, if
StayHome has a rule that a member can only rent a maximum of 10 videos at
any one time, then the user must be able to specify this rule and expect the
DBMS to enforce it. In this case, it should not be possible for a member to rent
a video if the number of videos the member currently has rented is 10.

Unfortunately, the level of support for business rules varies from system to
system. We’ll discuss the implementation of business rules in Chapters 12 and 18.

2.4 Relational languages
In Section 2.1, we stated that one part of a data model is the manipulative part,
which defines the types of operations that are allowed on the data. This
includes the operations that are used for updating or retrieving data from the
database, and for changing the structure of the database. The two main lan-
guages that have emerged for relational DBMSs are:

■ SQL (Structured Query Language) and

■ QBE (Query-by-Example).

SQL has been standardized by the International Organization for
Standardization (ISO), making it both the formal and de facto standard language
for defining and manipulating relational databases.

QBE is an alternative, graphical-based, ‘point-and-click’ way of querying the
database, which is particularly suited for queries that are not too complex, and
can be expressed in terms of a few tables. QBE has acquired the reputation of
being one of the easiest ways for non-technical users to obtain information
from the database. Unfortunately, unlike SQL, there is no official standard for
QBE. However, the functionality provided by vendors is generally very similar
and QBE is usually more intuitive to use than SQL. We’ll provide a tutorial on
SQL and QBE in the next chapter.

34 ■ Background

Business rules

Rules that define or constrain some aspect of the organization.

Multiplicity will
be discussed in
Section 7.5

Chapter summary
The RDBMS has become the dominant DBMS in use today. This software
represents the second generation of DBMS and is based on the rela-
tional data model proposed by Dr E.F. Codd.

Relations are physically represented as tables, with the records corre-
sponding to individual tuples and the columns to attributes.

Properties of relational tables are: each cell contains exactly one value,
column names are distinct, column values come from the same domain,
column order is immaterial, record order is immaterial, and there are no
duplicate records.

A superkey is a set of columns that identifies records of a table uniquely,
while a candidate key is a minimal superkey. A primary key is the candi-
date key chosen for use in identification of records. A table must always
have a primary key. A foreign key is a column, or set of columns, within
one table that is the candidate key of another (possibly the same) table.

A null represents a value for a column that is unknown at the present
time or is not defined for this record.

Entity integrity is a constraint that states that in a base table no
column of a primary key can be null. Referential integrity states that
foreign key values must match a candidate key value of some record in
the home (parent) table or be wholly null.

The two main languages for accessing relational databases are SQL
(Structured Query Language) and QBE (Query-by-Example).

Review questions
2.1 Discuss each of the following concepts in the context of the relational

data model:

(a) relation;
(b) attribute;
(c) domain;
(d) tuple ;
(e) relational database.

2.2 Discuss the properties of a relational table.

2.3 Discuss the differences between the candidate keys and the primary key of
a table. Explain what is meant by a foreign key. How do foreign keys of
tables relate to candidate keys? Give examples to illustrate your answer.

The relational model ■ 35

2.4 What does a null represent?

2.5 Define the two principal integrity rules for the relational model. Discuss
why it is desirable to enforce these rules.

36 ■ Background

In the previous chapter, we introduced the relational data model and noted
that the two main languages that have emerged for relational DBMSs are:

■ SQL (Structured Query Language)

■ QBE (Query-by-Example).

QBE is essentially a graphical front-end to SQL that provides a potentially sim-
pler method of querying relational databases than SQL. However, QBE will
convert the query expressed graphically into a corresponding SQL statement
that is then run on the database. In this chapter, we examine both these lan-
guages, although we concentrate primarily on SQL because of its importance.
For a more complete discussion of SQL and QBE, the interested reader is
referred to Connolly and Begg (2002).

Chapter 3

SQL and QBE

In this chapter you will learn:

The purpose and importance of SQL (Structured Query Language),
the main language for querying relational databases.

How to retrieve data from the database using the SELECT statement.

How to insert data into the database using the INSERT statement.

How to update data in the database using the UPDATE statement.

How to delete data from the database using the DELETE statement.

How to create a new table in the database using the CREATE TABLE statement.

About another language for querying relational databases called QBE
(Query-by-Example).

3.1 Structured Query Language (SQL)
SQL is the most widely used commercial relational database language, designed
to be used by professionals and non-professionals alike. It was originally devel-
oped in the SEQUEL and System-R projects at IBM’s research laboratory in San
Jose between 1974 and 1977. Today, many people still pronounce SQL as ‘See-
Quel’, although the official pronunciation is ‘S-Q-L’. Starting with Oracle in the
late 1970s, there have been many commercial RDBMSs based on SQL, and with
an ANSI (American National Standards Institute) and ISO (International
Organization for Standardization) standard, it’s now the formal and de facto lan-
guage for defining and manipulating relational databases.

The main characteristics of SQL are:

■ It’s relatively easy to learn.

■ It’s a non-procedural language: you specify what information you require,
rather than how to get it. In other words, SQL does not require you to specify
the access methods to the data.

■ Like most modern languages, SQL is essentially free-format, which means that
parts of statements don’t have to be typed at particular locations on the screen.

■ The command structure consists of standard English words such as SELECT,
INSERT, UPDATE, and DELETE.

■ It can be used by a range of users, including Database Administrators (DBAs),
management personnel, application programmers, and many other types of
end-users.

SQL is an important language for a number of reasons:

■ SQL is the first and, so far, only standard database language to gain wide
acceptance. Nearly every major current vendor provides database products
based on SQL or with an SQL interface, and most are represented on at least
one of the standard-making bodies.

■ There is a huge investment in the SQL language both by vendors and by users. It
has become part of application architectures such as IBM’s Systems Application
Architecture (SAA), and is the strategic choice of many large and influential
organizations, for example the X/OPEN consortium for UNIX standards.

■ SQL has also become a Federal Information Processing Standard (FIPS), to
which conformance is required for all sales of DBMSs to the US government.

■ SQL is used in other standards, and even influences the development of
other standards as a definitional tool (for example, the ISO Remote Data
Access (RDA) standard).

Before we go through some examples of SQL, let’s first examine the objectives
of SQL.

38 ■ Background

3.1.1 Objectives of SQL

Ideally, a database language should allow a user to:

■ create the database and table structures;

■ perform basic data management tasks, such as the insertion, modification,
and deletion of data from the tables;

■ perform both simple and complex queries.

In addition, a database language must perform these tasks with minimal user
effort, and its command structure and syntax must be relatively easy to learn.
Finally, it must be portable: that is, it must conform to some recognized stan-
dard so that we can use the same command structure and syntax when we
move from one DBMS to another. SQL is intended to satisfy these requirements.

SQL is an example of a transform-oriented language, or a language designed to
transform input tables into required output tables. The ISO SQL standard has
two major components:

■ a Data Definition Language (DDL) for defining the database structure and
controlling access to the data;

■ a Data Manipulation Language (DML) for retrieving and updating data.

Until the most recent version of the ISO SQL standard released in 1999 (collo-
quially known as SQL3), SQL contained only these definitional and
manipulative commands; it did not contain flow of control commands, such as
IF . . . THEN . . . ELSE, GO TO, or DO . . . WHILE. These had to be implemented
using a programming or job-control language, or interactively by the end-users.
Due to this initial lack of computational completeness, SQL was used in two ways.
The first is to use SQL interactively by entering the statements at a terminal. The
second is to embed SQL statements in a procedural language. In this book, we
only consider interactive SQL; for details on embedded SQL the interested
reader is referred to Connolly and Begg (2002).

3.1.2 Terminology

The ISO SQL standard does not use the formal terms of relations, attributes, and
tuples, instead using the terms tables, columns, and rows. In our presentation
of SQL we mostly use the ISO terminology. It should also be noted that SQL

SQL and QBE ■ 39

SQL conformance: SQL3 has a set of features called Core SQL that a vendor

must implement to claim conformance with the SQL3 standard. Many of the

remaining features are divided into packages; for example, there are packages

for object features and OLAP (OnLine Analytical Processing). Vendors tend to

implement additional features, although this does affect portability.

does not adhere strictly to the definition of the relational model described in
Chapter 2. For example, SQL allows the table produced as the result of the
SELECT operation to contain duplicate rows; it imposes an ordering on the
columns; and it allows the user to order the rows of a table.

3.1.3 Writing SQL commands

In this section, we briefly describe the structure of an SQL statement and the
notation we use to define the format of the various SQL constructs. An SQL
statement consists of reserved words and user-defined words. Reserved words
are a fixed part of the SQL language and have a fixed meaning. They must be
spelled exactly as required and cannot be split across lines. User-defined words
are made up by the user (according to certain syntax rules), and represent the
names of various database objects such as tables, columns, views, indexes, and
so on. Throughout this chapter, we use uppercase letters to represent reserved
words and lowercase letters to represent user-defined words.

Most components of an SQL statement are case insensitive, which means
that letters can be typed in either upper- or lowercase. The one important
exception to this rule is that literal character data must be typed exactly as it
appears in the database. For example, if we store a person’s surname as ‘SMITH’
and then search for it using the string ‘Smith’, the row will not be found. The
words in a statement are also built according to a set of syntax rules. Although
the standard does not require it, many dialects of SQL require the use of a state-
ment terminator to mark the end of each SQL statement (usually the semicolon
‘;’ is used).

Throughout this chapter, we use the following extended form of the Backus
Naur Form (BNF) notation to define SQL statements:

■ a vertical bar (|) indicates a choice among alternatives; for example, a | b | c;

■ curly brackets indicate a required element; for example, {a};

■ square brackets indicate an optional element; for example, [a];

■ an ellipsis (. . .) is used to indicate optional repetition of an item zero or
more times.

For example:

{a | b} (, c . . .)

means either a or b followed by zero or more repetitions of c separated by
commas.

In practice, the DDL statements are used to create the database structure (that
is, the tables) and the access mechanisms (that is, what each user can legally
access), and then the DML statements are used to populate and query the
tables. However, in this book we concentrate on the DML statements to reflect
their relative importance to the general user.

40 ■ Background

3.2 Data manipulation
In this section, we look at the SQL DML statements, namely:

■ SELECT to query data in the database;

■ INSERT to insert data into a table;

■ UPDATE to update data in a table;

■ DELETE to delete data from a table.

Due to the complexity of the SELECT statement and the relative simplicity of the
other DML statements, we devote most of this section to the SELECT statement
and its various formats. We begin by considering simple queries, and succes-
sively add more complexity to show how more complicated queries that use
sorting, grouping, aggregates, and also queries on multiple tables can be gener-
ated. Thereafter, we consider the INSERT, UPDATE, and DELETE statements.

We illustrate the SQL statements using part of the instance of the StayHome
case study shown in Figure 2.4 consisting of the following tables:

Staff (staffNo, name, position, salary, branchNo)
Video (catalogNo, title, category, dailyRental, price, directorNo)
Director (directorNo, directorName)
Actor (actorNo, actorName)
Role (actorNo, catalogNo, character)
RentalAgreement (rentalNo, dateOut, dateReturn, memberNo, videoNo)
VideoForRent (videoNo, available, catalogNo, branchNo)

Literals

Before we discuss the SQL DML statements, it is necessary to understand the
concept of literals. Literals are constants that are used in SQL statements.
There are different forms of literals for every data type supported by SQL.
However, for simplicity, we can distinguish between literals that are enclosed in
single quotes and those that are not. All non-numeric data values must be
enclosed in single quotes; all numeric data values must not be enclosed in single
quotes. For example, we could use literals to insert data into a table:

INSERT INTO Video (catalogNo, title, category, dailyRental, price,
directorNo)
VALUES (‘207132’, ‘Die Another Day’, ‘Action’, 5.00, 21.99, ‘D1001’);

The value in columns dailyRental and price are decimal literals; they are not
enclosed in single quotes. All other columns are character strings and are
enclosed in single quotes.

SQL and QBE ■ 41

3.2.1 Simple queries

The purpose of the SELECT statement is to retrieve and display data from one or
more database tables. It’s an extremely powerful command and it’s also the most fre-
quently used SQL command. The SELECT statement has the following general form:

■ columnExpression represents a column name or an expression;

■ newName is a name you can give the column as a display heading;

■ TableName is the name of an existing database table or view that you have
access to;

■ alias is an optional abbreviation for TableName.

The order of the clauses in the SELECT statement cannot be changed. The only
two mandatory clauses are the first two: SELECT and FROM; the remainder are
optional. Every SELECT statement produces a query result table consisting of
one or more columns and zero or more rows.

Query 3.1 Retrieve all columns, all rows

List the full details of all videos.

Since there are no restrictions specified in the query (that is, we want to list all rows
in the Video table), no WHERE clause is required. We can express this query as:

SELECT catalogNo, title, category, dailyRental, price, directorNo
FROM Video;

42 ■ Background

SELECT [DISTINCT | ALL] {* | [columnExpression [AS newName]] [, . . .]}
FROM TableName [alias] [, . . .]
[WHERE condition]
[GROUP BY columnList] [HAVING condition]
[ORDER BY columnList]

The sequence of processing in a SELECT statement is:

FROM specifies the table or tables to be used;

WHERE filters the rows subject to some condition;

GROUP BY forms groups of rows with the same column value;

HAVING filters the groups subject to some condition;

SELECT specifies which columns are to appear in the output;

ORDER BY specifies the order of the output.

When you want to list all columns of a table, you can use an asterisk (*) in
place of the column names. Therefore, the above query can also be expressed
more succinctly as:

SELECT *
FROM Video;

The result table in either case is shown in Table 3.1.

Query 3.2 Retrieve specific columns, all rows

List the catalog number, title, and daily rental rate of all videos.

Once again, there are no restrictions specified in the query and so no WHERE
clause is required. However, we only wish to list a subset of the columns, which
we express as:

SELECT catalogNo, title, dailyRental
FROM Video;

The result table is shown in Table 3.2. Note that, unless specified, the rows in
the result table may not be sorted. We describe how to sort the rows of a result
table in the next section.

SQL and QBE ■ 43

Table 3.1 Result table for Query 3.1.

catalogNo title category dailyRental price directorNo

207132 Die Another Day Action 5.00 21.99 D1001

902355 Harry Potter Children 4.50 14.50 D7834

330553 Lord of the Rings Fantasy 5.00 31.99 D4576

781132 Shrek Children 4.00 18.50 D0078

445624 Men in Black II Action 4.00 29.99 D5743

634817 Independence Day Sci-Fi 4.50 32.99 D3765

Table 3.2 Result table for Query 3.2.

catalogNo title dailyRental

207132 Die Another Day 5.00

902355 Harry Potter 4.50

330553 Lord of the Rings 5.00

781132 Shrek 4.00

445624 Men in Black II 4.00

634817 Independence Day 4.50

Query 3.3 Use of DISTINCT

List all video categories.

SELECT category
FROM Video;

The result table is shown in Table 3.3(a). Note that there are several duplicate
values (by default, SELECT does not eliminate duplicate values). To eliminate
duplicates, we use the DISTINCT keyword and by rewriting the above query as:

SELECT DISTINCT category
FROM Video;

we obtain the result table shown in Table 3.3(b).

Query 3.4 Calculated fields

List the rate for renting videos for three days.

SELECT catalogNo, title, dailyRental * 3
FROM Video;

This query is very similar to Query 3.2 with the exception that we’re looking for
the rental rate for three days rather than for just one day. In this case, we can
obtain the three-day rate by multiplying the daily rate by 3, giving the result
table shown in Table 3.4.

This is an example of the use of a calculated field (sometimes called a com-
puted or derived field). In general, to use a calculated field, you specify an SQL
expression in the SELECT list. An SQL expression can involve addition,

44 ■ Background

Table 3.3(a) Result table for
Query 3.3 with duplicates.

category

Action

Children

Fantasy

Children

Action

Sci-Fi

Table 3.3(b) Result table for Query 3.3
with duplicates eliminated.

category

Action

Children

Fantasy

Sci-Fi

subtraction, multiplication, and division, and you can use parentheses to build
complex expressions. You can use more than one table column in a calculated
column; however, the columns referenced in an arithmetic expression must be
of a numeric type.

The third column of this result table has been displayed as col3. Normally, a
column in the result table takes its name from the corresponding column of the
database table from which it has been retrieved. However, in this case SQL does
not know how to label the column. Some systems give the column a name cor-
responding to its position in the table (for example, col3); some may leave the
column name blank or use the expression entered in the SELECT list. The SQL
standard allows the column to be named using an AS clause. In the previous
example, we could have written:

SELECT catalogNo, title, dailyRental * 3 AS threeDayRate
FROM Video;

In this case, the column heading in the result table would be threeDayRate rather
than col3.

3.2.2 Row selection (WHERE clause)

The above examples show the use of the SELECT statement to retrieve all rows
from a table. However, we often need to restrict the rows that are retrieved. This
can be achieved with the WHERE clause, which consists of the keyword WHERE
followed by a search condition that specifies the rows to be retrieved. The five
basic search conditions (or predicates using the ISO terminology) are as follows:

■ Comparison: compare the value of one expression to the value of another
expression;

■ Range: test whether the value of an expression falls within a specified range
of values;

SQL and QBE ■ 45

Table 3.4 Result table of Query 3.4.

catalogNo title col3

207132 Die Another Day 15.00

902355 Harry Potter 13.50

330553 Lord of the Rings 15.00

781132 Shrek 12.00

445624 Men in Black II 12.00

634817 Independence Day 13.50

■ Set membership: test whether the value of an expression equals one of a set
of values;

■ Pattern match: test whether a string matches a specified pattern;

■ Null: test whether a column has a null (unknown) value.

We now present examples of some of these types of search conditions.

Query 3.5 Comparison search condition

List all staff with a salary greater than $40,000.

SELECT staffNo, name, position, salary
FROM Staff
WHERE salary > 40000;

In this query, we have to restrict the rows in the Staff table to those where
the value in the salary column is greater than $40,000. To do this, we specify a
WHERE clause with the condition (predicate) ‘salary > 40000’. The result table is
shown in Table 3.5.

46 ■ Background

Nulls defined in
Section 2.3.1

Table 3.5 Result table for Query 3.5.

staffNo name position salary

S1500 Tom Daniels Manager 46000

S0010 Mary Martinez Manager 50000

S2250 Sally Stern Manager 48000

S0415 Art Peters Manager 41000

In SQL, the following simple comparison operators are available:

= equals < > is not equal to

< is less than <= is less than or equal to

> is greater than >= is greater than or equal to

More complex predicates can be generated using the logical operators AND,

OR, and NOT, with parentheses (if needed or desired) to show the order of

evaluation. The rules for evaluating a conditional expression are:

Query 3.6 Range search condition (BETWEEN/NOT BETWEEN)

List all staff with a salary between $45,000 and $50,000.

SELECT staffNo, name, position, salary
FROM Staff
WHERE salary >= 45000 AND salary <= 50000;

In this query, we use the logical operator AND in the WHERE clause to find
the rows in the Staff table where the value in the salary column is between
$45,000 and $50,000. The result table is shown in Table 3.6. SQL also provides
the range test BETWEEN to test whether a data value lies between a pair of spec-
ified values. We could rewrite the previous query as:

SELECT staffNo, name, position, salary
FROM Staff
WHERE salary BETWEEN 45000 AND 50000;

The BETWEEN test includes the endpoints of the range, so any members of
staff with a salary of $45,000 or $50,000 would be included in the result. There
is also a negated version of the range test (NOT BETWEEN) that checks for
values outside the range. The BETWEEN test does not add much to the expres-
sive power of SQL because, as we have seen, it can be expressed equally well
using two comparison tests.

SQL and QBE ■ 47

Table 3.6 Result table for Query 3.6.

staffNo name position salary

S1500 Tom Daniels Manager 46000

S0010 Mary Martinez Manager 50000

S2250 Sally Stern Manager 48000

■ an expression is evaluated left to right;

■ subexpressions in parentheses are evaluated first;

■ NOTs are evaluated before ANDs and ORs;

■ ANDs are evaluated before ORs.

The use of parentheses is always recommended to remove any possible

ambiguities.

Query 3.7 Set membership search condition (IN/NOT IN)

List all videos in the Action or Children categories.

SELECT catalogNo, title, category
FROM Video
WHERE category = ‘Action’ OR category = ‘Children’;

As in the previous example, we can express this query using a compound search
condition in the WHERE clause. The result table is shown in Table 3.7. However,
SQL also provides the set membership keyword IN to test whether a value matches
one of a list of values. We can rewrite this query using the IN test as:

SELECT catalogNo, title, category
FROM Video
WHERE category IN (‘Action’, ‘Children’);

There is a negated version (NOT IN) that can be used to check for data values
that do not lie in a specific list of values. Like BETWEEN, the IN test does not
add much to the expressive power of SQL. However, the IN test provides a more
efficient way of expressing the search condition, particularly if the set contains
many values.

Query 3.8 Pattern match search condition (LIKE/NOT LIKE)

List all staff whose first name is ‘Sally’.

48 ■ Background

Table 3.7 Result table for Query 3.7.

catalogNo title category

207132 Die Another Day Action

902355 Harry Potter Children

781132 Shrek Children

445624 Men In Black II Action

SQL has two special pattern-matching symbols:

% percent character represents any sequence of zero or more characters

(wildcard);

_ underscore character represents any single character.

SQL and QBE ■ 49

Using the pattern-matching search condition of SQL, we can find all staff
whose first name is ‘Sally’ using the following query:

SELECT staffNo, name, position, salary
FROM Staff
WHERE name LIKE ‘Sally %’;

The result table is shown in Table 3.8.

All other characters in the pattern represent themselves. For example:

■ name LIKE ‘S%’ means the first character must be S, but the rest of the string

can be anything.

■ name LIKE ‘S_ _ _ _’ means that there must be exactly four characters in the

string, the first of which must be an S.

■ name LIKE ‘%S’ means any sequence of characters, of length at least 1, with

the last character an S.

■ name LIKE ‘%Sally%’ means a sequence of characters of any length contain-

ing Sally.

■ name NOT LIKE ‘S%’ means the first character cannot be an S.

If the search string can include the pattern-matching character itself, we can

use an escape character to represent the pattern-matching character. For

example, to check for the string ‘15%’, we can use the predicate:

LIKE ‘15#%’ ESCAPE ‘#’

Table 3.8 Result table of Query 3.8.

staffNo name position salary

S0003 Sally Adams Assistant 30000

S2250 Sally Stern Manager 48000

Note that some RDBMSs, such as Microsoft Access, use the wildcard characters

* and ? instead of % and _.

Query 3.9 NULL search condition (IS NULL/IS NOT NULL)

List the video rentals that have not yet been returned.

The RentalAgreement table has a column dateReturn representing the date the
video rental is returned. You may think that we can find such videos using the
following search condition:

WHERE (dateReturn = ‘ ’ OR dateReturn = 0)

However, neither of these conditions would work. A null dateReturn is consid-
ered to have an unknown value, so we cannot test whether it is equal or not
equal to another value. If we tried to execute the SELECT statement using either
of these compound conditions, we would get an empty result table. Instead, we
have to test for null explicitly using the special keyword IS NULL:

SELECT dateOut, memberNo, videoNo
FROM RentalAgreement
WHERE dateReturn IS NULL;

The result table is shown in Table 3.9. The negated version (IS NOT NULL)
can be used to test for values that are not null.

3.2.3 Sorting results (ORDER BY clause)

In general, the rows of an SQL query result table are not arranged in any partic-
ular order (although some DBMSs may use a default ordering, for example,
based on a primary key). However, we can ensure that the results of a query are
sorted using the ORDER BY clause in the SELECT statement. The ORDER BY
clause consists of a list of column names that the result is to be sorted on, sepa-
rated by commas. The ORDER BY clause allows the retrieved rows to be ordered
in ascending (ASC) or descending (DESC) order on any column or combination
of columns, regardless of whether that column appears in the result. However,
some dialects of SQL insist that the ORDER BY elements appear in the SELECT
list. In either case, the ORDER BY clause must always be the last clause of the
SELECT statement.

50 ■ Background

Nulls defined in
Section 2.3.1

Table 3.9 Result table for Query 3.9.

dateOut memberNo videoNo

2-Feb-03 M115656 178643

Query 3.10 Sorting results

List all videos sorted in descending order of price.

SELECT *
FROM Video
ORDER BY price DESC;

This is similar to Query 3.1 with the added requirement that the result table
is to be sorted on the values in the price column. This is achieved by adding the
ORDER BY clause to the end of the SELECT statement, specifying price as the
column to be sorted, and DESC to indicate that the order is to be descending. In
this case, we get the result table shown in Table 3.10.

If we had a number of values in the price column that were the same, we
might then want to order the result first by price (the major sort key) and sec-
ondly in ascending order of title (the minor sort key). In this case, the ORDER
BY clause would be:

ORDER BY price DESC, title ASC;

3.2.4 Using the SQL aggregate functions

The ISO standard defines five aggregate functions:

SQL and QBE ■ 51

Table 3.10 Result table for Query 3.10.

catalogNo title category dailyRental price directorNo

634817 Independence Day Sci-Fi 4.50 32.99 D3765

330553 Lord of the Rings Fantasy 5.00 31.99 D4576

445624 Men In Black II Action 4.00 29.99 D5743

207132 Die Another Day Action 5.00 21.99 D1001

781132 Shrek Children 4.00 18.50 D0078

902355 Harry Potter Children 4.50 14.50 D7834

COUNT Returns the number of values in a specified column.

SUM Returns the sum of the values in a specified column.

AVG Returns the average of the values in a specified column.

MIN Returns the minimum value in a specified column.

MAX Returns the maximum value in a specified column.

These functions operate on a single column of a table and return a single
value. COUNT, MIN, and MAX apply to both numeric and non-numeric fields,
but SUM and AVG may be used on numeric fields only. Apart from COUNT(*),
each function eliminates nulls first and operates only on the remaining non-
null values. COUNT(*) is a special use of COUNT, which counts all the rows of a
table, regardless of whether nulls or duplicate values occur.

If we want to eliminate duplicates before the function is applied, we use the
keyword DISTINCT before the column name in the function. DISTINCT has no
effect with the MIN and MAX functions. However, it may have an effect on the
result of SUM or AVG, so consideration must be given to whether duplicates
should be included or excluded in the computation. In addition, DISTINCT can
be specified only once in a query.

Query 3.11 Use of COUNT and SUM

List the total number of staff with a salary greater than $40,000 and the sum of their
salaries.

SELECT COUNT(staffNo) AS totalStaff, SUM(salary) AS totalSalary
FROM Staff
WHERE salary > 40000;

The WHERE clause is the same as in Query 3.5. However, in this case, we
apply the COUNT function to count the number of rows satisfying the WHERE
clause and we apply the SUM function to add together the salaries in these
rows. The result table is shown in Table 3.11.

52 ■ Background

It is important to note that an aggregate function can be used only in the

SELECT list and in the HAVING clause. It is incorrect to use it elsewhere. If the

SELECT list includes an aggregate function and no GROUP BY clause is being

used to group data together, then no item in the SELECT list can include any

reference to a column unless that column is the argument to an aggregate

function. For example, the following query is illegal:

SELECT staffNo, COUNT(salary)
FROM Staff;

because the query does not have a GROUP BY clause and the column staffNo
in the SELECT list is used outside an aggregate function.

HAVING and
GROUP BY
clauses discussed
in Section 3.2.5

Query 3.12 Use of MIN, MAX, and AVG

List the minimum, maximum, and average staff salary.

SELECT MIN(salary) AS minSalary, MAX(salary) AS maxSalary,
AVG(salary) AS avgSalary

FROM Staff;

In this query, we wish to consider all staff rows and therefore do not require
a WHERE clause. The required values can be calculated using the MIN, MAX,
and AVG functions. The result table is shown in Table 3.12.

3.2.5 Grouping results (GROUP BY clause)

The above summary queries are similar to the totals at the bottom of a report.
They condense all the detailed data in the report into a single summary row of
data. However, it is often useful to have subtotals in reports. We can use the
GROUP BY clause of the SELECT statement to do this. A query that includes the
GROUP BY clause is called a grouped query, because it groups the data from
the SELECT table(s) and produces a single summary row for each group. The
columns named in the GROUP BY clause are called the grouping columns. The
ISO standard requires the SELECT clause and the GROUP BY clause to be closely
integrated. When GROUP BY is used, each item in the SELECT list must be
single-valued per group. Further, the SELECT clause may contain only:

■ column names,

■ aggregate functions,

■ constants,

■ an expression involving combinations of the above.

SQL and QBE ■ 53

Table 3.11 Result table of Query 3.11.

totalStaff totalSalary

4 185000

Table 3.12 Result table of Query 3.12.

minSalary maxSalary avgSalary

30000 50000 41166.67

All column names in the SELECT list must appear in the GROUP BY clause
unless the name is used only in an aggregate function. The contrary is not true:
there may be column names in the GROUP BY clause that do not appear in the
SELECT list. When the WHERE clause is used with GROUP BY, the WHERE
clause is applied first, then groups are formed from the remaining rows that sat-
isfy the search condition.

Query 3.13 Use of GROUP BY

Find the number of staff working in each branch and the sum of their salaries.

SELECT branchNo, COUNT(staffNo) AS totalStaff,
SUM(salary) AS totalSalary

FROM Staff
GROUP BY branchNo
ORDER BY branchNo;

It is not necessary to include the column names staffNo and salary in the
GROUP BY list because they appear only in the SELECT list within aggregate
functions. On the other hand, branchNo is not associated with an aggregate func-
tion and so must appear in the GROUP BY list. The result table is shown in
Table 3.13.
Conceptually, SQL performs the query as follows:

(1)
S Q L

divides the staff into groups according to their respective branch numbers.
Within each group, all staff have the same branch number. In this example,
we get four groups:

54 ■ Background

The ISO standard considers two nulls to be equal for purposes of the GROUP BY
clause. If two rows have nulls in the same grouping columns and identical values

in all the non-null grouping columns, they are combined into the same group.

Table 3.13 Result table for Query 3.13.

branchNo totalStaff totalSalary

B001 2 76000

B002 2 82000

B003 1 41000

B004 1 48000

(2)

For each group, SQL computes the
number of staff members and calculates the sum of the values in the salary
column to get the total of their salaries. SQL generates a single summary
row in the query result for each group.

(3) Finally, the result is sorted in ascending order of branch number, branchNo.

Restricting groupings (HAVING clause)

The HAVING clause is designed for use with the GROUP BY clause to restrict the
groups that appear in the final result table. Although similar in syntax, HAVING
and WHERE serve different purposes. The WHERE clause filters individual rows
going into the final result table, whereas HAVING filters groups going into the
final result table. The ISO standard requires that column names used in the
HAVING clause must also appear in the GROUP BY list or be contained within an
aggregate function. In practice, the search condition in the HAVING clause
always includes at least one aggregate function, otherwise the search condition
could be moved to the WHERE clause and applied to individual rows. (Remember
that aggregate functions cannot be used in the WHERE clause.)

The HAVING clause is not a necessary part of SQL – any query expressed
using a HAVING clause can always be rewritten without the HAVING clause.

Query 3.14 Use of HAVING

For each branch office with more than one member of staff, find the number of staff
working in each branch and the sum of their salaries.

SELECT branchNo, COUNT(staffNo) AS totalStaff,
SUM(salary) AS totalSalary

FROM Staff
GROUP BY branchNo
HAVING COUNT(staffNo) > 1
ORDER BY branchNo;

SQL and QBE ■ 55

branchNo staffNo salary

B001 S1500 46000

B001 S0003 30000

B002 S0010 50000

B002 S3250 32000

B003 S0415 41000

B004 S2250 48000

COUNT(staffNo) SUM(salary)

2 76000

2 82000

1 41000

1 48000

}
}
}
}

This is similar to the previous example with the additional restriction that
we want to consider only those groups (that is, branches) with more than one
member of staff. This restriction applies to the groups and so the HAVING
clause is used. The result table is shown in Table 3.14.

3.2.6 Subqueries

In this section, we examine the use of a complete SELECT statement embedded
within another SELECT statement. The results of this inner SELECT statement
(or subselect) are used in the outer statement to help determine the contents of
the final result. A subselect can be used in the WHERE and HAVING clauses of
an outer SELECT statement, where it is called a subquery or nested query.
Subselects may also appear in INSERT, UPDATE, and DELETE statements.

Query 3.15 Using a subquery

Find the staff who work in the branch at ‘8 Jefferson Way’.

SELECT staffNo, name, position
FROM Staff
WHERE branchNo = (SELECT branchNo

FROM Branch
WHERE street = ‘8 Jefferson Way’);

The inner SELECT statement (SELECT branchNo FROM Branch . . .) finds the
branch number that corresponds to the branch with street name ‘8 Jefferson Way’
(there will be only one such branch number. Having obtained this branch
number, the outer SELECT statement then retrieves the details of all staff who
work at this branch. In other words, the inner SELECT returns a result table con-
taining a single value ‘B001’, corresponding to the branch at ‘8 Jefferson Way’,
and the outer SELECT becomes:

SELECT staffNo, name, position
FROM Staff
WHERE branchNo = ‘B001’;

56 ■ Background

Table 3.14 Result table of Query 3.14.

branchNo totalStaff totalSalary

B001 2 76000

B002 2 82000

INSERT,
UPDATE, and
DELETE discussed
in Section 3.2.8

The result table is shown in Table 3.15.

We can think of the subquery as producing a temporary table with results that
can be accessed and used by the outer statement. A subquery can be used imme-
diately following a relational operator (that is, =, <, >, <=, >=, < >) in a WHERE
clause or a HAVING clause. The subquery itself is always enclosed in parentheses.

Query 3.16 Using a subquery with an aggregate function

List all staff whose salary is greater than the average salary.

SELECT staffNo, name, position
FROM Staff
WHERE salary > (SELECT AVG(salary)

FROM Staff);

Recall from Section 3.2.4 that an aggregate function can be used only in the
SELECT list and in the HAVING clause. It would be incorrect to write ‘WHERE
salary > AVG(salary)’. Instead, we use a subquery to find the average salary,
and then use the outer SELECT statement to find those staff with a salary
greater than this average. In other words, the subquery returns the average
salary as $41,166.67. The outer query is reduced then to:

SELECT staffNo, name, position
FROM Staff
WHERE salary > 41166.67;

SQL and QBE ■ 57

Table 3.15 Result table of Query 3.15.

staffNo name position

S1500 Tom Daniels Manager

S0003 Sally Adams Assistant

Note, if the result of the inner query can result in more than one row, then

you must use the set membership test IN rather than the equality test (‘=’). For

example, if we wish to find staff who worked at a branch in Washington (WA),

the WHERE clause would become:

WHERE branchNo IN (SELECT branchNo FROM Branch
WHERE state = ‘WA’);

The result table is shown in Table 3.16.

3.2.7 Multi-table queries

All the examples we have considered so far have a major limitation: the
columns that are to appear in the result table must all come from a single table.
In many cases, this is not sufficient. To combine columns from several tables
into a result table, we need to use a join operation. The SQL join operation
combines information from two tables by forming pairs of related rows from
the two tables. The row pairs that make up the joined table are those where the
matching columns in each of the two tables have the same value.

58 ■ Background

Table 3.16 Result table of Query 3.16.

staffNo name position

S1500 Tom Daniels Manager

S0010 Mary Martinez Manager

S2250 Sally Stern Manager

Note that the following rules apply to subqueries:

(1) The ORDER BY clause may not be used in a subquery (although it may be

used in the outermost SELECT statement).

(2) The subquery SELECT list must consist of a single column name or expres-

sion (except for subqueries that use the keyword EXISTS – see Connolly

and Begg (2002)).

(3) By default, column names in a subquery refer to the table name in the

FROM clause of the subquery. It is possible to refer to a table in a FROM
clause of an outer query by qualifying the column name.

(4) When a subquery is one of the two operands involved in a comparison,

the subquery must appear on the right-hand side of the comparison. For

example, it would be incorrect to express the last example as:

SELECT staffNo, name, position
FROM Staff
WHERE (SELECT AVG(salary) FROM Staff) < salary;

because the subquery appears on the left-hand side of the comparison

with salary.

If you need to obtain information from more than one table, the choice is
between using a subquery and using a join. If the final result table is to contain
columns from different tables, then you must use a join. To perform a join, you
simply include more than one table name in the FROM clause, using a comma as
a separator, and typically include a WHERE clause to specify the join column(s). It
is also possible to use an alias for a table named in the FROM clause. In this case,
the alias is separated from the table name with a space. An alias can be used to
qualify a column name whenever there is ambiguity regarding the source of the
column name. It can also be used as a shorthand notation for the table name. If
an alias is provided it can be used anywhere in place of the table name.

Query 3.17 Simple join

List all videos along with the name of the director.

SELECT catalogNo, title, category, v.directorNo, directorName
FROM Video v, Director d
WHERE v.directorNo = d.directorNo;

We want to display details from both the Video table and the Director table,
and so we have to use a join. The SELECT clause lists the columns to be dis-
played. To obtain the required rows, we include those rows from both tables
that have identical values in the directorNo columns, using the search condition
(v.directorNo = d.directorNo). We call these two columns the matching columns
for the two tables. The result table is shown in Table 3.17.

SQL and QBE ■ 59

Table 3.17 Result table of Query 3.17.

catalogNo title category v.directorNo directorName

207132 Die Another Day Action D1001 Lee Tamahori

902355 Harry Potter Children D7834 Chris Columbus

330553 Lord of the Rings Fantasy D4576 Peter Jackson

781132 Shrek Children D0078 Andrew Adamson

445624 Men In Black II Action D5743 Barry Sonnenfeld

634817 Independence Day Sci-Fi D3765 Roland Emmerick

Note that it is necessary to qualify the director number, directorNo, in the SELECT
list: directorNo could come from either table, and we have to indicate which one.

(We could equally well have chosen the directorNo column from the Director table.)

The qualification is achieved by prefixing the column name with the appropriate

table name (or its alias). In this case, we have used v as the alias for the Video table.

The most common multi-table queries involve two tables that have a one-to-
many (1:*) relationship. The previous query involving videos and directors is an
example of such a query. Each director can direct one or more videos. In
Section 2.2.5, we described how candidate keys and foreign keys model rela-
tionships in a relational database. To use a relationship in an SQL query, we
specify a search condition that compares one of the candidate keys (normally
the primary key) and the corresponding foreign key. In Query 3.16, we com-
pared the foreign key in the Video table, v.directorNo, with the primary key in the
Director table, d.directorNo.

The SQL standard provides the following alternative ways to specify this join:

FROM Video v JOIN Director d ON v.directorNo = d.directorNo;
FROM Video JOIN Director USING directorNo;
FROM Video NATURAL JOIN Director;

In each case, the FROM clause replaces the original FROM and WHERE clauses.
However, the first alternative produces a table with two identical directorNo
columns; the remaining two produce a table with a single directorNo column.

Query 3.18 Four-table join

List all videos along with the name of the director, the names of the actors, and their
associated roles.

SELECT v.catalogNo, title, category, directorName, actorName, character
FROM Video v, Director d, Actor a, Role r
WHERE d.directorNo = v.directorNo AND

v.catalogNo = r.catalogNo AND
r.actorNo = a.actorNo;

In this example, we want to display details from the Video, Director, Actor, and
Role tables, and so we have to use a join. The SELECT clause lists the columns to
be displayed. To obtain the required rows, we need to join the tables based on
the various matching columns (that is, the primary keys/foreign keys), as
shown below:

Director (directorNo, directorName)

Video (catalogNo, title, category, dailyRental, price, directorNo)

Role (actorNo, catalogNo, character)

Actor (actorNo, actorName)

60 ■ Background

1:* relationships
discussed in
Section 7.5.2

The result table is shown in Table 3.18.

3.2.8 INSERT, UPDATE, and DELETE statements

SQL is a complete data manipulation language that can be used for modifying
the data in the database as well as querying the database. The commands for
modifying the database are not as complex as the SELECT statement. In this sec-
tion, we describe the three SQL statements that are available to modify the
contents of the tables in the database:

■ INSERT adds new rows of data to a table;

■ UPDATE modifies existing data in a table;

■ DELETE removes rows of data from a table.

INSERT statement

The general format of the INSERT statement is:

TableName is the name of a base table and columnList represents a list of one or
more column names separated by commas. The columnList is optional; if omit-
ted, SQL assumes a list of all columns in their original CREATE TABLE order. If
specified, then any columns that are omitted from the list must have been
declared as NULL columns when the table was created, unless the DEFAULT
option was used when creating the column (see Section 3.3.1). The
dataValueList must match the columnList as follows:

SQL and QBE ■ 61

Table 3.18 Result table of Query 3.18.

catalogNo title category directorName actorName character

207132 Die Another Day Action Lee Tamahori Pierce Brosnan James Bond

902355 Harry Potter Children Chris Columbus Daniel Radcliffe Harry Potter

330553 Lord of the Rings Fantasy Peter Jackson Elijah Wood Frodo Baggins

781132 Shrek Children Andrew Adamson Mike Myers Shrek

445624 Men In Black II Action Barry Sonnenfeld Will Smith Agent J

445624 Men In Black II Action Barry Sonnenfeld Tommy Lee Jones Agent K

634817 Independence Day Sci-Fi Roland Emmerick Will Smith Captain Steve Hiller

INSERT INTO TableName [(columnList)]
VALUES (dataValueList)

■ the number of items in each list must be the same;

■ there must be a direct correspondence in the position of items in the two
lists, so that the first item in dataValueList applies to the first item in
columnList, the second item in dataValueList applies to the second item in
columnList, and so on;

■ the data type of each item in dataValueList must be compatible with the data
type of the corresponding column.

Query 3.19 Insert a row into a table

Insert a row into the Video table.

INSERT INTO Video
VALUES (‘207132’, ‘Die Another Day’, ‘Action’ 5.00, 21.99, ‘D1001’);

In this particular example, we have supplied values for all columns in the
order the columns were specified when the table was created (so we can omit
the list of column names).

UPDATE statement

The format of the UPDATE statement is:

The SET clause specifies the names of one or more columns that are to be
updated. The WHERE clause is optional; if omitted, the named columns are
updated for all rows in the table. If a WHERE clause is specified, only those rows
that satisfy the specified searchCondition are updated.

Query 3.20 Update rows in a table

Modify the daily rental rate of videos in the ‘Thriller’ category by 10 percent.

UPDATE Video
SET dailyRental = dailyRental * 1.1
WHERE action = ‘Thriller’;

62 ■ Background

CREATE
TABLE covered
in Section 3.3.1

UPDATE TableName
SET columnName1 = dataValue1 [, columnName2 = dataValue2

…]
[WHERE searchCondition]

DELETE statement

The format of the DELETE statement is:

As with the UPDATE statement, the WHERE clause is optional; if omitted, all
rows are deleted from the table. If a WHERE clause is specified, only those rows
that satisfy the specified searchCondition are deleted.

Query 3.21 Delete rows in a table

Delete rental videos for catalog number 634817.

DELETE FROM VideoForRent
WHERE catalogNo = ‘634817’;

3.3 Data definition
In this section, we briefly look at two of the SQL DDL statements, namely:

■ CREATE TABLE to create a new table in the database;

■ CREATE VIEW to create a new view from a base table.

3.3.1 CREATE TABLE

The full version of the CREATE TABLE statement is rather complex and in
this section we provide a simplified version of the statement to illustrate some
of its main components. Figure 3.1 shows the CREATE TABLE statements to

SQL and QBE ■ 63

CREATE TABLE TableName
{(columnName dataType [NOT NULL] [UNIQUE]
[DEFAULT defaultOption] [, . . .]}
[PRIMARY KEY (listOfColumns),]
{[UNIQUE (listOfColumns),] [, . . .]}
{[FOREIGN KEY (listOfForeignKeyColumns)
REFERENCES ParentTableName [(listOfCandidateKeyColumns)],

[[ON UPDATE referentialAction]
[ON DELETE referentialAction]] [, . . .]})

DELETE FROM TableName
[WHERE searchCondition]

create the Branch, Director, and Video tables. Each statement first defines each
column of the table and then has one or two other clauses: one to define the
primary key and one to define any foreign keys.

Defining a column

The basic format for defining a column of a table is as follows:

columnName dataType [NOT NULL] [UNIQUE] [DEFAULT defaultOption]

where columnName is the name of the column and dataType defines the type of
the column. The ISO standard supports the data types shown in Table 3.19. The
most widely used data types are:

64 ■ Background

Figure 3.1

CREATE TABLE statements for the Branch, Director, and Video tables

CREATE TABLE Branch (branchNo CHAR(4) NOT NULL,

street VARCHAR(30) NOT NULL,

city VARCHAR(20) NOT NULL,

state CHAR(2) NOT NULL,

zipCode CHAR(5) NOT NULL UNIQUE,

mgrStaffNo CHAR(5) NOT NULL,

CONSTRAINT pk1 PRIMARY KEY (branchNo),

CONSTRAINT fk1 FOREIGN KEY (mgrStaffNo) REFERENCES Staff

ON UPDATE CASCADE ON DELETE NO ACTION);

CREATE TABLE Director (directorNo CHAR(5) NOT NULL,

directorName VARCHAR(30) NOT NULL,

CONSTRAINT pk2 PRIMARY KEY (directorNo));

CREATE TABLE Video (catalogNo CHAR(6) NOT NULL,

title VARCHAR(40) NOT NULL,

category VARCHAR(10) NOT NULL,

dailyRental DECIMAL(4, 2) NOT NULL DEFAULT 5.00,

price DECIMAL(4, 2),

directorNo CHAR(5) NOT NULL,

CONSTRAINT pk3 PRIMARY KEY (catalogNo),

CONSTRAINT fk2 FOREIGN KEY (directorNo) REFERENCES Director

ON UPDATE CASCADE ON DELETE NO ACTION);

■ CHARACTER(L): (usually abbreviated to CHAR) defines a string of fixed
length L. If you enter a string with fewer characters than this length, the
string is padded with blanks on the right to make up the required size.

■ CHARACTER VARYING(L): (usually abbreviated to VARCHAR) defines a
string of varying length L. If you enter a string with fewer characters than
this length, only those characters entered are stored, thereby using less space.

■ DECIMAL(precision, [scale]) or NUMERIC(precision, [scale]): defines a
number with an exact representation. precision specifies the number of sig-
nificant digits and scale specifies the number of digits after the decimal point.
The difference between the types is that for NUMERIC the implementation
must provide the precision requested but for DECIMAL the implementation
may provide a precision that is greater than or equal to that requested. For
example, DECIMAL(4) can represent numbers between –9999 and +9999;
DECIMAL(4, 2) can represent numbers between –99.99 and +99.99.

■ INTEGER and SMALLINT: define numbers where the representation of frac-
tions is not required. Typically SMALLINT would be used to store numbers
with a maximum absolute value of 32767.

■ DATE: stores date values in Julian date format as a combination of YEAR (4
digits), MONTH (2 digits), and DAY (2 digits).

In addition, you can define:

■ whether the column cannot accept nulls (NOT NULL),

■ whether each value within the column will be unique; that is, the column is
a candidate key (UNIQUE),

■ a default value for the column; this is a value that would be used if the value
of the column is not specified (DEFAULT).

The full version of the ISO standard also allows other conditions to be specified
but we refer the interested reader to Connolly and Begg (2002) for further
details.

SQL and QBE ■ 65

Table 3.19 ISO SQL data types.

Data type Declarations

boolean BOOLEAN

character CHAR, VARCHAR

bit BIT, BIT VARYING

exact numeric NUMERIC, DECIMAL, INTEGER, SMALLINT

approximate numeric FLOAT, REAL, DOUBLE PRECISION

datetime DATE, TIME, TIMESTAMP

interval INTERVAL

large objects CHARACTER LARGE OBJECT BINARY LARGE OBJECT

PRIMARY KEY clause and entity integrity

The primary key of a table must contain a unique, non-null value for each row.
The ISO standard supports entity integrity with the PRIMARY KEY clause in the
CREATE TABLE statement. For example, we can define the primary keys for the
Video table and the Role table (which has a composite primary key) as follows:

CONSTRAINT pk PRIMARY KEY (catalogNo)
CONSTRAINT pk1 PRIMARY KEY (catalogNo, actorNo)

Note that the keyword CONSTRAINT followed by a name for the constraint
is optional but allows the constraint to be dropped using the SQL statement
ALTER TABLE.

FOREIGN KEY clause and referential integrity

The ISO standard supports the definition of foreign keys with the FOREIGN
KEY clause in the CREATE TABLE statement. The ISO standard supports referen-
tial integrity by rejecting any INSERT or UPDATE operation that attempts to
create a foreign key value in a child table without a matching candidate key
value in the parent table. The action SQL takes for any UPDATE or DELETE oper-
ation that attempts to update or delete a candidate key value in the parent table
that has some matching rows in the child table is dependent on the referential
action specified using the ON UPDATE and ON DELETE subclauses of the FOR-
EIGN KEY clause:

■ CASCADE: Update/delete the row from the parent table and automatically
update/delete the matching rows in the child table. Since these
updated/deleted rows may themselves have a candidate key that is used as a
foreign key in another table, the foreign key rules for these tables are trig-
gered, and so on in a cascading manner.

■ SET NULL: Update/delete the row from the parent table and set the foreign
key value(s) in the child table to NULL. This is valid only if the foreign key
columns do not have the NOT NULL qualifier specified.

■ SET DEFAULT: Update/delete the row from the parent table and set each
component of the foreign key in the child table to the specified default
value. This is valid only if the foreign key columns have a DEFAULT value
specified.

■ NO ACTION: Reject the update/delete operation from the parent table. This
is the default setting if the ON UPDATE/ON DELETE rule is omitted.

66 ■ Background

Entity integrity
discussed in
Section 2.3.2

Referential
integrity discussed
in Section 2.3.3

3.3.2 CREATE VIEW

The (simplified) format of the CREATE VIEW statement is:

A view is defined by specifying an SQL SELECT statement (known as the
defining query). A name may optionally be assigned to each column in the
view. If a list of column names is specified, it must have the same number of
items as the number of columns produced by the subselect. If the list of column
names is omitted, each column in the view takes the name of the correspond-
ing column in the subselect statement. The list of column names must be
specified if there is any ambiguity in the name for a column. This may occur if
the subselect includes calculated columns and the AS subclause has not been
used to name such columns, or it produces two columns with identical names
as the result of a join.

For example, we could create a view of staff at branch B001 that excludes
salary information as follows:

CREATE VIEW StaffBranch1
AS SELECT staffNo, name, position

FROM Staff
WHERE branchNo = ‘B001’;

3.4 Query-by-Example (QBE)
QBE is an alternative, graphical-based, ‘point-and-click’ way of querying the
database. QBE has acquired the reputation of being one of the easiest ways for
non-technical users to obtain information from a database. QBE provides a
visual means for querying the data through the use of templates. Querying the
database is achieved by illustrating the query to be answered. The screen dis-
play is used instead of typing the SQL statement; however, you must indicate
the columns (called fields in Microsoft Access) that you want to see and specify
data values that you want to use to restrict the query. Languages like QBE can
be a highly productive way to query or update the database interactively.

Like SQL, QBE was developed at IBM (in fact, QBE is an IBM trademark), but
a number of other vendors, including Microsoft, sell QBE-like interfaces. Often
vendors provide both SQL and QBE facilities, with QBE serving as a more intu-
itive interface for simple queries and the full power of SQL available for more
complex queries.

SQL and QBE ■ 67

CREATE VIEW ViewName [(newColumnName [, . . .])]

AS subselect

Once you have read this section, you will see that the QBE version of the
queries is usually more straightforward. For illustrative purposes, we use
Microsoft Access 2002 and for each example we show the equivalent SQL state-
ment for comparison.

Query 3.1 (Revisited) Retrieve all columns, all rows

List the full details of all videos.

The QBE grid for this query is shown in Figure 3.2(a). In the top part of the QBE
grid, we display the table(s) that we wish to query. For each table displayed,
Microsoft Access shows the list of fields in that particular table. We can then
drag the fields we wish to see in the result table to the Field row in the bottom
part of the QBE grid. In this particular example, we wish to display all rows of
the Video table, so we drag the ‘*’ field from the top part of the grid to the Field
row. By default, Microsoft Access will tick the corresponding cell of the Show
row to indicate that these fields are to be displayed in the result table.

Query 3.6 (Revisited) Range search condition
(BETWEEN/NOT BETWEEN)

List all staff with a salary between $45,000 and $50,000.

The QBE grid for this query is shown in Figure 3.3(a). In this example, we show
the Staff table in the top part of the QBE grid and then drag the relevant fields

68 ■ Background

Figure 3.2

(a) QBE
corresponding to
Query 3.1 – List the
full details of all
videos; (b)
equivalent SQL
statement.

Tick to display field
in the result table

SELECT *
FROM Video

Fields
required
for query

Video table
field list

(a) (b)

to the Field row in the bottom part of the grid. In this particular case, we also
have to specify the criteria to restrict the rows that will appear in the result
table. The criteria are ‘salary >=45000 AND salary <= 50000’, so under the
salary column we enter the criteria ‘>=45000 AND <= 50000’ in the Criteria cell.

Query 3.10 (Revisited) Sorting results

List all videos sorted in descending order of price.

The QBE grid for this query is shown in Figure 3.4(a). In this particular exam-
ple, we wish to sort the result table in descending order of price, which we
achieve by selecting Descending from the drop down list in the Sort cell for the

SQL and QBE ■ 69

Note, if the criteria involved an OR condition, each part of the criteria would

be entered on different rows, as illustrated in Figure 3.3(c) for the criteria

(category = ‘Action’ OR category = ‘Children’).

Figure 3.3

(a) QBE
corresponding to
Query 3.6 – List all
staff with a salary
between $45,000
and $50,000;
(b) equivalent SQL
statement;
(c) example of how
a criterion
involving an OR
condition would
be entered.SELECT staffNo, name, position, salary

FROM Staff
WHERE salary >= 45000 AND salary <= 50000;

Search criteria

(a)

(b)

(c)

Equivalent to:
category = ‘Action’ OR
category = ‘Children’

price field. Note in this case that the price field has not been ticked to be shown
because the field has already been included in the result table via the use of ‘*’
in the first Field cell.

Query 3.11 (Revisited) Use of COUNT and SUM

List the total number of staff with a salary greater than $40,000 and the sum of their
salaries.

The QBE grid for this query is shown in Figure 3.5(a). In this example, we wish
to calculate the total number of staff and the sum of their salaries for a subset of
staff (those with a salary greater than $40,000). To do this, we use the aggregate

70 ■ Background

Figure 3.4

(a) QBE
corresponding to
Query 3.10 – List all
videos sorted in
descending order of
price; (b) equivalent
SQL statement.

SELECT *
FROM Video
ORDER BY price DESC;

Result table is
to be sorted

in descending
order of price

(a) (b)

Figure 3.5

QBE corresponding
to Query 3.11 – List
the total number of
staff with a salary
greater than
$40,000 and the
sum of their
salaries;
(b) equivalent SQL
statement.

SELECT COUNT(staffNo) AS totalStaff, SUM(salary) AS totalSalary
FROM Staff
WHERE salary > 40000;

Aggregate functions can be
specified when query type

is changed to Totals

(a)

(b)

Field headings changed to
totalStaff and totalSalary

functions COUNT and SUM, which are accessed by changing the query type to
Totals. This results in the display of an additional row called Total in the QBE
grid with all fields that have been selected automatically set to GROUP BY.
However, using the drop down list we can change the Total row for the staffNo
field to COUNT and for the salary field to SUM. To make the output more mean-
ingful, we change the name of the field headings in the resulting output to
totalStaff and totalSalary, respectively. The condition ‘> 40000’ is entered into the
Criteria cell for the salary field.

Query 3.14 (Revisited) Use of HAVING

For each branch office with more than one member of staff, find the number of staff
working in each branch and the sum of their salaries.

The QBE grid for this query is shown in Figure 3.6(a). As with the previous
query, we change the query type to Totals and use the COUNT and SUM func-
tions to calculate the required totals. However, in this particular example, we
need to group the information based on the branch number (we’re looking for
totals for each branch), so the Total cell for the branchNo field has to be set to

SQL and QBE ■ 71

Figure 3.6

(a) QBE
corresponding to
Query 3.14 – For
each branch office
with more than one
member of staff,
find the number of
staff working in
each branch and
the sum of their
salaries;
(b) equivalent SQL
statement.

Restriction of groups specified using the
Criteria on the aggregate function, COUNT(staffNo)

Grouping and aggregate
functions specified when

query type is changed
to Totals

(a)

(b)

SELECT branchNo, COUNT(staffNo) AS totalStaff, SUM(salary) AS totalSalary
FROM Staff
GROUP BY branchNo
HAVING COUNT(staffNo) > 1
ORDER BY branchNo;

GROUP BY. Again, to make the output more meaningful, we change the name
of the field headings to totalStaff and totalSalary, respectively. As we only wish to
output this information for those branches with more than one member of
staff, we enter the criteria ‘>1’ for the COUNT(staffNo) field.

Query 3.17 (Revisited) Simple join

List all videos along with the name of their director.

The QBE grid for this query is shown in Figure 3.7(a). In the top part of the QBE
grid, we display the tables that we wish to query, in this case the Video and
Director tables. As before, we drag the columns we wish to be included in the
output to the bottom part of the grid.

72 ■ Background

Note that in the SQL query we have to specify how to join the Director and

Video tables. However, QBE does this automatically for us, making QBE signifi-

cantly easier to use than SQL in this respect.

Figure 3.7

(a) QBE
corresponding to
Query 3.17 – List all
videos along with
the name of their
director;
(b) equivalent SQL
statement.

Join line representing
1:* relationship (shown as 1 to ∞)

SELECT catalogNo, title, category, v.directorNo, directorName
FROM Video v, Director d
WHERE v.directorNo = d.directorNo;

(a)

(b)

Query 3.18 (Revisited) Four-table join

List all videos along with the name of their director, the names of their actors, and
associated roles.

The QBE grid for this query is shown in Figure 3.8(a). In the top part of the QBE
grid, we display the four tables that we wish to query. As before, we drag the
columns we wish to be included in the output to the bottom part of the grid. If
the appropriate relationships have been established, QBE will automatically
join the four tables on the join columns indicated in the top part of the grid.

Chapter summary
SQL is a non-procedural language, consisting of standard English words
such as SELECT, INSERT, DELETE, that can be used by professionals and
non-professionals alike. It is both the formal and de facto standard lan-
guage for defining and manipulating relational databases.

SQL and QBE ■ 73

Figure 3.8

(a) QBE
corresponding to
Query 3.18 – List all
videos along with
the name of their
director, the names
of their actors, and
associated roles;
(b) equivalent SQL
statement.

Three joins – each representing a
1:* relationship (shown as 1 to ∞)

SELECT v.catalogNo, title, category, directorName, actorName, character
FROM Video v, Director d, Actor a, Role r
WHERE d.directorNo = v.directorNo AND

v.catalogNo = r.catalogNo AND
r.actorNo = a.actorNo;

(a)

(b)

The SELECT statement is the most important statement in the language
and is used to express a query. Every SELECT statement produces a query
result table consisting of one or more columns and zero or more rows.

The SELECT clause identifies the columns and/or calculated data to
appear in the result table. All column names that appear in the SELECT

clause must have their corresponding tables or views listed in the FROM

clause.

The WHERE clause selects rows to be included in the result table by
applying a search condition to the rows of the named table(s). The
ORDER BY clause allows the result table to be sorted on the values in
one or more columns. Each column can be sorted in ascending or
descending order. If specified, the ORDER BY clause must be the last
clause in the SELECT statement.

SQL supports five aggregate functions (COUNT, SUM, AVG, MIN, and
MAX) that take an entire column as an argument and compute a single
value as the result. It is illegal to mix aggregate functions with column
names in a SELECT clause, unless the GROUP BY clause is used.

The GROUP BY clause allows summary information to be included in the
result table. Rows that have the same value for one or more columns
can be grouped together and treated as a unit for using the aggregate
functions. In this case, the aggregate functions take each group as an
argument and compute a single value for each group as the result. The
HAVING clause acts as a WHERE clause for groups, restricting the
groups that appear in the final result table. However, unlike the WHERE

clause, the HAVING clause can include aggregate functions.

A subselect is a complete SELECT statement embedded in another query.
A subselect may appear within the WHERE or HAVING clauses of an
outer SELECT statement, where it is called a subquery or nested query.
Conceptually, a subquery produces a temporary table whose contents
can be accessed by the outer query. A subquery can be embedded in
another subquery.

If the columns of the result table come from more than one table, a join
must be used by specifying more than one table in the FROM clause and
typically including a WHERE clause to specify the join column(s).

As well as SELECT, the SQL DML includes the INSERT statement to insert a
single row of data into a named table or to insert an arbitrary number of
rows from another table using a subselect; the UPDATE statement to update

74 ■ Background

one or more values in a specified column or columns of a named table; the
DELETE statement to delete one or more rows from a named table.

The ISO standard provides eight base data types: boolean, character, bit,
exact numeric, approximate numeric, datetime, interval, and character/
binary large objects.

The SQL DDL statements allow database objects to be defined. The two
DDL statements covered in this chapter were CREATE TABLE and
CREATE VIEW.

QBE is an alternative, graphical-based, ‘point-and-click’ way of querying
the database. QBE has acquired the reputation of being one of the easi-
est ways for non-technical users to obtain information from a database.

Review questions
3.1 What are the two major components of SQL and what function do they

serve?

3.2 Explain the function of each of the clauses in the SELECT statement. What
restrictions are imposed on these clauses?

3.3 What restrictions apply to the use of the aggregate functions within the
SELECT statement? How do nulls affect the aggregate functions?

3.4 Explain how the GROUP BY clause works. What is the difference between
the WHERE and HAVING clauses?

3.5 What is the difference between a subquery and a join? Under what cir-
cumstances would you not be able to use a subquery?

3.6 What is QBE and what is the relationship between QBE and SQL?

Exercises

The following tables form part of a database held in a relational DBMS:

Hotel (hotelNo, hotelName, city)
Room (roomNo, hotelNo, type, price)
Booking (hotelNo, guestNo, dateFrom, dateTo, roomNo)
Guest (guestNo, guestName, guestAddress)

where Hotel contains hotel details and hotelNo is the primary key;
Room contains room details for each hotel and (roomNo, hotelNo) forms
the primary key;
Booking contains details of bookings and (guestNo, hotelNo, dateFrom) forms
the primary key;
Guest contains guest details and guestNo is the primary key.

SQL and QBE ■ 75

Create tables

3.7 Create each of the above tables using SQL (create primary keys and foreign
keys, where appropriate).

Populating tables

3.8 Insert rows into each of these tables.

3.9 Update the price of all rooms by 5 percent.

Simple queries

3.10 List full details of all hotels.

3.11 List full details of all hotels in Washington.

3.12 List the names and addresses of all guests living in Washington, alphabeti-
cally ordered by name.

3.13 List all double or family rooms with a price below $40.00 per night, in
ascending order of price.

3.14 List the bookings for which no dateTo has been specified.

Aggregate functions

3.15 How many hotels are there?

3.16 What is the average price of a room?

3.17 What is the total revenue per night from all double rooms?

3.18 How many different guests have made bookings for August?

Subqueries and joins

3.19 List the price and type of all rooms at the Hilton Hotel.

3.20 List all guests currently staying at the Hilton Hotel.

3.21 List the details of all rooms at the Hilton Hotel, including the name of the
guest staying in the room if the room is occupied.

3.22 What is the total income from bookings for the Hilton Hotel today?

3.23 List the rooms that are currently unoccupied at the Hilton Hotel.

3.24 What is the lost income from unoccupied rooms at the Hilton Hotel?

76 ■ Background

Grouping

3.25 List the number of rooms in each hotel.

3.26 List the number of rooms in each hotel in Washington.

3.27 What is the average number of bookings for each hotel in August?

3.28 What is the most commonly booked room type for each hotel in
Washington?

3.29 What is the lost income from unoccupied rooms at each hotel today?

SQL and QBE ■ 77

This chapter begins by first explaining why there is a need for a structured
approach to developing software applications. We introduce an example of
such an approach called the information systems lifecycle and discuss the rela-
tionship between an information system and the database that supports it. We
then focus on the database and introduce an example of a structured approach
to developing database systems called the database system development lifecy-
cle. Finally, we take you through the stages that make up the database system
development lifecycle (DSDLC).

4.1 The software crisis
You are probably already aware that over the past few decades there has been a dra-
matic rise in the number of software applications being developed, ranging from

Chapter 4

The database system
development lifecycle

In this chapter you will learn:

How problems associated with software development led to the software crisis.

How the software crisis led to a structured approach to software
development called the information systems lifecycle.

About the relationship between the information systems lifecycle and the
database system development lifecycle.

The stages of the database system development lifecycle.

The activities associated with each stage of the database system
development lifecycle.

small, relatively simple applications consisting of a few lines of code, to large,
complex applications consisting of millions of lines of code. Once developed,
many of these applications proved to be demanding, requiring constant mainte-
nance. This maintenance involved correcting faults, implementing new user
requirements, and modifying the software to run on new or upgraded platforms.
With so much software around to support, the effort spent on maintenance began
to absorb resources at an alarming rate. As a result, many major software projects
were late, over budget, and the software produced was unreliable, difficult to main-
tain, and performed poorly. This led to what has become known as the ‘software
crisis’. Although this term was first used in the late 1960s, more than 30 years later
the crisis is still with us. As a result, some people now refer to the software crisis as
the ‘software depression’. As an indication of the software crisis, a study carried out
in the UK by OASIG, a Special Interest Group concerned with the Organizational
Aspects of IT, reached the following conclusions (OASIG, 1996):

■ 80–90 percent of systems do not meet their performance goals.

■ About 80 percent are delivered late and over budget.

■ Around 40 percent of developments fail or are abandoned.

■ Under 40 percent fully address training and skills requirements.

■ Less than 25 percent properly integrate business and technology objectives.

■ Just 10–20 percent meet all their success criteria.

There are several major reasons for the failure of software projects, including:

■ lack of a complete requirements specification;

■ lack of an appropriate development methodology;

■ poor decomposition of design into manageable components.

As a solution to these problems, a structured approach to the development of
software was proposed and is commonly known as the information systems (IS)
lifecycle or the software development lifecycle (SDLC).

4.2 The information systems lifecycle

An information system not only collects, manages, and controls data used and
generated by an organization but enables the transformation of the data into
information. An information system also provides the infrastructure to facili-
tate the dissemination of information to those who make the decisions critical

The database system development lifecycle ■ 79

Information system

The resources that enable the collection, management, control, and dissemination of

data/information throughout an organization.

to the success of an organization. The essential component at the heart of an
information system is the database that supports it.

Typically, the stages of the information systems lifecycle include: planning,
requirements collection and analysis, design (including database design), proto-
typing, implementation, testing, conversion, and operational maintenance. Of
course, in this book we’re interested in the development of the database com-
ponent of an information system. As a database is a fundamental component of
the larger organization-wide information system, the database system develop-
ment lifecycle is inherently linked with the information systems lifecycle.

4.3 The database system development lifecycle
In this chapter, we describe the database system development lifecycle for rela-
tional DBMSs. An overview of the stages of the database system development
lifecycle (DSDLC) is shown in Figure 4.1. Below the name of each stage is the
section in this chapter that describes that stage. It’s important to note that the
stages of the database system development lifecycle are not strictly sequential,
but involve some amount of repetition of previous stages through feedback loops.
For example, problems encountered during database design may necessitate
additional requirements collection and analysis. As there are feedback loops
between most stages, we show only some of the more obvious ones in Figure 4.1.

For small database systems with a small number of users, the lifecycle need
not be very complex. However, when designing a medium to large database
system with tens to thousands of users, using hundreds of queries and applica-
tion programs, the lifecycle can become extremely complex.

4.4 Database planning

A starting point for establishing a database project is the creation of a mission state-
ment and mission objectives for the database system. The mission statement defines
the major aims of the database system, while each mission objective identifies a par-
ticular task that the database must support. Of course, as with any project, part of
the database planning process should also involve some estimation of the work to
be done, the resources with which to do it, and the money to pay for it all.

As we’ve already noted, a database often forms part of a larger organization-
wide information system and therefore any database project should be
integrated with the organization’s overall IS strategy.

80 ■ Background

Relational model
discussed in
Chapter 2

Database planning

The management activities that allow the stages of the database system development

lifecycle to be realized as efficiently and effectively as possible.

The database system development lifecycle ■ 81

Figure 4.1

Stages of the
database system
development
lifecycle.

Database planning
(Section 4.4)

System definition
(Section 4.5)

Logical design

Physical design

Database
design

(Section 4.7)

DBMS selection
(optional)

(Section 4.8)

Data conversion and
loading

(Section 4.12)

Implementation
(Section 4.11)

Testing
(Section 4.13)

Operational maintenance
(Section 4.14)

Prototyping (optional)
(Section 4.10)

Requirements collection
and analysis
(Section 4.6)

Application
design

(Section 4.9)

4.5 System definition

Before attempting to design a database system, it’s essential that we first iden-
tify the scope and boundary of the system that we’re investigating and how it
interfaces with other parts of the organization’s information system. Figure 4.2
shows one example of how to represent the system boundary of a database
system for the StayHome video rental company. When defining the system
boundary for a database system we include not only the current user views but
also any known future user views.

82 ■ Background

Database planning may also include the development of standards that govern

how data will be collected, how the format should be specified, what necessary

documentation will be needed, and how design and implementation should

proceed. Standards can be very time-consuming to develop and maintain,

requiring resources to set them up initially and to continue maintaining them.

However, a well-designed set of standards provides a basis for training staff and

measuring quality, and ensures that work conforms to a pattern, irrespective of

staff skills and experience. Any legal or organizational requirements concern-

ing the data should be documented, such as the stipulation that some types of

data must be treated confidentially or kept for a specific period of time.

System definition

Identification of the scope and boundary of the database system, including its major

user views.

StayHome video
rental case study
described in
Section 6.4

Figure 4.2

Boundary of the
database system for
the StayHome video
rental company.

PayrollMarketing

StaffVideo rentals

Customer
services

Stock control

HRMVideo sales

Database systems boundary

4.5.1 User views

A database system may have one or more user views. Identifying user views is
an important aspect of developing a database system because it helps to ensure
that no major users of the database are forgotten when developing the require-
ments for the new application. User views are also particularly helpful in the
development of a relatively complex database system by allowing the require-
ments to be broken down into manageable pieces.

A user view defines what is required of a database system in terms of the data
to be held and the transactions to be performed on the data (in other words,
what the users will do with the data). The requirements of a user view may be
distinct to that view or overlap with other views. Figure 4.3 is a diagrammatic
representation of a database system with multiple user views (denoted user view
1 to 6). Note that while user views (1, 2, and 3) and (5 and 6) have overlapping
requirements (shown as darker areas), user view 4 has distinct requirements.

4.6 Requirements collection and analysis

In this stage, we collect and analyze information about the organization, or the
part of the organization, to be served by the database. There are many tech-
niques for gathering this information, called fact-finding techniques, which
we’ll discuss in detail in Chapter 6.

We gather information for each major user view (that is, job role or business
application area), including:

■ a description of the data used or generated,

■ the details of how data is to be used or generated,

■ any additional requirements for the new database system.

The database system development lifecycle ■ 83

Note that this type of diagram can be drawn at any level of detail. A second

example of this type of diagram (at a lower level) is shown in Figure 6.9.

User view

Defines what is required of a database system from the perspective of a particular job

(such as Manager or Supervisor) or business application area (such as marketing, per-

sonnel, or stock control).

Requirements collection and analysis

The process of collecting and analyzing information about the organization to be

supported by the database system, and using this information to identify the require-

ments for the new database system.

We then analyze this information to identify the requirements (or features)
to be included in the new database system. These requirements are described in
documents collectively referred to as requirements specifications for the new data-
base system.

Another important activity associated with this stage is deciding how to deal
with the situation where there is more than one user view. There are three
approaches to dealing with multiple user views:

84 ■ Background

Figure 4.3

A diagram
representing a
database system
with multiple user
views: user view 4 is
distinct; the others
have some element
of overlap.

User view 6

User view 5

User view 4

User view 1

User view 2

User view 3

Database

Database system

Requirements collection and analysis is a preliminary stage to data-

base design. The amount of data gathered depends on the nature of the

problem and the policies of the organization. Identifying the required func-

tionality for a database system is a critical activity, as systems with inadequate

or incomplete functionality will annoy the users, and may lead to rejection or

underutilization of the system. However, excessive functionality can also be

problematic as it can overcomplicate a system, making it difficult to imple-

ment, maintain, use, and learn.

TIP

■ the centralized approach,

■ the view integration approach, and

■ a combination of both approaches.

Centralized approach

The centralized approach involves collating the requirements for different
user views into a single list of requirements. A data model representing all
user views is created in the database design stage. A diagram representing the
management of user views 1 to 3 using the centralized approach is shown in
Figure 4.4. Generally, this approach is preferred when there is a significant
overlap in requirements for each user view and the database system is not
overly complex.

The database system development lifecycle ■ 85

Centralized approach

Requirements for each user view are merged into a single list of requirements for the

new database system. A data model representing all user views is created during the

database design stage.

Figure 4.4

The centralized
approach to
managing multiple
user views 1 to 3.

All user view
requirements

User view 2
requirements

User
view 2

User view 1
requirements

User
view 1

User view 3
requirements

User
view 3

Tables, data
dictionary,
and other

documentation

ER model

Database
system

Logical data model

View integration approach

The view integration approach involves leaving the requirements for each
user view as separate lists of requirements. We create data models representing
each user view. A data model that represents a single user view is called a local
logical data model. We then merge the local data models to create a global
logical data model representing all user views of the organization.

A diagram representing the management of user views 1 to 3 using the view
integration approach is shown in Figure 4.5. Generally, this approach is pre-
ferred when there are significant differences between user views and the
database system is sufficiently complex to justify dividing the work into more
manageable parts.

We’ll discuss how to manage multiple user views in more detail in Section 6.4.4
and throughout this book we’ll demonstrate how to build a database for the
StayHome video rental case study using a combination of both the centralized
and view integration approaches.

4.7 Database design

86 ■ Background

View integration approach

Requirements for each user view remain as separate lists. Data models representing

each user view are created and then merged later during the database design stage.

For some complex database systems it may be appropriate to use a

combination of both the centralized and view integration approaches to man-

aging multiple user views. For example, the requirements for two or more user

views may be first merged using the centralized approach and then used to

create a local logical data model. (Therefore in this situation the local data

model represents not just a single user view but the number of user views

merged using the centralized approach.) The local data models representing

one or more user views are then merged using the view integration approach

to form the global logical data model representing all user views.

TIP

Database design

The process of creating a design that will support the organization’s mission statement

and mission objectives for the required database system.

The database system development lifecycle ■ 87

Figure 4.5

The view
integration
approach to
managing multiple
user views 1 to 3.

User view 1
requirements

User
view 1

Tables, data
dictionary,
and other

documentation

Global table
diagram

Database
system

User view 1
local logical
data model

User view 2
requirements

User
view 2

User view 2
local logical
data model

User view 3
requirements

User
view 3

User view 3
local logical
data model

Global logical
data model

Global table
diagram is
described in
Appendix C

Database design is made up of two main phases called logical and physical
design. During logical database design, we try to identify the important objects
that need to be represented in the database and the relationships between these
objects. During physical database design, we decide how the logical design is to
be physically implemented in the target DBMS. In Chapter 9, we’ll discuss the
two phases of database design in more detail and present an overview of a step-
by-step methodology for logical and physical database design. The steps of the
logical database design methodology will be described in detail in Chapters 9
and 10 and for physical database design in Chapters 12 to 16.

4.8 DBMS selection

If no relational DBMS currently exists in the organization, an appropriate part
of the lifecycle in which to make a selection is between the logical and physical
database design phases. However, selection can be done at any time prior to
logical design provided sufficient information is available regarding system
requirements such as networking, performance, ease of restructuring, security,
and integrity constraints.

Although DBMS selection may be infrequent, as business needs expand or
existing systems are replaced, it may become necessary at times to evaluate new
DBMS products. In such cases, the aim is to select a product that meets the cur-
rent and future requirements of the organization, balanced against costs which
include the purchase of the DBMS, any additional software/hardware required
to support the database system, and the costs associated with changeover and
staff training.

A simple approach to selection is to check off DBMS features against require-
ments. In selecting a new DBMS product, there is an opportunity to ensure that
the selection process is well planned, and the system delivers real benefits to
the organization.

88 ■ Background

DBMS selection

The selection of an appropriate DBMS to support the database system.

Integrity
constraints
discussed in
Section 1.3

Nowadays, the World Wide Web (WWW) is a great source of informa-

tion and can be used to identify potential candidate DBMSs. Vendors’ websites

can provide valuable information on DBMS products. As a starting point, have

a look at DBMS magazine’s website called DBMS ONLINE (available at

www.intelligententerprise.com) for a comprehensive index of DBMS products.

TIP

4.9 Application design

In Figure 4.1 shown earlier in this chapter, we observed that database and appli-
cation design are parallel activities of the database system development
lifecycle. In most cases, we cannot complete the application design until the
design of the database itself has taken place. On the other hand, the database
exists to support the applications, and so there must be a flow of information
between application design and database design.

We must ensure that all the functionality stated in the requirements specifi-
cations is present in the application design for the database system. This
involves designing the interaction between the user and the data, which we
call transaction design. In addition to designing how the required functionality
is to be achieved, we have to design an appropriate user interface to the data-
base system.

4.9.1 Transaction design

Transactions represent ‘real world’ events such as the registering of a new
member at a video rental company, the creation of a rental agreement for a
member to rent a video, and the addition of a new member of staff. These
transactions have to be applied to the database to ensure that the database
remains current with the ‘real world’ and to support the information needs of
the users.

The purpose of transaction design is to define and document the high-level
characteristics of the transactions required on the database, including:

■ data to be used by the transaction;

■ functional characteristics of the transaction (what the transaction will do);

■ output of the transaction;

■ importance to the users;

■ expected rate of usage.

The database system development lifecycle ■ 89

Application design

The design of the user interface and the application programs that use and process the

database.

Transaction

An action, or series of actions, carried out by a single user or application program that

accesses or changes the content of the database.

There are three main types of transactions:

■ retrieval transactions;

■ update transactions;

■ mixed transactions.

Retrieval transactions are used to retrieve data for display on the screen (or as a
report) or as input into another transaction. For example, the operation to
search for and display the details of a video (given the video number) is a
retrieval transaction. Update transactions are used to insert new records, delete
old records, or modify existing records in the database. For example, the opera-
tion to insert the details of a new video into the database is an update
transaction. Mixed transactions involve both the retrieval and updating of data.
For example, the operation to search for and display the details of a video
(given the video number) and then update the value of the daily rental rate is a
mixed transaction.

4.9.2 User interface design

In addition to designing how the required functionality is to be achieved, we
have to design an appropriate user interface for the database system. This inter-
face should present the required information in a user-friendly way. The
importance of user interface design is sometimes ignored or left until late in the
design stages. However, it should be recognized that the interface might be one
of the most important components of the system. If it’s easy to learn, simple to
use, straightforward, and forgiving, the users will be inclined to make good use
of what information is presented. On the other hand, if the interface has none
of these characteristics, the system will undoubtedly cause problems. For exam-
ple, before implementing a form or report, it’s essential that we first design the
layout. Useful guidelines to follow when designing forms or reports are listed in
Table 4.1 (Shneiderman, 1992).

4.10 Prototyping
At various points throughout the design process, we have the option either to
fully implement the database system or to build a prototype.

A prototype is a working model that does not normally have all the required
features or provide all the functionality of the final system. The purpose of
developing a prototype database system is to allow users to use the prototype to

90 ■ Background

Prototyping

Building a working model of a database system.

identify the features of the system that work well, or are inadequate, and if pos-
sible to suggest improvements or even new features for the database system. In
this way, we can greatly clarify the requirements and evaluate the feasibility of
a particular system design. Prototypes should have the major advantage of
being relatively inexpensive and quick to build.

There are two prototyping strategies in common use today: requirements
prototyping and evolutionary prototyping. Requirements prototyping uses a pro-
totype to determine the requirements of a proposed database system and once
the requirements are complete the prototype is discarded. While evolutionary
prototyping is used for the same purposes, the important difference is that the
prototype is not discarded but with further development becomes the working
database system.

4.11 Implementation

On completion of the design stages (which may or may not have involved proto-
typing), we’re now in a position to implement the database and the application

The database system development lifecycle ■ 91

Table 4.1 Guidelines for form/report design.

Meaningful title

Comprehensible instructions

Logical grouping and sequencing of fields

Visually appealing layout of the form/report

Familiar field labels

Consistent terminology and abbreviations

Consistent use of color

Visible space and boundaries for data-entry fields

Convenient cursor movement

Error correction for individual characters and entire fields

Error messages for unacceptable values

Optional fields marked clearly

Explanatory messages for fields

Completion signal

Implementation

The physical realization of the database and application designs.

programs. The database implementation is achieved using the Data Definition
Language (DDL) of the selected DBMS or a graphical user interface (GUI), which
provides the same functionality while hiding the low-level DDL statements. The
DDL statements are used to create the database structures and empty database
files. Any specified user views are also implemented at this stage.

The application programs are implemented using the preferred third or fourth
generation language (3GL or 4GL). Parts of these application programs are the
database transactions, which we implement using the Data Manipulation Language
(DML) of the target DBMS, possibly embedded within a host programming lan-
guage, such as Visual Basic (VB), VB.net, Python, Delphi, C, C++, C#, Java,
COBOL, Fortran, Ada, or Pascal. We also implement the other components of the
application design such as menu screens, data entry forms, and reports. Again,
the target DBMS may have its own fourth generation tools that allow rapid devel-
opment of applications through the provision of non-procedural query
languages, reports generators, forms generators, and application generators.

Security and integrity controls for the application are also implemented.
Some of these controls are implemented using the DDL, but others may need to
be defined outside the DDL using, for example, the supplied DBMS utilities or
operating system controls.

SQL (Structured Query Language) is both a DDL and a DML.

4.12 Data conversion and loading

This stage is required only when a new database system is replacing an old
system. Nowadays, it’s common for a DBMS to have a utility that loads existing
files into the new database. The utility usually requires the specification of the
source file and the target database, and then automatically converts the data to
the required format of the new database files. Where applicable, it may be pos-
sible for the developer to convert and use application programs from the old
system for use by the new system. Whenever conversion and loading are
required, the process should be properly planned to ensure a smooth transition
to full operation.

92 ■ Background

DDL defined in
Section 2.4

DML defined in
Section 2.4

SQL covered in
Chapter 3

Data conversion and loading

Transferring any existing data into the new database and converting any existing

applications to run on the new database.

4.13 Testing

Before going live, the newly developed database system should be thoroughly
tested. This is achieved using carefully planned test strategies and realistic data
so that the entire testing process is methodically and rigorously carried out.
Note that in our definition of testing we have not used the commonly held
view that testing is the process of demonstrating that faults are not present. In
fact, testing cannot show the absence of faults; it can show only that software
faults are present. If testing is conducted successfully, it will uncover errors in
the application programs and possibly the database structure. As a secondary
benefit, testing demonstrates that the database and the application programs
appear to be working according to their specification and that performance
requirements appear to be satisfied. In addition, metrics collected from the test-
ing stage provide a measure of software reliability and software quality.

As with database design, the users of the new system should be involved in
the testing process. The ideal situation for system testing is to have a test data-
base on a separate hardware system, but often this is not available. If real data is
to be used, it is essential to have backups taken in case of error.

Testing should also cover usability of the database system. Ideally, an evalua-
tion should be conducted against a usability specification. Examples of criteria
that can be used to conduct the evaluation include (Sommerville, 2000):

■ Learnability – How long does it take a new user to become productive with
the system?

■ Performance – How well does the system response match the user’s work
practice?

■ Robustness – How tolerant is the system of user error?

■ Recoverability – How good is the system at recovering from user errors?

■ Adaptability – How closely is the system tied to a single model of work?

Some of these criteria may be evaluated in other stages of the lifecycle. After
testing is complete, the database system is ready to be ‘signed off’ and handed
over to the users.

The database system development lifecycle ■ 93

Testing

The process of running the database system with the intent of finding programming

errors.

4.14 Operational maintenance

In this stage, the database system now moves into a maintenance stage, which
involves the following activities:

■ Monitoring the performance of the database system. If the performance falls
below an acceptable level, the database may need to be tuned or reorganized.

■ Maintaining and upgrading the database system (when required). New
requirements are incorporated into the database system through the preced-
ing stages of the lifecycle.

We’ll examine this stage in more detail in Chapter 16.

Chapter summary
An information system is the resources that enable the collection, man-
agement, control, and dissemination of data/information throughout an
organization.

The database is a fundamental component of an information system.
The lifecycle of an information system is inherently linked to the lifecy-
cle of the database that supports it.

The stages of the database system development lifecycle include: data-
base planning, system definition, requirements collection and analysis,
database design, DBMS selection (optional), application design, proto-
typing (optional), implementation, data conversion and loading, testing,
and operational maintenance.

Database planning is the management activities that allow the stages
of the database system development lifecycle to be realized as effi-
ciently and effectively as possible.

System definition involves identifying the scope and boundaries of the
database system, including its major user views. A user view can repre-
sent a job role or business application area.

Requirements collection and analysis is the process of collecting and
analyzing information about the organization that is to be supported by

94 ■ Background

Operational maintenance

The process of monitoring and maintaining the database system following installation.

the database system, and using this information to identify the require-
ments for the new system.

There are three approaches to dealing with multiple user views, namely
the centralized approach, the view integration approach, and a combi-
nation of both. The centralized approach involves collating the users’
requirements for different user views into a single list of requirements. A
data model representing all the user views is created during the data-
base design stage. The view integration approach involves leaving the
users’ requirements for each user view as separate lists of requirements.
Data models representing each user view are created and then merged
at a later stage of database design.

Database design is the process of creating a design that will support the
organization’s mission statement and mission objectives for the required
database system. This stage includes the logical and physical design of
the database.

The aim of DBMS selection is to select a system that meets the current
and future requirements of the organization, balanced against costs that
include the purchase of the DBMS product and any additional soft-
ware/hardware, and the costs associated with changeover and training.

Application design involves designing the user interface and the appli-
cation programs that use and process the database. This stage involves
two main activities: transaction design and user interface design.

Prototyping involves building a working model of the database system,
which allows the designers or users to visualize and evaluate the system.

Implementation is the physical realization of the database and applica-
tion designs.

Data conversion and loading involves transferring any existing data
into the new database and converting any existing applications to run
on the new database.

Testing is the process of running the database system with the intent of
finding programming errors.

Operational maintenance is the process of monitoring and maintaining
the system following installation.

The database system development lifecycle ■ 95

Review questions
4.1 Describe what is meant by the term ‘software crisis’.

4.2 Discuss the relationship between the information systems lifecycle and
the database system development lifecycle.

4.3 Briefly describe the stages of the database system development lifecycle.

4.4 Describe the purpose of creating a mission statement and mission objec-
tives for the required database during the database planning stage.

4.5 Discuss what a user view represents when designing a database system.

4.6 Compare and contrast the centralized approach and view integration
approach to managing the design of a database system with multiple user
views.

4.7 Explain why it is necessary to select the target DBMS before beginning the
physical database design phase.

4.8 Discuss the two main activities associated with application design.

4.9 Describe the potential benefits of developing a prototype database system.

4.10 Discuss the main activities associated with the implementation stage.

4.11 Describe the purpose of the data conversion and loading stage.

4.12 Explain the purpose of testing the database system.

4.13 What are the main activities associated with the operational maintenance
stage?

96 ■ Background

In Chapter 4, we learned about the stages of the database system development
lifecycle. In this chapter we discuss the roles played by the Data Administrator
(DA) and Database Administrator (DBA) and the relationship between these
roles and the stages of the database system development lifecycle. An important
function of a DA and DBA is ensuring the security of the database. We discuss
the potential threats to a database system and the types of computer-based
countermeasures that can be applied to minimize such threats.

Chapter 5

Database administration
and security

In this chapter you will learn:

The distinction between data administration and database administration.

The purpose and tasks associated with data administration and
database administration.

The scope of database security.

Why database security is a serious concern for an organization.

The type of threats that can affect a database system.

How to protect a database system using computer-based controls.

5.1 Data administration and database
administration

The Data Administrator (DA) and Database Administrator (DBA) are responsible
for managing and controlling the activities associated with the corporate data
and the corporate database, respectively. The DA is more concerned with the
early stages of the lifecycle, from planning through to logical database design. In
contrast, the DBA is more concerned with the later stages, from application/
physical database design to operational maintenance. Depending on the size and
complexity of the organization and/or database system, the DA and DBA can be
the responsibility of one or more people. We begin by discussing the purpose
and tasks associated with the DA and DBA roles within an organization.

5.1.1 Data administration

The DA is responsible for the corporate data, which includes non-computerized
data, and in practice is often concerned with managing the shared data of users
or business application areas of an organization. The DA has the primary
responsibility of consulting with and advising senior managers, and ensuring
that the application of database technologies continues to support corporate
objectives. In some organizations, data administration is a distinct business
area, in others it may be combined with database administration. The tasks
associated with data administration are described in Table 5.1.

98 ■ Background

Data administration

The management and control of the corporate data, including database planning,

development and maintenance of standards, policies and procedures, and logical data-

base design.

Table 5.1 Data administration tasks.

Selecting appropriate productivity tools

Assisting in the development of the corporate IT/IS and business strategies

Undertaking feasibility studies and planning for database development

Developing a corporate data model

Determining the organization’s data requirements

Setting data collection standards and establishing data formats

Estimating volumes of data and likely growth

Determining patterns and frequencies of data usage

5.1.2 Database administration

The DBA is more technically oriented than the DA, requiring knowledge of specific
DBMSs and the operating system environment. The primary responsibilities of
the DBA are centered on developing and maintaining systems using the DBMS
software to its fullest extent. The tasks of database administration are described
in Table 5.2.

5.1.3 Comparison of data and database administration

The preceding sections examined the purpose and tasks associated with data
administration and database administration. A summary of the main task dif-
ferences between data administration and database administration is shown in
Table 5.3. Perhaps the most obvious difference lies in the nature of the work
carried out. The work of DA staff tends to be much more managerial, whereas
the work of DBA staff tends to be more technical.

Database administration and security ■ 99

Table 5.1 Continued

Determining data access requirements and safeguards for both legal and corporate

requirements

Undertaking logical database design

Liaising with database administration staff and application developers to ensure

applications meet all stated requirements

Educating users on data standards and legal responsibilities

Keeping up to date with IT/IS and business developments

Ensuring documentation is complete, including the corporate data model, standards,

policies, procedures, and controls on end-users

Managing the data dictionary

Liaising with end-users and database administration staff to determine new

requirements and to resolve data access or performance problems

Developing a security policy

Database administration

The management and control of the physical realization of the corporate database

system, including physical database design and implementation, setting security

and integrity controls, monitoring system performance, and reorganizing the data-

base as necessary.

5.2 Database security
In this section, we describe the scope of database security and discuss why orga-
nizations must take potential threats to their database systems seriously. We
also identify the range of threats and their consequences on database systems.

100 ■ Background

Table 5.2 Database administration tasks.

Evaluating and selecting DBMS products

Undertaking physical database design

Implementing a physical database design using a target DBMS

Defining security and integrity constraints

Liaising with database system developers

Developing test strategies

Training users

Responsible for ‘signing off’ the implemented database system

Monitoring system performance and tuning the database, as appropriate

Performing backups routinely

Ensuring recovery mechanisms and procedures are in place

Ensuring documentation is complete, including in-house produced material

Keeping up to date with software and hardware developments and costs, and installing

updates as necessary

Table 5.3 Data/Database administration – main task differences.

Data administration Database administration

Involved in strategic IS planning Evaluates new DBMSs

Determines long-term goals Executes plans to achieve goals

Determines standards, policies, and Enforces standards, policies, and

procedures procedures

Determines data requirements Implements data requirements

Develops logical database design Develops physical database design

Develops and maintains corporate data model Implements physical database design

Coordinates database development Monitors and controls database use

Managerial orientation Technical orientation

DBMS independent DBMS dependent

Security considerations do not only apply to the data held in a database.
Breaches of security may affect other parts of the system, which may in turn
affect the database. Consequently, database security encompasses hardware,
software, people, and data. To implement security effectively requires appropri-
ate controls, which are defined in specific mission objectives for the system.
This need for security, while often having been neglected or overlooked in the
past, is now increasingly recognized by organizations. The reason for this turn-
around is due to the increasing amounts of crucial corporate data being stored
on computer and the acceptance that any loss or unavailability of this data
could be potentially disastrous.

A database represents an essential corporate resource that should be properly
secured using appropriate controls. We consider database security in relation to
the following outcomes:

■ theft and fraud;

■ loss of confidentiality (secrecy);

■ loss of privacy;

■ loss of integrity;

■ loss of availability.

These outcomes represent the areas where an organization should seek to
reduce risk; that is, the possibility of incurring loss or damage. In some situa-
tions, these outcomes are closely related such that an activity that leads to loss
in one situation may also lead to loss in another. In addition, outcomes such as
fraud or loss of privacy may arise because of either intentional or unintentional
acts, and do not necessarily result in any detectable changes to the database or
the computer system.

Theft and fraud affect not only the database environment but also the entire
organization. As it’s people who perpetrate such activities, attention should
focus on reducing the opportunities for this occurring. Theft and fraud do not
necessarily alter data, which is also true for activities that result in either loss of
confidentiality or loss of privacy.

Confidentiality refers to the need to maintain secrecy over data, usually only
that which is critical to the organization, whereas privacy refers to the need to
protect data about individuals. Breaches of security resulting in loss of confi-
dentiality could, for instance, lead to loss of competitiveness, and loss of
privacy could lead to legal action being taken against the organization.

Loss of data integrity results in invalid or corrupted data, which may seri-
ously affect the operation of an organization. Many organizations are now

Database administration and security ■ 101

Database security

The mechanisms that protect the database against intentional or accidental threats.

seeking virtually continuous operation, the so-called 24 × 7 availability (that is,
24 hours a day, seven days a week). Loss of availability means that the data, or
the system, or both, cannot be accessed, which can seriously impact on an
organization’s financial performance. In some cases, events that cause a system
to be unavailable may also cause data corruption.

In recent times, computer-based criminal activities have significantly
increased and are forecast to continue to rise over the next few years. Database
security aims to minimize losses caused by anticipated events in a cost-effective
manner without unduly constraining the users.

5.2.1 Threats

A threat may be caused by a situation or event involving a person, action, or cir-
cumstance that is likely to be detrimental to an organization. The loss to the
organization may be tangible, such as loss of hardware, software, or data, or
intangible, such as loss of credibility or client confidence. The problem facing any
organization is to identify all possible threats. Therefore as a minimum, an orga-
nization should invest time and effort in identifying the most serious threats.

In the previous section, we identified outcomes that may result from inten-
tional or unintentional activities. While some types of threat can be either
intentional or unintentional, the impact remains the same. Intentional threats
involve people, and may be carried out by both authorized users and unautho-
rized users, some of whom may be external to the organization.

Any threat must be viewed as a potential breach of security which, if success-
ful, will have a certain impact. Table 5.4 presents examples of various types of
threats and the possible outcomes for an organization. For example, ‘Using
another person’s means of access’ as a threat may result in theft and fraud, loss
of confidentiality, and loss of privacy for an organization.

The extent that an organization suffers as a result of a threat succeeding
depends upon a number of factors, such as the existence of countermeasures
and contingency plans. For example, if a hardware failure occurs corrupting sec-
ondary storage, all processing activity must cease until the problem is resolved.
The recovery will depend upon a number of factors, which include when the
last backups were taken and the time needed to restore the system.

An organization needs to identify the types of threats it may be subjected to
and initiate appropriate plans and countermeasures, bearing in mind the costs
of implementing them. Obviously, it may not be cost-effective to spend consid-
erable time, effort, and money on potential threats that may result only in

102 ■ Background

Threat

Any situation or event, whether intentional or unintentional, that may adversely

affect a system and consequently the organization.

minor inconveniences. The organization’s business may also influence the types
of threat that should be considered, some of which may be rare. However, rare
events should be taken into account, particularly if their impact would be sig-
nificant. A summary of the potential threats to computer systems is represented
in Figure 5.1.

5.2.2 Countermeasures – computer-based controls

The types of countermeasures to threats on database systems range from physi-
cal controls to administrative procedures. Despite the range of computer-based

Database administration and security ■ 103

Table 5.4 Examples of threats and the possible outcomes.

Threat Theft and Loss of Loss of Loss of Loss of
fraud confidentiality privacy integrity availability

Using another person’s means of access √ √ √

Unauthorized amendment or copying of data √ √

Program alteration √ √ √

Inadequate policies and procedures

that allow a mix of confidential and normal output √ √ √

Wire tapping √ √ √

Illegal entry by hacker √ √ √

Blackmail √ √ √

Creating ‘trapdoor’ into system √ √ √

Theft of data, programs, and equipment √ √ √ √

Failure of security mechanisms,

giving greater access than normal √ √ √

Staff shortage or strikes √ √

Inadequate staff training √ √ √ √

Viewing and disclosing unauthorized data √ √ √

Electronic interference and radiation √ √

Data corruption due to power loss or surge √ √

Fire (electrical fault, lightning strike, arson),

flood, bomb √ √

Physical damage to equipment √ √

Breaking cables or disconnection of cables √ √

Introduction of viruses √ √

controls that are available, it is worth noting that, generally, the security of a
DBMS is only as good as that of the operating system, owing to their close asso-
ciation. Representation of a typical multi-user computer environment is shown
in Figure 5.2. In this section, we focus on the following computer-based secu-
rity controls for a multi-user environment (some of which may not be available
in the PC environment):

■ authorization;

■ views;

■ backup and recovery;

104 ■ Background

Figure 5.1

Summary of potential threats to computer systems.

Hardware
Fire/flood/bombs
Data corruption due to power
loss or surge
Failure of security mechanisms
giving greater access
Theft of equipment
Physical damage to equipment
Electronic interference and radiation

DBMS and Application Software
Failure of security mechanism
giving greater access
Program alteration
Theft of programs

Communication networks
Wire tapping
Breaking or disconnection of cables
Electronic interference and radiation

Database
Unauthorized amendment or
copying of data
Theft of data
Data corruption due to power
loss or surge

Users
Using another person’s means of
access
Viewing and disclosing
unauthorized data
Inadequate staff training
Illegal entry by hacker
Blackmail
Introduction of viruses

Programers/Operators
Creating trapdoors
Program alteration (such as creating
software that is insecure)
Inadequate staff training
Inadequate security policies and
procedures
Staff shortages or strikes

Data/Database Administrator
Inadequate security policies
and procedures

■ integrity;

■ encryption;

■ Redundant Array of Independent Disks (RAID).

Authorization

Authorization controls can be built into the software, and govern not only
what database system or object a specified user can access, but also what the
user may do with it. For this reason, authorization controls are sometimes
referred to as access controls. The process of authorization involves authentica-
tion of a subject requesting access to an object, where ‘subject’ represents a user
or program and ‘object’ represents a database table, view, procedure, trigger, or
any other object that can be created within the database system.

Database administration and security ■ 105

Figure 5.2

Representation of a
typical multi-user
computer
environment.

DB

Authorization
and

access control

DBMS server

Firewall

Local clientSecure
internal
network

(intranet)

Encryption

Insecure external
network

(e.g., Internet)

Remote client

Encryption

RAID discussed
in Chapter 16

Authorization

The granting of a right or privilege that enables a subject to have legitimate access to a

database system or a database system’s object.

Access controls
discussed in Step 6
of Chapter 14

A system administrator is usually responsible for permitting users to have access
to a computer system by creating individual user accounts. Each user is given a
unique identifier, which is used by the operating system to determine who they
are. Associated with each identifier is a password, chosen by the user and
known to the operating system, which must be supplied to enable the operat-
ing system to authenticate (or verify) who the user claims to be.

This procedure allows authorized use of a computer system, but does not
necessarily authorize access to the DBMS or any associated application pro-
grams. A separate, similar procedure may have to be undertaken to give a user
the right to use the DBMS. The responsibility to authorize use of the DBMS usu-
ally rests with the DBA, who must also set up individual user accounts and
passwords using the DBMS.

Some DBMSs maintain a list of valid user identifiers and associated pass-
words, which can be distinct from the operating system’s list. However, other
DBMSs maintain a list whose entries are validated against the operating
system’s list based on the current user’s login identifier. This prevents a user
from logging onto the DBMS with one name, having already logged onto the
operating system using a different name.

Privileges

Once a user is given permission to use a DBMS, various other privileges may
also be automatically associated with it. For example, privileges may include
the right to access or create certain database objects such as tables, views, and
indexes, or to run various DBMS utilities. Privileges are granted to users to
accomplish the tasks required for their jobs. As excessive granting of unneces-
sary privileges can compromise security, a privilege should only be granted to a
user who absolutely requires the privilege to accomplish his or her work.

Some DBMSs operate as closed systems so that while users may be authorized
to access the DBMS, they require authorization to access specific objects. Either
the DBA or owners of particular objects provide this authorization. On the
other hand, an open system allows users to have complete access to all objects
within the database. In this case, privileges have to be explicitly removed from
users to control access.

Ownership and privileges

Some objects in the DBMS are owned by the DBMS itself, usually in the form of
a specific superuser, such as the DBA. Accordingly, ownership of objects gives

106 ■ Background

Authentication

A mechanism that determines whether a user is who he or she claims to be.

Privileges discussed
in Step 6 of
Chapter 14

the owner all appropriate privileges on the objects owned. The same situation
applies to other authorized users if they own objects. The creator of an object
owns the object and can assign appropriate privileges for the object. For exam-
ple, although a user owns a view, he or she may only be authorized to query the
view. This may happen when the user is only authorized to query the underly-
ing base table. These privileges can be passed on to other authorized users. For
example, an owner of several tables may authorize other users to query the
tables, but not to carry out any updates.

Where a DBMS supports several different types of authorization identifier,
there may be different priorities associated with each type. For example, a
DBMS may permit both individual user identifiers and group identifiers to be
created, with the user identifier having a higher priority than the group identi-
fier. For such a DBMS, user and group identifiers may be defined as shown in
Tables 5.5(a) and (b).

In Table 5.5(a) the columns with headings User Identifier and Type list each
user on the system together with the user type, which distinguishes individuals
from groups. In Table 5.5(b) the columns with headings Group and Member
Identifier list each group and the user members of that group. Certain privileges
may be associated with specific identifiers, which indicate what kind of privi-
lege (such as Select, Update, Insert, Delete, or All) is allowed with certain
database objects.

On some DBMSs, a user has to tell the system under which identifier he or
she is operating, especially if the user is a member of more than one group. It is
essential to become familiar with the available authorization and other control
mechanisms provided by the DBMS, particularly where priorities may be
applied to different authorization identifiers and where privileges can be passed
on. This will enable the correct types of privileges to be granted to users based
on their requirements and those of the application programs that many of
them will use.

Database administration and security ■ 107

Table 5.5(a) User identifiers.

User Identifier Type

S0099 User

S2345 User

S1500 User

Sales Group

Table 5.5(b) Group identifiers.

Group Member Identifier

Sales S0099

Sales S2345

Views

The view mechanism provides a powerful and flexible security mechanism by
hiding parts of the database from certain users. The user is not aware of the
existence of any columns or rows that are missing from the view. A view can be
defined over several tables with a user being granted the appropriate privilege
to use it, but not to use the base tables. In this way, using a view is more restric-
tive than simply having certain privileges granted to a user on the base table(s).

Backup and recovery

A DBMS should provide backup facilities to assist with the recovery of a data-
base following failure. To keep track of database transactions, the DBMS
maintains a special file called a log file (or journal) that contains information
about all updates to the database. It is always advisable to make backup copies
of the database and log file at regular intervals and to ensure that the copies are
in a secure location. In the event of a failure that renders the database unusable,
the backup copy and the details captured in the log file are used to restore the
database to the latest possible consistent state.

A DBMS should provide logging facilities, sometimes referred to as journal-
ing, which keep track of the current state of transactions and database changes,
to provide support for recovery procedures. The advantage of journaling is that,
in the event of a failure, the database can be recovered to its last known consis-
tent state using a backup copy of the database and the information contained
in the log file. If no journaling is enabled on a failed system, the only means of
recovery is to restore the database using the latest backup version of the data-
base. However, without a log file, any changes made after the last backup to the
database will be lost.

108 ■ Background

View

A virtual table that does not necessarily exist in the database but can be produced upon

request by a particular user, at the time of request.

Views discussed
in Section 1.2.4

Backup

The process of periodically taking a copy of the database and log file (and possibly pro-

grams) onto offline storage media.

Journaling

The process of keeping and maintaining a log file (or journal) of all changes made to

the database to enable recovery to be undertaken effectively in the event of a failure.

Integrity

Integrity constraints also contribute to maintaining a secure database system by
preventing data from becoming invalid, and hence giving misleading or incor-
rect results. Integrity constraints were introduced in Section 1.3 and will be
discussed in detail in Step 2.4 of Chapter 10.

Encryption

If a database system holds particularly sensitive data, it may be deemed necessary
to encode it as a precaution against possible external threats or attempts to access
it. Some DBMSs provide an encryption facility for this purpose. The DBMS can
access the data (after decoding it), although there is degradation in performance
because of the time taken to decode it. Encryption also protects data transmitted
over communication lines. There are a number of techniques for encoding data
to conceal the information; some are termed irreversible and others reversible.
Irreversible techniques, as the name implies, do not permit the original data to be
known. However, the data can be used to obtain valid statistical information.
Reversible techniques are more commonly used. To transmit data securely over
insecure networks requires the use of a cryptosystem, which includes:

■ an encryption key to encrypt the data (plaintext);

■ an encryption algorithm that, with the encryption key, transforms the plain-
text into ciphertext;

■ a decryption key to decrypt the ciphertext;

■ a decryption algorithm that, with the decryption key, transforms the cipher-
text back into plaintext.

One technique, called symmetric encryption, uses the same key for both encryp-
tion and decryption and relies on safe communication lines for exchanging the
key. However, most users do not have access to a secure communication line
and, to be really secure, the keys need to be as long as the message. However,
most working systems are based on using keys shorter than the message. One
scheme used for encryption is the Data Encryption Standard (DES), which is a
standard encryption algorithm developed by IBM. This scheme uses one key for
both encryption and decryption, which must be kept secret, although the algo-
rithm need not be. The algorithm transforms each 64-bit block of plaintext
using a 56-bit key. The DES is not universally regarded as being very secure, and
some authors maintain that a larger key is required. For example, a scheme

Database administration and security ■ 109

Encryption

The encoding of the data by a special algorithm that renders the data unreadable by

any program without the decryption key.

called PGP (Pretty Good Privacy) uses a 128-bit symmetric algorithm for
encryption of the data it sends.

Keys with 64 bits are now probably breakable with special hardware, albeit at
substantial costs. However, this technology will be within the reach of orga-
nized criminals, major organizations, and smaller governments in a few years.
While it is envisaged that keys with 80 bits will also become breakable in the
future, it is probable that keys with 128 bits will remain unbreakable for the
foreseeable future. The terms ‘strong authentication’ and ‘weak authentication’
are sometimes used to distinguish algorithms that, to all intents and purposes,
cannot be broken with existing technologies and knowledge, from those that
can be.

Another type of cryptosystem uses different keys for encryption and decryp-
tion, and is referred to as asymmetric encryption. One example is public key
cryptosystems, which use two keys, one of which is public and the other private.
The encryption algorithm may also be public, so that anyone wishing to send a
user a message can use the user’s publicly known key in conjunction with the
algorithm to encrypt it. Only the owner of the private key can then decipher
the message. Public key cryptosystems can also be used to send a ‘digital signa-
ture’ with a message and prove that the message came from the person who
claimed to have sent it. The most well-known asymmetric encryption is RSA
(the name is derived from the initials of the three designers of the algorithm).

Generally, symmetric algorithms are much faster to execute on a computer
than those that are asymmetric. However, in practice, they are often used
together, so that a public key algorithm is used to encrypt a randomly gener-
ated encryption key, and the random key is used to encrypt the actual message
using a symmetric algorithm.

Redundant Array of Independent Disks (RAID)

The hardware that the DBMS is running on must be fault-tolerant, meaning that
the DBMS should continue to operate even if one of the hardware components
fails. This suggests having redundant components that can be seamlessly inte-
grated into the working system whenever there is one or more component
failures. The main hardware components that should be fault-tolerant include
disk drives, disk controllers, CPU, power supplies, and cooling fans. Disk drives
are the most vulnerable components, with the shortest times between failures
of any of the hardware components.

One solution is the use of Redundant Array of Independent Disks (RAID)
technology. RAID works by having a large disk array comprising an arrange-
ment of several independent disks that are organized to improve reliability and
at the same time increase performance.

110 ■ Background

RAID discussed
in Chapter 16

Chapter summary
Data administration is the management and control of the corporate
data, including database planning, development and maintenance of
standards, policies, and procedures, and logical database design.

Database administration is the management and control of the physical
realization of the corporate database system, including physical data-
base design and implementation, setting security and integrity controls,
monitoring system performance, and reorganizing the corporate data-
base as necessary.

Database security is concerned with the mechanisms that protect the
database against intentional or accidental threats.

A threat is any situation or event, whether intentional or unintentional,
that may adversely affect a system and consequently an organization.

Computer-based security controls for the multi-user environment
include: authorization, views, backup and recovery, integrity, encryption,
and RAID.

Authorization is the granting of a right or privilege that enables a sub-
ject to have legitimate access to a system or a system’s object.

Authentication is a mechanism that determines whether a user is who
he or she claims to be.

A view is a virtual table that does not necessarily exist in the database
but can be produced upon request by a particular user, at the time of
request.

Backup is the process of periodically taking a copy of the database and
log file (and possibly programs) onto offline storage media.

Journaling is the process of keeping and maintaining a log file (or jour-
nal) of all changes made to the database to enable recovery to be
undertaken effectively in the event of a failure.

Integrity constraints also contribute to maintaining a secure database
system by preventing data from becoming invalid, and hence giving mis-
leading or incorrect results.

Encryption is the encoding of the data by a special algorithm that ren-
ders the data unreadable by any program without the decryption key.

Database administration and security ■ 111

Redundant Array of Independent Disks (RAID) works by having a large
disk array comprising an arrangement of several independent disks that
are organized to improve reliability and at the same time increase
performance.

Review questions
5.1 Define the purpose and tasks associated with data administration and

database administration.

5.2 Compare and contrast the main tasks carried out by the DA and DBA.

5.3 Explain the purpose and scope of database security.

5.4 List the main types of threat that could affect a database system, and for
each, describe the possible outcomes for an organization.

5.5 Explain the following in terms of providing security for a database:

(a) authorization;
(b) views;
(c) backup and recovery;
(d) integrity;
(e) encryption;
(f) RAID.

112 ■ Background

Part 2

Database analysis and
design techniques

6 Fact-finding 115

7 Entity–Relationship modeling 146

8 Normalization 171

In Chapter 4, we learned about the stages of the database system development
lifecycle. There are many occasions during these stages when it’s critical that
the database developer captures the necessary facts to build the required data-
base system. The necessary facts cover the business and the users of the
database system, including the terminology, problems, opportunities, con-
straints, requirements, and priorities. These facts are captured using
fact-finding techniques.

Chapter 6

Fact-finding

In this chapter you will learn:

When fact-finding techniques are used in the database system
development lifecycle.

The types of facts collected throughout the database system
development lifecycle.

The types of documentation produced throughout the database system
development lifecycle.

The most commonly used fact-finding techniques.

How to use each fact-finding technique and the advantages and
disadvantages of each.

About a video rental company called StayHome.

How to use fact-finding techniques in the early stages of the database
system development lifecycle.

Fact-finding

The formal process of using techniques such as interviews and questionnaires to

collect facts about systems, requirements, and preferences.

In this chapter, we discuss when a database developer might use fact-finding
techniques and what types of facts should be captured. We present an overview of
how these facts are used to generate the main types of documentation used
throughout the database system development lifecycle. We briefly describe the
most commonly used fact-finding techniques and identify the advantages and dis-
advantages of each. We finally demonstrate how some of these techniques may be
used during the earlier stages of the database system development lifecycle using a
video rental company called StayHome. In Chapters 9 and 10, and 12 to 16, we’ll
use the StayHome case study to demonstrate the methodology for database design.

Throughout this chapter we use the term ‘database developer’ to refer to a
person or group of people responsible for the analysis, design, and implementa-
tion of a database system.

6.1 When are fact-finding techniques used?
There are many occasions for fact-finding during the database system develop-
ment lifecycle. However, fact-finding is particularly crucial to the early stages of
the lifecycle, including the database planning, system definition, and require-
ments collection and analysis stages. It’s during these early stages that the
database developer learns about the terminology, problems, opportunities, con-
straints, requirements, and priorities of the business and the users of the system.
Fact-finding is also used during database design and the later stages of the lifecy-
cle, but to a lesser extent. For example, during physical database design,
fact-finding becomes technical as the developer attempts to learn more about the
DBMS selected for the database system. Also, during the final stage, operational
maintenance, fact-finding is used to determine whether a system requires tuning
to improve performance or further development to include new requirements.

6.2 What facts are collected?
Throughout the database system development lifecycle, the database developer
needs to capture facts about the current or future system. Table 6.1 provides
examples of the sorts of data captured and the documentation produced for
each stage of the lifecycle. As we mentioned in Chapter 4, the stages of the

116 ■ Database analysis and design techniques

It’s important to have a rough estimate of how much time and effort

is to be spent on fact-finding for a database project. Too much study too soon

leads to paralysis by analysis. However, too little thought can result in an

unnecessary waste of both time and money due to working on the wrong solu-

tion to the wrong problem.

TIP

database system development lifecycle are not strictly sequential, but involve
some amount of repetition of previous stages through feedback loops. This is
also true for the data captured and the documentation produced at each stage.
For example, problems encountered during database design may necessitate
additional data capture on the requirements for the new system.

Fact-finding ■ 117

Table 6.1 Examples of the data captured and the documentation produced for each stage of
the database system development lifecycle.

Stage of database Examples of data Examples of
system development captured documentation
lifecycle produced

Database planning Aims and objectives of database Mission statement and objectives
project of database system

System definition Description of major user views Definition of scope and boundary
(includes job roles and/or of database system; definition of
business application areas) user views to be supported

Requirements collection Requirements for user views; Users’ requirements specifications
and analysis systems specifications, including and system specifications

performance and security
requirements

Database design Users’ responses to checking the Logical database design (includes ER
logical database design; diagram(s), data dictionary, and
functionality provided by target tables); physical database design
DBMS

Application design Users’ responses to checking Application design (includes
interface design description of programs and user

interface)

DBMS selection Functionality provided by target DBMS evaluation and
DBMS recommendations

Prototyping Users’ responses to prototype Modified users’ requirements
specifications and systems
specification

Implementation Functionality provided by target
DBMS

Data conversion Format of current data; data import
and loading capabilities of target DBMS

Testing Test results Testing strategies used; analysis of
test results

Operational Performance testing results; new or User manual; analysis of
maintenance changing user and system performance results; modified users’

requirements requirements and systems
specification

In Section 6.4, we’ll return to examine the first three stages of the database
system development lifecycle, namely database planning, system definition, and
requirements collection and analysis. For each stage, we demonstrate the process
of collecting data using fact-finding techniques and the production of documen-
tation for the StayHome video rental company. However, before this section, we
first present a review of the most commonly used fact-finding techniques.

6.3 Fact-finding techniques
A database developer normally uses several fact-finding techniques during a
single database project. There are five common fact-finding techniques:

■ Examining documentation

■ Interviewing

■ Observing the business in operation

■ Research

■ Questionnaires.

6.3.1 Examining documentation

Examining documentation can be useful when you’re trying to gain some
insight as to how the need for a database arose. You also may find that docu-
mentation can be helpful to provide information on the business (or part of the
business) associated with the problem. If the problem relates to the current
system there should be documentation associated with that system. Examining
documents, forms, reports, and files associated with the current system is a
good way to gain some understanding of the system quickly. Examples of the
types of documentation that you should examine are listed in Table 6.2.

6.3.2 Interviewing

Interviewing is the most commonly used, and normally most useful, fact-find-
ing technique. You can interview to collect information from individuals
face-to-face. There can be several objectives to using interviewing such as find-
ing out facts, checking facts, generating user interest and feelings of
involvement, identifying requirements, and gathering ideas and opinions.
However, using the interviewing technique requires good communication skills
for dealing effectively with people who have different values, priorities, opin-
ions, motivations, and personalities. As with other fact-finding techniques,
interviewing isn't always the best method for all situations. The advantages and
disadvantages of using interviewing as a fact-finding technique are listed in
Table 6.3.

118 ■ Database analysis and design techniques

There are two types of interviews, unstructured and structured. Unstructured
interviews are conducted with only a general objective in mind and with few, if
any, specific questions. The interviewer counts on the interviewee to provide a
framework and direction to the interview. This type of interview frequently

Fact-finding ■ 119

Table 6.2 Examples of types of documentation that should be examined.

Purpose of documentation Examples of useful sources

Describes problem and need Internal memos, e-mails, and minutes of meetings

for database Employee/customer complaints, and documents

that describe the problem

Performance reviews/reports

Describes business Organizational chart, mission statement, and

(or part of business) affected strategic plan of the business

by problem Objectives for the business being studied

Task/job descriptions

Samples of manual forms and reports

Samples of computerized forms and reports

Completed forms/reports

Describes current system Various types of flowcharts and diagrams

Data dictionary

Database system design

Program documentation

User/training manuals

Table 6.3 Advantages and disadvantages of using interviewing as a fact-finding
technique.

Advantages Disadvantages

Allows interviewer to follow up on Very time-consuming and costly, and

interesting comments made by interviewee therefore may be impractical

Allows interviewer to adapt or re-word Success is dependent on

questions during interview communication skills of interviewer

Allows interviewer to observe interviewee’s

body language

Allows interviewee to respond freely and

openly to questions

Allows interviewee to feel part of project

loses focus and, for this reason, you may find that it doesn't usually work well
for database projects.

In structured interviews, the interviewer has a specific set of questions to ask
the interviewee. Depending on the interviewee's responses, the interviewer will
direct additional questions to obtain clarification or expansion. Open-ended
questions allow the interviewee to respond in any way that seems appropriate.
An example of an open-ended question is: ‘Why are you dissatisfied with the
report on member registration?’ Closed-ended questions restrict answers to either
specific choices or short, direct responses. An example of such a question might
be: ‘Are you receiving the report on member registration on time?’ or ‘Does the
report on member registration contain accurate information?’ Both questions
require only a ‘Yes’ or ‘No’ response.

6.3.3 Observing the business in operation

Observation is one of the most effective fact-finding techniques you can use to
understand a system. With this technique, you can either participate in, or
watch a person perform, activities to learn about the system. This technique is
particularly useful when the validity of data collected through other methods is
in question or when the complexity of certain aspects of the system prevents a
clear explanation by the end-users.

As with the other fact-finding techniques, successful observation requires
much preparation. To ensure that the observation is successful, you need to
know as much about the individuals and the activity to be observed as possible.
For example, when are the low, normal, and peak periods for the activity being
observed and will the individuals be upset by having someone watch and
record their actions? The advantages and disadvantages of using observation as
a fact-finding technique are listed in Table 6.4.

6.3.4 Research

A useful fact-finding technique is to research the application and problem.
Computer trade journals, reference books, and the Internet are good sources of
information. They can provide you with information on how others have
solved similar problems, plus you can learn whether or not software packages
exist to solve your problem. The advantages and disadvantages of using
research as a fact-finding technique are listed in Table 6.5.

120 ■ Database analysis and design techniques

To ensure a successful interview you should select appropriate individ-

uals to interview, prepare extensively for the interview, and conduct the

interview in an efficient and effective manner.

TIP

6.3.5 Questionnaires

Another fact-finding technique is to conduct surveys through questionnaires.
Questionnaires are special-purpose documents that allow you to gather facts
from a large number of people while maintaining some control over their
responses. When dealing with a large audience, no other fact-finding technique
can tabulate the same facts as efficiently. The advantages and disadvantages of
using questionnaires as a fact-finding technique are listed in Table 6.6.

Fact-finding ■ 121

Table 6.4 Advantages and disadvantages of using observation as a fact-finding
technique.

Advantages Disadvantages

Allows the validity of facts and data to People may knowingly or unknowingly

be checked perform differently when being observed

Observer can see exactly what is being done May miss observing tasks involving

different levels of difficulty or volume

normally experienced during that time

period

Observer can also obtain data describing Some tasks may not always be performed

the physical environment of the task in the manner in which they are

observed

Relatively inexpensive May be impractical

Observer can do work measurements

Table 6.5 Advantages and disadvantages of using research as a fact-finding
technique.

Advantages Disadvantages

Can save time if solution already exists Can be time-consuming

Researcher can see how others have Requires access to appropriate sources of

solved similar problems or met similar information

requirements

Keeps researcher up to date with May ultimately not help in solving

current developments problem because problem is not

documented elsewhere

There are two formats for questionnaires, free-format and fixed-format. Free-
format questionnaires offer the respondent greater freedom in providing answers.
A question is asked and the respondent records the answer in the space pro-
vided after the question. Examples of free-format questions are: ‘What reports
do you currently receive and how are they used?’ and ‘Are there any problems
with these reports? If so, please explain.’ The problems with free-format ques-
tions are that the respondent’s answers may prove difficult to tabulate and, in
some cases, may not match the questions asked.

Fixed-format questionnaires contain questions that require specific responses
from individuals. Given any question, the respondent must choose from the
available answers. This makes the results much easier to tabulate. On the other
hand, the respondent cannot provide additional information that might prove
valuable. An example of a fixed-format question is: ‘The current format of the
report on video rentals is ideal and should not be changed.’ The respondent
may be given the option to answer ‘Yes’ or ‘No’ to this question, or be given the
option to answer from a range of responses, including ‘Strongly Agree’, ‘Agree’,
‘No opinion’, ‘Disagree’, and ‘Strongly Disagree’.

122 ■ Database analysis and design techniques

Table 6.6 Advantages and disadvantages of using questionnaires as a fact-
finding technique.

Advantages Disadvantages

People can complete and return Number of respondents can be low,

questionnaires at their convenience possibly only 5–10 percent (particularly

if the postal service or e-mail is used to

deliver the questionnaires)

Relatively inexpensive way to gather Questionnaires may be returned

data from a large number of people incomplete

People more likely to provide the real facts No opportunity to adapt or re-word

as responses can be kept confidential questions that may have been

misinterpreted

Responses can be tabulated and Can’t observe and analyze the

analyzed quickly respondent’s body language

Can be delivered using various modes, Can be time-consuming to prepare

including person-to-person, postal questionnaire

service, and e-mail

6.4 The StayHome case study
In this section, we first describe the StayHome case study. We then use the StayHome
case study to illustrate how you would establish a database project in the early
stages of the database system development lifecycle by going through database
planning, system definition, and requirements collection and analysis stages.

6.4.1 The StayHome case study – an overview

This case study describes a company called StayHome, which rents out videos to
its members. The first branch of StayHome was established in 1982 in Seattle but
the company has now grown and has many branches throughout the United
States. The company’s success is due to the first-class service it provides to its
members and the wide and varied stock of videos available for rent.

StayHome currently has about 2000 staff working in 100 branches. When a
member of staff joins the company, the StayHome staff registration form is used.
The staff registration form for Mary Martinez is shown in Figure 6.1.

Each branch has a Manager and several Supervisors. The Manager is respons-
ible for the day-to-day running of a given branch and each Supervisor is
responsible for supervising a group of staff. An example of the first page of a
report listing the members of staff working at the branch in Seattle is shown in
Figure 6.2.

Fact-finding ■ 123

Figure 6.1

The StayHome staff
registration form
for Mary Martinez.

StayHome
Staff Registration Form

Staff Number S0010

Full Name

Mary Martinez

Position

Manager

Salary

50000

Branch Number B002

Branch Address

City Center Plaza,

Telephone Number(s)

205-555-6756/206-555-8836

Seattle, WA 98122

Stay
Home

Each branch of StayHome has a stock of videos for hire. Each video is
uniquely identified using a catalog number. However, in most cases, there are
several copies of each video at a branch, and the individual copies are identified
using the video number. An example of the first page of a report listing the
videos available at the branch in Seattle is shown in Figure 6.3.

Before renting a video, a customer must first join as a member of StayHome.
When a customer joins, he or she is requested to complete the StayHome
member registration form. The member registration form for Don Nelson is
shown in Figure 6.4. StayHome currently has about 100 000 members. A cus-
tomer may choose to register at more than one branch; however, a new
member registration form must be filled out on each occasion. An example of
the first page of a Manager’s report listing the members registered at the branch
in Seattle is shown in Figure 6.5.

Once registered, a member is free to rent videos, up to a maximum of 10 at
any one time. When a member chooses to rent one or more videos, the
StayHome video rental form is completed. An example of a completed form for
Claire Sinclair renting Harry Potter and Shrek is shown in Figure 6.6.

124 ■ Database analysis and design techniques

Figure 6.2

Example of the first
page of a report
listing the members
of staff working at a
StayHome branch in
Seattle.

StayHome
Staff Listing

Branch Number B002 Branch Address

City Center Plaza, Seattle,
Telephone Number(s)

206-555-6756/206-555-8836 WA 98122

Name

Mary Martinez
Robert Chin
Anne Hocine
Annet Longhorn
Chris Lawrence
Sofie Walters

Position

Manager
Supervisor
Supervisor
Assistant
Assistant
Assistant

Staff Number

S0010
S3250
S3190
S5889
S5980
S6112

Page 1

Stay
Home

Fact-finding ■ 125

Figure 6.3

Example of the first
page of a report
listing the videos
available at the
StayHome branch in
Seattle.

StayHome
Videos for Rent Listing

Branch Number B002 Branch Address

City Center Plaza, Seattle,
Telephone Number(s)

206-555-6756/206-555-8836 WA 98122

Video Title

Die Another Day
Die Another Day
Independence Day
Independence Day
Spider-man
Spider-man
Spider-man

Catalog
Number

207132
207132
634817
634817
989001
989001
989001

Page 1

Video
Number

199004
245456
178643
243431
456778
456880
456887

Category

Action
Action
Sci-Fi
Sci-Fi
Sci-Fi
Sci-Fi
Sci-Fi

Daily
Rental

5.00
5.00
4.50
4.50
5.00
5.00
5.00

Stay
Home

Figure 6.4

The StayHome
member
registration form
for Don Nelson.

StayHome
Member Registration Form

Member Number
(Enter if known)

M284354

Full Name

Don Nelson

Member Address

Branch Number B002

Branch Address

City Center Plaza,

Registered By

Robert Chin

Seattle, WA 98122

Seattle, WA 98117

123 Suffolk Lane,

Date Registered 09-Oct-01

Stay
Home

As StayHome has grown, so have the difficulties in managing the increasing
amount of data used and generated by the company. To ensure the continued suc-
cess of the company, the Director of StayHome has urgently requested that a
database system be built to help solve the increasing problems of data management.

6.4.2 The StayHome case study – database planning

The first step in developing a database system is to define clearly the mission
statement for the database project. The mission statement defines the major
aims of the database system. Those driving the database project within the busi-
ness (such as the Director and/or owner) normally define the mission

126 ■ Database analysis and design techniques

Figure 6.5

Example of the first
page of a report
listing the members
registered at the
StayHome branch in
Seattle.

StayHome
Members Listing

Branch Number B002 Branch Address

City Center Plaza,
Telephone Number(s)

206-555-6756/206-555-8836 Seattle, WA 98122

Name

Karen Homer

John Hood

Jamie Peters

Claire Sinclair

Janet McDonald

Don Nelson

William Carring

Address

634–12th Avenue, Seattle,
WA 98123
4/4 Rosie Lane, Seattle

5A–22nd Street, Seattle,
WA 98451
44B–16th Street, Seattle,
WA 98123
1 Lincoln Way, Seattle,
WA 98234
123 Suffolk Lane, Seattle,
WA 98117
1 Sparrowhill Way, Seattle,
WA 98111

Member
Number

M129906

M189976

M220045

M228877

M265432

M284354

M284666

Page 1

Date
Joined

10-Jan-97

21-May-98

20-May-99

28-Aug-99

19-Aug-00

09-Oct-01

10-Oct-02

Stay
Home

statement. A mission statement helps to clarify the purpose of the database pro-
ject and provides a clearer path towards the efficient and effective creation of
the required database system.

Once the mission statement is defined, the next activity involves identifying
the mission objectives. Each mission objective should identify a particular task
that the database must support. The assumption is that if the database supports
the mission objectives then the mission statement should be met. The mission
statement and objectives may be accompanied by additional information that
specifies, in general terms, the work to be done, the resources with which to do
it, and the money to pay for it all.

Creating the mission statement for the StayHome database system

You should begin the process of creating a mission statement for the StayHome
database system by conducting interviews with the Director of the company
and any other appropriate staff, as indicated by the Director. Open-ended ques-
tions are normally the most useful at this stage of the process. For example, you
(the database developer) may start the interview by asking the Director of
StayHome the following questions:

Fact-finding ■ 127

Figure 6.6

Example of a
StayHome video
rental form for
Claire Sinclair.

StayHome
Video Rental

Member Number M228877

City Center Plaza,

Member Name

Claire Sinclair

Seattle, WA 98122

Video Title

Harry Potter

Shrek

Video
Number

565611

476667

Date
Out

12-Dec-03

13-Dec-03

Daily
Rental

4.50

4.00

Date
In

14-Dec-03

Total
Rental

4.50

Branch Number B002

Stay
Home

Branch Address

Database developer ‘What is the purpose of your company?’

Director ‘We provide a wide range of videos for rent to members registered at
our branches throughout the US.’

Database developer ‘Why do you feel that you need a database?’

Director ‘To be honest we can’t cope with our own success. Over the past few
years, we’ve opened several new branches, and at each branch we now offer
a larger selection of videos to a growing number of members. However, this
success has been accompanied by increasing data management problems,
which means that the level of service we provide is falling. Also, there’s a
lack of cooperation and sharing of information between branches, which is a
very worrying development.’

Database developer ‘How do you know that a database will solve your problems?’

Director ‘All I know is that we are drowning in paperwork. We need something
that will speed up the way we work, that is, something to automate a lot of
the day-to-day tasks that seem to take forever these days. Also, I want the
branches to start working together. Databases do this, don’t they?’

Responses to these types of questions should help you formulate the mission
statement. For example, the mission statement for the StayHome database is
shown in Figure 6.7. When you feel that you have a clear and unambiguous
mission statement that the staff of StayHome agree with, you can move on to
define the mission objectives.

Creating the mission objectives for the StayHome database system

The process of creating mission objectives involves conducting interviews with
appropriate members of staff. Again, open-ended questions are normally the
most useful at this stage of the process. To obtain the complete range of mission
objectives, you should interview various members of staff with different roles in
StayHome. Examples of typical questions you might ask are as follows:

‘What is your job description?’
‘What kinds of tasks do you perform in a typical day?’
‘What kinds of data do you work with?’
‘What types of reports do you use?’
‘What types of things do you need to keep track of?’
‘What service does your company provide to your members?’

These questions (or similar) are put to the Director and members of staff in
the role of Manager, Supervisor, Assistant, and Buyer of StayHome. Of course, it
may be necessary to adapt the questions as required depending on whom you
are interviewing.

128 ■ Database analysis and design techniques

Director

Database developer ‘What role do you play for the company?’

Director ‘I oversee the running of the company to ensure that we continue to
provide the best possible video rental service to our members.’

Database developer ‘What kinds of tasks do you perform in a typical day?’

Director ‘I monitor the running of each branch by our Managers. I try to ensure
that the branches work well together and share important information about
videos and members. I oversee the work carried out by the Buyer for our
company; that’s the person responsible for buying videos for all our
branches. I normally try to keep a high profile with our branch Managers by
calling into each branch once or twice a month.’

Database developer ‘What kinds of data do you work with?’

Director ‘I need to be able to get my hands on everything used or generated by
our company. That includes data about staff, videos, rentals, members, video
suppliers, and video orders. I mean everything!’

Database developer ‘What types of reports do you use?’

Director ‘I need to know what’s going on at all the branches. I get my informa-
tion from various reports on staff, videos in stock, video rentals, members,
video suppliers, and orders.’

Database developer ‘What types of things do you need to keep track of?’

Director ‘As I said before, I need to track everything, I need to see the whole pic-
ture, OK?’

Database developer ‘What service does your company provide to your members?’

Director ‘We try to provide the best and most competitively priced video rental
service in the US.’

Manager

Database developer ‘What is your job description?’

Manager ‘My job title is Manager. I oversee the day-to-day running of my
branch to provide the best service to our members.’

Fact-finding ■ 129

Figure 6.7

Mission statement
for the StayHome
database system.

‘The purpose of the StayHome database system is to collect, store, manage,
and control access to the data that supports the video rentals business for
our members, and to facilitate the cooperation and sharing of information
between branches.’

Database developer ‘What kinds of tasks do you perform in a typical day?’

Manager ‘I ensure that the branch has the appropriate type and number of staff
on duty at any time of the day. I monitor the hiring of videos to ensure that
we have an appropriate selection of videos for our membership, although I
don’t actually do the buying of videos myself – that’s done by the company
Buyer. I monitor the registering of new members and the hiring activity of
our current members.’

Database developer ‘What kinds of data do you work with?’

Manager ‘I need data about staff, videos, rentals, and members.’

Database developer ‘What types of reports do you use?’

Manager ‘Various reports on staff, videos in stock, video rentals, and members.’

Database developer ‘What types of things do you need to keep track of?’

Manager ‘Staff, videos in stock, video rentals, and members.’

Database developer ‘What service does your company provide to your members?’

Manager ‘We try to provide the best video rentals service in the area.’

Supervisor

Database developer ‘What is your job description?’

Supervisor ‘My job title is Supervisor. I supervise a small group of staff and deal
directly with our members in providing a video rental service.’

Database developer ‘What kinds of tasks do you perform in a typical day?’

Supervisor ‘I allocate staff to particular duties, such as dealing with members,
restocking shelves, and the filing of paperwork. I answer queries from mem-
bers about videos for rent. I process the renting out and return of videos. I
keep members’ details up to date and register customers when they want to
join the company as one of our members.’

Database developer ‘What kinds of data do you work with?’

Supervisor ‘I work with data about staff, videos, rentals, and members.’

Database developer ‘What types of reports do you use?’

Supervisor ‘Reports on staff and videos in stock.’

Database developer ‘What types of things do you need to keep track of?’

Supervisor ‘Whether certain videos are available for hire and whether the details
on our members are up to date.’

130 ■ Database analysis and design techniques

Assistant

Database developer ‘What is your job description?’

Assistant My job title is Assistant. I deal directly with our members in providing
a video rental service.’

Database developer ‘What kinds of tasks do you perform in a typical day?’

Assistant ‘I answer queries from members about videos for rent. You know what
I mean: “Do you have such and such a video?” I process the renting out and
return of videos. I restock the shelves with returned videos and when we are
not too busy I try to file paperwork.’

Database developer ‘What kinds of data do you work with?’

Assistant ‘Data about videos, rentals, and members.’

Database developer ‘What types of reports do you use?’

Assistant ‘None.’

Database developer ‘What types of things do you need to keep track of?’

Assistant ‘Whether certain videos are available for hire.’

Database developer ‘What service does your company provide to your members?’

Assistant ‘We try to answer questions about videos in stock such as: “Do you
have videos starring Ewan MacGregor?” and “Who starred in or directed
2001 A Space Odyssey?” You wouldn’t believe what our members expect us to
know, but luckily most of us work here because we’re really into films, so if I
don’t know the answer, one of the others will.’

Buyer

Database developer ‘What is your job description?’

Buyer ‘My job title is Buyer. I’m responsible for buying videos for rent for all
branches of the company.’

Database developer ‘What kinds of tasks do you perform in a typical day?’

Buyer ‘I work directly with branch Managers and video suppliers. I respond to
requests from Managers to supply them with certain videos. It’s my job to
ensure that I get the best possible deal for the company when dealing with
video suppliers. Of course, I depend on Managers doing their homework – I
don’t want to order videos that a branch doesn’t need or find that a branch
doesn’t stock sufficient copies of a popular video. When I have time, I do my
own checking by monitoring the renting of videos at each branch to check
that they have an appropriate selection of videos.’

Database developer ‘What kinds of data do you work with?’

Buyer ‘I need access to data on branches, videos, video rentals, members, video
orders, and suppliers.’

Fact-finding ■ 131

Database developer ‘What types of reports do you use?’

Buyer ‘I need reports on orders I have placed for videos. I need various reports
that show me videos in stock, video rentals, and members at each branch
and across all branches.’

Database developer ‘What types of things do you need to keep track of?’

Buyer ‘I need to have up-to-date information about my orders for videos; it’s
important to deal only with suppliers who won’t let us down. I also need to
know what’s going on at each branch in terms of their stock of videos and
video rentals. As I said before, I don’t want to order videos that a branch
doesn’t need.’

Database developer ‘What service does your company provide to your members?’

Buyer ‘We try to provide the best selection of videos at the cheapest possible
rental rate.’

Responses to these types of questions should help you formulate the mission
objectives. For example, the mission objectives for the StayHome database are
shown in Figure 6.8.

132 ■ Database analysis and design techniques

Figure 6.8

Mission objectives
for the StayHome
database system.

To maintain (enter, update, and delete) data on branches.
To maintain (enter, update, and delete) data on staff.
To maintain (enter, update, and delete) data on videos.
To maintain (enter, update, and delete) data on members.
To maintain (enter, update, and delete) data on video rentals.
To maintain (enter, update, and delete) data on video suppliers.
To maintain (enter, update, and delete) data on orders to suppliers for videos.
To perform searches on branches.
To perform searches on videos.
To perform searches on staff.
To perform searches on video rentals.
To perform searches on members.
To perform searches on video suppliers.
To perform searches on video orders.
To track the status of videos in stock.
To track the status of video rentals.
To track the status of video orders.
To report on branches.
To report on staff.
To report on videos.
To report on members.
To report on video rentals.
To report on video suppliers.
To report on video orders.

6.4.3 The StayHome case study – system definition

The purpose of the system definition stage is to define the scope and boundary
of the database system and its major user views. A user view represents the
requirements that should be supported by a database system as defined by a
particular job role (such as Manager or Assistant) or business application area
(such as video rentals or stock control).

Defining the systems boundary for the StayHome database system

During this stage of the database system development lifecycle, you should use
interviews to clarify or expand on data captured in the previous stage. However,
you may also use additional fact-finding techniques, including examining the
sample documentation shown in Section 6.4.1. You should now analyze the
data collected so far to define the boundary of the database system. The bound-
ary for the StayHome database system is shown in Figure 6.9. Contained within
the boundary is a representation of the main types of data mentioned in the
interviews and a rough guide as to how this data is related.

Identifying the major user views for the StayHome database system

You should now analyze the data collected so far to define the user views of the
database system. The majority of data about the user views was collected during
interviews with the Director and members of staff in the role of Manager,
Supervisor, Assistant, and Buyer. The user views for the StayHome database
system are shown in Figure 6.10.

Fact-finding ■ 133

Figure 6.9

Boundary for the
StayHome database
system.

PlacesSuppliers

Attends
Video Order

Branch

Rental

Supplier

VideoForSale

Staff

Member

For

HasStocks

RequestsPartOf

Registers

Systems boundary

Video

Training
Course

Is

Provides

Figure 6.10

User views for the StayHome database system.

134 ■ Database analysis and design techniques

User view Requirements

Director To report on all branches.
To report on staff at all branches.
To report on videos at all branches.
To report on members at all branches.
To report on video rentals at all branches.
To report on video suppliers.
To report on video orders.

Manager To maintain (enter, update, and delete) data on a given branch.
To maintain (enter, update, and delete) data on staff at a given branch.
To perform searches on branches.
To perform searches on staff at all branches.
To report on staff at a given branch.
To report on videos at all branches.
To report on members at all branches.
To report on video rentals at all branches.

Supervisor To maintain (enter, update, and delete) data on videos at a given branch.
To maintain (enter, update, and delete) data on members at a given branch.
To maintain (enter, update, and delete) data on video rentals at a given branch.
To perform searches on videos at all branches.
To perform searches on video rentals at a given branch.
To perform searches on members at a given branch.
To track the status of videos in stock at a given branch.
To track the status of video rentals at a given branch.
To report on staff at a given branch.

Assistant To maintain (enter, update, and delete) data on video rentals at a given branch.
To maintain (enter, update, and delete) data on members at a given branch.
To perform searches on videos at all branches.
To perform searches on video rentals at a given branch.
To perform searches on members at a given branch.
To track the status of videos in stock at a given branch.
To track the status of video rentals at a given branch.

Buyer To maintain (enter, update, and delete) data on videos.
To maintain (enter, update, and delete) data on video suppliers.
To maintain (enter, update, and delete) data on video orders.
To perform searches on branches.
To perform searches on videos at all branches.
To perform searches on video suppliers.
To perform searches on video orders.
To track the status of video orders.
To report on videos at all branches.
To report on video rentals at all branches.
To report on members at all branches.
To report on video suppliers.
To report on video orders.

6.4.4 The StayHome case study – requirements collection and analysis

During this stage, you should continue to gather more details on the user views
identified in the previous stage, to create a users’ requirements specification that
describes in detail the data to be held in the database and how the data is to be
used. While gathering more information on the user views, you should also try to
collect any general requirements for the system. The purpose of gathering this
information is to create a systems specification, which describes any features to be
included in the new database system such as networking and shared access
requirements, performance requirements, and the levels of security required.

While you are collecting the data on the requirements for the user views and
the system in general, you will learn about how the current system works. Of
course, you are building a new database system and should try to retain the
good things about the old system while introducing the benefits that will be
part of using the new system.

An important activity associated with this stage is deciding how you want to
deal with the situation where you have more than one user view. As we discussed
in Section 4.6, there are three approaches to dealing with multiple user views,
namely the centralized approach, the view integration approach, and a combination
of both approaches. We’ll show how you can use these approaches shortly.

Gathering more information on the user views of the StayHome database system

To find out more about the requirements for each user view, you may again use
a selection of fact-finding techniques, including interviews and observing the
business in operation. Examples of the types of questions that you may ask
about the data (represented as X) required by a user view includes:

‘What type of data do you need to hold on X?’
‘What sorts of things do you do with the data on X?’

For example, you may ask a branch Manager the following questions:

Database developer ‘What type of data do you need to hold on staff?’

Manager ‘The type of data held on a member of staff is his or her name, posi-
tion, and salary. Each member of staff is given a staff number, which is
unique throughout the company.’

Database developer ‘What sorts of things do you do with the data on staff?’

Manager ‘I need to be able to enter the details of new members of staff and
delete their details when they leave. I need to keep the details of staff up to
date and print reports that list the name, position, and salary of each
member of staff at my branch. I need to be able to allocate Supervisors to
look after staff. Sometimes when I need to communicate with other
branches, I need to find out the names of Managers.’

Fact-finding ■ 135

You need to ask similar questions about all the important data to be stored in
the database. Responses to these questions should help you identify the neces-
sary details for the users’ requirements specification.

Gathering information on the system requirements of the StayHome database system

While conducting interviews about user views, you should also collect more
general information on the system requirements. Examples of the types of
questions that you may ask about the system include:

‘What transactions run frequently on the database?’
‘What transactions are critical to the operation of the business?’
‘When do the critical transactions run?’
‘When are the low, normal, and high workload periods for the critical trans-
actions?’
‘What type of security do you want for the database system?’
‘Is there any highly sensitive data that should only be accessed by certain
members of staff?’
‘What historical data do you want to hold?’
‘What are the networking and shared access requirements for the database
system?’
‘What type of protection from failures or data loss do you want for your
database system?’

For example, you may ask a Manager the following questions:

Database developer ‘What transactions run frequently on the database?’

Manager ‘We frequently get requests either by phone or by members who call
into our branch to search for a particular video and see if it’s available for
rent. Of course, we also do a lot of renting out and returning of videos.’

Database developer ‘What transactions are critical to the operation of the business?’

Manager ‘Again, critical operations include being able to search for particular
videos and the renting out and returning of videos. Members would go else-
where if we couldn’t provide these basic services.’

Database developer ‘When do the critical transactions run?’

Manager ‘Every day.’

Database developer ‘When are the low, normal, and high workload periods for
the critical transactions?’

Manager ‘We tend to be quiet in the mornings and get busier as the day pro-
gresses. The busiest time each day for dealing with members is between 6
and 9pm. We even have to double the staff on duty during this period on
Fridays and Saturdays.’

136 ■ Database analysis and design techniques

You may ask the Director the following questions:

Database developer ‘What type of security do you want for the database system?’

Director ‘I don’t suppose a database holding information for a video rental com-
pany holds very sensitive data, but I wouldn’t want any of our competitors
to see our data on members and their video rentals. Staff should see only the
data necessary to do their job in a form that suits what they’re doing. For
example, although it’s necessary for Supervisors and Assistants to see
member details, member records should only be displayed one at a time and
not as a report.’

Database developer ‘Is there any highly sensitive data that should only be
accessed by certain members of staff?’

Director ‘As I said before, staff should see only the data necessary to do their
jobs. For example, although Supervisors need to see staff details, I should be
the only one to see salary details.’

Database developer ‘What historical data do you want to hold?’

Director ‘I want to be able to keep members’ details for a couple of years after
their last video rental, so that we can mailshot them, tell them about our
latest promotional offers, and generally try to attract them back. I also want
to be able to keep rental information for a couple of years so that we can
analyze it to find out which types of videos are the most popular, which age
groups hire videos most frequently, and so on.’

Database developer ‘What are the networking and shared access requirements
for the database system?’

Director ‘I want all the branches networked to our Headquarters here in Seattle,
so that staff can access the system from wherever and whenever they need
to. At most branches, I would expect about two or three staff to be accessing
the system at any one time, but remember we have about 100 branches.
Most of the time the staff should be just accessing local branch data.
However, I don’t really want there to be any restrictions about how or when
the system can be accessed, unless it’s got real financial implications.’

Database developer ‘What type of protection from failures or data loss do you
want for your database system?’

Director ‘The best, of course. All our business is going to be conducted using the
database, so if it goes down, we’re sunk. To be serious for a minute, I think
we probably have to back up our data every evening when the branch closes,
what do you think?’

You need to ask similar questions about all the important aspects of the
system. Responses to these questions should help you identify the necessary
details for the systems specification.

Fact-finding ■ 137

Managing the user views of the StayHome database system

How do you decide whether to use the centralized or view integration approach
to manage multiple user views? One way to help you make a decision is to
examine the overlap in terms of the data used between the user views identified
during the system definition stage. Table 6.7 cross-references the Director,
Manager, Supervisor, Assistant, and Buyer user views with the main types of
data used by the StayHome database system (namely, Supplier, Video Order,
Video, Branch, Staff, Rental, and Member).

You can see from this table that there is an overlap in the data used by all the
user views. However, the Director and Buyer user views are distinct in requiring
additional data (namely, Supplier and Video Order) to that used by the other
user views. Based on this analysis, you could use the centralized approach first
to merge the requirements for the Director and Buyer user views (given the col-
lective name of Business user views) and the requirements for the Manager,
Supervisor, and Assistant user views (given the collective name of Branch user
views). You could then develop data models representing the Business and
Branch user views and then use the view integration approach to merge the two
data models. Of course, for a simple case study like StayHome, we could easily
use the centralized approach for all user views. However, to allow us to demon-
strate both the centralized and view integration approaches working in practice
we’ll stay with our decision to identify two collective user views for StayHome.

It’s difficult to give precise rules as to when it’s appropriate to use the central-
ized or view integration approaches. As the database developer, you should base
your decision on an assessment of the complexity of the database system and
the degree of overlap between the various user views. However, whether you
use the centralized or view integration approach or a mixture of both to build
the underlying database, ultimately you need to create the original user views
for the working database system. We’ll discuss the establishment of the user
views for the database in Chapter 14. In the remainder of this chapter, we pre-

138 ■ Database analysis and design techniques

Table 6.7 Cross-reference of user views with the main types of data used by the
StayHome database system.

Supplier Video Order Video Branch Staff Rental Member

Director X X X X X X X

Manager X X X X X

Supervisor X X X X X

Assistant X X X X

Buyer X X X X X X

sent the users’ requirements specification for the Branch user views of StayHome
and the systems specification for the database system.

Creating the users’ requirements specification for the Branch user views of the
StayHome database system

The users’ requirements specification for the Branch user views is listed in two
sections: the first describes the data used by the Branch user views and the
second provides examples of how the data is used by the Branch user views
(that is, the transactions performed on the data).

Data requirements

The data held on a branch of StayHome is the branch address made up of street,
city, state, and zip code, and the telephone numbers (maximum of 3 lines). Each
branch is given a branch number, which is unique throughout the company.

Each branch of StayHome has staff, which includes a Manager, one or more
Supervisors, and a number of other staff. The Manager is responsible for the
day-to-day running of a given branch. Each branch has several Supervisors and
each Supervisor is responsible for supervising a group of staff. The data held on
a member of staff is his or her name, position, and salary. Each member of staff
is given a staff number, which is unique throughout the company.

Each branch of StayHome is allocated a stock of videos. The data held on a
video is the catalog number, video number, title, category, daily rental rate, pur-
chase price, status, and the names of the main actors (and the characters
played), and the director. The catalog number uniquely identifies each video. In
most cases, there are several copies of each video at a branch, and the individ-
ual copies are identified using the video number. A video is given a category
such as Action, Adult, Children, Fantasy, Horror, Sci-Fi, or Thriller. The status
indicates whether a specific copy of a video is available for rent.

Before renting a video from the company, a customer must first register as a
member of a local branch of StayHome. The data held on a member is the first
and last name, address, and the date that the member registered at the branch.
Each member is given a member number, which is unique across all branches
and is used even when a member chooses to register at more than one branch.
The name of the member of staff responsible for processing the registration of a
member at a branch is also noted.

Once registered, a member is free to rent videos, up to a maximum of 10 at
any one time. The data held on each video rented is the rental number, the
member’s full name and member number, the video number, title, and daily
rental cost, and the dates the video is rented out and returned. The rental
number is unique throughout the company.

Fact-finding ■ 139

Transaction requirements

Data entry
(a) Enter the details of a new branch.

(b) Enter the details of a new member of staff at a branch (such as an employee
Tom Daniels at branch B001).

(c) Enter the details for a newly released video (such as details of a video called
Return of the King).

(d) Enter the details of copies of a new video at a given branch (such as three
copies of Return of the King at branch B001).

(e) Enter the details of a new member registering at a given branch (such as a
member Bob Adams registering at branch B002).

(f) Enter the details of a rental agreement for a member renting a video (such
as member Don Nelson renting Return of the King on 4-May-2004).

Data update/deletion
(g) Update/delete the details of a branch.

(h) Update/delete the details of a member of staff at a branch.

(i) Update/delete the details of a given video.

(j) Update/delete the details of a copy of a video.

(k) Update/delete the details of a given member.

(l) Update/delete the details of a given rental agreement for a member renting
a video.

Data queries
The database should be capable of supporting the following sample queries:

(m) List the details of branches in a given city.

(n) List the name, position, and salary of staff at a given branch, ordered by
staff name.

(o) List the name of each Manager at each branch, ordered by branch number.

(p) List the title, category, and availability of all videos at a specified branch,
ordered by category.

(q) List the title, category, and availability of all videos for a given actor at a
specified branch, ordered by title.

(r) List the title, category, and availability of all videos for a given director at a
specified branch, ordered by title.

(s) List the details of all videos a specified member currently has on rent.

(t) List the details of copies of a given video at a specified branch.

140 ■ Database analysis and design techniques

(u) List the titles of all videos in a specified category, ordered by title.

(v) List the total number of videos in each video category at each branch,
ordered by branch number.

(w) List the total cost of the videos at all branches.

(x) List the total number of videos featuring each actor, ordered by actor name.

(y) List the total number of members at each branch who joined in 1999,
ordered by branch number.

(z) List the total possible daily rental for videos at each branch, ordered by
branch number.

Creating the systems specification for the StayHome database system

The systems specification should list all the important features for the StayHome
database system. Examples of the types of features that should be described in
the systems specification include:

■ Initial database size

■ Database rate of growth

■ The types and average number of record searches

■ Networking and shared access requirements

■ Performance

■ Security

■ Backup and recovery

■ User interface

■ Legal issues.

Initial database size
(a) There are approximately 20 000 video titles and 400 000 videos for rent dis-

tributed over 100 branches. There are an average of 4000 and a maximum
of 10000 videos for rent at each branch.

(b) There are approximately 2000 staff working across all branches. There are an
average of 15 and a maximum of 25 members of staff working at each branch.

(c) There are approximately 100 000 members registered across all branches.
There are an average of 1000 and a maximum of 1500 members registered
at each branch.

(d) There are approximately 400 000 video rentals across all branches. There are
an average of 4000 and a maximum of 10000 video rentals at each branch.

(e) There are approximately 1000 directors and 30 000 main actors in 60 000
starring roles.

(f) There are approximately 50 video suppliers and 1000 video orders.

Fact-finding ■ 141

Database rate of growth
(a) Approximately 100 new video titles and 20 copies of each video are added

to the database each month.

(b) Once a copy of a video is no longer suitable for renting out (this includes
those of poor visual quality, lost, or stolen), the corresponding record is
deleted from the database. Approximately 100 records of videos for rent are
deleted each month.

(c) Approximately 20 members of staff join and leave the company each
month. The records of staff who have left the company are deleted after
one year. Approximately 20 staff records are deleted each month.

(d) Approximately 1000 new members register at branches each month. If a
member does not rent out a video at any time within a period of two years,
his or her record is deleted. Approximately 100 member records are deleted
each month.

(e) Approximately 5000 new video rentals are recorded across 100 branches
each day. The details of video rentals are deleted two years after the cre-
ation of the record.

(f) Approximately 50 new video orders are placed each week. The details of
video orders are destroyed two years after the creation of the record.

The types and average number of record searches
(a) Searching for the details of a branch – approximately 10 per day.

(b) Searching for the details of a member of staff at a branch – approximately
20 per day.

(c) Searching for the details of a given video – approximately 5000 per day
(Sunday to Thursday), approximately 10 000 per day (Friday and Saturday).
Peak workload 6–9pm daily.

(d) Searching for the details of a copy of a video – approximately 10 000 per
day (Sunday to Thursday), approximately 20 000 per day (Friday and
Saturday). Peak workload 6–9pm daily.

(e) Searching for the details of a specified member – approximately 100 per day.

(f) Searching for the details of a rental agreement for a member renting a video
– approximately 10 000 per day (Sunday to Thursday), approximately
20000 per day (Friday and Saturday). Peak workload 6–9pm daily.

Networking and shared access requirements
(a) All branches should be securely networked to a centralized database located

at the company’s HQ in Seattle.

(b) The system should allow for at least three people concurrently accessing the
system from each branch. Consideration needs to be given to the licensing
requirements for this number of concurrent accesses.

142 ■ Database analysis and design techniques

Performance
(a) During opening hours but not during peak periods expect less than 1

second response for all single record searches. During peak periods (6–9pm
daily) expect less than 5 second response for all single record searches.

(b) During opening hours but not during peak periods expect less than 5 second
response for all multiple record searches. During peak periods (6–9pm daily)
expect less than 10 second response for all multiple record searches.

(c) During opening hours but not during peak periods expect less than 1
second response for all updates/saves. During peak periods (6–9pm daily)
expect less than 5 second response for all updates/saves.

Security
(a) The database should be password protected.

(b) Each member of staff should be assigned database access privileges appro-
priate to a particular user view, namely Director, Manager, Supervisor,
Assistant, or Buyer.

(c) Staff should see only the data necessary to do their job in a form that suits
what they’re doing.

Backup and recovery
The database should be backed up each day at 12 midnight.

User interface
The user interface should be menu-driven. Online help should be easy to locate
and access.

Legal issues
Each country has laws that govern the way that the computerized storage of
personal data is handled. As the StayHome database holds data on staff and
members, any legal issues that must be complied with should be investigated
and implemented.

6.4.5 The StayHome case study – database design

In this chapter, we demonstrated the creation of the users’ requirements specifi-
cation for the Branch user views and the systems specification for the StayHome
database system. These documents are the source of information for the next
stage of the lifecycle called database design. In Chapters 9, 10, and 12 to 16,
we’ll provide a step-by-step methodology for database design, and we’ll use the
documents created in this chapter to demonstrate the methodology in practice.

For those of you interested in developing more complex multi-user-view
database systems, we’ll demonstrate how the view integration approach works in
practice in Appendix C using the branch and business user views of StayHome.

Fact-finding ■ 143

Chapter summary
Fact-finding is the formal process of using techniques such as inter-
views and questionnaires to collect facts about systems, requirements,
and preferences.

Fact-finding is particularly crucial to the early stages of the database
system development lifecycle, including the database planning, system
definition, and requirements collection and analysis stages.

The five most common fact-finding techniques are examining documen-
tation, interviewing, observing the business in operation, research, and
questionnaires.

The first step in the database planning stage is to define clearly the
mission statement and mission objectives for the database project. The
mission statement defines the major aims of the database system. Each
mission objective should identify a particular task that the database
must support.

The purpose of the system definition stage is to define the boundaries
and user views of the database system.

There are two main documents created during the requirements collec-
tion and analysis stage, namely the users’ requirements specification
and the systems specification.

The users’ requirements specification describes in detail the data to be
held in the database and how the data is to be used.

The systems specification describes any features to be included in the data-
base system such as the required performance and the levels of security.

Review questions
6.1 Briefly describe what the process of fact-finding attempts to achieve for a

database developer.

6.2 Describe how fact-finding is used throughout the stages of the database
system development lifecycle.

6.3 For each stage of the database system development lifecycle identify
examples of the facts captured and the documentation produced.

6.4 A database developer normally uses several fact-finding techniques during
a single database project. The five most commonly used techniques are exam-
ining documentation, interviewing, observing the business in operation,

144 ■ Database analysis and design techniques

conducting research, and using questionnaires. Describe each fact-finding
technique and identify the advantages and disadvantages of each.

6.5 Describe the purpose of defining a mission statement and mission objec-
tives for a database system.

6.6 What is the purpose of the systems definition stage?

6.7 How do the contents of a users’ requirements specification differ from a
systems specification?

6.8 Describe one approach to deciding whether to use centralized, view inte-
gration, or a combination of both when developing a database system for
multiple user views.

Fact-finding ■ 145

In Chapter 6, you learned about techniques for gathering and capturing infor-
mation about what the users require of the database system. Once the
requirements collection and analysis stage of the database system development
lifecycle is complete and you have documented the requirements for the data-
base system, you are now ready to begin database design.

One of the most difficult aspects of database design is the fact that designers,
programmers, and end-users tend to view data and its use in different ways.
Unfortunately, unless we can gain a common understanding that reflects how the
organization operates, the design we produce will fail to meet the users’ require-
ments. To ensure that we get a precise understanding of the nature of the data
and how the organization uses it, we need to have a model for communication
that is non-technical and free of ambiguities. The Entity–Relationship (ER) model
is one such example. Since the introduction of ER modeling in 1976, the model
has been extended to include additional enhanced modeling concepts. We cover
the basic ER concepts in this chapter and introduce some of the more popular
enhanced ER concepts in Chapter 11.

Chapter 7

Entity–Relationship
modeling

In this chapter you will learn:

How to use ER modeling in database design.

The basic concepts of an ER model called entities, relationships, and
attributes.

A diagrammatic technique for displaying an ER model.

How to identify and solve connection traps in an ER model.

Database system
development
lifecycle discussed
in Chapter 4

Entity–Relationship modeling is a top-down approach to database design.
We begin ER modeling by identifying the important data (called entities) and
relationships between the data that must be represented in the model. We then
add more details such as the information we want to hold about the entities
and relationships (called attributes) and any constraints on the entities, rela-
tionships, and attributes.

Throughout this chapter, you are introduced to the basic concepts that make
up an ER model. Although there is general agreement about what each concept
means, there are a number of different ways that you can represent each con-
cept in a diagram. We have chosen a diagrammatic notation that uses an
increasingly popular object-oriented modeling language called UML (Unified
Modeling Language). However, examples of alternative popular notations for
ER models are shown in Appendix A.

As the ER model forms the basis of the methodology we’ll present in
Chapters 9, 10, and 12 to 16, this chapter may prove to be one of the most
important in this book. If you don’t understand the concepts immediately,
don’t worry. Try reading the chapter again, and then look at the examples we
give in the methodology for additional help. We start by introducing the basic
concepts of the ER model, namely entities, relationships, and attributes.

7.1 Entities

The basic concept of the ER model is an entity, which represents a set of
objects in the ‘real world’ that share the same properties. Each object, which
should be uniquely identifiable within the set, is called an entity occurrence.
An entity has an independent existence and can represent objects with a physi-
cal (or ‘real’) existence or objects with a conceptual (or ‘abstract’) existence, as
shown in Figure 7.1.

We identify each entity by a unique name and a list of properties, called attrib-
utes. Although an entity has a distinct set of attributes, each entity has its own
values for each attribute. A database normally contains many different entities.

Entity–Relationship modeling ■ 147

UML is the successor to a number of object-oriented analysis and design methods

introduced in the 1980s and 1990s and is the standard modeling language.

Entity

A set of objects with the same properties, which are identified by a user or organiza-

tion as having an independent existence.

Diagrammatic representation of entities

Each entity is shown as a rectangle labeled with the name of the entity, which is
normally a singular noun. In UML, the first letter of each word in the entity
name is uppercase (for example, Video, Role, Actor, VideoForRent). Figure 7.2 demon-
strates the diagrammatic representation of the Video, Role, and Actor entities.

7.2 Relationships

A relationship is a set of associations between participating entities. As with
entities, each association should be uniquely identifiable within the set. A
uniquely identifiable association is called a relationship occurrence.

Each relationship is given a name that describes its function. For example,
the Actor entity is associated with the Role entity through a relationship called
Plays, and the Role entity is associated with the Video entity through a relation-
ship called Features.

Diagrammatic representation of relationships

Each relationship is shown as a line connecting the associated entities, labeled
with the name of the relationship. Normally, a relationship is named using a
verb (for example, Plays or Features) or a short phrase including a verb (for exam-

148 ■ Database analysis and design techniques

Figure 7.1

Examples of entities
with physical
and conceptual
existence.

Physical existence Conceptual existence

Member Role

Video Rental

Branch Registration

Attributes are
discussed in
Section 7.3

Figure 7.2

Diagrammatic
representation of
the Video, Role, and
Actor entities.

RoleVideo Actor

Entity name

Relationship

A set of meaningful associations among entities.

ple, IsPartOf or WorksAt). Again, the first letter of each word in the relationship
name is shown in uppercase. Whenever possible, a relationship name should be
unique for a given ER model.

A relationship is only labeled in one direction, which usually means that the
name of the relationship only makes sense in one direction (for example, Actor
Plays Role makes sense but not Role Plays Actor). So once the relationship name is
chosen, an arrow symbol is placed beside the name indicating the correct direc-
tion for a reader to interpret the relationship name (for example, Actor Plays �
Role). Figure 7.3 demonstrates the diagrammatic representation of the relation-
ships Video Features Role and Actor Plays Role.

7.2.1 Degree of a relationship

The entities involved in a particular relationship are referred to as participants.
The number of participants in a relationship is called the degree and indicates
the number of entities involved in a relationship. A relationship of degree one
is called unary, which is commonly referred to as a recursive relationship. We
discuss this type of relationship in more detail in the following section. A rela-
tionship of degree two is called binary. The two relationships shown in Figure
7.3 are binary relationships. A relationship of a degree higher than binary is
called a complex relationship.

A relationship of degree three is called ternary. An example of a ternary rela-
tionship is Registers with three participating entities, namely Branch, Staff, and
Member, as shown in Figure 7.4. The purpose of this relationship is to represent
the situation where a member of staff registers a member at a particular branch,
allowing for members to register at more than one branch, and members of
staff to move between branches.

Entity–Relationship modeling ■ 149

Figure 7.3

Diagrammatic
representation of
the Video Features
Role and Actor Plays
Role relationships.

Relationship
name

RoleVideo
Features Plays

‘Video features role’ ‘Actor plays role’

Actor

Degree of a relationship

The number of participating entities in the relationship.

A relationship of degree four is called quaternary, and a relationship of a
higher degree is called n-ary. The most popular type of relationship you’ll come
across is binary, but occasionally you’ll come across unary or ternary, and less
frequently quaternary.

7.2.2 Recursive relationships

Let’s consider a recursive relationship called Supervises, which represents an asso-
ciation of staff with a supervisor where the supervisor is also a member of staff.
In other words, the Staff entity participates twice in the Supervises relationship:
the first participation as a supervisor, and the second participation as a member
of staff who is supervised (supervisee), as shown in Figure 7.5.

Relationships may be given role names to indicate the purpose that each
participating entity plays in a relationship. Role names are important for recur-
sive relationships to determine the function of each participating entity. Figure
7.5 shows the use of role names to describe the Supervises recursive relationship.
The first participation of the Staff entity in the Supervises relationship is given
the role name Supervisor and the second participation is given the role
name Supervisee.

150 ■ Database analysis and design techniques

Figure 7.4

Example of a
ternary relationship
called Registers.

Member

Branch StaffRegisters

‘Staff registers a
member at a branch’

Recursive relationship

A relationship where the same entity participates more than once in different roles.

Figure 7.5

Example of a
recursive
relationship called
Supervises.

Supervisee

Staff
Supervisor

Role name

Supervises
‘Staff (supervisor) supervises
staff (supervisee)’

7.3 Attributes

The particular properties of entities are called attributes. Attributes represent
what we want to know about entities. For example, a Video entity may be
described by the catalogNo, title, category, dailyRental, and price attributes. These
attributes hold values that describe each video occurrence, and represent the
main source of data stored in the database.

As we now discuss, we can classify attributes as being: simple or composite;
single-valued or multi-valued; or derived.

7.3.1 Simple and composite attributes

Simple attributes cannot be further subdivided. Examples of simple attributes
include the category and price attributes for a video. Simple attributes are some-
times called atomic attributes.

Composite attributes can be further divided to yield smaller components with an
independent existence. For example, the name attribute of the Member entity with
the value ‘Don Nelson’ can be subdivided into fName (‘Don’) and lName (‘Nelson’).

Entity–Relationship modeling ■ 151

Attribute

A property of an entity or a relationship.

A relationship between entities can also have attributes similar to those of an

entity, but we’ll defer the discussion of relationships that have attributes until

Section 7.6.

Simple attribute

An attribute composed of a single component.

Composite attribute

An attribute composed of multiple components.

The decision to model the name attribute as a simple attribute or to subdivide the

attribute into fName and lName is dependent on whether the users’ transactions

access the name attribute as a single component or as individual components.

7.3.2 Single-valued and multi-valued attributes

The majority of attributes are single-valued for a particular entity. For example,
each occurrence of the Video entity has a single value for the catalogNo attribute
(for example, 207132), and therefore the catalogNo attribute is referred to as
being single-valued.

Some attributes have multiple values for a particular entity. For example,
each occurrence of the Video entity may have multiple values for the category
attribute (for example, ‘Children’ and ‘Comedy’), and therefore the category
attribute in this case would be multi-valued. A multi-valued attribute may have
a set of values with specified lower and upper limits. For example, the category
attribute may have between one and three values.

7.3.3 Derived attributes

Some attributes may be related for a particular entity. For example, the age of a
member of staff (age) is derivable from the date of birth (DOB) attribute, and
therefore the age and DOB attributes are related. We refer to the age attribute as a
derived attribute, the value of which is derived from the DOB attribute.

152 ■ Database analysis and design techniques

Single-valued attribute

An attribute that holds a single value for an entity occurrence.

Multi-valued attribute

An attribute that holds multiple values for an entity occurrence.

The classification of simple and composite, and the classification of single-

valued and multi-valued, are not mutually exclusive. In other words, you can

have simple single-valued, composite single-valued, simple multi-valued, and

composite multi-valued attributes.

Derived attribute

An attribute that represents a value that is derivable from the value of a related

attribute, or set of attributes, not necessarily in the same entity.

Age is not normally stored in a database because it would have to be

updated regularly. On the other hand, as date of birth never changes and age

can be derived from date of birth, date of birth is stored instead, and age is

derived from the DOB attribute, when needed.

TIP

In some cases, the value of an attribute is derived from the values in a single
entity, like age. But in other cases, the value of an attribute may be derived from
the values in more than one entity.

7.3.4 Keys

In Section 2.2.3, we introduced the concept of keys associated with tables.
These concepts also apply to entities.

For example, branchNo (the branch number) and zipCode (the branch’s zip
code) are candidate keys for the Branch entity, as each has a distinct value for
every branch occurrence. If we choose branchNo as the primary key for the Branch
entity, then zipCode becomes an alternate key.

Diagrammatic representation of attributes

If an entity is to be displayed with its attributes, we display the rectangle repre-
senting the entity in two parts. The upper part of the rectangle displays the
name of the entity and the lower part lists the names of the attributes. For
example, Figure 7.6 shows the ER model for the Video, Role, and Actor entities
and their associated attributes.

The first attribute(s) to be listed is the primary key for the entity, if known.
The name(s) of the primary key attribute(s) can be labeled with the tag {PK}. In
UML, the name of an attribute is displayed with the first letter in lowercase and,
if the name has more than one word, with the first letter of each subsequent
word in uppercase (for example, character, actorNo, catalogNo). Additional tags
that can be used include partial primary key {PPK}, when an attribute forms
only part of a composite primary key, and alternate key {AK}.

For simple, single-valued attributes, there is no need to use tags and so we
simply display the attribute names in a list below the entity name.

Entity–Relationship modeling ■ 153

Superkey

An attribute, or set of attributes, that uniquely identifies each entity occurrence.

Candidate key

A superkey that contains only the minimum number of attributes necessary for unique

identification of each entity occurrence.

Primary key

The candidate key that is selected to identify each entity occurrence.

Alternate keys

The candidate keys that are not selected as the primary key of the entity.

For composite attributes, we list the name of the composite attribute fol-
lowed below and indented to the right by the names of its simple component
parts. For example, in Figure 7.6 the composite attribute name is shown fol-
lowed below by the names of its component attributes, fName and lName.

For multi-valued attributes, we label the attribute name with an indication of
the range of values available for the attribute. For example, if we label the cate-
gory attribute with the range [1..*], this means that there are one or more values
for the category attribute. If we know the precise maximum number of values,
we can label the attribute with an exact range. For example, if the category
attribute can hold one to a maximum of three values, we would label the
attribute with [1..3].

For derived attributes, we prefix the attribute name with a ‘/’. For example,
the derived attribute age is shown in Figure 7.6 as /age.

For a simple database, it’s possible to show all the attributes for each entity
on the data model. However, for a more complex database, you normally dis-
play just the attribute, or attributes, that form the primary key of each entity.
When only the primary key attributes are shown in the ER model, you can omit
the {PK} tag.

154 ■ Database analysis and design techniques

Figure 7.6

Diagrammatic
representation of
the attributes for
the Video, Role, and
Actor entities. RoleVideo Actor

Entity name

charactercatalogNo {PK}
title
category [1..3]
dailyRental
price

actorNo {PK}
name

fName
lName

DOB
/agePrimary key

Area to list
attribute(s)
of entity

Multi-valued
attribute

Composite
attribute

Derived
attribute

No primary key has been identified for the Role entity. The presence or absence

of a primary key allows us to identify whether an entity is strong or weak. We

discuss the concept of strong and weak entities next.

7.4 Strong and weak entities
We can classify entities as being either strong or weak.

For example, as we can distinguish one actor from all other actors and one video
from all other videos without the existence of any other entity, Actor and Video are
referred to as being strong entities. In other words, the Actor and Video entities are
strong because they have their own primary keys, as shown in Figure 7.6.

Figure 7.6 also has an example of a weak entity called Role, which represents
characters played by actors in videos. If we are unable to uniquely identify one
Role entity occurrence from another without the existence of the Actor and Video
entities, then Role is referred to as being a weak entity. In other words, the Role
entity is weak because it has no primary key of its own.

Strong entities are sometimes referred to as parent, owner, or dominant entities
and weak entities as child, dependent, or subordinate entities.

7.5 Multiplicity constraints on relationships
We now examine the constraints that may be placed on entities that participate
in a relationship. Examples of such constraints include the requirements that a
branch must have members and each branch must have staff. The main type of
constraint on relationships is called multiplicity.

Multiplicity constrains the number of entity occurrences that relate to other
entity occurrences through a particular relationship. Multiplicity is a represen-
tation of the policies established by the user or organization, and is referred to
as a business rule. Ensuring that all appropriate business rules are identified
and represented is an important part of modeling an organization.

Entity–Relationship modeling ■ 155

Strong entity

Entity that is not dependent on the existence of another entity for its primary key.

Weak entity

Entity that is partially or wholly dependent on the existence of another entity, or enti-

ties, for its primary key.

Multiplicity

The number of occurrences of one entity that may relate to a single occurrence of an

associated entity.

As we mentioned earlier, the most common degree for relationships is
binary. The multiplicity for a binary relationship is generally referred to as one-
to-one (1:1), one-to-many (1:*), or many-to-many (*:*). We examine these three
types of relationships using the following business rules:

■ A member of staff manages a branch.

■ A branch has members of staff.

■ Actors play in videos.

For each business rule, we demonstrate how to work out the multiplicity if,
as is sometimes the case, it’s not clearly specified in the rule, and show how to
represent it in an ER model. In Section 7.5.4, we’ll examine multiplicity for rela-
tionships of degrees higher than binary.

7.5.1 One-to-one (1:1) relationships

Let’s consider the relationship called Manages, which relates the Staff and Branch
entities. Figure 7.7(a) displays individual examples of the Manages relationship
using values for the primary key attributes of the Staff and Branch entities.

Working out the multiplicity

Working out the multiplicity normally requires examining the precise relation-
ships between the data given in a business rule using sample data. The sample
data may be obtained by examining filled-in forms or reports or, if possible,
from further discussions with the users. However, to reach the right conclusions
about a business rule, it’s essential that the sample data examined or discussed
is a true representation of all the data.

In Figure 7.7(a), we see that staffNo S1500 manages branchNo B001 and staffNo
S0010 manages branchNo B002, but staffNo S0003 does not manage any branch.
In other words, a member of staff can manage zero or one branch and each
branch is managed by a single member of staff. As there is a maximum of one
branch for each member of staff and a maximum of one member of staff for
each branch involved in the relationship, we refer to this relationship as one-to-
one, which we usually abbreviate as (1:1).

156 ■ Database analysis and design techniques

Not all business rules are easily and clearly represented in an ER model. For

example, the requirement that a member of staff receives an additional day’s

holiday for every year of employment with the organization may be difficult

to represent clearly in an ER model.

Diagrammatic representation of 1:1 relationships

An ER model of the Staff Manages Branch relationship is shown in Figure 7.7(b).
To represent that a member of staff can manage zero or one branch, we place a
‘0..1’ beside the Branch entity. To represent that a branch always has one man-
ager, we place a ‘1..1’ beside the Staff entity. (Note that for a 1:1 relationship, we
may choose a relationship name that makes sense in either direction.)

7.5.2 One-to-many (1:*) relationships

Let’s consider the relationship called Has, which also relates the Branch and Staff
entities. Figure 7.8(a) displays individual examples of the Branch Has Staff relation-
ship using values for the primary key attributes of the Branch and Staff entities.

Entity–Relationship modeling ■ 157

Figure 7.7

Staff Manages Branch
(1:1) relationship:
(a) individual
examples;
(b) multiplicity.

branchNo

B001

B002

staffNo

S1500
Manages

S0003

S0010
Manages

(a)

Staff

staffNo

‘Each branch
is managed by one
member of staff’

Branch

branchNo

‘A member of
staff can manage

zero or one branch’

Manages

1..1 0..1

Multiplicity
(b)

Working out the multiplicity

In Figure 7.8(a), we see that branchNo B001 has staffNo S0003 and S1500, and
branchNo B002 has staffNo S0010 and S3250. Therefore, each branch has one or
more members of staff and each member of staff works at a single branch. As
one branch can have many staff, we refer to this type of relationship as one-to-
many, which we usually abbreviate as (1:*).

Diagrammatic representation of 1:* relationships

An ER model of the Branch Has Staff relationship is shown in Figure 7.8(b). To
represent that each branch can have one or more staff, we place a ‘1..*’ beside
the Staff entity. To represent that each member of staff works at a single branch,
we place a ‘1..1’ beside the Branch entity. (Note that with 1:* relationships, we
choose a relationship name that makes sense in the 1:* direction.)

158 ■ Database analysis and design techniques

Figure 7.8

Branch Has Staff (1:*)
relationship:
(a) individual
examples;
(b) multiplicity.

staffNo

S0003

branchNo

B001

Has

S1500Has

S0010

B002

S3250

(a)

Has

Has

Branch

branchNo

‘Each member of staff
works at one branch’

Staff

staffNo

‘Each branch has
one or more staff’

Has

1..1 1..*

(b)

7.5.3 Many-to-many (*:*) relationships

Let’s consider the relationship called PlaysIn, which relates the Actor and Video enti-
ties. Figure 7.9(a) displays individual examples of the Actor PlaysIn Video relationship
using values for the primary key attributes of the Actor and Video entities.

Working out the multiplicity

In Figure 7.9(a), we see that actorNo A2019 plays in video catalogNo 634817 and
445624, and actorNo A7525 plays in video catalogNo 445624. In other words, a
single actor can play in one or more videos. We also see that video catalogNo
445624 has two starring actors but catalogNo 781132 does not have any actors in
it, and so we conclude that a single video can star zero or more actors.

In summary, the PlaysIn relationship is 1:* from the viewpoint of both the
Actor and Video entities. We represent this relationship as two 1:* relationships in
both directions, which are collectively referred to as a many-to-many relation-
ship, which we usually abbreviate as (*:*).

Diagrammatic representation of *:* relationships

An ER model of the Actor PlaysIn Video relationship is shown in Figure 7.9(b). To
represent that each actor can star in one or more videos, we place a ‘1..*’ beside
the Video entity. To represent that each video can star zero or more actors, we
place a ‘0..*’ beside the Actor entity. (Note that for a *:* relationship, we may
choose a relationship name that makes sense in either direction.)

7.5.4 Multiplicity for complex relationships

Multiplicity for relationships beyond degree two is slightly more complex. For
example, the multiplicity for a ternary relationship represents the potential
number of entity occurrences in the relationship when the other two values are
fixed. Let’s consider the ternary Registers relationship between Branch, Staff, and
Member shown in Figure 7.4. Figure 7.10(a) displays individual examples of the
Registers relationship when the values for the Staff and Member entities are fixed.

Entity–Relationship modeling ■ 159

If you know the actual minimum and maximum values for the multi-

plicity, you can display these instead. For example, if a branch has between

two and ten staff, we can replace the ‘1..*’ with ‘2..10’.

TIP

Working out the multiplicity

In Figure 7.10(a), we see that for every combination of staffNo/memberNo values
there is always at least one corresponding branchNo value. In particular, staffNo
S0003 registers memberNo M166884 at branchNo B001 and B002. This represents
the situation where member M166884 has been registered at branch B001 by
staff S0003, and has subsequently been registered at B002 by the same member
of staff, who has transferred to branch B002 in the intervening period. In other
words, from the Branch perspective the multiplicity is 1..*.

If we repeat this test from the Staff perspective, we find that the multiplicity
for this relationship is 1..1, and if we examine it from the Member perspective,
we find it is 0..*. An ER model of the ternary Registers relationship showing mul-
tiplicity is shown in Figure 7.10(b).

160 ■ Database analysis and design techniques

Figure 7.9

Actor PlaysIn Video
relationship (*:*):
(a) individual
examples;
(b) multiplicity.

catalogNo

634817

actorNo

A2019

PlaysIn

445624

PlaysIn

A7525

781132

PlaysIn

(a)

Actor

actorNo

‘Each video stars
zero or more actors’

Video

catalogNo

‘Each actor plays in
one or more videos’

PlaysIn

0..* 1..*

(b)

In general, the multiplicity for n-ary relationships represents the potential

number of entity occurrences in the relationship when the other (n – 1) values

are fixed.

A summary of the possible ways that you may represent multiplicity con-
straints along with a description of the meaning for each is shown in Table 7.1.

Entity–Relationship modeling ■ 161

Figure 7.10

The ternary Registers
relationship from
the Branch
perspective with
the values for Staff
and Member fixed:
(a) individual
examples;
(b) multiplicity of
relationship.

branchNo

B001

staffNo/
memberNo

S0003 M115656
Registers

Registers

B002

S0003 M166884

S3250 M250178

Registers

Registers

(a)

Member

Branch StaffRegisters

‘Staff registers a
member at a branch’

1..* 1..1

0..*

(b)

Table 7.1 A summary of ways to represent multiplicity constraints.

Alternative ways to represent Meaning
multiplicity constraints

0..1 Zero or one entity occurrence

1..1 (or just 1) Exactly one entity occurrence

0..* (or just *) Zero or many entity occurrences

1..* One or many entity occurrences

5..10 Minimum of 5 up to a maximum of 10 entity

occurrences

0, 3, 6–8 Zero or three or six, seven, or eight entity

occurrences

7.5.5 Cardinality and participation constraints

Multiplicity actually consists of two separate constraints known as cardinality
and participation.

The cardinality of a binary relationship is what we have been referring to as
one-to-one, one-to-many, and many-to-many. A participation constraint rep-
resents whether all entity occurrences are involved in a particular relationship
(mandatory participation) or only some (optional participation). In Figure 7.11, we
illustrate the cardinality and participation constraints for the Staff Manages
Branch relationship shown in Figure 7.7(b). We’ll use the participation con-
straint during the logical database design methodology to determine:

(a) how to create tables for one-to-one relationships (covered in Step 2.1);

(b) whether a foreign key can have nulls (covered in Step 2.4).

7.6 Attributes on relationships
As we briefly mentioned in Section 7.3, attributes can also be assigned to rela-
tionships. For example, let’s consider the relationship PlaysIn, which associates

162 ■ Database analysis and design techniques

Cardinality

Describes the number of possible relationships for each participating entity.

Participation

Determines whether all or only some entity occurrences participate in a relationship.

Foreign key
defined in
Section 2.2.3

Figure 7.11

Multiplicity shown
as cardinality and
participation
constraints for the
Staff Manages Branch
(1:1) relationship
shown in Figure
7.7(b).

Staff

staffNo

‘A single branch is
managed by a single

member of staff’

Branch

branchNo

‘A single member
of staff manages a

single branch’

Manages

1..1 0..1

Cardinality
(1:1)

‘All branches are managed’
(mandatory participation)

‘Not all staff manage branches’
(optional participation)

the Actor and Video entities. We may wish to record the character played by an
actor in a given video. This information is associated with the PlaysIn relation-
ship rather than the Actor or Video entities. We create an attribute called character
to store this information and assign it to the PlaysIn relationship, as illustrated
in Figure 7.12. Note that in this figure the character attribute is shown using the
symbol for an entity; however, to distinguish between a relationship with an
attribute and an entity, the rectangle representing the attribute is associated
with the relationship using a dashed line.

The presence of one or more attributes assigned to a relationship may indi-
cate that the relationship conceals an unidentified entity. For example, the
character attribute associated with an entity called Role was shown earlier in
Figure 7.6.

7.7 Design problems with ER models
In this section, we examine two types of problems that may arise when designing
an ER model. These problems are collectively referred to as connection traps, and
normally occur due to a misinterpretation of the meaning of certain relationships.
We examine the two main types of connection traps, called fan traps and chasm
traps, and illustrate how to identify and resolve such problems in ER models.

In general, to identify connection traps we must ensure that the meaning of
a relationship (and the business rule that it represents) is fully understood and
clearly defined. If we don’t understand the relationships we may create a model
that is not a true representation of the ‘real world’.

7.7.1 Fan traps

Entity–Relationship modeling ■ 163

Figure 7.12

A relationship
called PlaysIn with
an attribute called
character.

character

Video Actor

‘Actor plays
character in video’

PlaysIn

Fan trap

Two entities have a 1:* relationship that fan out from a third entity, but the two entities

should have a direct relationship between them to provide the necessary information.

A fan trap may exist where two or more one-to-many (1:*) relationships fan
out from the same entity. A potential fan trap is illustrated in Figure 7.13(a),
which shows two 1:* relationships (Has and IsAssigned) emanating from the same
entity called Branch. This model tells us that a single branch has many staff and
is assigned many cars. However, a problem arises if we want to know which
member of staff uses a particular car. To appreciate the problem, let’s examine
some examples of the Has and IsAssigned relationships, using values for the pri-
mary key attributes of the Staff, Branch, and Car entities, as shown in Figure
7.13(b).

If we attempt to answer the question: ‘Which member of staff uses car
SH34?’, it’s impossible to give a specific answer with the current structure. We
can determine that car SH34 is assigned to branch B001 but we cannot tell
whether staff S0003 or S1500 uses this car. The inability to answer this question
specifically is the result of a fan trap.

We resolve this fan trap by adding a new relationship called Staff Uses Car to
the original ER model, as shown in Figure. 7.13(c). If we now examine the
examples of the Has, IsAssigned, and Uses relationships shown in Figure 7.13(d),
we can see that staff S1500 uses car SH34.

164 ■ Database analysis and design techniques

Figure 7.13(a)

Example of a fan
trap.

Figure 7.13(b)

Examples of the
Branch Has Staff and
the Branch IsAssigned
Car relationships.
Cannot tell which
member of staff
uses car SH34.

BranchStaff IsAssignedHas Car

branchNostaffNo vehLicenseNo1..* 1..1 1..1 1..*

vehLicenseNo

SH22

branchNo

B001
IsAssigned

SH34

IsAssigned

staffNo

S0003

S1500

Has

Has

7.7.2 Chasm traps

A chasm trap may occur where there is a relationship with optional participa-
tion that forms part of the pathway between entities that are related. A
potential chasm trap is illustrated in Figure 7.14(a), which shows the relation-

Entity–Relationship modeling ■ 165

Figure. 7.13(c)

Resolving the fan
trap.

Figure 7.13(d)

Examples of the
Branch Has Staff,
Branch IsAssigned Car,
and Staff Uses Car
relationships. Can
now tell which car
staff use.

BranchStaff IsAssignedHas Car

branchNostaffNo vehLicenseNo1..* 1..1 1..1 1..*

Uses

Adding the Uses
relationship resolves

the fan trap

0..11..1

vehLicenseNo

SH22

branchNo

B001

IsAssigned

SH34

IsAssignedstaffNo

S0003

S1500

H
as

Has

Uses

Chasm trap

A model suggests the existence of a relationship between entities, but the pathway

does not exist between certain entity occurrences.

ships between the Branch, Car, and Staff entities. This model tells us that a single
branch is assigned many cars and a member of staff may use one car. In particu-
lar, note that not all staff use a car. A problem arises when we want to know at
which branch a member of staff works. To appreciate the problem, let’s exam-
ine some examples of the IsAssigned and Uses relationships, using values for the
primary key attributes of the Branch, Car, and Staff entities, as shown in Figure
7.14(b).

If we attempt to answer the question: ‘At which branch does staff S0003
work?’, we can’t tell with the current structure as not all staff use cars. The inabil-
ity to answer this question is considered to be a loss of information (as we know a
member of staff must work at a branch), and is the result of a chasm trap. The
optional participation of Staff in the Staff Uses Car relationship means that some
members of staff are not associated with a branch through the use of cars.

Therefore, to solve this problem and remove the chasm trap, we add a relation-
ship called Has between the Branch and Staff entities, as shown in Figure 7.14(c). If
we now examine the examples of the Has, IsAssigned, and Uses relationships shown
in Figure 7.14(d), we can see that staff S0003 works at branch B001.

The ER concepts described in this chapter sometimes prove inadequate for
modeling complex databases. In Chapter 11, we’ll introduce some of the more
popular enhanced concepts associated with ER models that you may find useful
when modeling more complex data.

166 ■ Database analysis and design techniques

Figure 7.14(a)

Example of a chasm
trap.

CarBranch IsAssigned Uses Staff

vehLicenseNobranchNo staffNo1..1 1..* 0..1 1..1

Figure 7.14(b)

Examples of the
Branch IsAssigned Car
and Staff Uses Car
relationships.
Cannot tell which
branch staff S0003
works at.

staffNo

S0003

vehLicenseNo

SH22

S1500

branchNo

B001

SH34

IsAssigned

IsAssigned

Uses

Entity–Relationship modeling ■ 167

Figure 7.14(c)

Resolving the
chasm trap.

CarBranch IsAssigned Uses Staff

vehLicenseNobranchNo staffNo1..1 1..* 0..1 1..1

Has

Adding the Has
relationship resolves

the chasm trap

1..*1..1

Figure 7.14(d)

Examples of the
Branch Has Staff,
Branch IsAssigned Car,
and Staff Uses Car
relationships. Can
now tell which
branch each
member of staff
works at.

vehLicenseNo

SH22

staffNo

S0003

SH34

branchNo

B001

S1500

IsAllocated

IsAllocated

U
se

s

H
as

Has

Chapter summary
An entity is a set of objects with the same properties that are identified
by a user or organization as having an independent existence. A
uniquely identifiable object is called an entity occurrence.

A relationship is a set of meaningful associations among entities.
A uniquely identifiable association is called a relationship occurrence.

The degree of a relationship is the number of participating entities in
a relationship.

A recursive relationship is a relationship where the same entity partici-
pates more than once in different roles.

An attribute is a property of an entity or a relationship.

A simple attribute is composed of a single component.

A composite attribute is composed of multiple components.

A single-valued attribute holds a single value for an entity occurrence.

A multi-valued attribute holds multiple values for an entity occurrence.

A derived attribute represents a value that is derivable from the value
of a related attribute, or a set of attributes, not necessarily in the same
entity.

A strong entity is not dependent on the existence of another entity for
its primary key. A weak entity is partially or wholly dependent on the
existence of another entity, or entities, for its primary key.

Multiplicity defines the number of occurrences of one entity that may
relate to a single occurrence of an associated entity.

Multiplicity consists of two separate constraints; namely cardinality,
which describes the number of possible relationships for each partici-
pating entity, and participation, which determines whether all or only
some entity occurrences participate in a relationship.

A fan trap occurs when two entities have 1:* relationships that fan out
from a third entity, but the two entities should have a direct relationship
between them to provide the necessary information.

A chasm trap suggests the existence of a relationship between entities,
but the pathway does not exist between certain entity occurrences.

168 ■ Database analysis and design techniques

Review questions
7.1 Describe what entities represent in an ER model and provide examples of

entities with a physical or conceptual existence.

7.2 Describe what relationships represent in an ER model and provide exam-
ples of unary, binary, and ternary relationships.

7.3 Describe what attributes represent in an ER model and provide examples
of simple, composite, single-value, multi-value, and derived attributes.

7.4 Describe what multiplicity represents for a relationship.

7.5 What are business rules and how does multiplicity model these constraints?

7.6 How does multiplicity represent both the cardinality and the participation
constraints on a relationship?

7.7 Provide an example of a relationship with attributes.

7.8 Describe how strong and weak entities differ and provide an example of each.

7.9 Describe how fan and chasm traps can occur in an ER model and how
they can be resolved.

Exercises

7.10 Create an ER diagram for each of the following descriptions:

(a) Each company operates four departments, and each department
belongs to one company.

(b) Each department in part (a) employs one or more employees, and
each employee works for one department.

(c) Each of the employees in part (b) may or may not have one or more
dependants, and each dependant belongs to one employee.

(d) Each employee in part (c) may or may not have an employment
history.

(e) Represent all the ER diagrams described in (a), (b), (c), and (d) as a
single ER diagram.

7.11 Create an ER diagram to represent the data requirements for a company
that specializes in IT training. The company has 30 instructors and can
handle up to 100 trainees per training session. The company offers five
advanced technology courses, each of which is taught by a teaching team
of two or more instructors. Each instructor is assigned to a maximum of
two teaching teams or may be assigned to do research. Each trainee
undertakes one advanced technology course per training session.

(a) Identify the main entities for the company.
(b) Identify the main relationships and specify the multiplicity for each

relationship. State any assumptions you make about the data.
(c) Using your answers for (a) and (b), draw a single ER diagram to repre-

sent the data requirements for the company.

Entity–Relationship modeling ■ 169

7.12 Read the following case study which describes the data requirements for
the EasyDrive School of Motoring.

The EasyDrive School of Motoring was established in Glasgow in 1992.
Since then, the School has grown steadily and now has several offices in
most of the main cities of Scotland. Each office has a Manager (who tends
also to be a Senior Instructor), several Senior Instructors, Instructors, and
administrative staff. The Manager is responsible for the day-to-day run-
ning of the office. Clients must first register at an office and this requires
that they complete an application form, which records their personal
details. A client may request individual lessons or book a block of lessons.
An individual lesson is for one hour, which begins and ends at the office.
A lesson is with a particular Instructor in a particular car at a given time.
Lessons can start as early as 8am and as late as 8pm. After each lesson, the
Instructor records the progress made by the client and notes the mileage
used during the lesson. The School has a pool of cars, which are adapted
for the purposes of teaching. Each Instructor is allocated to a particular
car. Once ready, a client applies for a driving test date. To obtain a full dri-
ving license the client must pass both the practical and theoretical parts
of the test. If a client fails to pass, the Instructor must record the reasons
for the failure.

(a) Identify the main entities of the EasyDrive School of Motoring.
(b) Identify the main relationships between the entities described in (a)

and represent each relationship as an ER diagram.
(c) Determine the multiplicity constraints for each relationship described

in (b). Represent the multiplicity for each relationship in the ER dia-
grams created in (b).

(d) Identify attributes and associate them with an entity or relationship.
Represent each attribute in the ER diagrams created in (c).

(e) Determine candidate and primary key attributes for each (strong)
entity.

(f) Using your answers (a) to (e), attempt to represent the data require-
ments of the EasyDrive School of Motoring as a single ER diagram. State
any assumptions necessary to support your design.

170 ■ Database analysis and design techniques

In the previous chapter, we learned about Entity–Relationship (ER) modeling, a
commonly used top-down approach to database design. In this chapter, we
consider another commonly used approach to database design called normal-
ization. Normalization can be used in database design in two ways: the first is
to use normalization as a bottom-up approach to database design; the second is
to use normalization in conjunction with ER modeling.

Using normalization as a bottom-up approach involves analyzing the asso-
ciations between attributes and, based on this analysis, grouping the attributes
together to form tables that represent entities and relationships. However, this
approach becomes difficult with a large number of attributes, where it’s difficult
to establish all the important associations between the attributes. For this
reason, in this book we present a methodology that recommends that you
should first attempt to understand the data using a top-down approach to
database design. In this approach, we use ER modeling to create a data model
that represents the main entities and relationships. We then translate the ER
model into a set of tables that represents the data. It’s at this point that we use
normalization to check whether the tables are well designed.

Chapter 8

Normalization

In this chapter you will learn:

How tables that contain redundant data can suffer from update
anomalies, which can introduce inconsistencies into a database.

The rules associated with the most commonly used normal forms,
namely first (1NF), second (2NF), and third (3NF) normal forms.

How tables that break the rules of 1NF, 2NF, or 3NF are likely to contain
redundant data and suffer from update anomalies.

How to restructure tables that break the rules of 1NF, 2NF, or 3NF.

Normalization
used in Step 2.2

The purpose of this chapter is to examine why normalization is a useful tech-
nique in database design and, in particular, how normalization can be used to
check the structure of tables created from an ER model.

8.1 Introduction

In 1972, Dr E.F. Codd developed the technique of normalization to support
the design of databases based on the relational model. Normalization is often
performed as a series of tests on a table to determine whether it satisfies or vio-
lates the rules for a given normal form. There are several normal forms,
although the most commonly used ones are called first normal form (1NF),
second normal form (2NF), and third normal form (3NF). All these normal
forms are based on rules about relationships among the columns of a table.

In the following sections, we first demonstrate how badly structured tables
that contain redundant data can potentially suffer from problems called update
anomalies. Badly structured tables may occur due to errors in the original ER
model or in the process of translating the ER model into tables. We then pre-
sent a definition for first normal form (1NF), second normal form (2NF), and
third normal form (3NF), and demonstrate how each normal form can be used
to identify and correct different types of problems in our tables.

8.2 Data redundancy and update anomalies
A major aim of relational database design is to group columns into tables to
minimize data redundancy and reduce the file storage space required by the
implemented base tables. To illustrate the problems associated with data redun-
dancy, let’s compare the Staff and Branch tables shown in Figure 8.1 with the
StaffBranch table shown in Figure 8.2.

The StaffBranch table is an alternative form of the Staff and Branch tables. The
structure of these tables is described using a Database Definition Language (DBDL):

Staff (staffNo, name, position, salary, branchNo)
Primary Key staffNo
Foreign Key branchNo references Branch(branchNo)

Branch (branchNo, branchAddress, telNo)
Primary Key branchNo

StaffBranch (staffNo, name, position, salary, branchNo, branchAddress, telNo)
Primary Key staffNo

172 ■ Database analysis and design techniques

Normalization

A technique for producing a set of tables with desirable properties that support the

requirements of a user or company.

Relational model
discussed in
Chapter 2

Base tables
defined in
Section 2.3.2

DBDL discussed
in Chapter 10

Primary and
foreign keys
defined in
Section 2.2.3

In the StaffBranch table there is redundant data: the details of a branch are
repeated for every member of staff located at that branch. In contrast, the details
of each branch appear only once in the Branch table and only the branch number
(branchNo) is repeated in the Staff table, to represent where each member of staff is
located. Tables that have redundant data may have problems called update
anomalies, which are classified as insertion, deletion, or modification anomalies.

Normalization ■ 173

Figure 8.1

The Staff and Branch
tables.

staffNo name position salary branchNo

S1500 Tom Daniels Manager 46000 B001

S0003 Sally Adams Assistant 30000 B001

S0010 Mary Martinez Manager 50000 B002

S3250 Robert Chin Supervisor 32000 B002

S2250 Sally Stern Manager 48000 B004

S0415 Art Peters Manager 41000 B003

Staff

branchNo branchAddress telNo

B001 8 Jefferson Way, Portland, OR 97201 503-555-3618

B002 City Center Plaza, Seattle, WA 98122 206-555-6756

B003 14 – 8th Avenue, New York, NY 10012 212-371-3000

B004 16 – 14th Avenue, Seattle, WA 98128 206-555-3131

Branch

Figure 8.2

The StaffBranch table.

staffNo name position salary branchNo branchAddress telNo

S1500 Tom Daniels Manager 46000 B001 8 Jefferson Way, Portland, OR 97201 503-555-3618

S0003 Sally Adams Assistant 30000 B001 8 Jefferson Way, Portland, OR 97201 503-555-3618

S0010 Mary Martinez Manager 50000 B002 City Center Plaza, Seattle, WA 98122 206-555-6756

S3250 Robert Chin Supervisor 32000 B002 City Center Plaza, Seattle, WA 98122 206-555-6756

S2250 Sally Stern Manager 48000 B004 16 – 14th Avenue, Seattle, WA 98128 206-555-3131

S0415 Art Peters Manager 41000 B003 14 – 8th Avenue, New York, NY 10012 212-371-3000

8.2.1 Insertion anomalies

There are two main types of insertion anomalies, which we illustrate using the
StaffBranch table shown in Figure 8.2.

(1) To insert the details of a new member of staff located at a given branch into
the StaffBranch table, we must also enter the correct details for that branch. For
example, to insert the details of a new member of staff at branch B002, we
must enter the correct details of branch B002 so that the branch details are
consistent with values for branch B002 in other records of the StaffBranch
table. The tables shown in Figure 8.1 do not suffer from this potential incon-
sistency, because for each staff member we only enter the appropriate branch
number into the Staff table. In addition, the details of branch B002 are
recorded only once in the database as a single record in the Branch table.

(2) To insert details of a new branch that currently has no members of staff
into the StaffBranch table, it’s necessary to enter nulls into the staff-related
columns, such as staffNo. However, as staffNo is the primary key for the
StaffBranch table, attempting to enter nulls for staffNo violates entity
integrity, and is not allowed. The design of the tables shown in Figure 8.1
avoids this problem because new branch details are entered into the Branch
table separately from the staff details. The details of staff ultimately located
at a new branch can be entered into the Staff table at a later date.

8.2.2 Deletion anomalies

If we delete a record from the StaffBranch table that represents the last member
of staff located at a branch, the details about that branch are also lost from the
database. For example, if we delete the record for staff Art Peters (S0415) from
the StaffBranch table, the details relating to branch B003 are lost from the data-
base. The design of the tables in Figure 8.1 avoids this problem because branch
records are stored separately from staff records and only the column branchNo
relates the two tables. If we delete the record for staff Art Peters (S0415) from
the Staff table, the details on branch B003 in the Branch table remain unaffected.

8.2.3 Modification anomalies

If we want to change the value of one of the columns of a particular branch in
the StaffBranch table, for example the telephone number for branch B001, we
must update the records of all staff located at that branch. If this modification
is not carried out on all the appropriate records of the StaffBranch table, the data-
base will become inconsistent. In this example, branch B001 would have
different telephone numbers in different staff records.

The above examples illustrate that the Staff and Branch tables of Figure 8.1
have more desirable properties than the StaffBranch table of Figure 8.2. In the

174 ■ Database analysis and design techniques

Entity integrity
defined in
Section 2.3.2

following sections, we examine how normal forms can be used to formalize the
identification of tables that have desirable properties from those that may
potentially suffer from update anomalies.

8.3 First normal form (1NF)

Let’s examine the Branch table shown in Figure 8.3, with primary key branchNo.
We can see that all the columns of this version of the Branch table comply with
our definition of 1NF with the exception of the column telNos. There are multi-
ple values at the intersection of the telNos column with every record. For
example, branchNo B001 has three telephone numbers, 503-555-3618, 503-555-
2727, and 503-555-6534. As a result, the Branch table is not in 1NF.

Normalization ■ 175

Only first normal form (1NF) is critical in creating appropriate tables for rela-

tional databases. All the subsequent normal forms are optional. However, to

avoid the update anomalies discussed in Section 8.2, it’s normally recom-

mended that you proceed to third normal form (3NF).

First normal form (1NF)

A table in which the intersection of every column and record contains only one value.

Figure 8.3

This version of the Branch table is not in 1NF.

branchNo branchAddress telNos

B001 8 Jefferson Way, Portland, OR 97201 503-555-3618, 503-555-2727, 503-555-6534

B002 City Center Plaza, Seattle, WA 98122 206-555-6756, 206-555-8836

B003 14 – 8th Avenue, New York, NY 10012 212-371-3000

B004 16 – 14th Avenue, Seattle, WA 98128 206-555-3131, 206-555-4112

Primary key More than
one value, so
not in 1NF

Note that although the branchAddress column may appear to hold multiple values,

this representation of address does not break 1NF. In this example, we have simply

chosen the option to hold all the details of an address as a single value.

Converting to 1NF

To convert this version of the Branch table to 1NF, we create a separate table
called BranchTelephone to hold the telephone numbers of branches, by removing
the telNos column from the Branch table along with a copy of the primary key of
the Branch table (branchNo). The primary key for the new BranchTelephone table is
the new telNo column. The structures for the altered Branch table and the new
BranchTelephone table are shown in Figure 8.4. The Branch and BranchTelephone
tables are in 1NF as there is a single value at the intersection of every column
with every record for each table.

176 ■ Database analysis and design techniques

Figure 8.4

Altered Branch table is in 1NF due to the removal of the telNos column and the creation of a new table
called BranchTelephone.

branchNo branchAddress telNos

B001 8 Jefferson Way, Portland, OR 97201 503-555-3618, 503-555-2727, 503-555-6534

B002 City Center Plaza, Seattle, WA 98122 206-555-6756, 206-555-8836

B003 14 – 8th Avenue, New York, NY 10012 212-371-3000

B004 16 – 14th Avenue, Seattle, WA 98128 206-555-3131, 206-555-4112

Branch (Not 1NF)

branchNo branchAddress

B001 8 Jefferson Way, Portland, OR 97201

B002 City Center Plaza, Seattle, WA 98122

B003 14 – 8th Avenue, New York, NY 10012

B004 16 – 14th Avenue, Seattle, WA 98128

Branch (1NF)

branchNo telNo

B001 503-555-3618

B001 503-555-2727

B001 503-555-6534

B002 206-555-6756

B002 206-555-8836

B003 212-371-3000

B004 206-555-3131

B004 206-555-4112

BranchTelephone (1NF)

Take copy of branchNo
column to new table

to become foreign key

Primary key

Becomes
primary key

Becomes
foreign key

Remove telNos column and create new
column called telNo in the new table

8.4 Second normal form (2NF)
Second normal form applies only to tables with composite primary keys, that is
tables with a primary key composed of two or more columns. A 1NF table with
a single column primary key is automatically in at least 2NF. A table that is not
in 2NF may suffer from the update anomalies discussed in Section 8.2.

Let’s examine the TempStaffAllocation table shown in Figure 8.5. This table rep-
resents the hours worked per week for temporary staff at each branch. The
primary key for the TempStaffAllocation table is made up of both the staffNo and
branchNo columns. Note that we use the term ‘non-primary-key’ columns to
refer to those columns that are not part of the primary key. For example, the
non-primary-key columns for the TempStaffAllocation table are branchAddress, name,
position, and hoursPerWeek. The arrows shown below the TempStaffAllocation table
indicate particular relationships between the primary key columns and the
non-primary-key columns.

We can see that the TempStaffAllocation table contains redundant data and may
suffer from the update anomalies described in Section 8.2. For example, to
change the name of ‘Ellen Layman’, we have to update two records in the
TempStaffAllocation table. If only one record is updated, the database will be
inconsistent. The reason that the TempStaffAllocation table contains redundant
data is that this table does not comply with our definition for 2NF.

Normalization ■ 177

Second normal form (2NF)

A table that is already in 1NF and in which the values in each non-primary-key

column can be worked out from the values in all the columns that make up the pri-

mary key.

The particular relationships that we show between the columns of the

TempStaffAllocation table in Figure 8.5 are more formally referred to as func-

tional dependencies. Functional dependency is a property of the meaning of

the columns in a table and indicates how columns relate to one another.

For example, consider a table with columns A and B, where column B is

functionally dependent on column A (denoted A → B). If we know the value of

A, we find only one value of B in all the records that has this value for A, at any

moment in time. So, when two records have the same value of A, they also

have the same value of B. However, for a given value of B there may be several

different values of A.

178 ■ Database analysis and design techniques

Fi
gu

re
 8

.5

Te
m

pS
ta

ff
Al

lo
ca

tio
n

ta
bl

e
is

 n
ot

 i
n

 2
N

F.

st
af

fN
o

br
an

ch
N

o
br

an
ch

A
d

d
re

ss
n

am
e

p
os

it
io

n
h

ou
rs

Pe
rW

ee
k

S4
55

5
B

00
2

C
it

y
C

en
te

r
Pl

az
a,

 S
ea

tt
le

, W
A

 9
81

22
El

le
n

 L
ay

m
an

A
ss

is
ta

n
t

16

S4
55

5
B

00
4

16
 –

 1
4t

h
 A

ve
n

u
e,

 S
ea

tt
le

, W
A

 9
81

28
El

le
n

 L
ay

m
an

A
ss

is
ta

n
t

9

S4
61

2
B

00
2

C
it

y
C

en
te

r
Pl

az
a,

 S
ea

tt
le

, W
A

 9
81

22
D

av
e

Si
n

cl
ai

r
A

ss
is

ta
n

t
14

S4
61

2
B

00
4

16
 –

 1
4t

h
 A

ve
n

u
e,

 S
ea

tt
le

, W
A

 9
81

28
D

av
e

Si
n

cl
ai

r
A

ss
is

ta
n

t
10

C
om

p
os

it
e

p
ri

m
ar

y
ke

y

V
al

u
es

 i
n

 h
ou

rs
Pe

rW
ee

k
co

lu
m

n
 c

an
 o

n
ly

 b
e

w
or

ke
d

 o
u

t
fr

om
 s

ta
ff

N
o

an
d

 b
ra

nc
hN

o

V
al

u
es

 i
n

 b
ra

nc
hA

dd
re

ss
co

lu
m

n
 c

an
 b

e
w

or
ke

d
ou

t
fr

om
 o

n
ly

 b
ra

nc
hN

o,
 s

o
ta

bl
e

no
t

in
 2

N
F

V
al

u
es

 i
n

 b
ra

nc
hN

o
co

lu
m

n
 c

an
 b

e
w

or
ke

d
 o

u
t

fr
om

 b
ra

nc
hA

dd
re

ss

V
al

ue
s

in
 n

am
e

an
d

po
sit

io
n

co
lu

m
n

s
ca

n
 b

e
w

or
ke

d
ou

t
fr

om
 o

n
ly

 s
ta

ff
N

o,
 s

o
ta

bl
e

no
ti

n
 2

N
F

Consider the non-primary-key column branchAddress of the TempStaffAllocation
table. The values in the branchAddress column can be worked out from the values
in the branchNo column (part of the primary key). In other words, every unique
value in the branchNo column is associated with the same value in the
branchAddress column. For example, every time the value B002 appears in the
branchNo column, the same address ‘City Center Plaza, Seattle, WA 98122’ appears
in the branchAddress column. In this example, the reverse is also true. Every time
the value ‘City Center Plaza, Seattle, WA 98122’ appears in the branchAddress
column, the same branch number B002 appears in the branchNo column.

Now consider the non-primary-key columns name and position. The values in
the name and position columns can be worked out from the values in the staffNo
column (part of the primary key). For example, every time S4555 appears in the
staffNo column, the name ‘Ellen Layman’ and position ‘Assistant’ appear in the
name and position columns.

Finally, consider the non-primary-key column hoursPerWeek. The values in the
hoursPerWeek column can only be worked out from the values in both the staffNo
and branchNo columns (the whole primary key). For example, when S4555
appears in the staffNo column at the same time that B002 appears in the
branchNo column, then the value ‘16’ appears in the hoursPerWeek column.

Converting to 2NF

To convert the TempStaffAllocation table shown in Figure 8.5 to 2NF, we need to
remove the non-primary-key columns that can be worked out using only part
of the primary key. In other words, we need to remove the columns that can be
worked out from either the staffNo or the branchNo column but do not require
both. For the TempStaffAllocation table, this means that we must remove the
branchAddress, name, and position columns and place them in new tables.

To do this we create two new tables called Branch and TempStaff. The Branch
table will hold the columns describing the details of branches and the TempStaff
table will hold the columns describing the details of temporary staff.

Normalization ■ 179

The formal definition of second normal form (2NF) is a table that is in first

normal form and every non-primary-key column is fully functionally depen-

dent on the primary key. Full functional dependency indicates that if A and B
are columns of a table, B is fully functionally dependent on A, if B is not

dependent on any subset of A. If B is dependent on a subset of A, this is

referred to as a partial dependency. If a partial dependency exists on the pri-

mary key, the table is not in 2NF. The partial dependency must be removed for

a table to achieve 2NF.

(1) The Branch table is created by removing the branchAddress column from the
TempStaffAllocation table along with a copy of the part of the primary key that
the column is related to, which in this case is the branchNo column.

(2) In a similar way, the TempStaff table is created by removing the name and
position columns from the TempStaffAllocation table along with a copy of the
part of the primary key that the columns are related to, which in this case is
the staffNo column.

It’s not necessary to remove the hoursPerWeek column as the presence of this
column in the TempStaffAllocation table does not break the rules of 2NF.

To ensure that we maintain the relationship between a temporary member of
staff and the branches at which he or she works for a set number of hours, we
leave a copy of the staffNo and branchNo columns to act as foreign keys in the
TempStaffAllocation table.

The structure for the altered TempStaffAllocation table and the new Branch and
TempStaff tables are shown in Figure 8.6. The primary key for the new Branch
table is branchNo and the primary key for the new TempStaff table is staffNo.

The TempStaff and Branch tables must be in 2NF because the primary key for
each table is a single column. The altered TempStaffAllocation table is also in 2NF
because the non-primary-key column hoursPerWeek is related to both the staffNo
and branchNo columns.

8.5 Third normal form (3NF)
Although 2NF tables have less redundancy than tables in 1NF, they may still
suffer from update anomalies.

Let’s examine the StaffBranch table shown in Figure 8.2, with primary key
staffNo. In Figure 8.7, we indicate the particular relationships between the
columns in this table. We can see that the StaffBranch table contains redundant
data and may suffer from the update anomalies described in Section 8.2. For
example, to change the telephone number of branch B001, we have to update
two records in the StaffBranch table. If only one record is updated, the database
will be inconsistent. The reason that the StaffBranch table contains redundant
data is that this table does not comply with our definition for 3NF.

180 ■ Database analysis and design techniques

Third normal form (3NF)

A table that is already in 1NF and 2NF, and in which the values in all non-primary-key

columns can be worked out from only the primary key column(s) and no other columns.

Normalization ■ 181

Figure 8.6

Altered TempStaffAllocation table is in 2NF due to the removal of the branchAddress, name, and position
columns and the creation of the new Branch and TempStaff tables.

staffNo branchNo branchAddress name position hoursPerWeek

S4555 B002 City Center Plaza, Seattle, WA 98122 Ellen Layman Assistant 16

S4555 B004 16 – 14th Avenue, Seattle, WA 98128 Ellen Layman Assistant 9

S4612 B002 City Center Plaza, Seattle, WA 98122 Dave Sinclair Assistant 14

S4612 B004 16 – 14th Avenue, Seattle, WA 98128 Dave Sinclair Assistant 10

TempStaffAllocation (Not 2NF)

branchNo branchAddress

B002 City Center Plaza, Seattle, WA 98122

B004 16 – 14th Avenue, Seattle, WA 98128

Branch (2NF)

staffNo name position

S4555 Ellen Layman Assistant

S4612 Dave Sinclair Assistant

TempStaff (2NF)

staffNo branchNo hoursPerWeek

S4555 B002 16

S4555 B004 9

S4612 B002 14

S4612 B004 10

TempStaffAllocation (2NF)

Composite
primary key

Take copy of
staffNo

column to
new table to

become
primary key

Becomes
primary key

Becomes
foreign key Composite

primary key

Becomes
foreign key

Becomes
primary key

Take copy of
branchNo

column to
new table to

become
primary key

Move branchAddress
column to new table

Move name
column to
new table

Move position
column to
new table

The StaffBranch table is not in 3NF because of the presence of the branchNo,
branchAddress, and telNo columns. Although we can work out the branch number,
branch address, and telephone number of a member of staff from the primary
key, staffNo, we can also work out the details for a given branch, if we know the
branch number, branch address, or branch telephone number. In other words,
we can work out information using values from non-primary-key columns,
namely branchNo, branchAddress, or telNo. For example, when S1500 appears in the
staffNo column, ‘8 Jefferson Way, Portland, OR 97201’ appears in the
branchAddress column. However, when B001 appears in branchNo, ‘8 Jefferson
Way, Portland, OR 97201’ also appears in the branchAddress column. In other
words, the address that a member of staff works at can be worked out from
knowing the value in branchNo. This is not allowed in 3NF as the values in all
non-primary-key columns must be worked out from only the values in the pri-
mary key column(s).

182 ■ Database analysis and design techniques

Figure 8.7

The StaffBranch table is not in 3NF.

staffNo name position salary branchNo branchAddress telNo

S1500 Tom Daniels Manager 46000 B001 8 Jefferson Way, Portland, OR 97201 503-555-3618

S0003 Sally Adams Assistant 30000 B001 8 Jefferson Way, Portland, OR 97201 503-555-3618

S0010 Mary Martinez Manager 50000 B002 City Center Plaza, Seattle, WA 98122 206-555-6756

S3250 Robert Chin Supervisor 32000 B002 City Center Plaza, Seattle, WA 98122 206-555-6756

S2250 Sally Stern Manager 48000 B004 16 – 14th Avenue, Seattle, WA 98128 206-555-3131

S0415 Art Peters Manager 41000 B003 14 – 8th Avenue, New York, NY 10012 212-371-3000

StaffBranch (Not 3NF)

Primary
key

Values in all non-primary-key columns can be worked out from the primary key, staffNo

Values in branchAddress and telNo columns can be
worked out from branchNo, so table not in 3NF

Values in branchNo and telNo columns can be
worked out from branchAddress, so table not in 3NF

Values in branchNo and branchAddress columns can
be worked out from telNo, so table not in 3NF

Converting to 3NF

To convert the StaffBranch table shown in Figure 8.7 to 3NF, we need to remove
the non-primary-key columns that can be worked out using another non-pri-
mary-key column. In other words, we need to remove the columns that
describe the branch at which the member of staff works. We remove the
branchAddress and telNo columns and take a copy of the branchNo column. We
create a new table called Branch to hold these columns and nominate branchNo as
the primary key for this table. The branchAddress and telNo columns are candi-
date keys in the Branch table as these columns can be used to uniquely identify a
given branch. The relationship between a member of staff and the branch at
which he or she works is maintained as the copy of the branchNo column in the
StaffBranch table acts as a foreign key.

The structure for the altered StaffBranch table and the new Branch tables are
shown in Figure 8.8. The altered StaffBranch table is in 3NF because each non-
primary-key column can only be worked out from the primary key, staffNo.

The new Branch table is also in 3NF as all of the non-primary-key columns
can be worked out from the primary key, branchNo. Although the other two
non-primary-key columns in this table, branchAddress and telNo, can also be used
to work out the details of a given branch, this does not violate 3NF because
these columns are candidate keys for the Branch table. This example illustrates
that the definition for 3NF can be generalized to include all candidate keys of a
table, if any exist.

Therefore, for tables with more than one candidate key you can use the gen-
eralized definition for 3NF, which is a table that is in 1NF and 2NF, and in
which the values in all the non-primary-key columns can be worked out from
only candidate key column(s) and no other columns. Furthermore, this general-
ization is also true for the definition of 2NF, which is a table that is in 1NF and
in which the values in each non-primary-key column can be worked out from

Normalization ■ 183

The formal definition for third normal form (3NF) is a table that is in first

and second normal forms and in which no non-primary-key column is transi-

tively dependent on the primary key. Transitive dependency is a type of

functional dependency that occurs when a particular type of relationship

holds between columns of a table.

For example, consider a table with columns A, B, and C. If B is functionally

dependent on A (A → B) and C is functionally dependent on B (B → C), then C
is transitively dependent on A via B (provided that A is not functionally depen-

dent on B or C). If a transitive dependency exists on the primary key, the table

is not in 3NF. The transitive dependency must be removed for a table to

achieve 3NF.

184 ■ Database analysis and design techniques

Figure 8.8

The StaffBranch table is in 3NF due to the removal of the branchAddress and telNo columns and the
creation of a new table called Branch.

staffNo name position salary branchNo branchAddress telNo

S1500 Tom Daniels Manager 46000 B001 8 Jefferson Way, Portland, OR 97201 503-555-3618

S0003 Sally Adams Assistant 30000 B001 8 Jefferson Way, Portland, OR 97201 503-555-3618

S0010 Mary Martinez Manager 50000 B002 City Center Plaza, Seattle, WA 98122 206-555-6756

S3250 Robert Chin Supervisor 32000 B002 City Center Plaza, Seattle, WA 98122 206-555-6756

S2250 Sally Stern Manager 48000 B004 16 – 14th Avenue, Seattle, WA 98128 206-555-3131

S0415 Art Peters Manager 41000 B003 14 – 8th Avenue, New York, NY 10012 212-371-3000

branchNo branchAddress telNo

B001 8 Jefferson Way, Portland, OR 97201 503-555-3618

B002 City Center Plaza, Seattle, WA 98122 206-555-6756

B003 14 – 8th Avenue, New York, NY 10012 212-371-3000

B004 16 – 14th Avenue, Seattle, WA 98128 206-555-3131

Branch (3NF)

staffNo name position salary branchNo

S1500 Tom Daniels Manager 46000 B001

S0003 Sally Adams Assistant 30000 B001

S0010 Mary Martinez Manager 50000 B002

S3250 Robert Chin Supervisor 32000 B002

S2250 Sally Stern Manager 48000 B004

S0415 Art Peters Manager 41000 B003

Staff (3NF)

StaffBranch (Not 3NF)

Take copy of
branchNo column to

new table to
become primary key

Move branchAddress
column to new table

Move telNo
column to new

table

Becomes
primary key

Becomes
candidate key

Primary key Becomes
foreign key

Becomes
candidate key

all the columns that make up a candidate key and no other columns. Note that
this generalization does not alter the definition for 1NF as this normal form is
independent of keys and particular relationships between columns of a table.

The trade-off is whether it is better to keep the process of normalization sim-
pler by examining the relationships between the non-primary-key columns and
those that make up the primary keys, which allows the identification of the
most problematic and obvious redundancy in tables, or to use the general defi-
nitions and increase the opportunity to identify missed redundancy. In fact, it
is often the case that whether you use the definitions based on primary keys or
the general definitions of 2NF and 3NF, the decomposition of tables is the same.

There are normal forms that go beyond 3NF such as Boyce–Codd normal
form (BCNF), fourth normal form (4NF), and fifth normal form (5NF). However,
these later normal forms are not commonly used as they attempt to identify
and solve problems in tables that occur relatively infrequently. However, if you
would like to find out more about BCNF, 4NF, and 5NF you should consult the
book Database Systems by Connolly and Begg (2002).

Chapter summary
Normalization is a technique for producing a set of tables with desir-
able properties that supports the requirements of a user or company.

Tables that have redundant data may have problems called update
anomalies, which are classified as insertion, deletion, or modification
anomalies.

The definition for first normal form (1NF) is a table in which the inter-
section of every column and record contains only one value.

The definition for second normal form (2NF) is a table that is already in
1NF and in which the values in each non-primary-key column can be
worked out from the values in all the column(s) that make up the pri-
mary key.

The definition for third normal form (3NF) is a table that is already
in 1NF and 2NF, and in which the values in all non-primary-key
columns can be worked out from only the primary key column(s) and
no other columns.

Normalization ■ 185

Review questions
8.1 Discuss how normalization may be used in database design.

8.2 Describe the types of update anomalies that may occur on a table that has
redundant data.

8.3 Describe the characteristics of a table that violates first normal form (1NF)
and then describe how such a table is converted to 1NF.

8.4 What is the minimal normal form that a table must satisfy? Provide a
definition for this normal form.

8.5 Describe an approach to converting a first normal form (1NF) table to
second normal form (2NF) table(s).

8.6 Describe the characteristics of a table in second normal form (2NF).

8.7 Describe what is meant by full functional dependency and describe how
this type of dependency relates to 2NF. Provide an example to illustrate
your answer.

8.8 Describe the characteristics of a table in third normal form (3NF).

8.9 Describe what is meant by transitive dependency and describe how
this type of dependency relates to 3NF. Provide an example to illustrate
your answer.

Exercises

8.10 The table shown in Figure 8.9 lists dentist/patient appointment data. A
patient is given an appointment at a specific time and date with a dentist
located at a particular surgery.

(a) The table shown in Figure 8.9 is susceptible to update anomalies.
Provide examples of insertion, deletion, and modification anomalies.

(b) Describe and illustrate the process of normalizing the table shown in
Figure 8.9 to 3NF. State any assumptions you make about the data
shown in this table.

186 ■ Database analysis and design techniques

staffNo dentistName patientNo patientName appointment surgeryNo

date time

S1011 Tony Smith P100 Gillian White 12-Aug-03 10.00 S10

S1011 Tony Smith P105 Jill Bell 13-Aug-03 12.00 S15

S1024 Helen Pearson P108 Ian MacKay 12-Sept-03 10.00 S10

S1024 Helen Pearson P108 Ian MacKay 14-Sept-03 10.00 S10

S1032 Robin Plevin P105 Jill Bell 14-Oct-03 16.30 S15

S1032 Robin Plevin P110 John Walker 15-Oct-03 18.00 S13

Figure 8.9

Details of patient
dental
appointments.

8.11 An agency called InstantCover supplies part-time/temporary staff to hotels
throughout Scotland. The table shown in Figure 8.10 lists the time spent
by agency staff working at two hotels. The National Insurance Number
(NIN) is unique for every employee.

(a) The table shown in Figure 8.10 is susceptible to update anomalies.
Provide examples of insertion, deletion, and modification anomalies.

(b) Describe and illustrate the process of normalizing the table shown in
Figure 8.10 to 3NF. State any assumptions you make about the data
shown in this table.

Normalization ■ 187

Figure 8.10

Employees of
InstantCover and
their contracts to
work at hotels.

NIN contractNo hoursPerWeek eName hotelNo hotelLocation

113567WD C1024 16 John Smith H25 Edinburgh

234111XA C1024 24 Diane Hocine H25 Edinburgh

712670YD C1025 28 Sarah White H4 Glasgow

113567WD C1025 16 John Smith H4 Glasgow

Part 3

Logical database design

9 Logical database design – Step 1 191

10 Logical database design – Step 2 219

11 Enhanced ER modeling techniques 246

In Chapter 4, we described the stages of the database system development life-
cycle, one of which is database design. This stage starts only after a complete
analysis of the organization’s requirements has been undertaken, as discussed
in Chapter 6. Database design is made up of two main phases: logical database
design and physical database design. In this chapter and Chapter 10 we’ll present
a methodology for logical database design and in Chapters 12 to 16 we’ll pre-
sent a methodology for physical database design. We begin by presenting an
overview of the database design methodology and then describe in detail the
tasks associated with Step 1 of logical database design.

In this chapter you will learn:

What a design methodology is.

Database design has two main phases: logical and physical design.

Critical success factors in database design.

About a methodology for logical and physical database design.

The tasks in Step 1 of the database design methodology, which build
an ER model.

The documentation produced during Step 1 of database design,
including Entity–Relationship (ER) diagrams and a data dictionary.

Logical database design
Step 1 Create ER model

Step 2 Map ER model to tables

Physical database design
Step 3 Translate logical design

Step 4 Choose file organizations
Step 5 Design user views

Step 6 Design security
Step 7 Controlled redundancy

Step 8 Monitor and tune

Chapter 9

Logical database
design – Step 1

9.1 Introduction to the database design
methodology

If the database you require is reasonably complex, you’ll need a systematic
approach to design and build your database to ensure that it satisfies users’ require-
ments and achieves stated performance requirements (such as response times). This
systematic approach is called a database design methodology. Before presenting an
overview of the methodology, we first discuss what a database design methodology
is and then identify the critical success factors in database design.

9.1.1 What is a design methodology?

A design methodology consists of phases made up of steps, which guide the
designer in the techniques appropriate at each stage of the project. The phases
also help the designer to plan, manage, control, and evaluate development pro-
jects. In addition, it is a structured approach for analyzing and modeling a set
of requirements in a standardized and organized manner.

9.1.2 Phases of database design

In this book we present a methodology, which separates database design into
two main phases: logical and physical database design.

In the logical database design phase we build the logical representation of
the database, which includes identification of the important entities and rela-
tionships, and then translate this representation to a set of tables. The logical
database design is a source of information for the physical design phase, provid-
ing the physical database designer with a vehicle for making trade-offs that are
very important to the design of an efficient database.

192 ■ Logical database design

Design methodology

A structured approach that uses procedures, techniques, tools, and documentation aids

to support and facilitate the process of design.

Logical database design

The process of constructing a model of the data used in an organization based on

a specific data model, but independent of a particular DBMS and other physical

considerations.

Logical design
described in this
chapter and
Chapter 10

In the physical database design phase we decide how the logical design is to
be physically implemented in the target relational DBMS. This phase allows the
designer to make decisions on how the database is to be implemented.
Therefore, physical design is tailored to a specific DBMS.

9.1.3 Critical success factors in database design

The following guidelines are important to the success of database design:

■ Work interactively with the users as much as possible.

■ Follow a structured methodology throughout the data modeling process.

■ Employ a data-driven approach.

■ Incorporate structural and integrity considerations into the data models.

■ Use normalization and transaction validation techniques in the methodology.

■ Use diagrams to represent as much of the data models as possible.

■ Use a Database Design Language (DBDL).

■ Build a data dictionary to supplement the data model diagrams.

■ Be willing to repeat steps.

All these guidelines are built into the methodology we’re about to introduce
in the next section.

Logical database design – Step 1 ■ 193

Physical database design

The process of producing a description of the implementation of the database on sec-

ondary storage; it describes the base tables, file organizations, and indexes used to

achieve efficient access to the data, and any associated integrity constraints and secu-

rity restrictions.

Physical design
discussed in
Chapters 12–16

Relational model
discussed in
Chapter 2

Strictly speaking, there is a phase before logical database design known as con-

ceptual database design. This phase begins with the creation of a conceptual

data model of the data used by the organization, which is entirely indepen-

dent of all implementation details such as the underlying data model (for

example, the relational data model) or any other physical considerations.

However, as we’re designing databases specifically for relational DBMSs, we’ve

combined the conceptual and logical phases together and used the more gen-

eral term ‘logical database design’.

9.2 Overview of the database design methodology
In this section, we present an overview of the database design methodology.
The steps in the methodology are shown in Figure 9.1 and the chapter in which
the step is discussed in detail is displayed in the adjacent column.

The logical database design phase of the methodology is divided into two
main steps.

■ In Step 1 we create an ER model and check that the model has minimal
redundancy and is capable of supporting user transactions. The output of
this step is the creation of an ER model, which is a complete and accurate
representation of the data requirements of the organization (or part of the
organization) that is to be supported by the database.

194 ■ Logical database design

Figure 9.1

Steps in the
methodology for
logical and physical
database design.

Logical database design Chapter
Step 1 Create and check ER model 9

Step 1.1 Identify entities
Step 1.2 Identify relationships
Step 1.3 Identify and associate attributes with entities

or relationships
Step 1.4 Determine attribute domains
Step 1.5 Determine candidate, primary, and alternate

key attributes
Step 1.6 Specialize/Generalize entities (optional step)
Step 1.7 Check model for redundancy
Step 1.8 Check model supports user transactions
Step 1.9 Review model with users

Step 2 Map ER model to tables 10
Step 2.1 Create tables
Step 2.2 Check table structures using normalization
Step 2.3 Check tables support user transactions
Step 2.4 Check business rules
Step 2.5 Review logical database design with users

Physical database design
Step 3 Translate logical database design for target DBMS 12

Step 3.1 Design base tables
Step 3.2 Design representation of derived data
Step 3.3 Design remaining business rules

Step 4 Choose file organizations and indexes 13
Step 4.1 Analyze transactions
Step 4.2 Choose file organizations
Step 4.3 Choose indexes

Step 5 Design user views 14

Step 6 Design security mechanisms 14

Step 7 Consider the introduction of controlled redundancy 15

Step 8 Monitor and tune the operational system 16

Step 1 described
in this chapter

■ In Step 2 we map the ER model to a set of tables. The structure of each table
is checked using normalization. Normalization is an effective means of
ensuring that the tables are structurally consistent, logical, with minimal
redundancy. The tables are also checked to ensure that they are capable of
supporting the required transactions. The required integrity constraints on
the database are also defined.

Physical database design is divided into six main steps:

■ Step 3 involves the design of the base tables and integrity constraints using
the available functionality of the target DBMS.

■ Step 4 involves choosing the file organizations and indexes for the base
tables. Typically, DBMSs provide a number of alternative file organizations
for data, with the exception of PC DBMSs, which tend to have a fixed storage
structure.

■ Step 5 involves the design of the user views originally identified in the
requirements analysis and collection stage of the database system develop-
ment lifecycle.

■ Step 6 involves designing the security measures to protect the data from
unauthorized access.

■ Step 7 considers relaxing the normalization constraints imposed on the tables
to improve the overall performance of the system. This is a step that you
should undertake only if necessary, because of the inherent problems
involved in introducing redundancy while still maintaining consistency.

■ Step 8 is an ongoing process of monitoring and tuning the operational
system to identify and resolve any performance problems resulting from the
design and to implement new or changing requirements.

Appendix B presents a summary of the methodology for those of you who
are already familiar with database design and simply require an overview of the
main steps.

Throughout this methodology, users play a critical role in continually
reviewing and checking the data model and the supporting documentation.
Some steps may not be necessary depending on the complexity of the organiza-
tion you’re analyzing and your need for performance and security.

Logical database design – Step 1 ■ 195

Step 2 described
in Chapter 10

Step 3 described
in Chapter 12

Step 4 described
in Chapter 13

Step 5 described
in Chapter 14

Step 6 described
in Chapter 14

Step 7 described
in Chapter 15

Step 8 described
in Chapter 16

For database systems that have numerous and varied user views, it may be nec-

essary to create one or more logical data model designs that are merged at a

later stage of the database design process. We’ll describe the typical tasks asso-

ciated with the merging of the data models in Appendix C.

9.3 Introduction to Step 1 of the logical database
design methodology

This section covers the first step of our logical database design methodology. In
this step, you build an ER model for one of the user views identified during the
earlier analysis stage.

In this section and in the following chapter, you’re going to build a logical data
model for the Branch user views of StayHome. In Chapter 4, we introduced the
term ‘local logical data model’ to describe a model that describes one or more,
but not all, user views of a database. However, throughout the chapters that
describe the database design methodology, we simply use the more general
term ‘logical data model’.

For those of you interested in building more complex databases that first require
the creation of separate local logical data models to represent different user views of
a database, we describe and demonstrate the merging of the data models using the
Branch and Business user views of StayHome in Appendix C.

196 ■ Logical database design

Database design is an iterative process that has a starting point and an

almost endless procession of refinements. Although we present our database

design methodology as a procedural process, it must be emphasized that this

does not imply that it should be performed in this manner. It is likely that the

knowledge you gain in one step may alter decisions you made in a previous

step. Similarly, you may find it useful to briefly look at a later step to help with

an earlier step. The methodology should act as a framework to help guide you

through the database design activity effectively.

TIP

During analysis, you will have identified a number of user views, and depend-

ing on the amount of overlap between these views and the complexity of your

database system, you may have combined some user views together. In the

requirements collection and analysis stage discussed in Section 6.4.4, we used

the centralized approach to create two collections of user views for StayHome

that represent the merged requirements for the following user views:

■ Branch user views representing the Manager, Supervisor, and Assistant user

views;

■ Business user views representing the Director and Buyer user views.

Centralized
approach
discussed in
Section 4.6

Step 1 Create and check ER model

Each ER model comprises:

■ entities,

■ relationships,

■ attributes and attribute domains,

■ primary keys and alternate keys,

■ integrity constraints.

The ER model is supported by documentation, including a data dictionary
and ER diagrams, which you’ll produce throughout the development of the
model. We’ll detail the types of supporting documentation that you may want
to produce as we go through the various steps. The tasks involved in Step 1 are:

■ Step 1.1 Identify entities

■ Step 1.2 Identify relationships

■ Step 1.3 Identify and associate attributes with entities or relationships

■ Step 1.4 Determine attribute domains

■ Step 1.5 Determine candidate, primary, and alternate key attributes

■ Step 1.6 Specialize/Generalize entities (optional step)

■ Step 1.7 Check model for redundancy

■ Step 1.8 Check model supports user transactions

■ Step 1.9 Check model with users

So, let’s start to build the ER model for the Branch user views of StayHome.

Step 1.1 Identify entities

The first step in building an ER model is to define the main objects that the
users are interested in. These objects are the entities for the model. One method
of identifying entities is to examine the users’ requirements specification. From this

Logical database design – Step 1 ■ 197

Objective

To build an ER model of the data requirements of the organization (or part of

the organization) to be supported by the database.

Objective

To identify the required entities.

Entities defined
in Section 7.1

specification, you can identify nouns or noun phrases that are mentioned (for
example, staff number, staff name, catalog number, title, daily rental rate, purchase
price). You should also look for major objects such as people, places, or concepts of
interest, excluding those nouns that are merely qualities of other objects.

For example, you could group staff number and staff name with an entity called
Staff and group catalog number, title, daily rental rate, and purchase price with an
entity called Video.

An alternative way of identifying entities is to look for objects that have an
existence in their own right. For example, Staff is an entity because staff exist
whether or not you know their names, addresses, and salaries. If possible, you
should get the user to assist with this activity.

It’s sometimes difficult to identify entities because of the way they are pre-
sented in the users’ requirements specification. Users often talk in terms of
examples or analogies. Instead of talking about staff in general, users may men-
tion people’s names. In some cases, users talk in terms of job roles, particularly
where people or companies are involved. These roles may be job titles or
responsibilities, such as Manager, Supervisor, or Assistant. To further confuse
matters, users frequently use synonyms and homonyms.

It’s not always obvious whether a particular object is an entity, a relation-
ship, or an attribute. For example, how would you model marriage? In fact,
depending on the actual requirements you could model marriage as any or all
of these. You’ll find that analysis is subjective, and different designers may pro-
duce different, but equally valid, interpretations. The activity therefore relies, to
a certain extent, on judgment and experience. Database designers must take a
very selective view of the world and categorize the things that they observe
within the context of the organization. Thus, there may be no unique set of
entities deducible from a given users’ requirements specification. However, suc-
cessive iterations of the analysis process should lead you to the choice of
entities that are at least adequate for the system required.

198 ■ Logical database design

Users’ requirements
for Branch user
views given in
Section 6.4.4

Two words are synonyms when they have the same meaning, for example ‘branch’

and ‘outlet’. Homonyms occur when the same word can have different meanings

depending on the context. For example, the word ‘program’ has several alterna-

tive meanings such as a series of events, a plan of work, a piece of software, and a

course of study.

The fact that database design is subjective can initially be quite off-

putting. However, by following the methodology we present in this book, you’ll

find that the task is achievable and that it gets easier with some practice and expe-

rience. To help, in Chapters 17 and 18 we’ll go through a second case study, and

in Appendix E we provide a number of common business data models you’re

likely to encounter in one form or another.

TIP

StayHome entities

For the Branch user views of StayHome, you may identify the following entities:

Branch Staff
Video VideoForRent
Member RentalAgreement
Actor Director

Document entities

As you identify entities, assign them names that are meaningful and obvious to
the users. Record the names and descriptions of entities in a data dictionary. If
possible, document the expected number of occurrences of each entity. If an
entity is known by different names, the names are referred to as synonyms or
aliases, which you should also record in the data dictionary. Figure 9.2 shows
an extract from the data dictionary that documents the entities for the Branch
user views of StayHome.

Step 1.2 Identify relationships

Having identified the entities, the next step is to identify all the relationships
that exist between these entities. When you identify entities, one method is to
look for nouns in the users’ requirements specification. Again, you can use the

Logical database design – Step 1 ■ 199

Figure 9.2

Extract from the
data dictionary for
the Branch user
views of StayHome
showing a
description of
entities.

Entity name Description Aliases Occurrence

Branch Place of work Outlet and
Branch
Outlet

One or more StayHome
branches are located in
main cities throughout
the US.

Staff General term
describing all
staff employed
by StayHome

Employee Each member of staff
works at a particular
branch.

Objective

To identify the important relationships that exist between the entities.

Relationships
defined in
Section 7.2

grammar of the requirements specification to identify relationships. Typically,
relationships are indicated by verbs or verbal expressions. For example:

■ Branch Has Staff

■ Branch IsAllocated VideoForRent

■ VideoForRent IsPartOf RentalAgreement

The fact that the users’ requirements specification records these relationships sug-
gests that they are important to the users, and should be included in the model.

Take great care to ensure that all the relationships that are either explicit or
implicit in the users’ requirements specification are noted. In principle, it should
be possible to check each pair of entities for a potential relationship between
them, but this would be a daunting task for a large system comprising hundreds
of entities. On the other hand, it’s unwise not to perform some such check.
However, missing relationships should become apparent when you check that
the model supports the transactions that the users require. On the other hand, it
is possible that an entity can have no relationship with other entities in the data-
base but still play an important part in meeting the users’ requirements.

In most instances, the relationships you find will be binary; in other words,
the relationships exist between exactly two entities. However, you should be care-
ful to look out for complex relationships that may involve more than two entities
and recursive relationships that involve only one entity. For the Branch user
views of StayHome, you should identify the following non-binary relationships:

Registers a ternary relationship between Branch, Member, and Staff
Supervises a recursive relationship between Staff.

StayHome relationships

For the Branch user views of StayHome, you may identify the relationships
shown in Figure 9.3.

200 ■ Logical database design

We’re interested only in required relationships between entities. In

the previous example, you identified the Branch IsAllocated VideoForRent and

VideoForRent IsPartOf RentalAgreement relationships. You may also be inclined to

include a relationship between Branch and RentalAgreement (for example, Branch
Handles RentalAgreement). However, although this is a possible relationship,

from the requirements it’s not a relationship that we’re interested in modeling.

We discuss this further in Step 1.7.

TIP

Transaction check
described in Steps
1.8 and 2.3

Complex and
recursive
relationships
defined in Sections
7.2.1 and 7.2.2

Use Entity–Relationship (ER) modeling

It’s often easier to visualize a complex system rather than decipher long textual
descriptions of such a system. The use of Entity–Relationship (ER) diagrams
helps you more easily to represent entities and how they relate to one another.
You can represent the above entities and relationships in the first draft ER dia-
gram shown in Figure 9.4.

Determine the multiplicity constraints of relationships

Having identified the relationships you wish to model, you now want to deter-
mine the multiplicity of each relationship. If specific values for the multiplicity
are known, or even upper or lower limits, document these values as well.

A model that includes multiplicity constraints more explicitly represents the
meaning of the relationship and consequently results in a better representation
of what you’re trying to model. Multiplicity constraints are used to check and
maintain the quality of the data. These constraints can be applied when the
database is updated to determine whether or not the updates violate the stated
business rules.

Logical database design – Step 1 ■ 201

Figure 9.3

First draft of the
relationships for the
Branch user views
of StayHome.

Entity Relationship Entity

Branch Has Staff

IsAllocated VideoForRent

Branch, Staff† Registers Member

Staff Manages Branch

Supervises Staff

Video Is VideoForRent

VideoForRent IsPartOf RentalAgreement

Member Requests RentalAgreement

Actor PlaysIn Video

Director Directs Video

† represents a ternary relationship

Throughout the database design phase, we recommend that ER dia-

grams are used whenever necessary, to help build up a picture of what you’re

attempting to model. Different people use different notations for ER diagrams.

In this book, we’ve used the latest object-oriented notation called UML (Unified

Modeling Language), but other notations perform a similar function.

TIP
Other notations
shown in
Appendix A

Multiplicity
defined in
Section 7.5

StayHome multiplicity constraints

For the StayHome case study, you should identify the multiplicity constraints
shown in Figure 9.5. Figure 9.6 shows the updated ER diagram with this infor-
mation added.

Check for fan and chasm traps

Having identified the relationships, you should check that each one correctly
represents what you want it to represent, and that you’ve not inadvertently cre-
ated any fan traps or chasm traps.

Document relationships

As you identify relationships, assign them names that are meaningful and obvious
to the user, and also record relationship descriptions and the multiplicity con-
straints in the data dictionary. Figure 9.7 shows an extract from the data dictionary
that documents the relationships for the Business user views of StayHome.

202 ■ Logical database design

Figure 9.4

First draft ER diagram of the Branch user views for StayHome showing entities and relationships.

DirectorDirects

ActorPlaysIn

BranchIsAllocated

MemberRequests

Video

VideoForRent

RentalAgreement

Staff

Is

IsPartOf
Registers

Manages

Has

Supervisee

Supervises

Supervisor

Fan and chasm
traps discussed
in Section 7.7

Logical database design – Step 1 ■ 203

Figure 9.5

Multiplicity
constraints for the
relationships
identified for the
Branch user views
of StayHome.

Entity Multiplicity Relationship Multiplicity Entity

Branch 1..1 Has 1..* Staff

1..1 IsAllocated 1..* VideoForRent

Branch, Staff† 1..*, 1..1 Registers 0..* Member

Staff 1..1 Manages 0..1 Branch

0..1 Supervises 0..* Staff

Video 1..1 Is 1..* VideoForRent

VideoForRent 1..1 IsPartOf 0..* RentalAgreement

Member 1..1 Requests 0..* RentalAgreement

Actor 0..* PlaysIn 1..* Video

Director 1..1 Directs 1..* Video

† represents a ternary relationship

Figure 9.6

Adding multiplicity constraints to the ER diagram for the Branch user views of StayHome.

DirectorDirects

ActorPlaysIn

BranchIsAllocated

MemberRequests

Video

VideoForRent

RentalAgreement

Staff

Is

IsPartOf
Registers

Manages

Has

Supervisee

Supervises

Supervisor

1..1

0..*

1..1

1..*

1..1

1..*

1..1

0..*

1..*

1..*

1..1

0..1

1..*

1..1

0..*

1..1

0..1

1..10..*

1..*

0..*

Step 1.3 Identify and associate attributes with entities or relationships

The next step in the methodology is to identify the types of facts about the
entities and relationships that you’ve chosen to be represented in the database.
In a similar way to identifying entities, look for nouns or noun phrases in the
users’ requirements specification. The attributes can be identified where the
noun or noun phrase is a property, quality, identifier, or characteristic of one of
the entities or relationships that you’ve previously found.

Simple/Composite attributes

It’s important to note whether an attribute is simple or composite. Composite
attributes are made up of simple attributes. For example, an address attribute can
be simple and hold all the details of an address as a single value, such as ‘8
Jefferson Way, Portland, OR, 97201’. However, the address attribute may also
represent a composite attribute, made up of simple attributes that hold the

204 ■ Logical database design

Figure 9.7

Extract from the
data dictionary for
the Branch user
views of StayHome
showing
descriptions of
relationships.

Entity Multiplicity Relationship

Branch

Branch

1..*

1..*

Has

IsAllocated

Staff

Staff

0..1

0..*

Manages

Supervises

EntityMultiplicity

Staff

VideoForRent

1..1

1..1

Branch

Staff

1..1

0..1

Objective

To associate attributes with the appropriate entities or relationships.

Attributes
defined in
Section 7.3

By far the easiest thing to do when you’ve identified an entity or a rela-

tionship in the users’ requirements specification is to consider ‘What information

are we required to hold on . . .?’ The answer to this question should be described in

the specification. However, in some cases, you may need to ask the users to clar-

ify the requirements. Unfortunately, they may give you answers that also

contain other concepts, so users’ responses must be carefully considered.

TIP

Simple/Composite
attributes defined
in Section 7.3.1

address details as separate values in the attributes street (‘8 Jefferson Way’), city
(‘Portland’), state (‘OR’), and zipCode (‘97201’).

Single/Multi-valued attributes

In addition to being simple or composite, an attribute can also be single-
valued or multi-valued. Most attributes you encounter will be single-valued,
but occasionally you may encounter a multi-valued attribute; that is, an
attribute that holds multiple values for a single entity occurrence. For exam-
ple, you may identify the Branch attribute telNo (telephone number) as a
multi-valued attribute.

Derived attributes

Attributes whose values can be found by examining the values of other attrib-
utes are known as derived attributes. All derived attributes must be shown in
the data model to avoid a potential loss of information, which may occur if
the attribute or attributes on which the derived attribute is based are deleted
or modified.

We’ll consider the representation of derived attributes during physical data-
base design. Depending on how the attribute is used, new values for a derived
attribute may be calculated each time it’s accessed or when the value(s) it’s
derived from changes. However, this issue is not the concern of logical database
design, and we’ll discuss how best to physically represent derived attributes in
Step 3.2 in Chapter 12.

Logical database design – Step 1 ■ 205

The option to represent address details as a simple or composite attribute is

determined by the users’ requirements. If users do not need to access the sepa-

rate components of an address, you should represent the address attribute as a

simple attribute. On the other hand, if users do need to access the individual

components of an address, you should represent the address attribute as being

composite, made up of the required simple attributes.

Single/ Multi-
valued attributes
defined in
Section 7.3.2

You may have identified branch telephone numbers as a separate entity. This is

an alternative, and equally valid, way to model this. As you’ll see shortly in

Step 2.1, multi-valued attributes are mapped to tables anyway, so both

approaches produce the same end result.

Derived attributes
defined in
Section 7.3.3

Potential problems

When identifying attributes, it’s not uncommon for it to become apparent that
one or more entities have been omitted from the original selection. In this case,
return to the previous steps, document the new entities, and re-examine the
associated relationships.

You must also be aware of cases where attributes appear to be associated with
more than one entity as this can indicate the following:

(1) You’ve identified several entities that can be represented as a single entity.
For example, you may have identified entities Manager and Supervisor both
with the attributes staffNo (staff number), name, and salary, which can be rep-
resented as a single entity called Staff with the attributes staffNo, name,
position, and salary.

(2) You’ve identified a relationship between entities. In this case, you must
associate the attribute with only one entity, namely the parent entity, and
ensure that the relationship was previously identified in Step 1.2. If this is
not the case, the documentation should be updated with details of the
newly identified relationship. For example, you may have identified the
entities Branch and Staff with the following attributes:

Branch branchNo, street, city, state, zipCode, managerName
Staff staffNo, name, position, salary

The presence of the managerName attribute in Branch is intended to represent
the relationship Staff Manages Branch. In this case, however, the managerName
attribute should be omitted from Branch and the relationship Manages
should be added to the model.

206 ■ Logical database design

It may be useful to produce a list of all attributes given in the users’

requirements specification. As you associate an attribute with a particular entity or

relationship, you can remove the item from the list. In this way, you can ensure

that an attribute is associated with only one entity or relationship and, when the

list is empty, that all attributes are associated with some entity or relationship.

TIP

On the other hand, it may be that these entities share many attributes but

there are also attributes that are unique to each entity. In Chapter 11, we’ll

look at some enhanced ER modeling concepts known as specialization and

generalization, and provide guidelines for their use. These enhanced con-

cepts allow you to represent this type of situation more accurately. We omit

these concepts here and consider them as a separate optional step (Step 1.6)

to keep the basic methodology as simple as possible.

StayHome attributes for entities

For the Branch user views of the StayHome case study, you should identify and
associate attributes with entities as follows:

Branch branchNo, address (composite: street, city, state, zipCode), telNo
(multi-valued)

Staff staffNo, name, position, salary
Video catalogNo, title, category, dailyRental, price
Director directorName
Actor actorName
Member memberNo, name (composite: fName, lName), address
RentalAgreement rentalNo, dateOut, dateReturn
VideoForRent videoNo, available

StayHome attributes for relationships

You may have difficulty associating the attribute representing the date a
member registered at a branch, dateJoined, with a particular entity. There are
potentially three entities associated with this attribute, namely Member, Branch,
and Staff. However, this attribute cannot be associated with any of these entities
because a member can register at many branches, a member of staff can register
many members at many branches, and a branch has many members. The solu-
tion is to associate the dateJoined attribute with the Registers ternary relationship,
which relates the Member, Branch, and Staff entities. Similarly, the attribute repre-
senting the name of the character an actor plays in a video, character, has to be
associated with the PlaysIn binary relationship between Actor and Video.

Document attributes

As you identify attributes, assign them names that are meaningful and obvious
to the user. Where appropriate, record the following information for each
attribute:

■ attribute name and description;

■ data type and length;

■ any aliases that the attribute is known by;

Logical database design – Step 1 ■ 207

Note that the address attribute in Branch and the name attribute in Member have

been identified as composite, whereas the address attribute in Member and the

name attributes in Staff, Director, and Actor have been identified as simple. This

reflects the users’ access requirements for these attributes.

■ whether the attribute must always be specified (in other words, whether the
attribute allows or disallows nulls);

■ whether the attribute is multi-valued;

■ whether the attribute is composite, and if so, which simple attributes make
up the composite attribute;

■ whether the attribute is derived and, if so, how it is to be computed;

■ default values for the attribute (if specified).

Figure 9.8 shows an extract from the data dictionary that documents the attrib-
utes for the Branch user views of StayHome.

Step 1.4 Determine attribute domains

208 ■ Logical database design

Nulls defined in
Section 2.3.1

Figure 9.8

Extract from the data dictionary for the Branch user views of StayHome showing descriptions of
attributes.

Entity Attributes Description Data type
and length

Branch branchNo

address:
street

city

state

zipCode

telNo

Uniquely identifies a branch

Street of branch address

City of branch address

State of branch address

Zip code of branch address

Telephone numbers of branch

4 fixed characters

30 variable characters

20 variable characters

2 fixed characters

5 variable characters

10 variable characters

Staff staffNo

name

Uniquely identifies a member of staff

Name of staff member

5 fixed characters

30 variable characters

Nulls

No

No

No

No

No

No

No

No

Multi-
valued

No

No

No

No

No

Yes

No

No

...

Objective

To determine domains for the attributes in the ER model.

The objective of this step is to determine domains for the attributes in the ER
model. A domain is a pool of values from which one or more attributes draw
their values. Examples of the attribute domains for StayHome include:

■ The attribute domain of valid branch numbers as being a four-character
fixed-length string, with the first character as a letter and the next three
characters as digits in the range 000–999.

■ The attribute domain for valid telephone numbers as being a 10-digit string.

■ The possible values for the available attribute of the VideoForRent entity as being
either ‘Y’ or ‘N’. The domain of this attribute is a single character string con-
sisting of the values ‘Y’ or ‘N’.

A fully developed data model specifies the domains for each of the model’s
attributes and includes:

■ allowable set of values for the attribute;

■ size and format of the attribute.

Document attribute domains

As you identify attribute domains, record their names and characteristics in the
data dictionary. Update the data dictionary entries for attributes to record their
domain in place of the data type and length information.

Step 1.5 Determine candidate, primary, and alternate key attributes

This step is concerned with identifying the candidate key(s) for an entity and
then selecting one to be the primary key. Be careful to ensure that you choose a
candidate key that can never be null (if the candidate key consists of more than
one attribute, then this applies to each attribute). If you identify more than one
candidate key, you must choose one to be the primary key; the remaining can-
didate keys are called alternate keys.

When choosing a primary key from among the candidate keys, you should
use the following guidelines to help make the selection:

■ the candidate key with the minimal set of attributes;

■ the candidate key that is less likely to have its values changed;

Logical database design – Step 1 ■ 209

Objective

To identify the candidate key(s) for each entity and, if there is more than one

candidate key, to choose one to be the primary key, and to identify the others

as alternate keys.

Keys defined in
Section 2.2.3 and
Section 7.3.4

■ the candidate key that is less likely to lose uniqueness in the future;

■ the candidate key with fewest characters (for those with textual attribute(s));

■ the candidate key with the smallest maximum value (for numerical attributes);

■ the candidate key that is easiest to use from the users’ point of view.

In the process of identifying primary keys, note whether an entity is strong
or weak. If you can assign a primary key to an entity, the entity is referred to as
being strong. On the other hand, if you can’t identify a primary key for an
entity, the entity is referred to as being weak. However, it’s possible that one or
more of the attributes associated with a weak entity may form part of the final
primary key, but they don’t provide uniqueness by themselves.

StayHome primary keys

For the Branch user views of the StayHome case study, you should identify the
primary keys shown in Figure 9.9.

210 ■ Logical database design

People’s names generally do not make good candidate keys, as we

pointed out in Section 2.2.3. For example, you may think that a suitable candi-

date key for the Staff entity would be name, the member of staff’s name.

However, it’s possible for two people with the same name to join StayHome,

which would clearly invalidate the choice of name as a candidate key. We could

make a similar argument for the names of StayHome’s members. In such cases,

rather than coming up with combinations of attributes that may provide

uniqueness, it may be better to define a new attribute that would always

ensure uniqueness, such as a staffNo attribute for the Staff entity and a

memberNo attribute for the Member entity.

TIP

Weak entities
defined in
Section 7.4

The primary key of a weak entity can only be identified when you map the

weak entity to a table, which we’ll describe in Step 2.1 of Chapter 10.

In the users’ requirements for StayHome there are no obvious keys for the

Director and Actor entities. In fact, the only attributes that have been identified

for the entities are the director’s name for the Director entity and the actor’s

name for the Actor entity. As we’ve just said, these are not suitable as primary

keys, so we’ve made up a primary key for each of these entities, which we’ve

called directorNo and actorNo, respectively.

Document candidate, primary, and alternate keys

Record the identification of candidate, primary, and alternate keys (when avail-
able) in the data dictionary. Figure 9.10 shows an extract from the data
dictionary that documents the attributes for StayHome with the keys identified.

Step 1.6 Specialize/Generalize entities (optional step)

In this step, you have the option to continue the development of the ER model
using the process of specialization or generalization. The modeling of super-
classes and subclasses adds more information to the data model, but also adds

Logical database design – Step 1 ■ 211

Figure 9.9

ER diagram for the Branch user views of StayHome showing primary keys.

DirectorDirects

ActorPlaysIn

BranchIsAllocated

MemberRequests

Video

VideoForRent

RentalAgreement

Staff

Is

IsPartOf
Registers

Manages

Has

Supervisee

Supervises

Supervisor

1..1

0..*

1..1

1..*

1..1

1..*

1..1

0..*

1..*

1..*

1..1

0..1

1..*

1..1

0..*

1..1

0..1

1..10..*

1..*

directorNo

actorNo

branchNo

memberNo

catalogNo

videoNo

rentalNo

staffNo

0..*

Objective

To identify superclass and subclass entities, where appropriate.

more complexity as well. Consequently, as this is an optional step, we’ll omit
the details of specialization and generalization just now and consider it sepa-
rately in Chapter 11 for those readers who may be interested.

Step 1.7 Check model for redundancy

In this step, you examine the ER model with the specific objectives of identify-
ing whether there is any redundancy present and removing any that does exist.
The three activities in this step are:

(1) re-examine one-to-one (1:1) relationships;

(2) remove redundant relationships;

(3) consider the time dimension when assessing redundancy.

212 ■ Logical database design

Figure 9.10

Extract from the data dictionary for the Branch user views of StayHome showing attributes with primary
and alternate keys identified.

Entity Attributes Description

Branch branchNo

address:
street

city

state

zipCode

telNo

Uniquely identifies a branch

Street of branch address

City of branch address

State of branch address

Zip code of branch address

Telephone numbers of branch

Staff staffNo

name

Uniquely identifies a member of staff

Name of staff member

Key

Primary key

Alternate key

Primary key

Nulls

No

No

No

No

No

No

No

No

...

Objective

To check for the presence of redundancy in the ER model.

Re-examine one-to-one (1:1) relationships

In the identification of entities, you may have identified two entities that repre-
sent the same object in the organization. For example, you may have identified
two entities named Branch and Outlet that are actually the same; in other words,
Branch is a synonym for Outlet. In this case, the two entities should be merged
together. If the primary keys are different, choose one of them to be the pri-
mary key and leave the other as an alternate key.

Remove redundant relationships

A relationship is redundant if the same information can be obtained via other
relationships. You’re trying to develop a minimal data model and, as redundant
relationships are unnecessary, they should be removed. It’s relatively easy to
identify whether there is more than one path between two entities. However,
this does not necessarily imply that one of the relationships is redundant, as
they may represent different associations in the organization.

For example, consider the relationships between the VideoForRent,
RentalAgreement, and Member entities shown in Figure 9.11. There are two ways to
find out which members rent out which videos. There is the direct route using
the Rents relationship between the Member and VideoForRent entities and there’s
the indirect route using the Requests and IsPartOf relationships via the
RentalAgreement entity. Before we can assess whether both routes are required, we
need to establish the purpose of each relationship. The Rents relationship indi-
cates which members rent out which videos. On the other hand, the Requests
relationship indicates which members hold which rental agreements, and the
IsPartOf relationship indicates which videos are associated with which rental
agreements. Although it’s true that there is a relationship between members
and the videos they rent, this is not a direct relationship and the association is
more accurately represented through a rental agreement. The Rents relationship
is therefore redundant and does not convey any additional information about

Logical database design – Step 1 ■ 213

1:1 relationships
defined in
Section 7.5.1

Figure 9.11

Remove redundant
relationships.

Rents

MemberRequests

VideoForRent

RentalAgreement

IsPartOf 1..1

0..*

0..*

1..10..* memberNo

videoNo

rentalNo

0..*

Remove redundant
relationship

the relationship between VideoForRent and Member that cannot more easily be
found out through the RentalAgreement entity. To ensure that we create a mini-
mal model, the redundant Rents relationship must be removed.

Consider the time dimension when assessing redundancy

The time dimension of relationships is also important when assessing redun-
dancy. For example, consider the situation where you wish to model the
relationships between the entities Man, Woman, and Child, as illustrated in Figure
9.12. Clearly, there are two paths between Man and Child: one via the direct rela-
tionship FatherOf and the other via the relationships MarriedTo and MotherOf.
Consequently, you may think that the relationship FatherOf is unnecessary.
However, this would be incorrect for two reasons:

(1) The father may have children from a previous marriage, and you’re model-
ing only the father’s current marriage through a 1:1 relationship.

(2) The father and mother may not be married, or the father may be married to
someone other than the mother (or the mother may be married to some-
one who is not the father).

In either case, the required relationship could not be modeled without the
FatherOf relationship.

214 ■ Logical database design

Figure 9.12

Non-redundant
relationships.

MarriedToMan Woman

0..1 0..1

1..1
MotherOf

1..1

Child

FatherOf

0..*0..*

The message here is that it’s important you examine the meaning of

each relationship between entities when assessing redundancy.

TIP

Step 1.8 Check model supports user transactions

You now have an ER model that represents the data requirements of the organi-
zation (or part of the organization). The objective of this step is to check the ER
model to ensure that the model supports the required transactions. In our case,
the transaction requirements for the Branch user views of StayHome are listed in
Section 6.4.4.

Using the ER model and the data dictionary, you attempt to perform the
operations manually. If you can resolve all transactions in this way, you have
checked the ER model supports the required transactions. However, if you’re
unable to perform a transaction manually, there must be a problem with the
data model, which must be resolved. In this case, it’s likely that you’ve omitted
an entity, a relationship, or an attribute from the data model.

We examine two possible approaches to ensuring that the ER model supports
the required transactions.

Describing the transaction

Using the first approach, you check that all the information (entities, relation-
ships, and their attributes) required by each transaction is provided by the
model, by documenting a description of each transaction’s requirements. Let’s
examine the requirements for an example transaction for StayHome:

Transaction (o) List the name of each manager at each branch, ordered by
branch number

The name of each manager is held in the Staff entity and branch details are
held in the Branch entity. In this case, you can use the Staff Manages Branch rela-
tionship to find the name of each manager for each branch.

Using transaction pathways

The second approach to validating the data model against the required transac-
tions involves representing the pathway taken by each transaction directly on
the ER diagram. An example of this approach using the data queries listed in
Section 6.4.4 is shown in Figure 9.13. Clearly, the more transactions that exist,
the more complex this diagram would become, so for readability you may need
several such diagrams to cover all the transactions.

Logical database design – Step 1 ■ 215

Objective

To ensure that the ER model supports the required transactions.

216 ■ Logical database design

Figure 9.13

Using pathways to check that the ER model supports the user transactions.

BranchIsAllocated

MemberRequests

Video

VideoForRent

RentalAgreement

Staff

Is

IsPartOf

Manages

Has

Supervisee

Supervises

Supervisor

Director

catalogNo

directorNo

PlaysIn Actor

actorNo

branchNovideoNo

memberNorentalNo

staffNo

Directs(r)

(x)

(u)
(q)

(p)
(t)
(v)
(z)

(s)

(o)

(n)
(m)

Registers

(y)

(w)

This may look like a lot of hard work and it certainly can be. As a

result, you may be tempted to omit this step. However, it’s very important that

you do these checks now rather than later when you’ll find it much more diffi-

cult and costly to resolve any errors in your data model.

TIP

Step 1.9 Review model with user

Before completing Step 1, you should review the ER model with the users. The
ER model includes the data dictionary, ER diagrams, and any additional docu-
mentation that describes the data model. If any anomalies are present in the
data model, you must make the appropriate changes, which may require repeat-
ing the previous step(s). You should repeat this process until the user is
prepared to ‘sign off’ the model as being a ‘true’ representation of the organiza-
tion (or part of the organization) that you’re attempting to model.

In the following chapter we proceed to the next major step, which maps the data
model to a set of tables and checks that the tables will satisfy user requirements.

Chapter summary
A design methodology is a structured approach that uses procedures,
techniques, tools, and documentation aids to support and facilitate the
process of design.

The database design methodology used in this book has two main
phases: logical and physical database design.

Logical database design is the process of constructing a model of the
data used in an organization based on a specific data model, but inde-
pendent of a particular DBMS and other physical considerations. In our
case, logical design is tailored to the relational model.

Physical database design is the process of producing a description of
the implementation of the database on secondary storage; it describes
the file organizations and indexes used to achieve efficient access of the
data, and any associated integrity constraints and security restrictions.
Physical design is tailored to a specific DBMS.

There are critical factors for the success of the database design stage,
including, for example, working interactively with users and being will-
ing to repeat steps.

Logical database design – Step 1 ■ 217

Objective

To review the ER model with the user to ensure that the model is a ‘true’ repre-

sentation of the organization (or the part of the organization) to be supported

by the database.

The main objective of Step 1 of the methodology is to build an ER
model to represent the data requirements of the organization (or part of
the organization) to be supported by the database.

An ER model includes entities, relationships, attributes, attribute
domains, candidate keys, primary keys, and alternate keys.

An ER model is described by documentation, which includes ER diagrams
and a data dictionary.

An ER model should be checked to ensure that it does not have any
redundancy and supports the transactions required by the users.

Review questions
9.1 Describe the purpose of a design methodology.

9.2 Describe the main phases involved in database design.

9.3 Identify important factors in the success of database design.

9.4 Discuss the important role played by users in the process of database design.

9.5 Discuss the main activities associated with each step of the logical data-
base design methodology.

9.6 Discuss the main activities associated with each step of the physical data-
base design methodology.

9.7 Discuss the purpose of Step 1 of logical database design.

9.8 Identify the main tasks associated with Step 1 of logical database design.

9.9 Discuss an approach to identifying entities and relationships from a users’
requirements specification.

9.10 Discuss an approach to identifying attributes from a users’ requirements
specification and the association of attributes with entities or relationships.

9.11 Discuss an approach to checking an ER model for redundancy. Give an
example to illustrate your answer.

9.12 Describe two approaches to checking that an ER model supports the
transactions required by the user.

9.13 Identify and describe the purpose of the documentation generated during
Step 1 of logical database design.

Exercise

9.14 Identify entities, relationships, and the associated attributes in each case
study given in Appendix E and then create an ER diagram without first
looking at the answer ER diagram that accompanies each case study.
Compare your ER diagram with the answer ER diagram and justify any
differences found.

218 ■ Logical database design

This chapter covers the second step of our logical database design methodology.
In this step, you create a set of tables for the ER model created in Step 1. You
then check that the tables are well structured using normalization, and that
they support the user transactions. Finally, you check that all business rules are
represented in the final logical data model.

Step 2 Map ER model to tables

The main purpose of this step is to produce a description of the tables for the
ER model created in Step 1 of the methodology. The set of tables produced
should represent the entities, relationships, attributes, and constraints described

In this chapter you will learn:

How to map a set of tables from an ER model.

How to check that the tables are well structured using normalization.

How to check that the tables are capable of supporting the transactions
required by the user.

How to define and document integrity constraints on the tables.

Methodology
summarized in
Appendix B

Objective

To create tables for the ER model and to check the structure of the tables.

Logical database design
Step 1 Create ER model

Step 2 Map ER model to tables

Physical database design
Step 3 Translate logical design

Step 4 Choose file organizations
Step 5 Design user views

Step 6 Design security
Step 7 Controlled redundancy

Step 8 Monitor and tune

Chapter 10

Logical database
design – Step 2

by the ER model. The structure of each table is checked to ensure that no errors
have been introduced in creating the tables. If errors exist in the tables this may
indicate that errors were introduced during the process of creating the tables or
that the ER model still has errors that have not yet been identified. The tasks
involved in Step 2 are:

■ Step 2.1 Create tables

■ Step 2.2 Check table structures using normalization

■ Step 2.3 Check tables support user transactions

■ Step 2.4 Check business rules

■ Step 2.5 Review logical database design with users

We demonstrate Step 2 of the methodology using the ER model created
in Step 1 of the last chapter for the Branch user views of StayHome, which
represent the merged requirements for the Manager, Supervisor, and Assistant
user views.

Step 2.1 Create tables

In this step, you create tables for the ER model to represent the entities, relation-
ships, attributes, and constraints. The structure of each table is created from the
information that describes the ER model, including the ER diagrams, data diction-
ary, and any other supporting documentation. To describe the composition of
each table you use a Database Design Language (DBDL) for relational databases.
Using the DBDL, you first specify the name of the table, followed by a list of the
names of the table’s simple attributes enclosed in parentheses. You then identify
the primary key and any alternate and/or foreign key(s) of the table. For each
foreign key, the table containing the referenced primary key is also given.

We illustrate this process using the ER diagram for the Branch user views of
StayHome shown in Figure 9.9. However, in some cases it’s necessary to add
examples not shown in this model to illustrate particular points.

How to represent entities

For each entity in the ER model, create a table that includes all the entity’s
simple attributes. For composite attributes, include only the simple attributes
that make up the composite attribute in the table. For example, for the compos-
ite address attribute, you would include its simple attributes street, city, state, and
zipCode. Where possible, identify the column(s) that make up the primary key in

220 ■ Logical database design

Objective

To map a set of tables from the ER model.

Relational keys
defined in
Section 2.2.3

Simple and
composite
attributes defined
in Section 7.3.1

each table. For the entities shown in Figure 9.9, you should document the ini-
tial table structures shown in Figure 10.1.

In some cases, you have not yet identified the full set of columns that make up
the tables, as you have still to represent the relationships between entities. In par-
ticular, this means that you cannot identify the columns that make up the
primary key for weak entities. As we have no weak entities in Figure 9.9, we use
an example of a weak entity called VideoOrderLine in Figure C.1. We discuss the
identification of primary key columns for this weak entity at the end of this step.

How to represent relationships

The relationship that an entity has with another entity is represented by the
primary key/foreign key mechanism. In deciding where to post (or place) the
foreign key attribute(s), you must first identify the ‘parent’ and ‘child’ entities
involved in the relationship. The parent entity refers to the entity that posts a
copy of its primary key into the table that represents the child entity, to act as
the foreign key.

We consider the identification of parent/child entities for different types of
relationships and for multi-valued attributes.

(a) one-to-many (1:*) binary relationships;

(b) one-to-many (1:*) recursive relationships;

(c) one-to-one (1:1) binary relationships;

Logical database design – Step 2 ■ 221

Figure 10.1

Initial table structures for the entities in the Branch user views of StayHome as shown in Figure 9.9.

Actor (actorNo, actorName)
Primary Key actorNo

Director (directorNo, directorName)
Primary Key directorNo

Branch (branchNo, street, city, state, zipCode)
Primary Key branchNo
Alternate Key zipCode

Member (memberNo, fName, lName, address)
Primary Key memberNo

RentalAgreement (rentalNo, dateOut, dateReturn)
Primary Key rentalNo

Staff (staffNo, name, position, salary)
Primary Key staffNo

Video (catalogNo, title, category, dailyRental, price)
Primary Key catalogNo

VideoForRent (videoNo, available)
Primary Key videoNo

Weak entities
defined in
Section 7.4

Relationships
discussed in
Section 7.2

(d) one-to-one (1:1) recursive relationships;

(e) many-to-many (*:*) binary relationships;

(f) complex relationships;

(g) multi-valued attributes.

One-to-many (1:*) binary relationships

For each 1:* binary relationship, the entity on the ‘one side’ of the relationship
is designated as the parent entity and the entity on the ‘many side’ is desig-
nated as the child entity. To represent this relationship, a copy of the primary
key of the parent entity is placed into the table representing the child entity, to
act as a foreign key.

Let’s consider the Branch Has Staff relationship shown in Figure 9.9 to illus-
trate how to represent a 1:* relationship as tables. In this example, Branch is on
the ‘one side’ and represents the parent entity, and Staff is on the ‘many side’
and represents the child entity. The relationship between these entities is estab-
lished by placing a copy of the primary key of the Branch (parent) entity, namely
branchNo, into the Staff (child) table. Figure 10.2(a) shows the Branch Has Staff ER
diagram and Figure 10.2(b) shows the corresponding tables.

222 ■ Logical database design

1:* relationships
defined in
Section 7.5.2

Figure 10.2

The 1:* Branch Has Staff relationship: (a) ER diagram; (b) representation as tables.

branchNo staffNo

HasBranch Staff

1..1 1..*

(a)

Parent entity Child entity

branchNo is posted to represent the Has relationship

(b)

Branch (branchNo, street, city, state, zipCode)
Primary Key branchNo

Staff (staffNo, name, position, salary, branchNo)
Primary Key staffNo
Foreign Key branchNo references Branch(branchNo)

Foreign key

Shows foreign
key referencing

parent table

There are several other examples of 1:* relationships in Figure 9.9 such as
Director Directs Video and Member Requests RentalAgreement. You should repeat the
rule given above for every 1:* relationship in the ER model.

One-to-many (1:*) recursive relationships

The representation of a 1:* recursive relationship is similar to that described
above. In Figure 9.9, there is a 1:* recursive relationship Staff Supervises Staff. In
this case, both the parent and the child entity is Staff. Following the rule given
above, you represent the Supervises relationship by posting a copy of the primary
key of the Staff (parent) entity, staffNo, to the Staff (child) table, creating a
second copy of this column to act as the foreign key. This copy of the column is
renamed supervisorStaffNo to indicate its purpose. Figure 10.3(a) shows the Staff
Supervises Staff ER diagram and Figure 10.3(b) shows the corresponding table
(with BranchNo included to represent the Branch Has Staff relationship).

Logical database design – Step 2 ■ 223

In the case where a 1:* relationship has one or more attributes, these attributes

should follow the posting of the primary key to the child table. For example, if

the Branch Has Staff relationship had an attribute called dateStart representing

when a member of staff started at the branch, this attribute should also be

posted to the Staff table along with the copy of the primary key of the Branch
table, namely branchNo.

Recursive
relationships
defined in
Section 7.2.2

Figure 10.3

The 1:* Staff
Supervises Staff
recursive
relationship:
(a) ER diagram;
(b) representation as
a table.

Staff

Supervisee

Supervises

Supervisor

0..*

0..1

staffNo

(a)

Parent and
child entity

(b)

staffNo is posted to represent the Supervises relationship
and renamed supervisorStaffNo

Staff (staffNo, name, position, salary, branchNo, supervisorStaffNo)
Primary Key staffNo
Foreign Key branchNo references Branch(branchNo)
Foreign Key supervisorStaffNo references Staff(staffNo)

branchNo is posted
to represent Branch Has Staff

relationship

One-to-one (1:1) binary relationships

Creating tables to represent 1:1 relationships is slightly more complex as you
cannot use the cardinality to help identify the parent and child entities in a
relationship. Instead, you need to use participation to help decide whether it’s
best to represent the relationship by combining the entities involved into one
table or by creating two tables and posting a copy of the primary key from one
table to the other. We consider how to create tables to represent the following
participation constraints:

(1) Mandatory participation on both sides of 1:1 relationship

(2) Mandatory participation on one side of 1:1 relationship

(3) Optional participation on both sides of 1:1 relationship.

Mandatory participation on both sides of 1:1 relationship
In this case, you should combine the entities involved into one table and
choose one of the primary keys of the original entities to be the primary key of
the new table, while the other is used as an alternate key.

We don’t have an example of such a relationship in Figure 9.9. However, let’s
consider how to represent a 1:1 relationship called Staff Uses Car with mandatory
participation for both entities, as shown in Figure 10.4(a). The primary key for
the Car entity is the vehicle license number (vehLicenseNo), and the other attrib-
utes include make and model. In this example, you place all the attributes for the
Staff and Car entities into one table. You choose one of the primary keys to be
the primary key of the new table, say staffNo, and the other becomes an alter-
nate key, as shown in Figure 10.4(b).

Note that it is only possible to merge two entities into one table when there
are no other relationships between these entities that would prevent this, such
as a 1:* relationship. If this were the case, you would need to represent the Staff
Uses Car relationship using the primary key/foreign key mechanism. We discuss
how to designate the parent and child entities in this type of situation shortly.

Mandatory participation on one side of a 1:1 relationship
In this case, you are able to identify the parent and child entities for the 1:1
relationship using the participation constraints. The entity that has optional

224 ■ Logical database design

1:1 relationships
defined in
Section 7.5.1

Participation
defined in
Section 7.5.5

In the case where a 1:1 relationship with mandatory participation on both

sides has one or more attributes, these attributes should also be included in the

table that represents the entities and relationship. For example, if the Staff Uses
Car relationship had an attribute called dateAssigned, this attribute would also

appear as a column in the StaffCar table.

participation in the relationship is designated as the parent entity, and the
entity that has mandatory participation in the relationship is designated as the
child entity. As described above, a copy of the primary key of the parent entity
is placed in the table representing the child entity.

The reason for posting a copy of the primary key of the entity that has
optional participation (parent entity) to the entity that has mandatory partici-
pation (child entity) is that this copy of the primary key (foreign key) will
always hold a value and hence avoid the presence of nulls in this column of the
resulting table. If we did not follow this rule and chose to represent this rela-
tionship by positioning the foreign key column in the table representing the
entity with optional participation, this column would contain nulls.

Let’s now consider how you would represent the 1:1 Staff Uses Car relation-
ship with mandatory participation only for the Car entity, as shown in Figure

Logical database design – Step 2 ■ 225

Figure 10.4

The 1:1 Staff Uses Car relationship with mandatory participation for both entities: (a) ER diagram; (b)
representation as a table.

StaffCar (staffNo, name, position, salary, branchNo, supervisorStaffNo, vehLicenseNo, make, model)
Primary Key staffNo
Alternate Key vehLicenseNo
Foreign Key branchNo references Branch(branchNo)
Foreign Key supervisorStaffNo references Staff(staffNo)

staffNo vehLicenseNo

UsesStaff Car

1..1 1..1

(a)

Columns of Staff

(b)

Becomes an
alternate key

Mandatory
participation for

Car entity

Mandatory
participation for

Staff entity

Columns of Car

Chosen as
primary key of

new table

10.5(a). The entity that has optional participation in the relationship (Staff) is
designated as the parent entity, and the entity that has mandatory participation
in the relationship (Car) is designated as the child entity. Therefore, a copy of
the primary key of the Staff (parent) entity, staffNo, is placed in the Car (child)
table, as shown in Figure 10.5(b). In this case, staffNo also becomes an alternate
key for the Car table.

Figure 9.9 has a second example of a 1:1 relationship with mandatory participa-
tion on only one side, namely Staff Manages Branch with mandatory participation
only for the Branch entity. Following the rule given above, the Staff entity is desig-
nated as the parent entity and the Branch entity is designated as the child entity.
Therefore, a copy of the primary key of the Staff (parent) entity, staffNo, is placed in
the Branch (child) table and renamed as mgrStaffNo, to indicate the purpose of the
foreign key in the Branch table. Figure 10.6(a) shows the Staff Manages Branch ER dia-
gram and Figure 10.6(b) shows the corresponding tables.

226 ■ Logical database design

Figure 10.5

The 1:1 Staff Uses Car
relationship with
mandatory
participation for the
Car entity and
optional
participation for
the Staff entity:
(a) ER diagram;
(b) representation
as tables.

Parent entity Child entity

staffNo vehLicenseNo

UsesStaff Car

1..1 0..1

(a)

Mandatory
participation for

Car entity

Optional
participation for

Staff entity

(b)

staffNo is posted to represent the Uses relationship

Staff (staffNo, name, position, salary,
branchNo, supervisorStaffNo)
Primary Key staffNo
Foreign Key branchNo references
Branch(branchNo)
Foreign Key supervisorStaffNo references
Staff(staffNo)

Car (vehLicenseNo, make, model, staffNo)
Primary Key vehLicenseNo
Alternate Key staffNo
Foreign Key staffNo references
Staff(staffNo)

staffNo
becomes foreign key

and alternate key

Logical database design – Step 2 ■ 227

Fi
gu

re
 1

0.
6

T
h

e
1:

1
St

af
f

M
an

ag
es

Br
an

ch
re

la
ti

on
sh

ip
 w

it
h

 m
an

d
at

or
y

p
ar

ti
ci

p
at

io
n

 f
or

 t
h

e
Br

an
ch

en
ti

ty
 a

n
d

 o
p

ti
on

al
 p

ar
ti

ci
p

at
io

n
 f

or
 t

h
e

St
af

f
en

ti
ty

: (
a)

 E
R

 d
ia

gr
am

; (
b)

 r
ep

re
se

n
ta

ti
on

 a
s

ta
bl

es
.

br
an

ch
N

o
st

af
fN

o
M

an
ag

es

B
ra

n
ch

St
af

f

0.
.1

1.
.1

H
as

1.
.1

1.
.*

(a
)

O
p

ti
on

al
p

ar
ti

ci
p

at
io

n
 f

or
St

af
f

en
ti

ty

M
an

d
at

or
y

p
ar

ti
ci

p
at

io
n

 f
or

Br
an

ch
 e

n
ti

ty

C
h

il
d

 e
n

ti
ty

fo
r

M
an

ag
es

re
la

ti
on

sh
ip

Pa
re

n
t

en
ti

ty
 f

or
 H

as
re

la
ti

on
sh

ip

Pa
re

n
t

en
ti

ty
fo

r
M

an
ag

es
re

la
ti

on
sh

ip

C
h

il
d

 e
n

ti
ty

fo
r

H
as

re
la

ti
on

sh
ip

(b
)

br
an

ch
N

o
is

 p
os

te
d

 t
o

re
p

re
se

n
t

th
e

H
as

 r
el

at
io

n
sh

ip

st
af

fN
o

is
 p

os
te

d
 t

o
re

p
re

se
n

t
th

e
M

an
ag

es
 r

el
at

io
n

sh
ip

 a
n

d
re

n
am

ed
 m

gr
St

af
fN

o

B
ra

n
ch

 (
br

an
ch

N
o,

 s
tr

ee
t,

 c
it

y,
 s

ta
te

, z
ip

C
od

e,
 m

gr
St

af
fN

o)
P

ri
m

ar
y

K
ey

 b
ra

n
ch

N
o

Fo
re

ig
n

 K
ey

 m
gr

St
af

fN
o

re
fe

re
n

ce
s

St
af

f(
st

af
fN

o)

St
af

f
(s

ta
ff

N
o,

 n
am

e,
 p

os
it

io
n

, s
al

ar
y,

 b
ra

n
ch

N
o,

 s
u

p
er

vi
so

rS
ta

ff
N

o)
P

ri
m

ar
y

K
ey

 s
ta

ff
N

o
Fo

re
ig

n
 K

ey
 b

ra
n

ch
N

o
re

fe
re

n
ce

s
B

ra
n

ch
(b

ra
n

ch
N

o)
Fo

re
ig

n
 K

ey
 s

u
p

er
vi

so
rS

ta
ff

N
o

re
fe

re
n

ce
s

St
af

f(
st

af
fN

o)

Optional participation on both sides of a 1:1 relationship
In this case, the designation of the parent and child entities is arbitrary unless
you can find out more about the relationship that can help you reach a deci-
sion one way or the other.

Let’s consider how you would represent the 1:1 Staff Uses Car relationship,
with optional participation on both sides of the relationship, as shown in
Figure 10.7(a). (Note that the discussion that follows is also relevant for 1:1 rela-
tionships with mandatory participation for both entities where you cannot
select the option to put everything into a single table.) If you don’t have any
additional information to help you select the parent and child entities, your
choice is arbitrary. In other words, you have the choice to post a copy of the
primary key of the Staff entity to the Car entity, or vice versa.

However, let’s assume you find that the majority of cars, but not all, are used
by staff and only a minority of staff use cars. Now you can say that the Car
entity, although optional, is closer to being mandatory than the Staff entity. You
can therefore designate Staff as the parent entity and Car as the child entity, and
post a copy of the primary key of the Staff entity (staffNo) into the Car table, as
shown in Figure 10.7(b). (Note that the composition of the Staff and Car tables is
the same as the example used in the discussion above on 1:1 relationships with
mandatory participation on only one side.)

One-to-one (1:1) recursive relationships

For a 1:1 recursive relationship, you should follow the rules for participation as
described above for a 1:1 relationship. However, in this special case of a 1:1 rela-
tionship, the entity on both sides of the relationship is the same. For a 1:1
recursive relationship with mandatory participation on both sides, you should
represent the recursive relationship as a single table with two copies of the pri-
mary key. As before, one copy of the primary key represents a foreign key and
should be renamed to indicate the relationship it represents.

For a 1:1 recursive relationship with mandatory participation on only one
side, you have the option to create a single table with two copies of the primary
key as described above, or to create a new table to represent the relationship.
The new table would only have two columns, both copies of the primary key.
As before, the copies of the primary keys act as foreign keys and have to be
renamed to indicate the purpose of each in the table.

228 ■ Logical database design

In the case where a 1:1 relationship with only mandatory participation for one

entity in a relationship has one or more attributes, these attributes should

follow the posting of the primary key to the child table. For example, if the

Staff Manages Branch relationship had an attribute called dateStart, this attribute

would appear as a column in the Branch table along with a copy of staffNo
(renamed mgrStaffNo).

For a 1:1 recursive relationship with optional participation on both sides, you
should create a new table.

Many-to-many (*:*) binary relationships

For each *:* binary relationship, create a table to represent the relationship and
include any attributes that are part of the relationship. We post a copy of the
primary key attribute(s) of the entities that participate in the relationship into
the new table, to act as foreign keys. One or both of the foreign keys will also
form the primary key of the new table, possibly in combination with some of
the attributes of the relationship.

For example, consider the *:* relationship Actor PlaysIn Video shown in Figure
9.9. The two entities enclosing the *:* relationship, namely Actor and Video, act
as parent entities and post copies of their primary keys (actorNo and catalogNo) to
a new table called Role that represents the relationship. Note that the PlaysIn

Logical database design – Step 2 ■ 229

: relationship
discussed in
Section 7.5.3

Figure 10.7

The 1:1 Staff Uses Car relationship with optional participation for both entities: (a) ER diagram;
(b) representation as tables.

Designated as
parent entity

staffNo vehLicenseNo

UsesStaff Car

0..1 0..1

(a)

Optional
participation for

Car entity

Optional
participation for

Staff entity

(b)

staffNo is posted to represent the Uses relationship

Staff (staffNo, name, position, salary,
branchNo, supervisorStaffNo)
Primary Key staffNo
Foreign Key branchNo references Branch(branchNo)
Foreign Key supervisorStaffNo references Staff(staffNo)

Car (vehLicenseNo, make, model, staffNo)
Primary Key vehLicenseNo
Alternate Key staffNo
Foreign Key staffNo references Staff(staffNo)

Foreign
key

Designated as
child entity

relationship has an attribute called character, which is also included in the Role
table. Figure 10.8(a) shows the Actor PlaysIn Video ER diagram and Figure 10.8(b)
shows the corresponding tables.

Note that the new table called Role has a composite primary key made up of
two foreign keys, catalogNo and actorNo.

Complex relationship types

For each complex relationship, that is a relationship with more than two parti-
cipating entities, create a table to represent the relationship. We post a copy of
the primary key attribute(s) of the entities that participate in the complex rela-
tionship into the new table, to act as foreign keys, and include any attributes
that are associated with the relationship. One or more of the foreign keys will
also form the primary key of the new table, possibly in combination with some
of the attributes of the relationship.

230 ■ Logical database design

Figure 10.8

The *:* Actor PlaysIn Video relationship: (a) ER diagram; (b) representation as tables.

catalogNo actorNo

Video Actor

1..* 0..*

(a)

Parent entity
for PlaysIn

relationship

(b)

Video (catalogNo, title, category, dailyRental, price, directorNo)
Primary Key catalogNo
Foreign Key directorNo references Director(directorNo)

Actor (actorNo, actorName)
Primary Key actorNo

PlaysIn

Parent entity
for PlaysIn

relationship

Role (catalogNo, actorNo, character)
Primary Key catalogNo, actorNo
Foreign Key catalogNo references Video(catalogNo)
Foreign Key actorNo references Actor(actorNo)

Attribute of PlaysIn
relationship called character

catalogNo is posted to
new table called Role

to represent the
PlaysIn relationship

actorNo is posted to
new table called Role

to represent the
PlaysIn relationship

Complex
relationship
discussed in
Section 7.5.4

For example, the complex (ternary) Registers relationship represents the asso-
ciation between a member of staff who registers a new member at a branch as
shown in Figure 9.9. The entities enclosing the complex relationship, namely
Staff, Member, and Branch, act as parent entities and we post copies of their pri-
mary keys (staffNo, memberNo, and branchNo) to a new table called Registration that
represents the relationship. Note that the Registers relationship has an attribute
called dateJoined, which is also included in the Registration table. Figure 10.9(a)
shows the Registers complex (ternary) relationship ER diagram and Figure
10.9(b) shows the corresponding tables.

Note that the new table called Registration has a composite primary key made
up of two foreign keys, branchNo and memberNo.

Multi-valued attributes

For each multi-valued attribute associated with an entity, you should follow the
rule described above for 1:* relationships. The entity is on the one side and is
designated the parent entity while the multi-valued attribute is on the many
side and is designated the child entity. A new table is created to hold the multi-
valued attribute and the parent entity posts a copy of its primary key, to act as a
foreign key. Unless the multi-valued attribute is itself an alternate key of the
parent entity, the primary key of the new table is composed of the multi-valued
attribute and the original primary key of the parent entity.

Logical database design – Step 2 ■ 231

Figure 10.9

The complex Registers relationship: (a) ER diagram

Parent entity
for Registers
relationship

Member

branchNo staffNo

Branch Staff

1..* 1..1

memberNo

(a)

0..*

Registers

Parent entity
for Registers
relationship

Parent entity
for Registers
relationship

For example, to represent the situation where a single branch has up to three
telephone numbers, the telNo attribute of the Branch entity has been defined as
being a multi-valued attribute. To represent this, we create a new table called
Telephone to represent the multi-valued attribute telNo. Figure 10.10(a) shows the
ER diagram of the Branch entity with only the primary key and the telNo multi-
valued attribute and Figure 10.10(b) shows the corresponding tables.

In Table 10.1 we summarize how to represent entities, relationships, and
multi-valued attributes as tables.

In Step 1.6 of the database design methodology we have the option to repre-
sent entities using the enhanced ER concepts of specialization/generalization,
which we’ll describe in Chapter 11. We therefore also leave the discussion on
how to map those enhanced concepts to tables until this chapter.

232 ■ Logical database design

Figure 10.9 Continued

The complex Registers relationship: (b) representation as tables.

(b)

Branch (branchNo, street, city, state, zipCode, mgrStaffNo)
Primary Key branchNo
Foreign Key mgrStaffNo references Staff(staffNo)

Staff (staffNo, name, position, salary, branchNo, supervisorStaffNo)
Primary Key staffNo
Foreign Key branchNo references branch(branchNo)
Foreign Key supervisorStaffNo references

Registration (branchNo, memberNo, staffNo, dataJoined)
Primary Key branchNo, memberNo
Foreign Key branchNo references Branch(branchNo)
Foreign Key memberNo references Member(memberNo)
Foreign Key staffNo references Staff(staffNo)

Attribute of Registers
relationship called

dataJoined

branchNo is posted to a
new table called Registration

to represent the
Registers relationship

staffNo is posted to a new table called Registration
to represent the Registers relationship

Member (memberNo, fName, IName, address)
Primary Key memberNo

memberNo is posted to a new table
called Registration to represent the

Registers relationship

Logical database design – Step 2 ■ 233

Figure 10.10

The multi-valued telNo attribute of the Branch entity: (a) ER diagram; (b) representation as tables.

(b)

Branch (branchNo, street, city, state, zipCode, telNo [1..3], mgrStaffNo)
Primary Key branchNo
Foreign Key mgrStaffNo references Staff(staffNo)

telNo is moved to a new
table called Telephone

branchNo is posted to a new table called Telephone to act as a foreign key

Branch (branchNo, street, city, state, zipCode, mgrStaffNo)
Primary Key branchNo
Foreign Key mgrStaffNo references Staff(staffNo)

Telephone (telNo, branchNo)
Primary Key telNo
Foreign Key branchNo references Branch(branchNo)

Branch

branchNo {PK}
telNo [1..3]

(a)

Table 10.1 Summary of how to represent entities, relationships, and multi-valued attributes as tables.

Entity/Relationship/Attribute Representation as table(s)

Strong or weak entity Create table that includes all simple attributes.

1:* binary relationship Post copy of primary key of entity on ‘one’ side to table representing

entity on ‘many’ side. Any attributes of relationship are also posted to

‘many’ side.

1:* recursive relationship As entity on ‘one’ and ‘many’ side is the same, the table representing the

entity receives a second copy of the primary key, which is renamed, and

also any attributes of the relationship.

1:1 binary relationship:

Mandatory participation on both sides Combine entities into one table.

Mandatory participation on one side Post copy of primary key of entity with optional participation to table

representing entity with mandatory participation. Any attributes of

relationship are also posted to table representing entity with mandatory

participation.

Optional participation on both sides Without further information, post copy of primary key of one entity to

the other. However, if information is available, treat entity that is closer

to having mandatory participation as being the child entity.

▲

Document tables and foreign key attributes

At the end of Step 2.1, you document the full composition of the tables created
from the ER model. The tables for the Branch user views of StayHome are shown
in Figure 10.11.

Now that each table has its full set of columns, you’re in a position to iden-
tify any new primary and/or alternate keys. This is particularly important for
weak entities that rely on the posting of the primary key from the parent entity
(or entities) to form all or part of a primary key of their own. For example, the
weak entity VideoOrderLine shown in Figure C.1 of Appendix C has a composite
primary key made up of a copy of the primary key of the Video entity (catalogNo)
and a copy of the primary key of the VideoOrder entity (orderNo) as described in
Figure C.2.

The DBDL syntax that describes each table can be extended to show integrity
constraints on the foreign keys, as you’ll see in Step 2.4. The data dictionary
should also be updated to indicate the presence of foreign keys, and any new
primary and alternate keys identified in this step. For example, following the
posting of primary keys, the RentalAgreement table has gained a new alternate
key, which is a combination of memberNo, videoNo, and dateOut.

Step 2.2 Check table structures using normalization

The purpose of this step is to examine the groupings of columns in each table
created in Step 2.1. You check the composition of each table using the rules of
normalization, to avoid unnecessary duplication of data.

You should ensure that each table created in Step 2.1 is in at least third
normal form (3NF). If you identify tables that are not in 3NF, this may indicate

234 ■ Logical database design

Table 10.1 Continued

Entity/Relationship/Attribute Representation as table(s)

: binary relationship/ Create a table to represent the relationship and include any attributes

complex relationship associated with the relationship. Post a copy of the primary key from

each parent entity into the new table to act as foreign keys.

Multi-valued attribute Create a table to represent the multi-valued attribute and post a copy of

the primary key of the parent entity into the new table to act as a foreign

key.

Objective

To check that each table has an appropriate structure, using normalization.

Normalization
discussed in
Chapter 8

that part of the ER model is incorrect, or that you have introduced an error
while creating the tables from the model. If necessary, you may need to restruc-
ture the data model and/or tables.

Step 2.3 Check tables support user transactions

The objective of this step is to check that the tables created in Step 2.1 support
the required transactions, as documented in the users’ requirements specifica-
tion. This type of check was carried out in Step 1.8 to ensure that the ER model
supported the required transactions. In this step, you check that the tables cre-
ated in the previous steps also support these transactions, and thereby ensure
that no error has been introduced while creating tables.

Logical database design – Step 2 ■ 235

Figure 10.11

Tables for the Branch user views of StayHome.

Actor (actorNo, actorName)
Primary Key actorNo

Director (directorNo, directorName)
Primary Key directorNo

Branch (branchNo, street, city, state, zipCode, mgrStaffNo)
Primary Key branchNo
Alternate Key zipCode
Foreign Key mgrStaffNo references Staff(staffNo)

Member (memberNo, fName, lName, address)
Primary Key memberNo

Registration (branchNo, memberNo, staffNo, dateJoined)
Primary Key branchNo, memberNo
Foreign Key branchNo references Branch(branchNo)
Foreign Key memberNo references Member(memberNo)
Foreign Key staffNo references Staff(staffNo)

RentalAgreement (rentalNo, dateOut, dateReturn, memberNo, videoNo)
Primary Key rentalNo
Alternate Key memberNo, videoNo, dateOut
Foreign Key memberNo references Member(memberNo)
Foreign Key videoNo references VideoForRent(videoNo)

Role (catalogNo, actorNo, character)
Primary Key catalogNo, actorNo
Foreign Key catalogNo references Video(catalogNo)
Foreign Key actorNo references Actor(actorNo)

Staff (staffNo, name, position, salary, branchNo, supervisorStaffNo)
Primary Key staffNo
Foreign Key branchNo references Branch(branchNo)
Foreign Key supervisorStaffNo references Staff(staffNo)

Telephone (telNo, branchNo)
Primary Key telNo
Foreign Key branchNo references Branch(branchNo)

Video (catalogNo, title, category, dailyRental, price, directorNo)
Primary Key catalogNo
Foreign Key directorNo references Director(directorNo)

VideoForRent (videoNo, available, catalogNo, branchNo)
Primary Key VideoNo
Foreign Key catalogNo references Video(catalogNo)
Foreign Key branchNo references Branch(branchNo)

Objective

To ensure that the tables support the required transactions.

One approach to checking that the tables support a transaction is to examine
the transaction’s data requirements to ensure that the data is present in one or
more tables. Also, if a transaction requires data in more than one table you
should check that these tables are linked through the primary key/foreign key
mechanism. We demonstrate this approach by examining the transactions
given in Section 6.4.4. Table 10.2(a) presents the data entry and update/dele-
tion transactions and Table 10.2(b) presents the query transactions for the
Branch user views of StayHome, together with the tables required by each. In
each case, you highlight the columns required by the transaction, including,
where necessary, those involved in joining tables.

236 ■ Logical database design

Table 10.2(a) The tables required by the data entry and update/delete transactions of the Branch user
views of StayHome.

Transaction Table(s) required

(a) Enter the details of a new branch. Branch (branchNo, street, city, state, zipCode, mgrStaffNo)

(g) Update/delete the details of a branch. Telephone (telNo, branchNo)

Foreign Key branchNo references Branch(branchNo)

(b) Enter the details of a new member of Staff (staffNo, name, position, salary, branchNo,

staff at a branch. supervisorStaffNo)

(h) Update/delete the details of a member

of staff at a branch.

(c) Enter the details for a newly Video (catalogNo, title, category, dailyRental, price,

released video. directorNo)

Foreign Key directorNo references Director (directorNo)

(i) Update/delete the details of a given video. Director (directorNo, directorName)

Role (catalogNo, actorNo, character)

Foreign Key catalogNo references Video(catalogNo)

Foreign Key actorNo references Actor(actorNo)

Actor (actorNo, actorName)

(d) Enter the details of copies of a new VideoForRent (videoNo, available, catalogNo, branchNo)

video at a given branch.

(j) Update/delete the details of a copy

of a video.

(e) Enter the details of a new member Member (memberNo, fName, lName, address)

registering at a given branch. Registration (branchNo, memberNo, staffNo, dateJoined)

(k) Update/delete the details of a given Foreign Key memberNo references Member(memberNo)

member.

(f) Enter the details of a rental agreement RentalAgreement (rentalNo, dateOut, dateReturn, memberNo,

for a member renting a video. videoNo)

(l) Update/delete the details of a given

rental agreement for a member renting

a video.

From this analysis, you conclude that the tables shown in Figure 10.11 sup-
port all the transactions for the Branch user views of StayHome.

Logical database design – Step 2 ■ 237

Table 10.2(b) The tables required by the query transactions of the Branch user views of StayHome.

Transaction Table(s) required

(m) List the details of branches in a Branch (branchNo, street, city, state, zipCode, mgrStaffNo)

given city. Telephone (telNo, branchNo)

Foreign Key branchNo references Branch(branchNo)

(n) List the name, position, and salary of Staff (staffNo, name, position, salary, branchNo,

staff at a given branch, ordered by supervisorStaffNo)

staff name.

(o) List the name of each Manager at each Branch (branchNo, street, city, state, zipCode, mgrStaffNo)

branch, ordered by branch number. Foreign Key mgrStaffNo references Staff (staffNo)

Staff (staffNo, name, position, salary, branchNo,

supervisorStaffNo)

(p) List the title, category, and availability Video (catalogNo, title, category, dailyRental, price, directorNo)

of all videos at a specified branch, VideoForRent (videoNo, available, catalogNo, branchNo)

ordered by category. Foreign Key catalogNo references Video (catalogNo)

(q) List the title, category, and availability Actor (actorNo, actorName)

of all videos for a given actor’s name at Role (catalogNo, actorNo, character)

a specified branch, ordered by title. Foreign Key catalogNo references Video(catalogNo)

Foreign Key actorNo references Actor(actorNo)

Video (catalogNo, title, category, dailyRental, price, directorNo)

VideoForRent (videoNo, available, catalogNo, branchNo)

Foreign Key catalogNo references Video (catalogNo)

(r) List the title, category, and availability Director (directorNo, directorName)

of all videos for a given director’s name Video (catalogNo, title, category, dailyRental, price,

at a specified branch, ordered by title. directorNo)

Foreign Key directorNo references Director (directorNo)

VideoForRent (videoNo, available, catalogNo, branchNo)

Foreign Key catalogNo references Video (catalogNo)

(s) List the details of all videos a specified Video (catalogNo, title, category, dailyRental, price,

member currently has on rent. directorNo)

VideoForRent (videoNo, available, catalogNo, branchNo)

Foreign Key catalogNo references Video (catalogNo)

RentalAgreement (rentalNo, dateOut, dateReturn, memberNo,

videoNo)

Foreign Key videoNo references VideoForRent (videoNo)

Foreign Key memberNo references Member (memberNo)

Member (memberNo, fName, lName, address)

▲

238 ■ Logical database design

Table 10.2(b) Continued

Transaction Table(s) required

(t) List the details of copies of a given Video (catalogNo, title, category, dailyRental, price,

video at a specified branch. directorNo)

VideoForRent (videoNo, available, catalogNo, branchNo)

Foreign Key videoNo references VideoForRent (videoNo)

(u) List the titles of all videos in a specified Video (catalogNo, title, category, dailyRental, price,

category, ordered by title. directorNo)

(v) List the total number of videos in each Video (catalogNo, title, category, dailyRental, price,

video category at each branch, ordered directorNo)

by branch number. VideoForRent (videoNo, available, catalogNo, branchNo)

Foreign Key catalogNo references Video (catalogNo)

(w) List the total cost of the videos at Video (catalogNo, title, category, dailyRental, price, directorNo)

all branches. VideoForRent (videoNo, available, catalogNo, branchNo)

Foreign Key catalogNo references Video (catalogNo)

(x) List the total number of videos Video (catalogNo, title, category, dailyRental, price, directorNo)

featuring each actor, ordered by Role (catalogNo, actorNo, character)

actor name. Foreign Key catalogNo references Video(catalogNo)

Foreign Key actorNo references Actor(actorNo)

Actor (actorNo, actorName)

(y) List the total number of members at Registration (branchNo, memberNo, staffNo, dateJoined)

each branch who joined in 2002,

ordered by branch number.

(z) List the total possible daily rental for Video (catalogNo, title, category, dailyRental, price, directorNo)

videos at each branch, ordered by VideoForRent (videoNo, available, catalogNo, branchNo)

branch number. Foreign Key catalogNo references Video(catalogNo)

As with Step 1.8 covered in the last chapter, this may look like a lot of

hard work and it certainly can be. As a result, you may be tempted to omit this

step. However, it’s very important that you do these checks now rather than

later when you’ll find it much more difficult and costly to resolve any errors in

your data model.

TIP

Step 2.4 Check business rules

Business rules are the constraints that you wish to impose in order to protect
the database from becoming incomplete, inaccurate, or inconsistent. Although
you may not be able to implement some business rules within the DBMS, this is
not the question here. At this stage, you are concerned only with high-level
design: that is, specifying what business rules are required irrespective of how
this might be achieved. Having identified the business rules, you will have a
logical data model that is a complete and accurate representation of the data
requirements of the organization (or part of the organization) to be supported
by the database. If necessary, you could produce a physical database design
from the logical data model, for example to prototype the system for the user.

We consider the following types of business rules:

■ required data,

■ column domain constraints,

■ entity integrity,

■ multiplicity,

■ referential integrity,

■ other business rules.

Required data

Some columns must always contain a value; in other words, they are not
allowed to hold nulls. For example, every member of staff must have a job posi-
tion (such as Manager or Supervisor). These constraints should have been
identified when you documented the columns (attributes) in the data dictio-
nary in Step 1.3.

Column domain constraints

Every column has a domain (a set of values that are legal for it). For example,
the position of a member of staff is Director, Manager, Supervisor, Assistant, or
Buyer so the domain of the position column consists of only these values. These
constraints should have been identified when you chose the column (attribute)
domains for the data in Step 1.4.

Logical database design – Step 2 ■ 239

Objective

To check business rules are represented in the logical database design.

Prototyping
discussed in
Section 4.10

Nulls defined in
Section 2.3.1

Domains defined
in Section 2.2.1

Entity integrity

The primary key of an entity cannot hold nulls. For example, each record of the
Staff table must have a value for the primary key column, staffNo. These con-
straints should have been considered when you identified the primary keys for
each entity in Step 1.5.

Multiplicity

Multiplicity represents the constraints that are placed on relationships between
data in the database. Examples of such constraints include the requirements
that a branch must have members and each branch must have staff. Ensuring
that all appropriate business rules are identified and represented is an important
part of modeling the organization’s data requirements. In Step 1.2 we defined
the relationships between entities and all business rules that can be represented
in this way were defined and documented in this step.

Referential integrity

A foreign key links each record in the child table to the record in the parent
table containing the matching primary key value. Referential integrity means
that, if the foreign key contains a value, that value must refer to an existing
record in the parent table. For example, the branchNo column in the Staff table
links the member of staff to the record in the Branch table where he or she
works. If branchNo is not null, it must contain a value that exists in the branchNo
column of the Branch table, or the member of staff will be assigned to a non-
existent branch.

There are two issues regarding foreign keys that must be addressed.

(1) Are nulls allowed for the foreign key?

For example, can you store the details of a member of staff without having a
branch number for the employee? The issue is not whether the branch number
exists, but whether a branch number must be specified. In general, if the parti-
cipation of the child table in the relationship is mandatory, then nulls are not
allowed. On the other hand, if the participation of the child table is optional,
then nulls should be allowed.

(2) How do you ensure referential integrity?

To do this, you specify existence constraints, which define conditions under
which a primary key or foreign key may be inserted, updated, or deleted.
Consider the 1:* relationship Branch Has Staff. The primary key of the Branch table
(branchNo) is a foreign key in the Staff table. Let’s consider the following six cases.

240 ■ Logical database design

Entity integrity
defined in
Section 2.3.2

Multiplicity
discussed in
Section 7.5

Referential
integrity defined
in Section 2.3.3

Participation
defined in
Section 7.5.5

Case 1: Insert record into child table (Staff)
To ensure referential integrity, check that the foreign key column (branchNo) of
the new Staff record is set to null or to a value of an existing Branch record.

Case 2: Delete record from child table (Staff)
If a record in the child table is deleted, referential integrity is unaffected.

Case 3: Update foreign key of child record (Staff)
This is similar to Case 1. To ensure referential integrity, check that the foreign
key column (branchNo) of the updated Staff record is set to null or to a value of
an existing Branch record.

Case 4: Insert record into parent table (Branch)
Inserting a record into the parent table (Branch) does not affect referential
integrity; it simply becomes a parent without any children – in other words, a
branch without members of staff.

Case 5: Delete record from parent table (Branch)
If a record of the parent table is deleted, referential integrity is lost if there is a
child record referencing the deleted parent record. In other words, referential
integrity is lost if the deleted branch currently has one or more members of
staff working at it. There are several strategies you can consider in this case:

■ NO ACTION Prevent a deletion from the parent table if there are any refer-
encing child records. In our example, ‘You cannot delete a branch if there are
currently members of staff working there’.

■ CASCADE When the parent record is deleted, automatically delete any refer-
encing child records. If any deleted child record also acts as a parent record
in another relationship then the delete operation should be applied to the
records in this child table, and so on in a cascading manner. In other words,
deletions from the parent table cascade to the child table. In our example,
‘Deleting a branch automatically deletes all members of staff working there’.
Clearly, in this situation, this strategy would not be wise.

■ SET NULL When a parent record is deleted, the foreign key values in all
related child records are automatically set to null. In our example, ‘If a
branch is deleted, indicate that the current branch for those members of staff
previously working there is unknown’. You can only consider this strategy if
the columns comprising the foreign key can accept nulls, as defined in Step
1.3.

■ SET DEFAULT When a parent record is deleted, the foreign key values in all
related child records are automatically set to their default values. In our
example, ‘If a branch is deleted, indicate that the current assignment of
members of staff previously working there is being assigned to another

Logical database design – Step 2 ■ 241

(default) branch’. You can only consider this strategy if the columns compris-
ing the foreign key have default values, as defined in Step 1.3.

■ NO CHECK When a parent record is deleted, do nothing to ensure that ref-
erential integrity is maintained. This strategy should only be considered in
extreme circumstances.

Case 6: Update primary key of parent record (Branch)
If the primary key value of a parent table record is updated, referential integrity
is lost if there exists a child record referencing the old primary key value; that
is, if the updated branch currently has staff working there. To ensure referential
integrity, the strategies described above can be used. In the case of CASCADE,
the updates to the primary key of the parent record are reflected in any refer-
encing child records, and so on in a cascading manner.

The referential integrity constraints for the tables that have been created for
the Branch user views of StayHome are shown in Figure 10.12.

Other business rules

Finally, you consider constraints for any remaining business rules that have not
been defined so far. Business rules should be represented as constraints on the
database to ensure that only permitted updates to tables governed by ‘real
world’ transactions are allowed. For example, StayHome has a business rule that
prevents a member from renting more than 10 videos at any one time.

Document all business rules

Document all business rules for consideration during physical database design.

Step 2.5 Review logical database design with users

The logical database design should now be complete and fully documented.
However, to finish this step you should review the design with the users.

If you’re designing a database that has only a single user view or you are
using the centralized approach and have merged the user requirements for two
or more user views, then you are ready to proceed to physical database design,
which we’ll describe in Chapters 12 to 16. If, however, you’re designing a more

242 ■ Logical database design

Objective

To ensure that the logical database design is a true representation of the data

requirements of the organization (or part of the organization) to be supported

by the database.

Centralized and view
integration approaches
discussed in Sections
4.5 and 6.4.4

complex database that has numerous and varied user views and you’re using
the view integration approach to manage those user views then you should
read Appendix C before you proceed to physical database design.

Chapter summary
The main purpose of Step 2 of logical database design is to create tables
for the ER model and to check the structure of the tables.

The structures of the tables are checked using normalization.

Logical database design – Step 2 ■ 243

Figure 10.12

The referential integrity constraints for the tables in the Branch user views of StayHome.

Foreign Key mgrStaffNo references Staff(staffNo) ON UPDATE CASCADE ON DELETE NO ACTION

Foreign Key branchNo references Branch(branchNo) ON UPDATE CASCADE ON DELETE NO ACTION
Foreign Key memberNo references Member(memberNo) ON UPDATE CASCADE ON DELETE NO ACTION
Foreign Key staffNo references Staff(staffNo) ON UPDATE CASCADE ON DELETE NO ACTION

Foreign Key memberNo references Member(memberNo) ON UPDATE CASCADE ON DELETE NO ACTION
Foreign Key videoNo references VideoForRent(videoNo) ON UPDATE CASCADE ON DELETE NO ACTION

Foreign Key catalogNo references Video(catalogNo) ON UPDATE CASCADE ON DELETE CASCADE
Foreign Key actorNo references Actor(actorNo) ON UPDATE CASCADE ON DELETE NO ACTION

Foreign Key branchNo references Branch(branchNo) ON UPDATE CASCADE ON DELETE NO ACTION
Foreign Key supervisorStaffNo references Staff(staffNo) ON UPDATE CASCADE ON DELETE SET NULL

Foreign Key branchNo references Branch(branchNo) ON UPDATE CASCADE ON DELETE CASCADE

Foreign Key directorNo references Director(directorNo) ON UPDATE CASCADE ON DELETE NO ACTION

Foreign Key catalogNo references Video(catalogNo) ON UPDATE CASCADE ON DELETE NO ACTION
Foreign Key branchNo references Branch(branchNo) ON UPDATE CASCADE ON DELETE NO ACTION

Branch

Registration

RentalAgreement

Role

Staff

Telephone

Video

VideoForRent

The tables are checked to ensure that they support the transactions
defined in the users’ requirements.

Business rules can protect the database from becoming incomplete,
inaccurate, or inconsistent. These rules include: integrity constraints,
required data, column domain constraints, entity integrity, multiplicity,
referential integrity, and any additional business rules.

Existence constraints ensure referential integrity by defining conditions
under which a primary key or foreign key may be inserted, updated, or
deleted.

There are several strategies to consider when a child record references
the parent record that you’re attempting to delete/update: NO ACTION,
CASCADE, SET NULL, SET DEFAULT, and NO CHECK.

Review questions
10.1 Describe the main purpose and tasks of Step 2 of the logical database

design methodology.

10.2 Describe the rules for creating tables that represent:

(a) strong and weak entities;

(b) one-to-many (1:*) binary relationships;

(c) one-to-many (1:*) recursive relationships;

(d) one-to-one (1:1) binary relationships;

(e) one-to-one (1:1) recursive relationships;

(f) many-to-many (*:*) binary relationships;

(g) complex relationships;

(h) multi-valued attributes.

Give examples to illustrate your answers.

10.3 Discuss how the technique of normalization can be used to check the
structure of the tables created from the ER model and supporting docu-
mentation.

10.4 Discuss one approach that can be used to check that the tables support
the transactions required by the users.

10.5 Discuss what business rules represent. Give examples to illustrate your
answers.

10.6 Describe the alternative strategies that can be applied if there is a child
record referencing a parent record that we wish to delete.

244 ■ Logical database design

Exercise

10.7 Create a description of the tables for each answer ER diagram given in
Appendix E without first looking at the answer table descriptions that
accompany each case study. Compare your tables with the answer tables
and justify any differences found.

Logical database design – Step 2 ■ 245

We covered the basic concepts associated with Entity–Relationship (ER) model-
ing in Chapter 7, and used these concepts in the construction of ER models in
the logical database design methodology presented in Chapters 9 and 10. These
basic concepts are often perfectly adequate for the representation of the data
requirements for many different database applications. However, the basic ER
concepts can be limiting when modeling more complex database applications
with a large amount of data and/or data with complex interrelationships. This
stimulated the need to develop additional ‘semantic’ modeling concepts. The
original ER model with additional semantic concepts is referred to as the
Enhanced Entity–Relationship (EER) model. In this chapter, we describe one
of the most useful concepts associated with the EER model called specializa-
tion/generalization and show how it can be used.

The database design methodology presented in this book provides an option
to use the enhanced concepts of the EER model in Step 1.6. The choice of

Chapter 11

Enhanced ER modeling
techniques

In this chapter you will learn:

The limitations of the basic ER modeling concepts and the requirements to
model more complex applications using enhanced data modeling concepts.

The main concepts associated with the Enhanced Entity–Relationship
(EER) model called specialization/generalization.

A notation for displaying specialization/generalization in an EER diagram.

How to create tables that represent specialization/generalization in an
EER model.

Methodology
summarized in
Appendix B

whether to include this step is largely dependent on whether the designer con-
siders that using these enhanced modeling concepts facilitates or hinders the
process of database design.

11.1 Specialization/Generalization
The concept of specialization/generalization is associated with special types of
entities known as superclasses and subclasses, and the process of attribute
inheritance. We begin this section by defining what superclasses and subclasses
are and by examining superclass/subclass relationships. We describe the process
of attribute inheritance and contrast the process of specialization with general-
ization. We also show how to represent specialization/generalization in a
diagram using the UML (Unified Modeling Language) notation.

11.1.1 Superclasses and subclasses

A general entity called a superclass includes groupings of more specific kinds of
entities called subclasses. For example, an entity that may have many distinct
subclasses is Staff. The entities that are members of the Staff entity may be classi-
fied as Manager, Secretary, and SalesPersonnel. In other words, the Staff entity is the
superclass of the Manager, Secretary, and SalesPersonnel subclasses.

11.1.2 Superclass/Subclass relationships

The relationship between a superclass and any one of its subclasses is one-to-
one (1:1) and is called a superclass/subclass relationship. For example,
Staff/Manager forms a superclass/subclass relationship. Each member of a sub-
class is also a member of the superclass but has a distinct role.

We can use superclasses and subclasses to avoid describing different types of
entities with possibly different attributes within a single entity. For example,
SalesPersonnel may have special attributes such as salesArea and carAllowance, and

Enhanced ER modeling techniques ■ 247

Superclass

An entity that includes one or more distinct groupings of its occurrences, which

require to be represented in a data model.

Subclass

A distinct grouping of occurrences of an entity, which require to be represented in a

data model.

1:1 relationships
defined in
Section 7.5.1

so on. If all staff attributes and those specific to particular jobs are represented
by a single Staff entity, this may result in a lot of nulls for the job-specific attrib-
utes. Clearly, Sales Personnel have common attributes with other staff, such as
staffNo, name, position, and salary, but it’s the unshared attributes that cause prob-
lems when we try to represent all members of staff within a single entity.
Defining superclasses/subclasses can also allow us to show relationships that are
associated only with particular subclasses of staff and not with staff in general.
For example, Sales Personnel may have distinct relationships that are not
appropriate for all staff, such as SalesPersonnel Requires Car.

To illustrate the points being made above, let’s consider the table called
AllStaff in Figure 11.1. This table holds the details of all members of staff no
matter what position they hold. A consequence of holding the details of all
members of staff in one table is that while the columns appropriate to all staff
are filled (namely, staffNo, name, position, salary, and branchNo), those that are only
applicable to particular job roles will only be partially filled. For example, the
columns associated with the SalesPersonnel subclass (namely salesArea,
vehLicenseNo, and carAllowance) have no values for those members of staff not in
this subclass.

248 ■ Logical database design

Figure 11.1

The AllStaff table holding details of all members of staff.

staffNo name position salary branchNo salesArea vehLicenseNo carAllowance

S1500 Tom Daniels Manager 46000 B001

S0003 Sally Adams Assistant 30000 B001

S0010 Mary Martinez Manager 50000 B002

S0099 Joe Hope Sales Personnel 35000 B002 WA 1A SH22 5000

S3250 Robert Chin Supervisor 32000 B002

S2250 Sally Stern Manager 48000 B004

S2345 Linda Haven Sales Personnel 37500 B002 WA 2B SH34 5000

S0415 Art Peters Manager 41000 B003

AllStaff

Columns appropriate
for all staff

Columns appropriate
for Sales Personnel

11.1.3 Attribute inheritance

As mentioned above, an entity occurrence in a subclass represents the same ‘real
world’ object as in the superclass. Hence, a member of a subclass inherits those
attributes associated with the superclass, but may also have subclass-specific
attributes. For example, a member of the SalesPersonnel subclass has subclass-
specific attributes, salesArea, vehLicenseNo, and carAllowance, and all the attributes of
the Staff superclass, namely staffNo, name, position, salary, and branchNo.

A subclass is an entity in its own right and so it may also have one or more
subclasses. A subclass with more than one superclass is called a shared subclass.
In other words, a member of a shared subclass must be a member of the associ-
ated superclasses. As a consequence, the attributes of the superclasses are
inherited by the shared subclass, which may also have its own additional attrib-
utes. This process is referred to as multiple inheritance.

11.1.4 Specialization process

Specialization is a top-down approach to defining a set of superclasses and their
related subclasses. The set of subclasses is defined on the basis of some distin-

Enhanced ER modeling techniques ■ 249

There are two important reasons for introducing the concepts of superclasses

and subclasses into an ER model. The first reason is that it avoids describing

similar concepts more than once, thereby saving you time and making the ER

model more readable. The second reason is that it adds more semantic infor-

mation to the design in a form that is familiar to many people. For example,

the assertions that ‘Manager IS-A member of staff’ and ‘van IS-A type of vehi-

cle’ communicate significant semantic content in an easy-to-follow form.

An entity and its subclasses and their subclasses, and so on, is called a type

hierarchy. Type hierarchies are known by a variety of names including: spe-

cialization hierarchy (for example, Manager is a specialization of Staff),
generalization hierarchy (for example, Staff is a generalization of Manager),
and IS-A hierarchy (for example, Manager IS-A (member of) Staff). We describe

the process of specialization and generalization in the following sections.

Specialization

The process of maximizing the differences between members of an entity by identify-

ing their distinguishing characteristics.

guishing characteristics of the entities in the superclass. When we identify a
subclass of an entity, we then associate attributes specific to the subclass (where
necessary), and also identify any relationships between the subclass and other
entities or subclasses (where necessary).

11.1.5 Generalization process

The process of generalization is a bottom-up approach, which results in the
identification of a generalized superclass from the original subclasses. The
process of generalization can be viewed as the reverse of the specialization
process. For example, consider a model where Manager, Secretary, and
SalesPersonnel are represented as distinct entities. If we apply the process of gen-
eralization on these entities, we attempt to identify any similarities between
them such as common attributes and relationships. As stated earlier, these enti-
ties share attributes common to all staff, and therefore we would identify
Manager, Secretary, and SalesPersonnel as subclasses of a generalized Staff superclass.

Diagrammatic representation

UML has a special notation for representing subclasses and superclasses. For
example, consider the specialization/generalization of the Staff entity into sub-
classes that represent job roles. The Staff superclass and the Manager, Secretary,
and SalesPersonnel subclasses can be represented in an EER diagram as illustrated
in Figure 11.2. Note that the Staff superclass and the subclasses, being entities,
are represented as rectangles. Specialization/generalization subclasses are
attached by lines to a triangle that points towards the superclass. The label
below the triangle, shown as {Optional, And}, describes the constraints on the
specialization/generalization relationship. These constraints are discussed in
more detail in the following section.

Attributes that are specific to a given subclass are listed in the lower section
of the rectangle representing that subclass. For example, the salesArea,
vehLicenseNo, and carAllowance attributes are associated only with the SalesPersonnel
subclass, and are not applicable to the Manager or Secretary subclasses. Similarly,
we show attributes that are specific to the Manager (bonus) and Secretary
(typingSpeed) subclasses.

Figure 11.2 also shows relationships that are applicable to specific subclasses
or just to the superclass. For example, the Manager subclass is related to the
Branch entity through the Manages relationship, whereas the Staff entity is related
to the Branch entity through the Has relationship.

250 ■ Logical database design

Generalization

The process of minimizing the differences between entities by identifying their

common features.

In Figure 11.3, the Staff specialization/generalization has been expanded to
show a shared subclass called SalesManager and a subclass called Secretary with its
own subclass called AssistantSecretary. In other words, a member of the
SalesManager shared subclass must be a member of the SalesPersonnel and Manager
subclasses and Staff superclass. As a consequence, the attributes of the Staff
superclass (staffNo, name, position, salary), and the attributes of the subclasses
SalesPersonnel (salesArea, vehLicenseNo, carAllowance) and Manager (bonus), are inher-
ited by the SalesManager subclass, which also has its own additional attribute
called salesTarget.

AssistantSecretary is a subclass of Secretary, which is a subclass of Staff. This
means that a member of the AssistantSecretary subclass must be a member of the
Secretary subclass and the Staff superclass. As a consequence, the attributes of the
Staff superclass (staffNo, name, position, salary) and the attribute of the Secretary sub-
class (typingSpeed) are inherited by the AssistantSecretary subclass, which also has
its own additional attribute called startDate.

Enhanced ER modeling techniques ■ 251

Figure 11.2

Specialization/
generalization of the
Staff entity into
subclasses
representing job
roles.

StaffBranch Has

branchNo {PK}
street
city
state
zipCode

1..1 1..*

SalesPersonnelManager Secretary

bonus typingSpeed

staffNo {PK}
name
position
salary

1..1

1..1

Manages

{Optional, And}

salesArea
vehLicenseNo
carAllowance

Disjoint
constraint

Participation
constraint

Indicates
specialization/
generalization

Superclass

Subclasses

Note that the multiplicity of Manager in the Manages relationship is 1..1,

whereas previously the multiplicity of Staff in the Manages relationship was

0..1 (in other words, Manager has mandatory participation whereas Staff had

optional participation).

11.1.6 Constraints on superclass/subclass relationships

There are two constraints that may apply to a superclass/subclass relationship,
called participation constraints and disjoint constraints.

Participation constraints

A participation constraint may be mandatory or optional. A superclass/sub-
class relationship with a mandatory participation specifies that every entity
occurrence in the superclass must also be a member of a subclass. To represent
mandatory participation, a ‘Mandatory’ is placed in curly brackets below the

252 ■ Logical database design

Figure 11.3

Specialization/
generalization of
the Staff entity
including a shared
subclass called
SalesManager and a
subclass called
Secretary with its
own subclass called
AssistantSecretary.

StaffBranch Has

branchNo {PK}
street
city
state
zipCode

1..1 1..*

SalesPersonnelManager Secretary

bonus typingSpeed

staffNo {PK}
name
position
salary

1..1

1..1

Manages

{Optional, And}

salesArea
vehLicenseNo
carAllowance

Disjoint
constraint

Participation
constraint

AssistantSecretary

startDate

{Optional}

SalesManager

salesTarget

{Optional}

Participation
constraint

Shared
subclass

Participation constraint

Determines whether every occurrence in the superclass must participate as a member

of a subclass.

triangle that points towards the superclass. For example, in Figure 11.4 the
Vehicle specialization/generalization (Van, Bus, and Car) has mandatory participa-
tion, which means that every vehicle must be a van, bus, or car.

A superclass/subclass relationship with optional participation specifies that a
member of a superclass need not belong to any of its subclasses. To represent
optional participation, an ‘Optional’ is placed in curly brackets below the trian-
gle that points towards the superclass. For example, in Figure 11.2 the job role
specialization/generalization has optional participation, which means that a
member of staff need not have an additional job role such as a Manager,
Secretary, or Sales Personnel.

Disjoint constraints

The disjoint constraint only applies when a superclass has more than one sub-
class. If the subclasses are disjoint, then an entity occurrence can be a member
of only one of the subclasses. To represent a disjoint superclass/subclass rela-
tionship, an ‘Or’ is placed next to the participation constraint within the curly
brackets. For example, in Figure 11.4 the subclasses of the Vehicle specializa-
tion/generalization (Van, Bus, and Car) are disjoint, which means that a vehicle is
a van, bus, or car.

If subclasses of a specialization/generalization are not disjoint (called nondis-
joint), then an entity occurrence may be a member of more than one subclass.

Enhanced ER modeling techniques ■ 253

Figure 11.4

Specialization/
generalization of
the Vehicle entity
into vehicle types.

Vehicle

BusVan Car

capacity color

vehLicenseNo {PK}
make
model

{Mandatory, Or}

noSeats

Disjoint
constraint

Participation
constraint

Disjoint constraint

Describes the relationship between members of the subclasses and indicates whether

it’s possible for a member of a superclass to be a member of one, or more than one,

subclass.

To represent a nondisjoint superclass/subclass relationship, an ‘And’ is placed
next to the participation constraint within the curly brackets. For example, in
Figure 11.2 (and Figure 11.3) the subclasses of the job role specialization/gener-
alization (Manager, Secretary, SalesPersonnel) are nondisjoint, which means that an
entity occurrence can be a member of both the Manager and SalesPersonnel sub-
classes. This is also confirmed by the presence of the shared subclass called
SalesManager.

The participation and disjoint constraints of specialization/generalization are
distinct giving the following four categories: mandatory and nondisjoint,
optional and nondisjoint, mandatory and disjoint, and optional and disjoint.

11.2 Creating tables to represent
specialization/generalization

In Chapter 10, we described how to create tables from a data model built using
the basic concepts of the ER model. In this section, we show how to create
tables for a specialization/generalization hierarchy. We illustrate this process for
the EER models shown in Figures 11.2 and 11.4. As before, we describe each
table using the Database Definition Language (DBDL) for relational databases.

For each superclass/subclass relationship in the EER model, you identify the
superclass as the parent entity and the subclass as the child entity. There are
various options on how you may best represent such a relationship as one or
more tables. The selection of the most appropriate option is dependent on the
participation and disjoint constraints on the superclass/subclass relationship, as
shown in Table 11.1.

254 ■ Logical database design

DBDL defined in Step
2.1 of Chapter 10

Parent/child entities
covered in Step 2.1
of Chapter 10

Table 11.1 Options available for the representation of a superclass/subclass
relationship based on the participation and disjoint constraints.

Participation constraint Disjoint constraint Tables required

Mandatory Nondisjoint {And} Single table

Optional Nondisjoint {And} Two tables: one table for superclass

and one table for all subclasses

Mandatory Disjoint {Or} Many tables: one table for each

combined superclass/subclass

Optional Disjoint {Or} Many tables: one table for

superclass and one table for each

subclass

We use the Staff specialization/generalization in Figure 11.2 as our first exam-
ple. The relationship that the Staff superclass has with its subclasses (Manager,
SalesPersonnel, or Secretary) is optional, as a member of staff may not belong to any
of the subclasses, and nondisjoint, as a member of staff may belong to more than
one subclass. Based on the options given in Table 11.1, you should represent the
Staff superclass/subclass relationship by creating a table for the superclass and a
table for all of the subclasses, as shown in Figure 11.5. For clarification, we also
include a table to represent the Branch entity and its relationship with Staff.

We use the Vehicle specialization/generalization in Figure 11.4 as our second
example. The relationship that the Vehicle superclass has with its subclasses (Van,
Bus, or Car) is mandatory, as all members of the Vehicle superclass must belong to
one of the subclasses, and disjoint, as a member of the Vehicle superclass can
belong to only one subclass. Based on the options given in Table 11.1, you
should represent the Vehicle superclass/subclass relationship by creating a table
for each combined superclass/subclass, as shown in Figure 11.6.

Although the options described in Table 11.1 provide some guidelines for
how best to represent a superclass/subclass relationship, there are other factors
that may influence the final selection such as:

■ whether the subclasses are involved in distinct relationships;

■ the number of attributes that are distinct to each subclass;

■ the relative number of entity occurrences represented by the superclass and
by each subclass.

Enhanced ER modeling techniques ■ 255

Figure 11.5

Tables to represent the Staff specialization/generalization and the Branch entity shown in Figure 11.2.

Staff superclass
staff (staffNo, name, position, salary, branchNo)
Primary Key staffNo
Foreign Key branchNo references Branch(branchNo)

Staff subclasses
AllStaffSubclasses (subclassStaffNo, bonus, salesArea, vehLicenseNo, carAllowance, typingSpeed)
Primary Key subclassStaffNo
Foreign Key subclassStaffNo references Staff(staffNo)

Branch
Branch (branchNo, street, city, state, zipCode, mgrStaffNo)
Primary Key branchNo
Foreign Key mgrStaffNo references AllStaffSubclasses(subclassStaffNo)

Chapter summary
A superclass is an entity that includes one or more distinct groupings of
its occurrences, which require to be represented in a model.

A subclass is a distinct grouping of occurrences of an entity, which
require to be represented in a data model.

Attribute inheritance is the process by which a member of a subclass
may possess subclass-specific attributes, and inherit those attributes
associated with the superclass.

Specialization is the process of maximizing the differences between
members of an entity by identifying their distinguishing characteristics.

Generalization is the process of minimizing the differences between
entities by identifying their common features.

The constraints that may apply on a superclass/subclass relationship are
called participation and disjoint constraints.

A participation constraint determines whether every occurrence in the
superclass must participate as a member of a subclass.

A disjoint constraint describes the relationship between members of the
subclasses and indicates whether it’s possible for a member of a super-
class to be a member of one, or more than one, subclass.

256 ■ Logical database design

Figure 11.6

Tables to represent the Vehicle specialization/generalization shown in Figure 11.4.

Van subclass
Van (vehLicenseNo, make, model, capacity)
Primary Key vehLicenseNo

Car subclass
Car (vehLicenseNo, make, model, color)
Primary Key vehLicenseNo

Bus subclass
Bus (vehLicenseNo, make, model, noSeats)
Primary Key vehLicenseNo

Review questions
11.1 Describe what a superclass and a subclass represent.

11.2 Describe the relationship between a superclass and its subclass.

11.3 Describe, and illustrate using an example, the process of attribute inheritance.

11.4 What are the main reasons for introducing the concepts of superclasses
and subclasses into an EER model?

11.5 Describe what a shared subclass represents.

11.6 Describe and contrast the process of specialization with the process of
generalization.

11.7 Describe the two main constraints that apply to a specialization/general-
ization relationship.

Exercises

11.8 Examine how specialization/generalization has been applied to some of
the case studies described in Appendix E.

11.9 Consider whether it is appropriate to introduce the enhanced concepts of
specialization/generalization into the ER model for the case study
described in Exercise 7.12. If appropriate, redraw the ER diagram as an
EER diagram with the additional enhanced concepts.

Enhanced ER modeling techniques ■ 257

Part 4

Physical database design

12 Physical database design – Step 3 261

13 Physical database design – Step 4 278

14 Physical database design – Steps 5 and 6 296

15 Physical database design – Step 7 305

16 Physical database design – Step 8 319

In these next few chapters, we describe and illustrate by example a physical
database design methodology for relational databases. The starting point for
this chapter is the logical data model and the documentation that describes the
model created in Steps 1 and 2 of the methodology. The methodology started
by producing a logical data model in Step 1 and then used the logical model to
derive a set of tables in Step 2. The logical model and derived tables were
checked to ensure they were correctly structured using the technique of nor-
malization, and to ensure they supported the transactions the users require.

In the second phase of the database design methodology, namely physical
database design, you must decide how to translate the logical database struc-
ture (that is, the entities, attributes, relationships, and constraints) into a
physical database design that can be implemented using the target DBMS. As
many parts of physical database design are highly dependent on the target
DBMS, you may find that there may be more than one way of implementing
any given part of the database. Therefore, to carry out physical database design
properly, you need to be fully aware of the functionality of the target DBMS,

Chapter 12

Physical database
design – Step 3

In this chapter you will learn:

The purpose of physical database design.

How to map the logical database design to a physical database design.

How to design base tables for the target DBMS.

How to design the representation of derived data.

How to design business rules for the target DBMS.

Logical database design
Step 1 Create ER model

Step 2 Map ER model to tables

Physical database design
Step 3 Translate logical design
Step 4 Choose file organizations

Step 5 Design user views
Step 6 Design security

Step 7 Controlled redundancy
Step 8 Monitor and tune

Steps 1 and 2
covered in
Chapters 9 and 10

and you need to understand the advantages and disadvantages of each alterna-
tive for a particular implementation. For some systems, you may also need to
select a suitable storage strategy that takes account of intended database usage.
PC RDBMSs, such as Microsoft Access, generally have a fixed storage structure
and so, for such a system, you probably won’t have to worry about this step.

In this chapter, we convert the tables derived from the logical data model
into a specific database implementation. In Chapter 13, we’ll discuss how to
choose file organizations for the base tables and decide when to create indexes.
In Chapter 14, we’ll look at ways to ensure the security of the database through
the creation of user views and appropriate database security mechanisms. In
Chapter 15, we’ll give guidelines for deciding when to denormalize the physical
data model and introduce redundancy to improve performance and in Chapter 16
we’ll discuss the ongoing process of monitoring and tuning the operational system.

Throughout the following chapters we sometimes show physical implemen-
tation details to clarify the discussion. To illustrate the differences between
DBMSs, we use Microsoft Access to illustrate implementation issues for the
StayHome case study. In contrast, we’ll use the Oracle DBMS for the second case
study we’ll work through in Chapters 17 and 18.

Before we present the methodology for physical database design, we briefly
review the design process.

12.1 Comparison of logical and physical
database design

Logical database design is independent of implementation details, such as the
specific functionality of the target DBMS, application programs, programming
languages, or any other physical considerations. The output of this process is a
logical data model that includes a set of relational tables together with support-
ing documentation, such as a data dictionary. These represent the sources of
information for the physical design process, and they provide you with a vehi-
cle for making trade-offs that are so important to an efficient database design.

Whereas logical database design is concerned with the what, physical database
design is concerned with the how. In particular, the physical database designer
must know how the computer system hosting the DBMS operates, and must also
be fully aware of the functionality of the target DBMS. As the functionality pro-
vided by current systems varies widely, physical design must be tailored to a
specific DBMS. However, physical database design is not an isolated activity –
there is often feedback between physical, logical, and application design. For
example, decisions taken during physical design to improve performance, such
as merging tables together, might affect the logical data model.

262 ■ Physical database design

Application
design discussed
in Section 4.9

12.2 Overview of the physical database
design methodology

The steps for physical database design are shown in Figure 12.1. We’ve divided
the physical database design methodology into six main steps, numbered con-
secutively from 3 to follow the two steps of the logical database design
methodology. The chapter in which each step is discussed is noted in the adja-
cent column.

Step 3 of physical database design involves the design of the base tables and
integrity constraints using the available functionality of the target DBMS. This
step also considers how we should represent any derived data present in the
model and any associated business rules.

Step 4 involves analyzing the transactions that have to be supported and,
based on this analysis, choosing appropriate file organizations and indexes for
the base tables. Typically, PC DBMSs have a fixed storage structure but other
DBMSs tend to provide a number of alternative file organizations for data. From
the user’s viewpoint, the internal storage representation for tables should be
invisible – the user should be able to access tables and records without having
to specify where or how the records are stored. The physical database designer
must provide the physical design details to both the DBMS and the operating
system. For the DBMS, this includes specifying the file organizations that are to
be used to represent each table; for the operating system, this includes specify-

Physical database design – Step 3 ■ 263

Physical database design

The process of producing a description of the implementation of the database on sec-

ondary storage; it describes the base tables, file organizations, and indexes used to

achieve efficient access to the data, and any associated integrity constraints and secur-

ity restrictions.

Figure 12.1

Steps in the
physical database
design
methodology.

Chapter
Step 3 Translate logical database design for target DBMS 12

Step 3.1 Design base tables
Step 3.2 Design representation of derived data
Step 3.3 Design remaining business rules

Step 4 Choose file organizations and indexes 13
Step 4.1 Analyze transactions
Step 4.2 Choose file organizations
Step 4.3 Choose indexes

Step 5 Design user views 14
Step 6 Design security mechanisms 14
Step 7 Consider the introduction of controlled redundancy 15
Step 8 Monitor and tune the operational system 16

ing details such as the location and protection for each file. We recommend
that you review Appendix D on file organizations and indexes before reading
Step 4 of the methodology.

Step 5 involves deciding how each user view should be implemented. Step 6
involves designing the security measures to protect data from unauthorized
access, including the access controls that are required on the base tables.

Step 7 considers relaxing the normalization constraints imposed on the logi-
cal data model to improve the overall performance of the system. This is a step
that you should undertake only if necessary because of the inherent problems
involved in introducing redundancy while still maintaining data consistency.
Step 8 is an ongoing process of monitoring and tuning the operational system
to identify and resolve any performance problems resulting from the design,
and to design and then implement new or changing requirements.

Appendix B presents a summary of the methodology for those of you who
are already familiar with database design and simply require an overview of the
main steps. In the remainder of this chapter, we examine Step 3 of the database
design methodology. In these next few chapters, we demonstrate the close asso-
ciation between physical database design and implementation by describing
how alternative designs can be implemented.

Step 3 Translate logical database design for
target DBMS

The first step of physical database design involves the translation of the tables
in the logical data model into a form that can be implemented in the target
relational DBMS. The first part of this process entails collating the information
gathered during logical database design and documented in the data dictionary
along with the information gathered during the requirements collection and
analysis stage and documented in the systems specification. The second part of
the process uses this information to produce the design of the base tables. This
process requires intimate knowledge of the functionality offered by the target
DBMS. For example, you will need to know:

■ how to create base tables;

■ whether the system supports the definition of primary keys, foreign keys,
and alternate keys;

264 ■ Physical database design

Objective

To produce a basic working relational database from the logical data model.

Base tables:
Section 2.3.2

Keys: Section 2.2.3

■ whether the system supports the definition of required data (that is, whether
the system allows columns to be defined as NOT NULL);

■ whether the system supports the definition of domains;

■ whether the system supports relational integrity rules;

■ whether the system supports the definition of business rules.

The three tasks in Step 3 are:

■ Step 3.1 Design base tables

■ Step 3.2 Design representation of derived data

■ Step 3.3 Design remaining business rules

Step 3.1 Design base tables

To start the physical design process, you first need to collate and assimilate the
information about the tables that was produced during logical database design.
The necessary information is obtained from the data dictionary and the defini-
tion of the tables that were defined using the Database Design Language
(DBDL). For each table identified in the logical data model, you should have a
definition consisting of:

■ the name of the table;

■ a list of simple columns in brackets;

■ the primary key and, where appropriate, alternate keys (AK) and foreign keys (FK);

■ referential integrity constraints for any foreign keys identified.

You should also have for each column:

■ its domain, consisting of a data type, length, and any constraints on the
domain;

■ an optional default value for the column;

■ whether the column can hold nulls;

■ whether the column is derived and, if so, how it should be computed.

To represent the design of the base tables, we use an extended form of the
DBDL to define domains, default values, and null indicators. For example, for
the Branch table of the StayHome database application defined in Figure 10.8,
you may produce the design shown in Figure 12.2.

Physical database design – Step 3 ■ 265

Nulls: Section 2.3.1

Domains:
Section 2.2.1

Rules: Section 2.3

Objective

To decide how to represent the base tables identified in the logical data model

in the target DBMS.

DBDL defined in
Step 2.1 in
Chapter 10

Implementing base tables in Microsoft Access 2002

The next step is to decide how to implement the base tables. As we’ve already
said, this decision is dependent on the target DBMS; some systems provide
more facilities than others for defining base tables and integrity constraints. To
illustrate this process, we show how to create base tables and integrity con-
straints in Microsoft Access 2002. In Chapter 18, we’ll look at how to create
tables and integrity constraints in Oracle 9i.

Microsoft Access provides five ways to create a blank (empty) table:

■ Use the Database Wizard to create in one operation all the tables, forms, and
reports that are required for the entire database. The Database Wizard creates
a new database, although this particular wizard cannot be used to add new
tables, forms, or reports to an existing database.

■ Use the Table Wizard to choose the fields for the table from a variety of pre-
defined tables such as business contacts, household inventory, or medical
records.

266 ■ Physical database design

Figure 12.2

The physical design of the Branch table using an extended DBDL.

domain Branch_Numbers fixed length character string length 4

domain Street_Names variable length character string maximum length 30

domain City_Names variable length character string maximum length 20

domain State_Codes fixed length character string length 2

domain Zip_Codes fixed length character string length 5

domain Staff_Numbers fixed length character string length 5

Branch(branchNo Branch_Numbers NOT NULL,

street Street_Names NOT NULL,

city City_Names NOT NULL,

state State_Names NOT NULL,

zipCode Zip_Codes NOT NULL,

mgrStaffNo Staff_Numbers NOT NULL)

Primary Key branchNo

Alternate Key zipCode

Foreign Key mgrStaffNo References Staff(staffNo) ON UPDATE CASCADE ON DELETE NO ACTION

When discussing Microsoft Access we use the vendor’s terminology, which

uses the term ‘field’ in place of ‘column’.

■ Enter data directly into a blank table (called a datasheet). When the new
datasheet is saved, Access will analyze the data and automatically assign the
appropriate data type and format for each field.

■ Use the CREATE TABLE statement in SQL View.

■ Use Design View to specify all table details from scratch.

We now demonstrate the last two methods of creating a new table.

Creating a blank table in Microsoft Access using SQL

In Section 3.3.1, we examined the SQL CREATE TABLE statement, which allows
you to create a base table. Microsoft Access 2002 does not fully comply with the
SQL3 standard (for example, the Access CREATE TABLE statement has no sup-
port for the DEFAULT clause). However, default values and certain business rules
can still be specified outside SQL, as we’ll see shortly. In addition, the data types
are slightly different from the SQL standard, as shown in Table 12.1. Figure 12.3
shows the SQL View with the SQL statement to create the Branch table (compare
this with the equivalent SQL statement in Section 3.3.1).

Physical database design – Step 3 ■ 267

Table 12.1 Microsoft Access data types.

Data type Use Size

Text Text or text/numbers. Also numbers that Up to 255 characters

do not require calculations, such as

phone numbers.

Memo Lengthy text and numbers, such as notes Up to 64000 characters

or descriptions.

Number Numeric data to be used for mathematical 1, 2, 4, or 8 bytes

calculations, except calculations involving

money (use Currency type).

Date/Time Dates and times. 8 bytes

Currency Currency values. Use the Currency data 8 bytes

type to prevent rounding off during

calculations.

Autonumber Unique sequential (incrementing by 1) 4 bytes

or random numbers automatically inserted

when a record is added.

Yes/No Fields that will contain only one of two 1 bit

values, such as Yes/No, True/False, On/Off.

▲

Creating a blank table in Microsoft Access using Design View

Figure 12.4 shows the Design View for the creation of the Branch table.
Regardless of which method you use to create a table, you can use table Design
View at any time to customize your table further, such as adding new fields, set-
ting default values, or creating input masks.

Creating a relationship between two tables in Access

Relationships are created in the Relationships window. To create a relationship,
you display the tables you want to create the relationships between, and then
drag the primary key field of the parent table to the foreign key field of the
child table. At this point, Access will display a window allowing you to specify
the referential integrity constraints.

Figure 12.5(a) shows the Edit Relationships dialog box that is displayed when
creating the one-to-one (1:1) relationship Staff Manages Branch, and Figure
12.5(b) shows the Relationships window after the relationship has been created.

268 ■ Physical database design

Table 12.1 Continued

Data type Use Size

OLE Object Objects (such as Microsoft Word Up to 1 gigabyte

documents, Microsoft Excel spreadsheets,

pictures, sounds, or other binary data),

created in other programs using the OLE

protocol, that can be linked to, or

embedded in, a Microsoft Access table.

Hyperlink Field that will store hyperlinks. Up to 64000 characters

Lookup Wizard Creates a field that allows you to choose Typically 4 bytes

a value from another table or from a list

of values using a combo box. Choosing

this option in the data type list starts a

wizard to define this for you.

Figure 12.3

SQL View showing
creation of the
Branch table.

1:1 relationships
defined in
Section 7.5.1

Physical database design – Step 3 ■ 269

Figure 12.5

(a) Setting the
referential integrity
constraints for the
1:1 Staff Manages
Branch relationship;
(b) Relationships
window with the
1:1 Staff Manages
Branch relationship
displayed.

Selected for
ON UPDATE CASCADE

Selected to enforce
referential integrity between

Staff and Branch table

Not selected for
ON DELETE NO ACTION

Shows cardinality of relationship
(1:1 in this case)

Shows the primary
key/foreign key fields

(a)

(b)

Figure 12.4

Design View showing creation of the Branch table.

Primary key
field

Properties for
mgrStaffNo

field

mgrStaffNo indexed to
allow 1:1 relationship to

be defined later

Used to set
default values

Used to set
UNIQUE constraint

for zipCode

Use to set NOT
NULL constraint

There are a couple of things to note about setting referential integrity con-
straints in Microsoft Access:

(1) A one-to-many (1:*) relationship is created if only one of the related fields is
a primary key or has a unique index; a 1:1 relationship is created if both the
related fields are primary keys or have unique indexes. Therefore, to ensure
that the Manages relationship is 1:1, you must not only ensure that the
staffNo field in the Staff table has been set as the primary key, but also ensure
that the mgrStaffNo field in the Branch table has the Indexed property set to
Yes (No Duplicates), as shown in Figure 12.4.

(2) There are only two referential integrity actions for update and delete, which
correspond to NO ACTION and CASCADE. Therefore, if you have identi-
fied other actions during Step 2.4 Define integrity constraints, you must
consider whether to modify these constraints to fit in with the constraints
available in Access, or you must investigate how to implement these con-
straints in application code. You’ll see an example of how to implement
referential integrity constraints that are not directly supported by the target
DBMS in Chapter 18.

Document design of base tables

The design of the base tables should be fully documented along with the rea-
sons for selecting the proposed design. In particular, document the reasons for
selecting one approach where many alternatives exist.

Step 3.2 Design representation of derived data

A column whose value can be found by examining the values of other
columns is known as a derived or calculated column. For example, the follow-
ing are all derived columns:

■ the number of staff who work at a particular branch;

■ the total monthly salaries of all staff at a particular branch;

■ the number of videos that a member currently has on rental.

As we mentioned in Step 1.3 in Chapter 9, derived columns often do not appear
in the ER model, but are instead documented in the data dictionary. If a derived
column is shown in the ER model, the name is preceded by a ‘/’ to indicate it’s

270 ■ Physical database design

1:* relationships
defined in
Section 7.5.2

Step 2.4 covered
in Chapter 10

Objective

To design the representation of derived data in the database.

Derived
attributes
defined in
Section 7.3.3

derived. The first step, then, is to examine the logical data model and produce a
list of all derived columns.

From a physical database design perspective, whether a derived column is
stored in the database or calculated every time it’s needed is a trade-off. To
decide, you should calculate:

■ the additional cost to store the derived data and keep it consistent with the
data from which it is derived, and

■ the cost to calculate it each time it’s required,

and choose the less expensive option subject to performance constraints. For
the last example given above, you could store an additional column in the
Member table representing the number of rentals that each member currently
has. The RentalAgreement table and the Member table with the new derived
column are shown in Figure 12.6.

The additional storage overhead for this new derived column would not be
particularly significant. However, the noOfRentals column would need to be
updated every time a member rented or returned a video. You would need to
ensure that this change was made consistently to maintain the correct count,
and thereby ensure the integrity of the database. By storing the data in this
way, when a query requires this information, the value is immediately available
and does not have to be calculated.

Physical database design – Step 3 ■ 271

Figure 12.6

The RentalAgreement table and the Member table with the additional derived column noOfRentals.

rentalNo dateOut dateReturn memberNo videoNo

R753461 4-Feb-03 6-Feb-03 M284354 245456

R753462 4-Feb-03 6-Feb-03 M284354 243431

R668256 5-Feb-03 7-Feb-03 M115656 199004

R668189 2-Feb-03 M115656 178643

RentalAgreement

memberNo fName lName address noOfRentals

M250178 Bob Adams 57 – 11th Avenue, Seattle, WA 98105 0

M166884 Art Peters 89 Redmond Rd, Portland, OR 97117 0

M115656 Serena Parker 22 W. Capital Way, Portland, OR 97201 2

M284354 Don Nelson 123 Suffolk Lane, Seattle, WA 98117 2

Member

On the other hand, if the noOfRentals column is not stored directly in the
Member table, it must be calculated each time it’s needed. This involves a join of
the Member and RentalAgreement tables. For example, to calculate the number of
videos that member ‘Don Nelson’ currently has on rental, you could use the
following SQL query:

SELECT COUNT(*) AS noOfRentals
FROM Member m, RentalAgreement ra
WHERE m.memberNo= ra.memberNo AND m.fName = ‘Don’ AND

m.lName = ‘Nelson’;

If this type of query is frequent or is considered to be critical for performance
purposes, it may be more appropriate to store the derived column rather than
calculate it each time. In our example, StayHome runs this type of query every
time a member attempts to rent a new video. Through discussion with
StayHome staff, it’s estimated that the size of the RentalAgreement table is 400 000
records. Therefore, as the RentalAgreement table is likely to be large and the query
frequent, you may decide that it is more efficient to add the derived column to
the Member table. The same query could now be written as follows:

SELECT noOfRentals
FROM Member
WHERE fName = ‘Don’ AND lName = ‘Nelson’;

Document design of derived data

The design of how to represent derived data should be fully documented along
with the reasons for selecting the proposed design. In particular, document the
reasons for selecting one approach where many alternatives exist.

Step 3.3 Design remaining business rules

Updates to tables may be constrained by business rules governing the ‘real
world’ transactions that are represented by the updates. At this point, you have

272 ■ Physical database design

It may also be more appropriate to store derived columns whenever

the system’s query language cannot easily cope with the algorithm to calculate

the derived column. For example, SQL has a limited set of aggregate functions

and also cannot easily handle recursive queries.

TIP

Objective

To design the remaining business rules for the target DBMS.

already designed domain constraints and relational integrity constraints. The
objective of this step is to design any other business rules that have to be
imposed on the data. The design of such rules is again dependent on the choice
of DBMS; some systems provide more facilities than others for defining business
rules. As in the previous step, if the system is compliant with the SQL standard,
some rules may be easy to implement. For example, StayHome has a rule that
prevents a member from renting more than 10 videos at any one time. You
could design this rule into the SQL CREATE TABLE statement for the
RentalAgreement table, using the following clause:

CONSTRAINT member_not_renting_too_many
CHECK (NOT EXISTS (SELECT memberNo

FROM RentalAgreement
GROUP BY memberNo
HAVING COUNT(*) >= 10))

Alternatively, in some systems a trigger could be used to enforce some con-
straints. For the previous example, in some systems we could create the trigger
shown in Figure 12.7 to enforce this integrity constraint. This trigger is invoked
before a record is inserted into the RentalAgreement table or an existing record is
updated. If the member is currently renting 10 videos, the system displays a
message and aborts the transaction.

Physical database design – Step 3 ■ 273

Don’t worry too much about the details of this trigger. We’ll discuss triggers in

more detail in Step 3.3 in Chapter 18.

Figure 12.7

Trigger to enforce
constraint that
member cannot rent
more than 10 videos
at any one time.

CREATE TRIGGER member_not_renting_too_many

BEFORE INSERT OR UPDATE ON RentalAgreement

FOR EACH ROW

DECLARE

x NUMBER;

BEGIN

SELECT COUNT(*) INTO x

FROM RentalAgreement r

WHERE r.memberNo = :new.memberNo;

IF x >= 10 THEN

raise_application_error(-20000,(‘Member’ ||:new.memberNo||

‘already renting 10 videos’);

END IF;

END;

Creating business rules in Microsoft Access 2002

There are several ways to create business rules in Microsoft Access using, for
example:

(a) validation rules for fields;

(b) validation rules for records;

(c) validation for forms using VBA (Visual Basic for Applications).

We illustrate each of these below with some simple examples.

Validation rules for fields

You can ensure that data is entered correctly into a field by defining a field vali-
dation rule. A field validation rule is used to check the value entered into a field
as the user leaves the field. A message you define is displayed if the value breaks
the validation rule.

For example, StayHome has a simple constraint that all return dates for video
rentals cannot be earlier than the current date, although the date may initially
be left unspecified. You can implement this constraint at the field level in the
RentalAgreement table using the function Date(), which returns the current date,
as shown in Figure 12.8.

Validation rules for records

A record validation rule controls when an entire record can be saved. Unlike
field validation rules, record validation rules can refer to other fields. This

274 ■ Physical database design

Figure 12.8

Example of field
validation in
Microsoft Access.

Default – NULL

Validation –
if specified, date
must be at least

today’s date

Text to be displayed if
data breaks validation rule

makes them useful when you want to compare values from different fields in a
table. For example, StayHome may have a constraint that the maximum rental
period for videos is five days, although the date may initially be left unspeci-
fied. You can implement this constraint at the record level in the RentalAgreement
table using the validation rule:

[dateReturn] Is Null OR [dateReturn] <= [dateOut] + 5

Figure 12.9 shows the ValidationRule property box for the table with this rule set.

Validation for forms using VBA (Visual Basic for Applications)

As we’ve just mentioned, StayHome has a constraint that members are not
allowed to rent more than 10 videos at any one time. This is a more complex
constraint, which requires you to check how many rentals the member cur-
rently has. One way to implement this constraint in Access is to use an event
procedure (BeforeUpdate), as shown in Figure 12.10. The BeforeUpdate event
is triggered before a record is updated and you can associate code with this
event on a form.

In some systems, there will be no support for some or all of the business
rules and it will be necessary to design the rules into the application, as we’ve
shown with the last example which has built the constraint into the applica-
tion’s VBA code. Implementing a business rule in application code is, of course,
potentially dangerous and can lead to duplication of effort and, worse still, to
inconsistencies if the rule is not implemented everywhere it should be.

Document design of business rules

The design of business rules should be fully documented. In particular, docu-
ment the reasons for selecting one approach where many alternatives exist.

Physical database design – Step 3 ■ 275

Figure 12.9

Example of record
validation in
Microsoft Access.

Chapter summary
Physical database design is the process of producing a description of
the implementation of the database on secondary storage. It describes
the base tables, file organizations, and indexes used to access this data
effectively, and any associated integrity constraints and security restric-
tions. The design of the base tables can be undertaken only once you are
fully aware of the facilities offered by the target DBMS.

276 ■ Physical database design

Figure 12.10

VBA code to check member does not have more than 10 videos currently rented.

Private Sub Form_BeforeUpdate(Cancel As Integer)

Dim MyDB As Database

Dim MySet As Recordset

Dim MyQuery As String

‘Set up query to select all records for specified member’

MyQuery = “SELECT rentalNo FROM RentalAgreement WHERE memberNo =’”+ memberNoField +”’”

‘Open the database and run the query’

Set MyDB = DBEngine.Workspaces(0).Databases(0)

Set MySet = MyDB.OpenRecordset(MyQuery)

‘Check if any records have been returned, then move to the end of the file to allow RecordCount’

‘property to be correctly set’

If (NOT MySet.EOF) Then

MySet.MoveLast

If (MySet.RecordCount >= 10) Then ‘If currently 10 – cannot rent any more’

MsgBox “Member currently has 10 videos out”

Me.Undo

End If

End If

MySet.Close

MyDB.Close

End Sub

Name of field
on form

In the initial step (Step 3) of physical database design, you translate the
logical data model into a form that can be implemented in the target
relational DBMS. This involves designing the base tables, the representa-
tion of derived data, and the business rules.

In the next step (Step 4), you analyze the transactions and, based on
this analysis, design the file organizations and indexes that will be used
to store the base tables.

A database represents an essential corporate resource, and so security of
this resource is extremely important. The objective of Steps 5 and 6 is to
design how the security measures identified during logical database
design will be realized. This may include the creation of user views and
the use of access control mechanisms.

In Step 7, you consider the introduction of controlled redundancy to
improve performance. Step 8 involves the ongoing process of monitoring
and tuning the operational system to achieve maximum performance.

Review questions
12.1 Explain the difference between logical and physical database design. Why

might these tasks be carried out by different people?

12.2 Describe the inputs and outputs of physical database design.

12.3 Describe the purpose of the main steps in the physical design methodol-
ogy presented in this chapter.

12.4 Describe the types of information required to design the base tables.

12.5 Describe how you would you handle the representation of derived data in
the database. Give an example to illustrate your answer.

Exercise

12.6 Work your way through some of the case studies presented in Appendix E
and perform the steps of the physical design methodology discussed in
this chapter for a target DBMS to which you have access.

Physical database design – Step 3 ■ 277

This chapter covers Step 4 of our database design methodology. In the previous
step, we showed how to translate the logical database design into a set of tables
and, if required, a set of business rules. However, even for the simplest database,
there are additional considerations required to achieve acceptable performance.
In this chapter, we consider the next step of physical database design which
considers those aspects of performance that you can influence by the appropri-
ate choice of file organizations and indexes.

As with logical database design, physical database design must be guided by
the nature of the data and its intended use. In particular, you must understand
the typical workload that the database must support. During the analysis phase,
you may also have found that some users have requirements about how fast
certain transactions must run or how many transactions must be processed per

Logical database design
Step 1 Create ER model
Step 2 Map ER model to tables

Physical database design
Step 3 Translate logical design
Step 4 Choose file organizations
Step 5 Design user views
Step 6 Design security
Step 7 Controlled redundancy
Step 8 Monitor and tune

Chapter 13

Physical database
design – Step 4

In this chapter you will learn:

How to analyze the users’ transactions to determine characteristics that
may impact performance.

How to select appropriate file organizations based on an analysis of the
transactions.

When to select indexes to improve performance.

Methodology
summarized in
Appendix B

If you are unfamiliar with file organization and indexing concepts, we

strongly recommend reading Appendix D before reading this chapter.

TIP

second. This information forms the basis for a number of decisions that you’ll
need to make during this step.

As we mentioned in the previous chapter, to undertake physical database
design you must understand the workings of the target DBMS, particularly the
file organizations, indexing, and query processing techniques that it supports.
For example, there may be circumstances where the DBMS would not use a sec-
ondary index, even if one were available. Thus, adding a secondary index
would not improve the performance of the query, and the resultant overhead
would be unjustified.

Step 4 Choose file organizations and indexes

We provide an introduction to file organizations and indexes in Appendix D for
those readers who are unfamiliar with these terms. To recap, a file organization
is a way of arranging the records in a file when the file is stored on disk; an
index is a data structure that allows the DBMS to locate particular records in a
file more quickly, and thereby increase the response to user queries.

The types of file organization available are dependent on the target DBMS;
some systems provide more choice of file organizations than others. It’s impor-
tant that you fully understand the structures that are available, and how the
target system uses these structures.

Physical database design – Step 4 ■ 279

Secondary
indexes defined
in Appendix D 5.2

You may recall from Chapter 3 that SQL and QBE are non-procedural Data

Manipulation Languages (DMLs). Such languages hide the low-level details of

how to access the data on secondary storage. This is the responsibility of the

DBMS, or to be more precise, the DBMS’s query optimizer. Typically, the query

optimizer will analyze a number of different strategies for carrying out the

user’s request and select the one it believes will give optimal performance. This

analysis is based on the estimated cost of database operations using database

statistics, such as the number of records in a table, the size of each record, and

the availability of indexes.

This might suggest that you have no influence over the final strategy

that the DBMS will choose. In fact, you’ll see that you can define some of the

storage structures that will be available to the query optimizer to select the

optimal strategy.

Objective

To determine the optimal file organizations to store the base tables, and the

indexes that are required to achieve acceptable performance.

You also can’t make meaningful physical design decisions until you under-
stand in detail the transactions that have to be supported. In analyzing the
transactions, you’re attempting to identify performance criteria, such as:

■ the transactions that run frequently and will have a significant impact on
performance;

■ the transactions that are critical to the operation of the business;

■ the times of the day/week when there will be a high demand made on the
database (called the peak load).

You’ll use this information to identify the parts of the database that may cause
performance problems. At the same time, you need to identify the high-level
functionality of the transactions, such as the columns that are updated in an
update transaction or the columns that are retrieved in a query. You’ll use this
information to select appropriate file organizations and indexes.

As a result, we’ve broken the tasks in Step 4 into:

■ Step 4.1 Analyze transactions

■ Step 4.2 Choose file organizations

■ Step 4.3 Choose indexes

Step 4.1 Analyze transactions

To carry out physical database design effectively, you need to have a good
understanding of the transactions that will run on the database.

To help identify which transactions to investigate, you could use a transac-
tion usage map, which diagrammatically indicates which tables are potentially
heavily used, and/or a transaction/table cross-reference matrix, which shows the
tables each transaction accesses. To focus on areas that may be problematic, one
way to proceed is to:

280 ■ Physical database design

Objective

To understand the functionality of the transactions that will run on the data-

base and to analyze the important transactions.

In many situations it would be far too time-consuming to analyze all

the expected transactions, so you should at least investigate the ‘most impor-

tant’ ones. It has been suggested that the most active 20 percent of user

queries account for 80 percent of the total data access. You may find this 80/20

rule is a useful guideline when carrying out the analysis.

TIP

(1) Map all transaction paths to tables.

(2) Determine which tables are most frequently accessed by transactions.

(3) Analyze selected transactions that involve these tables.

Map all transaction paths to tables

In Steps 1.8 and 2.3 of the logical database design methodology, you checked
that the model supported the transactions that the users require by mapping the
transaction paths to entities/tables. If you used a transaction pathway diagram
similar to the one shown in Figure 9.17, you’ll be able to use this diagram to
determine the tables that are most frequently accessed. On the other hand, if
you checked the transactions in some other way, you may find it useful to create
a transaction/table cross-reference matrix. The matrix shows the transactions
that are required and the tables they access. For example, Table 13.1 shows a
transaction/table cross-reference matrix for the following selection of entry,
update/delete, and retrieval (also known as a query) transactions for StayHome:

(e) Enter the details of a new member registering at a given branch.

(k) Update/delete the details of a given member.

(p) List the title, category, and availability of all videos at a specified branch,
ordered by category.

Physical database design – Step 4 ■ 281

StayHome
transactions listed
in Section 6.4.4

Transaction/ (e) (k) (p) (q) (r) (s)
Table

I R U D I R U D I R U D I R U D I R U D I R U D

Branch

Staff X

Video X X X X

VideoForRent X X X X

RentalAgreement X

Member X X X X X

Registration X

Actor X

Role X

Director X

Table 13.1 Cross-referencing transactions and tables.

I = Insert; R = Read; U = Update; D = Delete

(q) List the title, category, and availability of all videos for a given actor at a
specified branch, ordered by title.

(r) List the title, category, and availability of all videos for a given director at a
specified branch, ordered by title.

(s) List the details of all videos a specified member currently has on rent.

The matrix summarizes, in a visual way, the access patterns of the transactions
that will run on the database. For example, the matrix indicates that transac-
tion (e) reads the Staff table and also inserts records into the Member and
Registration tables. To be more useful, you should indicate the number of
accesses over some time interval (for example, hourly, daily, weekly) in each
cell. However, to keep the matrix simple, we do not show this information. This
matrix shows that the Video and VideoForRent tables are accessed by the four
query transactions (p, q, r, and s).

Determine frequency information

In discussion with the StayHome branch managers it’s estimated that there are
about 20 000 video titles and 400 000 videos for rent distributed over 100
branch offices, with an average of 4000 and a maximum of 10 000 videos for
rent at each branch. In addition, StayHome holds data for about 10 000 directors
and 30 000 main actors in 60 000 roles. Figure 13.1 shows a reduced logical data
model with these numbers added.

Figure 13.2 shows the transaction usage map for transactions (p), (q), and (r).
This figure shows that the VideoForRent and Video tables are accessed by all three
transactions. Further, due to the size of the VideoForRent table, it is important
that access to this table is as efficient as possible. You may now decide that a
closer analysis of transactions involving these tables is useful.

In considering each transaction, it’s important that you know not only the
average and maximum number of times it runs per hour, but also the day and
time that the transaction is run, including when the peak load is likely. For
example, some transactions may run at the average rate for most of the time,
but have a peak loading between 14.00 and 16.00 on a Thursday prior to a
meeting on Friday morning. Other transactions may run only at specific times,
for example 18.00–21.00 on Friday/Saturday, which is also their peak loading.

Where transactions require frequent access to particular tables, then their
pattern of operation is very important. If these transactions operate in a mutu-
ally exclusive manner, the risk of likely performance problems is reduced.
However, if their operating patterns conflict, potential problems may be allevi-
ated by examining the transactions more closely to determine whether changes
can be made to the structure of the tables to improve performance, as we’ll dis-
cuss in Step 7 in Chapter 15.

282 ■ Physical database design

Data usage analysis

Having identified the important transactions, you now need to analyze each
one in more detail. For each transaction, determine:

(a) The tables and columns accessed by the transaction and the type of access;
that is, whether it’s an insert, update, delete, or retrieval transaction.

– For an update transaction, note the columns that are updated as these
columns may be candidates for avoiding an access structure (such as a
secondary index).

(b) The columns used in any search conditions (in SQL, these are the conditions
specified in the WHERE clause). Check whether the conditions involve:

(i) pattern matching; for example: (name LIKE ‘%Smith%’);
(ii) range searches; for example: (salary BETWEEN 30000 AND 40000);
(iii) exact-match key retrieval; for example: (salary = 30000).

This applies not only to queries but also to update and delete transactions,
which can restrict the records to be updated/deleted in a table.

– These columns may be candidates for access structures.

Physical database design – Step 4 ■ 283

Figure 13.1

Simplified logical data model showing expected occurrences.

Role
(60 000)

Video
(20 000) Features Plays

Actor
(30 000)

1..1 0..* 1..* 1..1

avg = 3
max = 10

avg = 2
max = 10

Branch
(100)

VideoForRent
(400 000) IsAllocated

1..* 1..1

avg = 4000
max = 10 000

1..1

1..*

avg = 20
max = 50

Is

Director
(10 000)Directs

avg = 2
max = 10

1..1

1..*

(c) For a query, the columns that are involved in the join of two or more
tables.

– Again, these columns may be candidates for access structures.
(d) The expected frequency at which the transaction will run; for example, the

transaction will run approximately 50 times per day.

(e) The performance goals for the transaction; for example, the transaction
must complete within 1 second.

– The columns used in any search conditions for very frequent or critical
transactions should have a higher priority for access structures.

Figure 13.3 shows an example of a transaction analysis form for transaction (p).
This form shows that the average frequency of this transaction is 50 times per
hour, with a peak loading of 100 times per hour between 18.00 and 21.00. In
other words, typically half the branches will run this transaction per hour and
at peak time all branches will run this transaction once per hour.

284 ■ Physical database design

Figure 13.2

Transaction usage map for sample transactions.

Role
(60 000)

Video
(20 000) Features Plays

Actor
(30 000)

1..1 0..* 1..* 1..1

avg = 3
max = 10

avg = 2
max = 10

Branch
(100)

VideoForRent
(400 000) IsAllocated

1..* 1..1

avg = 4000
max = 10 000

1..1

1..*

avg = 20
max = 50

Is

Director
(10 000)Directs

avg = 2
max = 10

1..1

1..*

(q)(p)

(r)

Physical database design – Step 4 ■ 285

Figure 13.3

Example transaction analysis form.

Access Entity Type of
access

No. of references

Per transaction Avg per hour Peak per hour

1
2

VideoForRent (entry)
Video

R
R

4000–10 000
4000–10 000

200 000–500 000
200 000–500 000

400 000–1 000 000
400 000–1 000 000

8000–20 000 400 000–1 000 000 800 000–2 000 000Total references

Transaction usage map

Video
(20 000)

Branch
(100)

VideoForRent
(400 000) IsAllocated

1..* 1..1

avg = 4000
max = 10 000

1..1

1..*
avg = 20
max = 50

Is2

1

Transaction Analysis Form 1-Jan-2003

Transaction (p) List the title, category, and availability of all videos at a specified
branch, ordered by category.

Transaction volume
Average: 50 per hour
Peak: 100 per hour (between 18.00 and 21.00 every day of the week)

SELECT title, category, availability
FROM Video v INNER JOIN VideoForRent vfr ON

vfr.catalogNo = v.catalogNo
WHERE vfr.branchNo = ‘B001’
ORDER BY title;

Search condition: branchNo = ‘B001’
Join columns: vfr.catalogNo

= v.catalogNo
Ordering column: title
Grouping column: none
Built-in functions: none
Columns updated: none

The form also shows the required SQL statement and the transaction usage
map. At this stage, the full SQL statement may be too detailed but you should
at least identify the types of details that are shown adjacent to the SQL state-
ment, namely:

■ any search conditions that are used;

■ any columns that are required to join tables together (for query transactions);

■ columns used to order results (for query transactions);

■ columns used to group data together (for query transactions);

■ any built-in functions that are used (such as AVG, SUM);

■ any columns that are updated by the transaction.

You use this information to determine the indexes that are required, which
we discuss shortly. Below the transaction usage map, there is a detailed break-
down documenting:

■ how each table is accessed (reads in this case),

■ how many records are accessed each time the transaction is run,

■ how many records are accessed per hour on average and at peak loading
times.

The frequency information identifies the tables that will need careful considera-
tion to ensure that appropriate access structures are used. As mentioned above,
the search conditions used by transactions that have time constraints become
higher priority for access structures.

Step 4.2 Choose file organizations

One of the main objectives of physical database design is to store data in an
efficient way. For example, if you want to retrieve staff records in alphabetical
order of name, sorting the file by staff name is a good file organization.
However, if you want to retrieve all staff whose salary is in a certain range, a file
ordered by staff name would not be a good file organization.

286 ■ Physical database design

Note, for an update transaction there are two accesses made on a table: one to

read the data and one to update the data.

Objective

To determine an efficient file organization for each base table.

To complicate matters, some file organizations are efficient for bulk loading
data into the database but inefficient after that. In other words, you may use an
efficient storage structure to set up the database and then change it for normal
operational use.

The objective of this step therefore is to choose an optimal file organization
for each table, if the target DBMS allows this. In many cases, you may find that
a relational DBMS gives you little or no choice for choosing file organizations,
although some may be established as you specify indexes.

We provide guidelines for selecting file organizations in Appendix D. If your
target DBMS does not allow you to choose the file organization, you can omit
this step and move on to the next step, Step 4.3.

Document choice of file organizations

The choice of file organizations should be fully documented, along with the
reasons for the choice. In particular, document the reasons for selecting one file
organization where many alternatives exist.

Step 4.3 Choose indexes

One approach to selecting an appropriate file organization for a table is to keep
the records unordered and create as many secondary indexes as you need.
Another approach is to order the records in the table by specifying a primary or
clustering index. In this case, you should choose the column for ordering or
clustering the records as:

■ the column that is used most often for join operations, as this makes the join
operation more efficient, or

■ the column that is used most often to access the records in a table in order of
that column.

If the ordering column chosen is a key of the table, the index will be a primary
index; if the ordering column is not a key, the index will be a clustering index.
Remember that you can only have either a primary index or a clustering index
for each file.

Physical database design – Step 4 ■ 287

Objective

To determine whether adding indexes will improve the performance of the

system.

Indexes
discussed in
Appendix D.5

Specifying indexes

To create an index in SQL, typically the CREATE INDEX statement is used. For
example, to create a primary index on the Video table based on the catalogNo
column, you might use the following SQL statement:

CREATE UNIQUE INDEX catalogNoPrimaryIndex
ON Video (catalogNo);

To create a clustering index on the VideoForRent table based on the catalogNo
column, you might use the following SQL statement:

CREATE INDEX catalogNoClusteringIndex
ON VideoForRent (catalogNo) CLUSTER;

As we’ve already mentioned, in some systems the file organization is fixed.
For example, until recently Oracle only supported B+-Trees, but has now added
support for hash clusters. On the other hand, the RDBMS INGRES offers a wide
set of different index structures that you can choose using the optional clause
in the CREATE INDEX statement:

[STRUCTURE = BTREE | ISAM | HASH | HEAP];

To drop an index in SQL, typically the DROP INDEX statement is used. For
example, to drop the primary index catalogNoPrimaryIndex, you might use the
following SQL statement:

DROP INDEX catalogNoPrimaryIndex;

Choosing secondary indexes

Secondary indexes provide a mechanism for specifying an additional key for a
base table that can be used to retrieve data more efficiently. For example, the

288 ■ Physical database design

Oracle discussed
in Chapter 18

Note that Microsoft Access doesn’t support the CREATE INDEX statement.

Instead, you create indexes through the field properties dialog box. We saw an

example of this in Figure 12.4 and we discuss this in more detail shortly.

The initial version of the SQL standard had statements for creating and drop-

ping indexes. However, these statements were removed from the second major

release of the standard in 1992 because they were considered to be a physical

concept rather than a logical concept. Having said that, most of the major

relational DBMSs support these statements in one form or another. The SQL

statements we use below are typical of what current products support.

Member table may be hashed on the member number, memberNo, the primary
index. On the other hand, there may be frequent access to this table based on
the lName (last name) column. In this case, you may decide to add lName as a
secondary index.

However, there is an overhead involved in the maintenance and use of sec-
ondary indexes that you have to balance against the performance improvement
gained when retrieving data. This overhead includes:

■ adding an index record to every secondary index whenever a record is
inserted in the table;

■ updating a secondary index when the corresponding record in the table is
updated;

■ the increase in disk space needed to store the secondary index;

■ possible performance degradation during query optimization, as the query
optimizer may consider all secondary indexes before selecting an optimal
execution strategy.

Guidelines for choosing a ‘wish-list’ of indexes

One approach to determining which secondary indexes are needed is to pro-
duce a wish-list of columns you think are candidates for indexing, and then to
consider the impact of maintaining each of these indexes. We provide the fol-
lowing guidelines to help produce such a ‘wish-list’:

(1) Do not index small tables. It may be more efficient to search the table in
memory than to store an additional index structure.

(2) In general, index the primary key of a table if it’s not a key of the file organiza-
tion. Although the SQL standard provides a clause for the specification of
primary keys as discussed in Step 3.1 covered in the last chapter, note that this
does not guarantee that the primary key will be indexed in some RDBMSs.

(3) Add a secondary index to any column that is heavily used for data retrieval.
For example, add a secondary index to the Member table based on the
column lName, as discussed above.

(4) Add a secondary index to a foreign key if there is frequent access based on it.
For example, you may frequently join the VideoForRent and Branch tables on
the column branchNo (the branch number). Therefore, it may be more efficient
to add a secondary index to the VideoForRent table based on branchNo.

(5) Add a secondary index on columns that are frequently involved in:

(a) selection or join criteria;
(b) ORDER BY;
(c) GROUP BY;
(d) other operations involving sorting (such as UNION or DISTINCT).

Physical database design – Step 4 ■ 289

(6) Add a secondary index on columns involved in built-in functions, along
with any columns used to aggregate the built-in functions. For example,
to find the average staff salary at each branch, you could use the following
SQL query:

SELECT branchNo, AVG(salary)
FROM Staff
GROUP BY branchNo;

From the previous guideline, you could consider adding an index to the
branchNo column by virtue of the GROUP BY clause. However, it may be
more efficient to consider an index on both the branchNo column and the
salary column. This may allow the DBMS to perform the entire query from
data in the index alone, without having to access the data file. This is
sometimes called an index-only plan, as the required response can be pro-
duced using only data in the index.

(7) As a more general case of the previous guideline, add a secondary index
on columns that could result in an index-only plan.

(8) Avoid indexing a column or table that is frequently updated.

(9) Avoid indexing a column if the query will retrieve a significant proportion
(for example, 25 percent) of the records in the table, even if the table is large.
In this case, it may be more efficient to search the entire table than to search
using an index.

(10) Avoid indexing columns that consist of long character strings.

290 ■ Physical database design

If the search criteria involve more than one condition, and one of the
terms contains an OR clause, and the term has no index/sort order, then
adding indexes for the other columns is not going to help improve the speed
of the query, because a linear search of the table is still required. For example,
assume that only the category and dailyRental columns of the Video table are
indexed, and you use the following query:

SELECT *
FROM Video
WHERE (category = ‘Action’ OR dailyRental > 3 OR price > 15);

Although the two indexes could be used to find the records where (category =
‘Action’ OR dailyRental > 3), the fact that the price column is not indexed will
mean that these indexes cannot be used for the full WHERE clause. Thus, unless
there are other queries that would benefit from having the category and dailyRental
columns indexed, there is no benefit gained in indexing them for this query.

On the other hand, if the search conditions in the WHERE clause were
AND’ed together, the two indexes on the category and dailyRental columns
could be used to optimize the query.

TIP

Removing indexes from the ‘wish-list’

Having drawn up your ‘wish-list’ of potential indexes, consider the impact of
each of these on update transactions. If the maintenance of the index is likely
to slow down important update transactions, then consider dropping the index
from the list. Note, however, that a particular index may also make update
operations more efficient. For example, if you want to update a member of
staff’s salary given the member’s staff number, staffNo, and there is an index on
staffNo, then the record to be updated can be found more quickly.

Some systems allow you to inspect the optimizer’s strategy for executing a
particular query or update, sometimes called the Query Execution Plan (QEP).
For example, Oracle has an EXPLAIN PLAN diagnostic utility, Microsoft Access
has a Performance Analyzer, DB2 has an EXPLAIN utility, and INGRES has an
online QEP-viewing facility. When a query runs slower than expected, it’s
worth using such a facility to determine the reason for the slowness, and to find
an alternative strategy that may improve the performance of the query.

Updating the database statistics

Earlier we mentioned that the query optimizer relies on database statistics held
in the system catalog to select the optimal strategy. Whenever you create an
index, the DBMS automatically adds the presence of the index to the system
catalog. However, you may find that the DBMS requires a utility to be run to
update the statistics in the system catalog relating to the table and the index.

Physical database design – Step 4 ■ 291

It’s a good idea to experiment when possible to determine whether an

index is improving performance, providing very little improvement, or

adversely impacting performance. In the last case, clearly you should remove

this index from the ‘wish-list’. If there is little observed improvement with the

addition of the index, further examination may be necessary to determine

under what circumstances the index will be useful, and whether these circum-

stances are sufficiently important to warrant the implementation of the index.

TIP

If a large number of records are being inserted into a table with one or

more indexes, it may be more efficient to drop the indexes first, perform the inserts,

and then re-create the indexes afterwards. As a rule of thumb, if the insert will

increase the size of the table by at least 10 percent, drop the indexes temporarily.

TIP

System catalog
defined in
Section 1.2.1

Document choice of secondary indexes

The choice of indexes should be fully documented, along with the reasons for
the choice. In particular, if there are performance reasons why some columns
should not be indexed, these should also be documented.

13.1 File organizations and indexes for StayHome
with Microsoft Access 2002

Like most, if not all, PC DBMSs, Microsoft Access uses a fixed file organization,
so if you’re using Access, Step 4.2 can be omitted.

13.1.1 Guidelines for indexes

Microsoft Access does, however, support indexes, as we now briefly discuss. In
Access, the primary key of a table is automatically indexed, but a field whose
data type is Memo, Hyperlink, or OLE Object can’t be indexed. For other fields,
Microsoft advise you to consider indexing a field if all the following apply:

■ the field's data type is Text, Number, Currency, or Date/Time;

■ you anticipate searching for values stored in the field;

■ you anticipate sorting values in the field;

■ you anticipate storing many different values in the field. (If many of the
values in the field are the same, the index may not significantly speed up
queries.)

In addition, Microsoft advise that:

■ you should consider indexing fields on both sides of a join or create a rela-
tionship between these fields, in which case Access will automatically create
an index on the foreign key field, if one does not exist already;

■ when grouping records by the values in a joined field, you should specify
GROUP BY for the field that’s in the same table as the field you’re calculating
the aggregate on.

Microsoft Access can optimize simple and complex search conditions (called
expressions in Access). For certain types of complex expressions, Microsoft
Access uses a data access technology called Rushmore, to achieve a greater level
of optimization. A complex expression is formed by combining two simple
expressions with the AND or OR operator, such as:

branchNo = ‘B001’ AND available = Yes
category = ‘Action’ OR dailyRental > 3

292 ■ Physical database design

In Access, a complex expression is fully or partially optimizable depending
on whether one or both simple expressions are optimizable, and which opera-
tor was used to combine them. A complex expression is Rushmore-optimizable if
all three of the following conditions are true:

■ the expression uses AND or OR to join two conditions;

■ both conditions are made up of simple optimizable expressions;

■ both expressions contain indexed fields. The fields can be indexed individu-
ally or they can be part of a multiple-field index.

Creating indexes in Access

You create an index in Access by setting the Indexed property of a table in the
Field Properties section in table Design View. The Indexed property has the fol-
lowing values:

No No index (the default).
Yes (Duplicates OK) The index allows duplicates.
Yes (No Duplicates) The index doesn’t allow duplicates.

We saw an example of setting an index for the mgrStaffNo field in Figure 12.4
in the previous chapter.

13.1.2 Indexes for StayHome

Based on the guidelines provided above, you should ensure that you create the
primary key for each table, which will cause Access to automatically index this
column. Secondly, you should ensure that all relationships are created in the
Relationships window, which will cause Access to automatically index the for-
eign key columns.

From the Stayhome transactions listed in Section 6.4.4, you may decide to
create the additional indexes shown in Table 13.2. This figure shows the
columns in each table that should be indexed, the transaction(s) that use the
column, and the reason for adding the index (either because the column is used
in a search condition, as an ordering column, or as a grouping column). As an exer-
cise, document the indexes for the transactions in the Business view of
StayHome documented in Appendix C.

Physical database design – Step 4 ■ 293

Note that the available column in the VideoForRent table is used as a search condi-

tion by transaction (s). However, this column can only take on two values (Y or

N) and so from guideline (9) above, it is not worthwhile indexing this column.

Chapter summary
In Step 4, you select the optimal file organizations to store the base
tables, and the indexes that are required to achieve acceptable perfor-
mance. This involves analyzing the transactions that will run on the
database to help choose suitable file organizations and useful indexes.

It’s not possible to make meaningful physical design decisions until
you understand in detail the transactions that have to be supported.
This involves analyzing the most important transactions; that is, the
transactions that run most frequently or are critical to the operation of
the business.

Secondary indexes provide a mechanism for specifying an additional key
for a base table that can be used to retrieve data more efficiently.
However, there is an overhead involved in the maintenance and use of
secondary indexes that has to be balanced against the performance
improvement gained when retrieving data.

One approach to selecting an appropriate file organization for a table is
to keep the records unordered and create as many secondary indexes as

294 ■ Physical database design

Table 13.2 Additional indexes for the Branch view of StayHome.

Table Column Transaction Reason

Branch city (m) search condition

Staff name (n) ordering

Video category (p) ordering

(u) search condition

(v) grouping

title (q), (r), (u) ordering

(t) search condition

Actor actorName (q) search condition

(x) grouping, ordering

Director directorName (r) search condition

Member fName/lName (s) search condition

RentalAgreement dateReturn (s) search condition

Registration dateJoined (y) search condition

you need. Another approach is to order the records in the table by speci-
fying a primary or clustering index.

One approach to determining which secondary indexes you need is to
produce a ‘wish-list’ of columns you think are candidates for indexing,
and then to consider the impact of maintaining each of these indexes.

Review questions
13.1 Describe the purpose of Step 4 in the database design methodology.

13.2 Discuss the purpose of analyzing the transactions that have to be sup-
ported and describe the type of information you would collect and
analyze.

13.3 When would you not add any indexes to a table?

13.4 Discuss some of the main reasons for selecting a column as a potential
candidate for indexing. Give examples to illustrate your answer.

13.5 Having identified a column as a potential candidate, under what circum-
stances would you decide against indexing it?

Exercise

13.6 Work your way through some of the case studies presented in Appendix E
and perform the steps of the physical design methodology discussed in
this chapter for a target DBMS to which you have access.

Physical database design – Step 4 ■ 295

This chapter covers Steps 5 and 6 of our database design methodology. In the
previous two chapters, we translated the logical design into a set of tables and
business rules and then selected appropriate file organizations and indexes
based on an analysis of the most important transactions. In this chapter, we
examine how to design the user views and security measures identified
during the requirements analysis and collection stage of the database applica-
tion lifecycle. As with the other steps of physical database design, the
implementation of the user views and security mechanisms will be depen-
dent on the target DBMS.

Step 5 Design user views

Logical database design
Step 1 Create ER model
Step 2 Map ER model to tables

Physical database design
Step 3 Translate logical design
Step 4 Choose file organizations
Step 5 Design user views
Step 6 Design security
Step 7 Controlled redundancy
Step 8 Monitor and tune

Chapter 14

Physical database
design – Steps 5 and 6

In this chapter you will learn:

A database represents an essential corporate resource that must be made
secure.

How to design user views.

How to design security mechanisms to satisfy user requirements.

Methodology
summarized in
Appendix B

Objective

To design the user views that were identified during the requirements collec-

tion and analysis stage of the database application lifecycle.

The first step of the database design methodology involved the production of a
logical data model for either the single user view or a number of combined user
views identified during the requirements collection and analysis stage. In
Section 6.4.4, we identified five user views for StayHome named Manager,
Supervisor, Assistant, Director, and Buyer. Following an analysis of the data
requirements for these user views, we used the centralized approach to merge
the requirements for the user views as follows:

■ Branch, consisting of the Manager, Supervisor, and Assistant user views;

■ Business, consisting of the Director and Buyer user views.

The objective of this step is to design all the user views identified previously. In
a standalone DBMS on a personal computer, views are usually a convenience,
defined to simplify queries. However, in a multi-user DBMS views play a central
role in defining the structure of the database and enforcing security. As with the
design of base tables discussed in Chapter 12, to illustrate this process we show
two particular ways to create views using:

(1) the 1999 ISO SQL standard (SQL3),

(2) Microsoft Access 2002.

The 1999 ISO SQL Standard (SQL3)

Normally, views are created using SQL or a QBE-like facility. For example, for
Supervisors and Assistants at branch B001 you may create a view of the base
table Staff that excludes salary information. The SQL statement to create this
view would be:

CREATE VIEW Staff1_View
AS SELECT staffNo, name, position

FROM Staff
WHERE branchNo = ‘B001’;

This creates a view called Staff1_View with the same columns as the Staff table,
but excluding the salary and branchNo columns. If you query this view you get
the data shown in Figure 14.1.

Physical database design – Steps 5 and 6 ■ 297

User views
defined in
Section 4.5

CREATE
TABLE covered
in Section 3.3.1

Figure 14.1

List of the
Staff1_View view.

staffNo name position

S1500 Tom Daniels Manager

S0003 Sally Adams Assistant

Staff1_View

To ensure that only the branch manager can see the salary column,
Supervisors and Assistants are not given access to the base table Staff. Instead,
they are given access privilege to the view Staff1_View, thereby denying them
access to sensitive salary data. We discuss access privileges further in Step 7.

Creating views in Microsoft Access 2002

Microsoft Access does not support the SQL CREATE VIEW statement. Instead,
you can create a (stored) query using QBE or SQL. For example, you could
create the view Staff1_View using the QBE query shown in Figure 14.2(a) or using
the SQL statement shown in Figure 14.2(b). This query can now be used to
create other queries, update/delete records in the base table Staff, and can be
used as the basis for creating forms and reports.

Step 6 Design security mechanisms

A database represents an essential corporate resource, and so security of this
resource is extremely important. There may have been specific security require-
ments documented during the requirements collection and analysis stage of the
database application lifecycle. The objective of this step is to decide how these
security requirements are to be realized. Different DBMSs offer slightly different

298 ■ Physical database design

Figure 14.2

Creating a (stored)
query in Microsoft
Access: (a) using
QBE; (b) using SQL.

(b)(a)

Objective

To design the security measures for the database as specified by the users

during the requirements collection and analysis stage of the database applica-

tion lifecycle.

security facilities and therefore you must be aware of the facilities offered by the
target DBMS. As we discussed in Chapter 5, relational DBMSs generally provide
two types of database security:

■ system security;

■ data security.

System security covers access and use of the database at the system level, such
as a username and password. Data security covers access and use of database
objects (such as tables and views) and the actions that users can have on
the objects.

To illustrate the process of designing access rules we show two particular
ways to design security mechanisms using:

(1) the 1999 ISO SQL standard (SQL3),

(2) Microsoft Access 2002.

The 1999 ISO SQL Standard (SQL3)

One way to provide data security is to use the access control facilities of SQL. As
we’ve just mentioned, typically users should not be given direct access to the
base tables. Instead, they should be given access to the base tables through the
user views designed in Step 5. This provides a large degree of data independence
and insulates users from changes in the database structure. We briefly review
the access control mechanisms of SQL. For additional information, the inter-
ested reader is referred to Connolly and Begg (2002).

Each database user is assigned an authorization identifier by the Database
Administrator (DBA); usually, the identifier has an associated password, for
obvious security reasons. Every SQL statement that is executed by the DBMS is
performed on behalf of a specific user. The authorization identifier is used to
determine which database objects that user may reference, and what operations
may be performed on those objects. Each object that is created in SQL has an
owner, who is identified by the authorization identifier. By default, the owner is
the only person who may know of the existence of the object and perform any
operations on the object.

Privileges are the actions that a user is permitted to carry out on a given base
table or view. For example, SELECT is the privilege to retrieve data from a table
and UPDATE is the privilege to modify records of a table. When a user creates a
table using the SQL CREATE TABLE statement, he or she automatically becomes

Physical database design – Steps 5 and 6 ■ 299

In Chapter 18, we’ll show how to design security mechanisms in Oracle 9i

using a different worked example.

Data
independence
defined in
Section 1.2.1

the owner of the table and receives full privileges for the table. Other users ini-
tially have no privileges on the newly created table. To give them access to the
table, the owner must explicitly grant them the necessary privileges using the
SQL GRANT statement. A WITH GRANT OPTION clause can be specified with
the GRANT statement to allow the receiving user(s) to pass the privilege(s) on
to other users. Privileges can be revoked using the SQL REVOKE statement.

When a user creates a view with the CREATE VIEW statement, he or she
automatically becomes the owner of the view, but does not necessarily receive
full privileges on the view. To create the view, a user must have SELECT privilege
to all the tables that make up the view. However, the owner will only get other
privileges if he or she holds those privileges for every table in the view.

For example, to allow the user MANAGER to retrieve records from the Staff
table and to insert, update, and delete data from the Staff table, you could use
the following SQL statement:

GRANT ALL PRIVILEGES
ON Staff
TO Manager WITH GRANT OPTION;

In this case, MANAGER will also be able to reference the table and all the
columns in any table he or she creates subsequently. The clause WITH GRANT
OPTION is specified so that MANAGER can pass these privileges on to other
users whom he or she sees fit. As another example, you could give the user with
authorization identifier ADMIN the privilege SELECT on the Staff table using the
following SQL statement:

GRANT SELECT
ON Staff
TO Admin;

The clause WITH GRANT OPTION is omitted this time so that ADMIN will
not be able to pass this privilege on to other users.

Security in Microsoft Access 2002

Microsoft Access 2002 does not support the SQL GRANT and REVOKE state-
ments. Instead, Access provides a number of security features, including the
following two methods:

(a) setting a password for opening a database (system security);

(b) user-level security, which can be used to limit the parts of the database that
a user can read or update (data security).

300 ■ Physical database design

Setting a password
The simpler method is to set a password for opening the database. Once a pass-
word has been set (from the Tools, Security menu), a dialog box requesting the
password will be displayed whenever the database is opened. The dialog box to
set the password and the dialog box requesting the password whenever the
database is opened are shown in Figure 14.3.

Only users who type the correct password will be allowed to open the data-
base. This method is secure as Microsoft Access encrypts the password so that it
cannot be accessed by reading the database file directly. However, once a database
is open, all the objects contained within the database are available to the user.

User-level security
User-level security in Microsoft Access is similar to methods used in most net-
work systems. Users are required to identify themselves and type a password
when they start Microsoft Access. Within the workgroup information file, users
are identified as members of a group. Access provides two default groups:
administrators (Admins group) and users (Users group), but additional groups
can be defined. Figure 14.4 displays the dialog box used to define the security
level for user and group accounts. It shows a non-default group called
Assistants, and a user called Assistant who is a member of the Users and
Assistants groups.

Permissions are granted to groups and users to regulate how they are allowed
to work with each object in the database using the User and Group Permissions
dialog box. Table 14.1 shows the permissions that can be set in Microsoft Access.
For example, Figure 14.5 shows the dialog box for a user called Assistant in

Physical database design – Steps 5 and 6 ■ 301

Figure 14.3

Securing the
StayHome database
using a password:
(a) the Set Database
Password dialog
box; (b) the
Password Required
dialog box shown
at startup.

Dialog box to
set a password to

control access to the
database (password

not echoed
on the screen)

Dialog box
displayed each

time database is open
to obtain required

password

(a) (b)

StayHome who has only read access to the Staff1_View created previously. In a
similar way, all access to the base table Staff would be removed so that the
Assistant user can only view the data in the Staff table using this view.

Other security features of Microsoft Access

In addition to the above two methods of securing a Microsoft Access database,
other security features include:

302 ■ Physical database design

Figure 14.4

The User and
Group Accounts
dialog box for the
StayHome database.

Non-default
Assistants group
has been set up

User Assistant is
a member of the

Users and
Assistants groups

Table 14.1 Microsoft Access Permissions

Permission Description

Open/Run Open a database, form, report, or run a macro.

Open Exclusive Open a database with exclusive access.

Read Design View objects in Design view.

Modify Design View and change database objects, and delete them.

Administer For databases, set database password, replicate database, and

change startup properties.

Full access to database objects, including ability to assign

permissions.

Read Data View data.

Update Data View and update data (but not insert or delete data).

Insert Data View and insert data (but not update or delete data).

Delete Data View and delete data (but not insert or update data).

■ Encryption/decryption: encrypting a database compacts a database file and
makes it indecipherable by a utility program or word processor. This is useful
if you wish to transmit a database electronically or when you store it on a
floppy disk or compact disc. Decrypting a database reverses the encryption.

■ Preventing users from replicating a database, setting passwords, or setting startup
options.

■ Securing VBA code: this can be achieved by setting a password that you enter
once per session or by saving the database as an MDE file, which compiles
the VBA source code before removing it from the database. Saving the data-
base as an MDE file also prevents users from modifying forms and reports
without requiring them to specify a log-on password or without you having
to set up user-level security.

Document design of user views and security measures

The design of the individual user views and associated security mechanisms
should be fully documented. If the physical design affects the logical data
model, this model should also be updated.

Chapter summary
A database represents an essential corporate resource, and so security of
this resource is extremely important.

In Step 5, you decide how each user view is to be implemented in the
target DBMS.

Physical database design – Steps 5 and 6 ■ 303

Figure 14.5

User and Group
Permissions dialog
box showing the
Assistant user only
has read access to
the Staff1_View
query.

Assistant
only has read

access to
Staff1_View

In Step 6, you decide how the security measures identified during the
requirements collection and analysis stage are to be implemented in the
target DBMS. This will include the access controls on the base tables.

Relational DBMSs generally provide two types of database security:
system security and data security. System security covers access and
use of the database at the system level, such as a username and pass-
word. Data security covers access and use of database objects (such as
tables and views) and the actions that users can have on the objects.

Review questions
14.1 Describe the purpose of the main steps in the physical design methodol-

ogy presented in this chapter.

14.2 Discuss the difference between system security and data security.

14.3 Describe the access control facilities of SQL.

14.4 Describe the security features of Microsoft Access 2002.

Exercise

14.5 Work your way through some of the case studies presented in Appendix E
and perform the steps of the physical design methodology discussed in
this chapter for a target DBMS to which you have access. Create user views
and security mechanisms that you think are appropriate. Justify your
selection of these user views and security mechanisms.

304 ■ Physical database design

This chapter covers Step 7 of our database design methodology. In the previous
three chapters, we translated the logical design into a set of tables and business
rules and selected suitable file organizations and indexes based on an analysis
of the transactions the database has to support. We then decided how to imple-
ment the user views and how to make the database secure. In some instances,
additional performance improvements can be achieved by relaxing the normal-
ization rules, which is what we consider in this chapter.

Step 7 Consider the introduction of controlled
redundancy

Normalization is a technique for deciding which columns belong together in a
table. One of the basic aims of relational database design is to group columns

Logical database design
Step 1 Create ER model

Step 2 Map ER model to tables

Physical database design
Step 3 Translate logical design

Step 4 Choose file organizations
Step 5 Design user views

Step 6 Design security
Step 7 Controlled redundancy

Step 8 Monitor and tune

Chapter 15

Physical database
design – Step 7

In this chapter you will learn:

The meaning of denormalization.

When to denormalize to improve performance.

Methodology
summarized in
Appendix B

Normalization
covered in
Chapter 8

Objective

To determine whether introducing redundancy in a controlled manner by

relaxing the normalization rules will improve the performance of the system.

together in a table because there is a direct relationship (called a functional depen-
dency) between them. The result of performing normalization on data is a logical
database design that is structurally consistent and has minimal redundancy.

However, a normalized database design may not provide maximum process-
ing efficiency. In these circumstances, you may wish to accept the loss of some
of the benefits of a fully normalized design to achieve better performance. You
should only consider this when you have estimated that the system will not be
able to meet its performance requirements.

Formally, the term denormalization refers to a change to the structure of a
base table, such that the new table is in a lower normal form than the original
table. However, we also use the term more loosely to refer to situations where
we combine two tables into one new table, where the new table is in the same
normal form but contains more nulls than the original tables.

The transaction/table cross-reference matrix that was described in Step 4.1
provides useful information for this step. This matrix summarizes, in a visual
way, the access patterns of the transactions that will run on the database. You
can use it to highlight possible candidates for denormalization and to assess the
effects this may have on the rest of the model. Indirectly, you’ve encountered
an implicit example of denormalization when dealing with addresses. For
example, consider the definition of the Branch table:

Branch (branchNo, street, city, state, zipCode, mgrStaffNo)

306 ■ Physical database design

Functional
dependency defined
in Section 8.4

We are not advocating that normalization should be omitted from logical data-

base design: normalization forces you to completely understand each column

in each table in the database. Undertaking this process may be the most impor-

tant factor that contributes to the overall success of the system. The following

factors have to be considered if you’re considering denormalization:

■ Denormalization makes implementation more complex.

■ Denormalization often sacrifices flexibility.

■ Denormalization may speed up retrievals but it slows down updates.

As a general rule of thumb, if performance is unsatisfactory and a

table has a low update rate and a very high query rate, denormalization may

be a viable option.

TIP

Strictly speaking, this table is not in third normal form (3NF): city and state
are functionally dependent on zipCode; in other words, if you know the zip
code, you also know the city and state. Therefore, to normalize the table it is
necessary to split the table into two, as follows:

Branch (branchNo, street, zipCode, mgrStaffNo)
ZipCode (zipCode, city, state)

However, you rarely wish to access the branch address without the city and
state columns. This means that you would have to perform a join whenever you
wanted a complete address for a branch. As a result, we normally implement
the original Branch table and settle for second normal form (2NF).

Unfortunately, there are no fixed rules for determining when to denormalize
tables. Let’s, however, discuss some of the more common situations for consid-
ering denormalization to speed up frequent or critical transactions:

■ Step 7.1 Combining one-to-one (1:1) relationships

■ Step 7.2 Duplicating nonkey columns in one-to-many (1:*) relationships
to reduce joins

■ Step 7.3 Duplicating foreign key columns in one-to-many (1:*) relation-
ships to reduce joins

■ Step 7.4 Duplicating columns in many-to-many (*:*) relationships to
reduce joins

■ Step 7.5 Introducing repeating groups

■ Step 7.6 Creating extract tables

■ Step 7.7 Partitioning tables

Step 7.1 Combining one-to-one (1:1) relationships

Re-examine one-to-one (1:1) relationships to determine the effects of combin-
ing the tables into a single table. You should only consider this for tables that
are frequently referenced together and infrequently referenced separately. Let’s
consider a potential 1:1 relationship between Staff and NOK, as shown in Figure
15.1(a). The Staff entity contains information on staff and the NOK entity con-
tains information about a member of staff’s next of kin.

We can combine the two tables together as shown in Figure 15.1(b). The rela-
tionship between Staff and NOK is 1:1 and the participation is optional. Since
the participation is optional, when the two tables are combined together a
number of the columns may have nulls appearing within them for some
records, as shown in Figure 15.1(c). If the Staff table is large and the proportion
of records involved in the participation is small, there will be a significant
amount of wasted space. The amount of wastage has to be balanced against any
performance improvements gained by combining the tables.

Physical database design – Step 7 ■ 307

3NF defined in
Section 8.5

1:1 relationships
defined in
Section 7.5.1

Participation
defined in
Section 7.5.5

Step 7.2 Duplicating nonkey columns in one-to-many (1:*) relationships
to reduce joins

With the specific aim of reducing or removing joins from frequent or critical
queries, consider the benefits that may result from duplicating one or more
nonkey columns of the parent table from the child table in a one-to-many (1:*)
relationship. For example, whenever the VideoForRent table is accessed, it’s very
common for the video’s daily rental rate to be accessed at the same time. A typi-
cal SQL query would be:

SELECT vfr.*, v.dailyRental
FROM VideoForRent vfr, Video v
WHERE vfr.catalogNo = v.catalogNo AND branchNo = ‘B001’;

based on the original table diagram shown in Figure 15.2(a).

308 ■ Physical database design

Figure 15.1

Staff and NOK: (a) original table diagram; (b) revised table diagram; (c) resulting table.

staffNo {PK}
name
position
salary
branchNo

RelatedToStaff NOK

1..1 0..1

(a)

staffNo {PK}
nokName
nokTelNo

staffNo {PK}
name
position
salary
nokName
nokTelNo
branchNo

Staff

(b)

nokName and nokTelNo columns
incorporated into Staff

staffNo name position salary nokName nokTelNo branchNo

S1500 Tom Daniels Manager 46000 Jane Daniels 207-878-2751 B001

S0003 Sally Adams Assistant 30000 John Adams 518-474-5355 B001

S0010 Mary Martinez Manager 50000 B002

S3250 Robert Chin Supervisor 32000 Michelle Chin 206-655-9867 B002

S2250 Sally Stern Manager 48000 B004

S0415 Art Peters Manager 41000 Amy Peters 718-507-7923 B003

Staff

(c)

from original NOK

from original Staff

1:* relationships
defined in
Section 7.5.2

If you duplicate the dailyRental column in the VideoForRent table, you can
remove the Video table from the query, which in SQL is now:

SELECT vfr.*
FROM VideoForRent vfr
WHERE branchNo = ‘B001’;

based on the revised table diagram shown in Figure 15.2(b).
The benefits that result from this change have to be balanced against the

problems that may arise. For example, if you change the duplicated data in the
parent table, you must also update it in the child table. Further, for a 1:* rela-
tionship there may be multiple occurrences of each data item in the child table.
Thus, you also have to maintain consistency of the multiple copies. If the
update of the dailyRental column in the Video and VideoForRent table cannot be
automated, the potential for loss of integrity is considerable. Even if this
process is automated, additional time is required to maintain consistency every
time a record is inserted, updated, or deleted. In our case, it’s likely that the
daily rental rate will be reduced as the video becomes older, so the duplication
may be unwarranted.

Another problem to consider is the increase in storage space resulting from
the duplication. Again, with the relatively low cost of secondary storage nowa-
days, this may be less of a problem. However, this is not a justification for
arbitrary duplication.

Physical database design – Step 7 ■ 309

Figure 15.2

Video and VideoForRent: (a) original table diagram; (b) revised table diagram.

catalogNo {PK}
title
category
dailyRental
price
directorNo {FK}

Video VideoForRent

1..1 1..*

(a)

videoNo {PK}
available
catalogNo {FK}
branchNo {FK}

Is

catalogNo {PK}
title
category
dailyRental
price
directorNo {FK}

Video VideoForRent

1..1 1..*

(b)

videoNo {PK}
available
dailyRental
catalogNo {FK}
branchNo {FK}

Is

dailyRental column
duplicated in VideoForRent

A special case of a one-to-many (1:*) relationship is a lookup table,

sometimes called a reference table or pick list. Typically, a lookup table con-

tains a code and a description. For example, you may define a lookup table for

video category and modify the table diagram as shown in Figure 15.3(a). If the

lookup table is used in frequent or critical queries, and the description is

TIP

▲

Step 7.3 Duplicating foreign key columns in one-to-many (1:*) relation-
ships to reduce joins

Again, with the specific aim of reducing or removing joins from frequent or
critical queries, consider the benefits that may result from duplicating one or
more of the foreign key columns in a relationship. For example, a frequent

310 ■ Physical database design

unlikely to change, consider duplicating the description column in the child

table, as shown in Figure 15.3(b). The original lookup table is not redundant –

it can still be used to validate user input. However, by duplicating the descrip-
ion column in the child table, you’ve eliminated the need to join the child

table to the lookup table.

The advantages of using a lookup table are:

■ Reduction in the size of the child table (in this case, the Video table); the

category code occupies 1 byte as opposed to 8 bytes for the category

description.

■ If the description can change (which is generally not the case in this particu-

lar example), it’s easier changing it once in the lookup table (VideoCategory) as

opposed to changing it many times in the child table (Video).

■ The lookup table can be used to validate user input.

Figure 15.3

Lookup table for
video category:
(a) original table
diagram; (b) revised
table diagram.

categoryID {PK}
description

VideoCategory Video

1..1 1..*

(b)

catalogNo {PK}
title
categoryID {FK}
description
dailyRental
price
directorNo {FK}

CategoryFor

description column
duplicated in Video

categoryID {PK}
description

VideoCategory Video

1..1 1..*

(a)

catalogNo {PK}
title
categoryID {FK}
dailyRental
price
directorNo {FK}

CategoryFor

query for StayHome is to list all rental agreements at a branch, using the follow-
ing SQL query:

SELECT ra.*
FROM RentalAgreement ra, VideoForRent vfr
WHERE ra.videoNo = vfr.videoNo AND vfr.branchNo = ‘B001’;

based on the original table diagram shown in Figure 15.4(a).
As can be seen from this query, to get the list of rental agreements you have

to use the VideoForRent table to gain access to the required branch number,
branchNo. You can remove the need for this join by duplicating the foreign key
branchNo in the RentalAgreement table; that is, you introduce a direct relationship
between the Branch and RentalAgreement tables. In this case, you can simplify the
SQL query to:

SELECT *
FROM RentalAgreement
WHERE branchNo = ‘B001’;

based on the revised table diagram shown in Figure 15.4(b). If this change is
made, it will be necessary to introduce additional foreign key constraints, as
discussed in Step 2.3.

Physical database design – Step 7 ■ 311

Note that this only works because the new relationship between Branch and

RentalAgreement is 1:*. In other words, for any one rental agreement there is one

and only one associated branch. If the relationship was many-to-many (*:*), the

above change would not work. For example, another frequent query might be to

list the video titles in stock at a branch using the following SQL query:

SELECT v.title
FROM Video v, VideoForRent vfr
WHERE v.catalogNo = vfr.catalogNo AND vfr.branchNo = ‘B001’;

This query cannot be simplified by adding the branchNo column to the Video
table, as the relationship between Branch and Video is *:*; that is, a video title is

stocked by many branches, and a branch can have many video titles. However,

in this case you could consider duplicating the title column of the Video table

in the VideoForRent table, although the increased storage may be more signifi-

cant in this case.

: relationships
defined in
Section 7.5.3

Step 7.4 Duplicating columns in many-to-many (*:*) relationships to
reduce joins

In Step 2.1, you mapped each *:* relationship into three tables: the two tables
derived from the original entities and a new table representing the relationship
between the two entities. Now, if you wish to retrieve information from the *:*
relationship, you have to join these three tables. In some circumstances, you
may be able to reduce the number of tables to be joined by duplicating
columns from one of the original entities in the intermediate table.

For example, a *:* relationship exists between Video and Actor, with Role acting
as an intermediate entity. Consider the query that lists the video titles and roles
that each actor has starred in:

SELECT v.title, a.*, r.*
FROM Video v, Role r, Actor a
WHERE v.catalogNo = r.catalogNo AND r.actorNo = a.actorNo;

312 ■ Physical database design

Figure 15.4

RentalAgreement and
VideoForRent:
(a) original table
diagram; (b) revised
table diagram.

BranchVideoForRent IsAllocated

1..* 1..1

RentalAgreement

1..1

0..*

IsPartOf

branchNo {PK}
videoNo {PK}
branchNo {FK}

rentalNo {PK}
videoNo {FK}
branchNo {FK}

(b)

1..1
ParticipatesIn

1..*

BranchVideoForRent IsAllocated

1..* 1..1

RentalAgreement

1..1

0..*

IsPartOf

branchNo {PK}
videoNo {PK}
branchNo {FK}

rentalNo {PK}
videoNo {FK}

(a)

Extra relationship
added

Foreign key added
as a result of new

relationship

based on the table diagram shown in Figure 15.5(a).
If you duplicate the title column in the Role table, you can remove the Video

table from the query, giving the following revised SQL query:

SELECT a.*, r.*
FROM Role r, Actor a
WHERE r.actorNo = a.actorNo;

based on the revised table diagram shown in Figure 15.5(b).

Step 7.5 Introducing repeating groups

Repeating groups were eliminated from the logical data model as a result of the
requirement that all entities be in first normal form (1NF). Repeating groups
were separated out into a new table, forming a 1:* relationship with the original
(parent) table. Occasionally, reintroducing repeating groups is an effective way
to improve system performance.

For example, each StayHome branch office has a minimum of one and a max-
imum of three telephone numbers. In the logical data model, you created a
Telephone table with a three-to-one (3:1) relationship with Branch, as shown in
Figure 15.6(a).

If access to this information is important or frequent, it may be more effi-
cient to combine the tables and store the telephone details in the original
Branch table, with one column for each telephone number, as shown in Figure
15.6(b).

Physical database design – Step 7 ■ 313

Figure 15.5

Video, Actor, and
Role: (a) original
table diagram;
(b) revised table
diagram.

RoleVideo PlaysFeatures Actor

catalogNo {PK/FK}
actorNo {PK/FK}
character

catalogNo {PK}
title
category
dailyRental
price
directorNo

actorNo {PK}
actorName

1..1 0..* 1..* 1..1

(a)

RoleVideo PlaysFeatures Actor

catalogNo {PK/FK}
actorNo {PK/FK}
character
title

catalogNo {PK}
title
category
dailyRental
price
directorNo

actorNo {PK}
actorName

1..1 0..* 1..* 1..1

(b)

title column from Video
table duplicated in Role table

Telephone entity
created in Step
2.1 in Chapter 10

In general, you should only consider this type of denormalization in the fol-
lowing circumstances:

■ The absolute number of items in the repeating group is known (in this example,
there is a maximum of three telephone numbers).

■ The number is static and will not change over time (the maximum number
of telephone lines in a branch is fixed by StayHome and is not anticipated
to change).

■ The number is not very large, typically not greater than 10, although this is
not as important as the first two conditions.

Sometimes, it may be only the most recent or current value in a repeating
group, or just the fact that there is a repeating group, that is needed most fre-
quently. In the above example, you may choose to store one telephone number
in the Branch table and leave the remaining numbers for the Telephone table. This
would remove the presence of nulls from the Branch table, as each branch must
have at least one telephone number.

Step 7.6 Creating extract tables

There may be situations where you have to run certain reports at peak times
during the day. These reports access derived data and perform multi-table joins
on the same set of base tables. However, the data the report is based on may be
relatively static or, in some cases, may not have to be current (that is, if the data
were a few hours old, the report would be perfectly acceptable). In this case, it
may be possible to create a single, highly denormalized extract table based on
the tables required by the reports, and allow the users to access the extract table
directly instead of the base tables. The most common technique for producing
extract tables is to create and populate the tables in an overnight batch run
when the system is lightly loaded.

314 ■ Physical database design

Figure 15.6

Branch and Telephone: (a) original table diagram; (b) revised table diagram.

branchNo {PK}
street
city
state
zipCode
mgrStaffNo

ProvidesBranch Telephone

1..1 1..3

(a)

telNo {PK}
branchNo {FK}

branchNo {PK}
street
city
state
zipCode
telNo1 {AK}
telNo2
telNo3
mgrStaffNo

Branch

(b)

TelNo column
duplicated in Branch.
There is at least one
telephone number

(which forms an AK),
the rest are optional.

Step 7.7 Partitioning tables

Rather than combining tables together, an alternative approach that addresses the
key problem with supporting very large tables (and indexes) is to decompose
them into a number of smaller and more manageable pieces called partitions. As
illustrated in Figure 15.7, there are two main types of partitioning:

Partitions are particularly useful in applications that store and analyze large
amounts of data. For example, let’s suppose there are hundreds of thousands of
records in the VideoForRent table that are held indefinitely for analysis purposes.
Searching for a particular record at a branch could be quite time-consuming;
however, we could reduce this time by horizontally partitioning the table, with
one partition for each branch. We can create a (hash) partition for this scenario
in Oracle using the SQL statement shown in Figure 15.8.

As well as hash partitioning, other common types of partitioning are range (each
partition is defined by a range of values for one or more columns) and list (each par-
tition is defined by a list of values for a column). There are also composite partitions
such as range-hash and list-hash (each partition is defined by a range or a list of
values and then each partition is further subdivided based on a hash function).

There may also be circumstances where we frequently examine particular
columns of a very large table and it may be appropriate to partition the table
vertically into those columns that are frequently accessed together and another
vertical partition for the remaining columns (with the primary key replicated in
each partition to allow the original table to be reconstructed).

Physical database design – Step 7 ■ 315

Horizontal partitioning

Distributing the records of a table across a number of (smaller) tables.

Vertical partitioning

Distributing the columns of a table across a number of (smaller) tables (the primary

key is duplicated to allow the original table to be reconstructed).

Figure 15.7
Horizontal and
vertical partitioning.

Horizontal

Vertical

Partitioning has a number of advantages:

■ Improved load balancing: Partitions can be allocated to different areas of sec-
ondary storage thereby permitting parallel access while at the same time
minimizing the contention for access to the same storage area if the table
was not partitioned.

■ Improved performance: By limiting the amount of data to be examined or
processed, and by enabling parallel execution, performance can be enhanced.

■ Increased availability: If partitions are allocated to different storage areas and one
storage area becomes unavailable, the other partitions will still be available.

■ Improved recovery: Smaller partitions can be recovered more efficiently
(equally well, the DBA may find backing up smaller partitions easier than
very large tables).

■ Security: Data in a partition can be restricted to only those users who require
access to it, with different partitions having different access restrictions.

Partitioning can also have a number of disadvantages:

■ Complexity: Partitioning is not usually transparent to end-users and queries
that utilize more than one partition become more complex to write.

■ Reduced performance: Queries that combine data from more than one parti-
tion may be slower than a non-partitioned approach.

■ Duplication: Vertical partitioning involves duplication of the primary key.
This leads to increased storage requirements but also leads to potential
inconsistencies arising.

316 ■ Physical database design

Figure 15.8

Oracle SQL
statement to create
a (hash) partition.

CREATE TABLE VideoForRent_Partition(
videoNo CHAR(6) NOT NULL,
available CHAR NOT NULL,
catalogNo CHAR(6) NOT NULL,
branchNo CHAR(4) NOT NULL,
PRIMARY KEY videoNo,
FOREIGN KEY catalogNo REFERENCES
Video(videoNo),
FOREIGN KEY branchNo REFERENCES
Branch(branchNo))

PARTITION BY HASH (branchNo)
(PARTITION b1 TABLESPACE TB01,
PARTITION b2 TABLESPACE TB02,
PARTITION b3 TABLESPACE TB03,
PARTITION b4 TABLESPACE TB04);

Consider implications of denormalization

You should consider the implications of denormalization on the previous steps
in the methodology. For example, you may have to reconsider the choice of
indexes on the tables you have denormalized to check whether existing indexes
should be removed or additional indexes added. In addition, you need to con-
sider how data integrity will be maintained. Common solutions are:

■ Triggers: Triggers can be used to automate the updating of derived or dupli-
cated data.

■ Transactions: Build transactions into each application that make the updates
to denormalized data as a single (atomic) action.

■ Batch reconciliation: Run batch programs at appropriate times to make the
denormalized data consistent.

In terms of maintaining integrity, triggers provide the best solution, although
they can cause performance problems. The advantages and disadvantages of
denormalization are summarized in Table 15.1.

Physical database design – Step 7 ■ 317

Table 15.1 Advantages and disadvantages of denormalization.

Advantages Disadvantages

Can improve performance by: May speed up retrievals but can slow

– precomputing derived data; down updates.

– minimizing the need for joins;

– reducing the number of of foreign

keys in tables;

– reducing the number of indexes

(thereby saving storage space);

– reducing the number of tables.

Always application-specific and needs to

be re-evaluated if the application changes.

Can increase the size of tables.

May simplify implementation in some

cases but may make it more complex in

others.

Sacrifices flexibility.

Document introduction of redundancy

The introduction of redundancy should be fully documented, along with the
reasons for introducing it. In particular, document the reasons for selecting one
approach where many alternatives exist. Update the logical data model to
reflect any changes made as a result of denormalization.

Chapter summary
Step 7 considers the introduction of controlled redundancy to improve
performance.

There may be circumstances where it may be necessary to accept the
loss of some of the benefits of a fully normalized design in favor of per-
formance. This should be considered only when it’s estimated that the
system will not be able to meet its performance requirements.

As a rule of thumb, if performance is unsatisfactory and a table has a
low update rate and a very high query rate, denormalization may be a
viable option.

Consider denormalization in the following situations, specifically to
speed up frequent or critical transactions: combining 1:1 relationships;
duplicating nonkey columns in 1:* relationships to reduce joins; dupli-
cating foreign key columns in 1:* relationships to reduce joins;
duplicating columns in *:* relationships to reduce joins; introducing
repeating groups; creating extract tables; partitioning tables that are
very large.

Review questions
15.1 Describe the purpose of Step 7 in the database design methodology.

15.2 Explain the meaning of denormalization.

15.3 Discuss when it may be appropriate to denormalize a table. Give examples
to illustrate your answer.

15.4 Describe the two main approaches to partitioning and discuss when each
may be an appropriate way to improve performance. Give examples to
illustrate your answer.

Exercise

15.5 For each of the case studies presented in Appendix E, discuss when denor-
malization may be appropriate.

318 ■ Physical database design

This chapter covers the final step of our physical database design methodology.
In the previous four chapters, we translated the logical database design into a
set of tables and business rules, selected appropriate file organizations and
indexes based on an analysis of the most important transactions, examined
how to make the database secure, and considered the introduction of con-
trolled redundancy to achieve additional performance improvements.

As user requirements evolve, it’s usually necessary to tune, or adjust, the data-
base to continue to achieve acceptable performance. In addition, you’ll
probably find that the requirements change, either as a result of the success of
the system and users wanting more functionality, or as a result of the business
evolving. In this chapter, we consider the remaining step of physical database
design which takes these aspects into consideration.

Chapter 16

Physical database
design – Step 8

In this chapter you will learn:

The importance of monitoring and tuning the operational system.

How to measure efficiency.

How system resources affect performance.

Logical database design
Step 1 Create ER model

Step 2 Map ER model to tables

Physical database design
Step 3 Translate logical design

Step 4 Choose file organizations
Step 5 Design user views

Step 6 Design security
Step 7 Controlled redundancy

Step 8 Monitor and tune

Methodology
summarized in
Appendix B

Step 8 Monitor and tune the operational system

One of the main objectives of physical database design is to store data in an effi-
cient way. There are a number of factors that we may use to measure efficiency:

■ Transaction throughput: this is the number of transactions processed in a
given time interval. In some systems, such as airline reservations, high trans-
action throughput is critical to the overall success of the system.

■ Response time: this is the elapsed time for the completion of a single transaction.

From a user’s point of view, you want to minimize response time as much as
possible. However, there are some factors that influence response time over
which you may have no control, such as system loading or communication
times. You can shorten response time by:

– reducing contention and wait times, particularly disk I/O wait times;
– reducing the amount of time resources are required;
– using faster components.

■ Disk storage: this is the amount of disk space required to store the database
files. You may wish to minimize the amount of disk storage used.

However, there is no one factor that is always correct. Typically, you have to
trade one factor off against another to achieve a reasonable balance. For exam-
ple, increasing the amount of data stored may decrease the response time or
transaction throughput. You should not regard the initial physical database
design as static, but as an estimate of how the operational system might per-
form. Once the initial design has been implemented, you should monitor the
system and tune it as a result of observed performance and changing require-
ments. Many DBMSs provide the Database Administrator (DBA) with utilities to
monitor the operation of the system and tune it.

There are many benefits to be gained from tuning the database:

■ It may avoid the procurement of additional hardware.

■ It may be possible to downsize the hardware configuration. This results in
less, and cheaper, hardware and potentially less expensive maintenance.

■ A well-tuned system produces faster response times and better throughput,
which in turn makes the users, and hence the organization, more productive.

■ Improved response times can improve staff morale.

■ Improved response times can increase customer satisfaction.

320 ■ Physical database design

Objective

To monitor the operational system and improve the performance of the system to
correct inappropriate design decisions or reflect changing requirements.

These last two benefits are more intangible than the others. However, we can
certainly state that slow response times demoralize staff and potentially lose
customers. To tune a database system, you need to understand how the various
system components interact and affect database performance.

Understanding system resources

To improve performance, you must be aware of how the four basic hardware
components interact and affect system performance:

■ main memory

■ CPU

■ disk I/O

■ network.

Each of these resources may affect other system resources. Equally well, an
improvement in one resource may effect an improvement in other system
resources. For example:

■ Adding more main memory should result in less paging. This should help
avoid CPU bottlenecks.

■ More effective use of main memory may result in less disk I/O.

Main memory

Main memory accesses are significantly faster than secondary storage accesses,
sometimes tens or even hundreds of thousands of times faster. In general, the
more main memory available to the DBMS and the database applications, the
faster the application programs will run. However, it’s sensible always to have a
minimum of 5 percent of main memory available. Equally well, it’s advisable
not to have any more than 10 percent available, otherwise main memory is not
being used optimally. When there is insufficient memory to accommodate all
processes, the operating system transfers pages of processes to disk to free up
memory. When one of these pages is next required, the operating system has to
transfer it back from disk. Sometimes, it’s necessary to swap entire processes
from main memory to disk and back again to free up memory. Problems occur
with main memory when paging (also called swapping) becomes excessive.

To ensure efficient usage of main memory, you need to understand how the
target DBMS uses main memory, what buffers it keeps in main memory, what
parameters exist to allow you to adjust the size of these buffers, and so on. For
example, Oracle keeps a data dictionary cache in main memory that ideally
should be large enough to handle 90 percent of data dictionary accesses with-
out having to retrieve the information from disk. You also need to understand

Physical database design – Step 8 ■ 321

the access patterns of users: an increase in the number of concurrent users
accessing the database will result in an increase in the amount of memory
being utilized.

CPU

The CPU controls the tasks of the other system resources and executes user
processes, and is the most costly resource in the system so needs to be correctly
utilized. The main objective for this component is to prevent CPU contention
in which processes are waiting for the CPU. CPU bottlenecks occur when either
the operating system or application programs make too many demands on the
CPU. This is often a result of excessive paging.

You need to understand the typical workload through a 24-hour period and
ensure that sufficient resources are available for not only the normal workload but
also the peak workload (if you find that you have, for example, 90 percent CPU
utilization and 10 percent idle during the normal workload then there may not be
sufficient scope to handle the peak workload). One option is to ensure that during
peak load no unnecessary jobs are being run and that such jobs are instead run in
off-hours. Another option may be to consider multiple CPUs, which allow the
processing to be distributed and operations to be processed in parallel.

CPU MIPS (Millions of Instructions Per Second) can be used as a guide in
comparing platforms and determining their ability to meet the organization’s
throughput requirements.

Disk I/O

With any large DBMS, there’s a significant amount of disk I/O involved in stor-
ing and retrieving data. While CPU clock speeds have increased dramatically in
recent years, I/O speeds have not increased proportionately. The way in which
data is organized on disk can have a major impact on the overall disk perfor-
mance. One problem that can arise is disk contention. This occurs when
multiple processes try to access the same disk simultaneously. Most disks have
limits on both the number of accesses and the amount of data they can transfer
per second and when these limits are reached, processes may have to wait to
access the disk. To avoid this, it’s recommended that storage should be evenly
distributed across available drives to reduce the likelihood of performance prob-
lems occurring. Figure 16.1 illustrates the basic principles of distributing the
data across disks:

■ The operating system files should be separated from the database files.

■ The main database files should be separated from the index files.

■ The recovery log file, if available and if used, should be separated from the
rest of the database.

322 ■ Physical database design

If a disk still appears to be overloaded, you can move one or more of its
heavily accessed files to a less active disk (this is known as distributing I/O). You
can achieve load balancing by applying this principle to each of your disks
until they all have roughly the same amount of I/O. Once again, you have to
understand how the DBMS operates, the characteristics of your hardware, and
the access patterns of the users.

RAID

Disk I/O has been revolutionized with the introduction of RAID technology.
RAID originally stood for Redundant Array of Inexpensive Disks, but more recently
the ‘I’ in RAID has come to stand for Independent. RAID works on having a large
disk array comprising an arrangement of several independent disks that are
organized to increase performance and at the same time improve reliability.

Performance is increased through data striping: the data is segmented into
equal-size partitions (the striping unit), which are transparently distributed across
multiple disks. This gives the appearance of a single large, very fast disk where in
fact the data is distributed across several smaller disks. Striping improves overall
I/O performance by allowing multiple I/Os to be serviced in parallel. At the same
time, data striping also balances the load among disks. Reliability is improved
through storing redundant information across the disks using a parity scheme or
an error-correcting scheme. In the event of a disk failure, the redundant informa-
tion can be used to reconstruct the contents of the failed disk.

There are a number of disk configurations, referred to as RAID levels, each
providing a slightly different trade-off between performance and reliability. The
RAID levels are:

■ RAID 0 – Nonredundant: This level maintains no redundant data and so has
the best write performance since updates do not have to be replicated. Data
striping is performed at the level of blocks.

■ RAID 1 – Mirrored: This level maintains (mirrors) two identical copies of the
data across different disks. To maintain consistency in the presence of disk
failure, writes may not be performed simultaneously. This is the most expen-
sive storage solution.

Physical database design – Step 8 ■ 323

Figure 16.1

Typical disk
configuration.

Index files Recovery
log file

Operating
system

Main
database files

■ RAID 0+1 – Nonredundant and Mirrored: This level combines striping and
mirroring.

■ RAID 2 – Error-Correcting Codes: With this level, the striping unit is a single
bit and error-correcting codes are used as the redundancy scheme.

■ RAID 3 ––Bit-Interleaved Parity: This level provides redundancy by storing
parity information on a single disk in the array. This parity information can
be used to recover the data on other disks should they fail. This level uses
less storage space than RAID 1 but the parity disk can become a bottleneck.

■ RAID 4 – Block-Interleaved Parity: With this level, the striping unit is a disk
block – a parity block is maintained on a separate disk for corresponding
blocks from a number of other disks. If one of the disks fails, the parity block
can be used with the corresponding blocks from the other disks to restore the
blocks of the failed disk.

■ RAID 5 – Block-Interleaved Distributed Parity: This level uses parity data for
redundancy in a similar way to RAID 3 but stripes the parity data across all
the disks, similar to the way in which the source data is striped. This allevi-
ates the bottleneck on the parity disk.

■ RAID 6 – P + Q Redundancy: This level is similar to RAID 5 but additional
redundant data is maintained to protect against multiple disk failures. Error-
correcting codes are used instead of using parity.

For most database applications, you will tend to choose between RAID 1, RAID
0+1, and RAID 5. Oracle, for example, recommends use of RAID 1 for the redo
log files. For the database files, Oracle recommends RAID 5, provided the write
overhead is acceptable, otherwise Oracle recommends either RAID 1 or RAID
0+1. Again, you should be aware of the RAID options available for your particu-
lar hardware configuration and know how the various DBMS components use
disk I/O to allow you to select an appropriate solution.

Network

When the amount of data being transferred across the network is too great, net-
work bottlenecks occur.

Summary

Tuning is an activity that is never complete. Throughout the life of the system,
you’ll need to monitor performance, particularly to account for changes in the
environment and user requirements. However, making a change to one area of
an operational system to improve performance may have an adverse effect on
another area. For example, adding an index to a table may improve the perfor-
mance of one application, but it may adversely affect another, perhaps more

324 ■ Physical database design

important, application. Therefore, care must be taken when making changes to
an operational system. If possible, test the changes either on a test database, or
alternatively, when the system is not being fully used (for example, out of work-
ing hours).

Document tuning activity

The mechanisms you have used to tune the system should be fully documented,
along with the reasons for tuning it the way you have. In particular, document
the reasons for selecting one approach where many alternatives exist.

New requirement from StayHome

As well as tuning the system to maintain optimal performance, you may also
have to cope with changing requirements. For example, StayHome have decided
that the Video table should hold a picture of the video cover together with a brief
story line, in preparation for making the video catalog available over the Web.
You can accommodate the storing of images in Microsoft Access using the OLE
(Object Linking and Embedding) data type, which is used to store data such as
Microsoft Word or Excel documents, pictures, sound, and other types of binary
data created in other programs. OLE objects can be linked to, or embedded in, a
field in a Microsoft Access table and then displayed in a form or report.

To satisfy this new requirement, we restructure the Video table to add:

(1) a column called videoCover specified as an OLE Object data type; this column
field holds graphical images of video covers, created by scanning pho-
tographs of the covers and saving the images as BMP (Bit Mapped) graphic
files;

(2) a column called storyLine specified as a Memo data type, capable of storing
lengthy text.

A form using these new columns is shown in Figure 16.2. The main problem
with the addition of these two extra columns is the potentially large amount of
disk space required to store the graphics files and the large amounts of text for
the story line. You will therefore need to continue to monitor the performance
of the StayHome database to ensure that satisfying this new requirement does
not compromise the system’s performance.

Physical database design – Step 8 ■ 325

Most of the gains in performance come from good database design,
through transaction analysis and use of appropriate indexes, as we discussed in
Step 4 of the methodology. Although it‘s tempting to skip or rush through some of
the steps, we strongly advocate against this and believe that spending sufficient
time on database design will pay dividends subsequently.

TIP

Chapter summary
Step 8, the final step of physical database design, involves the ongoing
process of monitoring and tuning the operational system to achieve
maximum performance or to reflect changing requirements.

One of the main objectives of physical database design is to store data in
an efficient way. There are a number of factors that we may use to mea-
sure efficiency, including throughput, response time, and disk storage.

To improve performance, you must be aware of how the following four
basic hardware components interact and affect system performance:
main memory, CPU, disk I/O, and network.

Disk I/O has been revolutionized through the introduction of RAID
(Redundant Array of Independent Disks) technology. RAID works on
having a large disk array comprising an arrangement of independent
disks that are organized to increase performance and at the same time
improve reliability.

326 ■ Physical database design

Figure 16.2

Form based on a
revised Video table
with the new
videoCover and
storyLine columns
added.

Now that you have gone through all the steps in the methodology, you might like to
look back at Section 9.1.3 to revisit the factors that we said were critical for suc-
cessful database design. Possibly when you first read this section, it may have been
difficult to see the relevance of some of these factors, but hopefully now you will
see the importance of them all.

Review questions
16.1 Describe the purpose of the main steps in the physical design methodol-

ogy presented in this chapter.

16.2 What factors can be used to measure efficiency?

16.3 Discuss how the four basic hardware components interact and affect
system performance.

16.4 How should you distribute data across disks?

16.5 What is RAID technology and how does it improve performance and
reliability?

Physical database design – Step 8 ■ 327

Part 5

Second worked example

17 PerfectPets – Logical database design 331

18 PerfectPets – Physical database design 350

In this chapter, we provide a second case study to help reinforce the methodol-
ogy we’ve covered in Chapters 9 to 16. We go through the steps of the logical
database design methodology in this chapter and then the steps of physical
database design in the next chapter. To demonstrate some of the physical
implementation aspects we also use a different relational DBMS, namely Oracle
9i. We recommend that you read the case study in the following section and
then attempt the steps in the methodology yourself. You can then check your
solution against our sample solution. You may find the summary of the
methodology given in Appendix B helpful.

17.1 PerfectPets

A practice called PerfectPets provides private health care for domestic pets
throughout the US. This service is provided through various clinics located in
the main cities of the US. The Director of PerfectPets is concerned that there is a
lack of communication within the practice and particularly in the sharing of
information and resources across the various clinics. To resolve this problem
the Director has requested the creation of a centralized database system to assist
in the more effective and efficient running of the practice. The Director has
provided the following description of the current system.

17.1.1 Data requirements

Veterinary clinics

PerfectPets has many veterinary clinics located in the main cities of the US. The
details of each clinic include the clinic number, clinic address (consisting of the
street, city, state, and zip code), and the telephone and fax numbers. Each clinic
has a Manager and a number of staff (for example, vets, nurses, secretaries,
cleaners). The clinic number is unique throughout the practice.

Chapter 17

PerfectPets – Logical
database design

Staff

The details stored on each member of staff include the staff number, name (first
and last), address (street, city, state, and zip code), telephone number, date of
birth, sex, social security number (SSN), position, and current annual salary.
The staff number is unique throughout the practice.

Pet owners

When a pet owner first contacts a clinic of PerfectPets the details of the pet
owner are recorded, which include an owner number, owner name (first name
and last name), address (street, city, state, and zip code), and home telephone
number. The owner number is unique to a particular clinic.

Pets

The details of the pet requiring treatment are noted, which include a pet
number, pet name, type of pet, description, date of birth (if unknown, an
approximate date is recorded), date registered at clinic, current status
(alive/deceased), and the details of the pet owner. The pet number is unique to
a particular clinic.

Examinations

When a sick pet is brought to a clinic, the vet on duty examines the pet. The
details of each examination are recorded and include an examination number,
the date and time of the examination, the name of the vet, the pet number, pet
name, and type of pet, and a full description of the examination results. The
examination number is unique to a particular clinic. As a result of the examina-
tion, the vet may propose treatment(s) for the pet.

Treatments

PerfectPets provides various treatments for all types of pets. These treatments are
provided at a standard rate across all clinics. The details of each treatment
include a treatment number, a full description of the treatment, and the cost to
the pet owner. For example, treatments include:

T123 Penicillin antibiotic course $50.00
T155 Feline hysterectomy $200.00
T112 Vaccination course against feline flu $70.00
T56 Small dog – stay in pen per day (includes feeding) $20.00

A standard rate of $20.00 is charged for each examination, which is recorded
as a type of treatment. The treatment number uniquely identifies each type of
treatment and is used by all PerfectPets clinics.

332 ■ Second worked example

Pet treatments

Based on the results of the examination of a sick pet, the vet may propose one
or more types of treatment. For each type of treatment, the information
recorded includes the examination number and date, the pet number, name
and type, treatment number, description, quantity of each type of treatment,
and date the treatment is to begin and end. Any additional comments on the
provision of each type of treatment are also recorded.

Pens

In some cases, it’s necessary for a sick pet to be admitted to the clinic. Each
clinic has 20–30 animal pens, each capable of holding between one and four
pets. Each pen has a unique pen number, capacity, and status (an indication of
availability). The sick pet is allocated to a pen and the details of the pet, any
treatment(s) required by the pet, and any additional comments about the care
of the pet are recorded. The details of the pet’s stay in the pen are also noted,
which include a pen number, and the date the pet was put into and taken out
of the pen. Depending on the pet’s illness, there may be more than one pet in a
pen at the same time. The pen number is unique to a particular clinic.

Invoices

The pet owner is responsible for the cost of the treatment given to a pet. The
owner is invoiced for the treatment arising from each examination, and the
details recorded on the invoice include the invoice number, invoice date, owner
number, owner name and full address, pet number, pet name, and the details of
the treatment given. The invoice provides the cost for each type of treatment
and the total cost of all treatments given to the pet.

Additional data is also recorded on the payment of the invoice, including the
date the invoice was paid and the method of payment (for example, check,
cash, credit card). The invoice number is unique throughout the practice.

Surgical, non-surgical, and pharmaceutical supplies

Each clinic maintains a stock of surgical supplies (for example, syringes, sterile
dressings, bandages) and non-surgical supplies (for example, plastic bags,
aprons, litter trays, pet name tags, pet food). The details of surgical and non-
surgical supplies include the item number and name, item description, quantity
in stock (this is ascertained on the last day of each month), reorder level,
reorder quantity, and cost. The item number uniquely identifies each type of
surgical or non-surgical supply. The item number is unique for each surgical or
non-surgical item and used throughout the practice.

PerfectPets – Logical database design ■ 333

Each clinic also maintains a stock of pharmaceutical supplies (for example,
antibiotics, pain killers). The details of pharmaceutical supplies include a drug
number and name, description, dosage, method of administration, quantity in
stock (this is ascertained on the last day of each month), reorder level, reorder
quantity, and cost. The drug number uniquely identifies each type of pharma-
ceutical supply. The drug number is unique for each pharmaceutical supply and
used throughout the practice.

Appointments

If the pet requires to be seen by the vet at a later date, the owner and pet are
given an appointment. The details of an appointment are recorded and include
an appointment number, owner number, owner name (first name and last
name), home telephone number, the pet number, pet name, type of pet, and
the appointment date and time. The appointment number is unique to a particu-
lar clinic.

17.1.2 Transaction requirements

Listed below are the transactions that should be supported by the PerfectPets
database application.

(1) The database should be capable of supporting the following maintenance
transactions:

(a) Create and maintain records recording the details of PerfectPets clinics
and the members of staff at each clinic.

(b) Create and maintain records recording the details of pet owners.
(c) Create and maintain the details of pets.
(d) Create and maintain records recording the details of the types of treat-

ments available for pets.
(e) Create and maintain records recording the details of examinations and

treatments given to pets.
(f) Create and maintain records recording the details of invoices to pet

owners for treatment to their pets.
(g) Create and maintain records recording the details of surgical, non-surgi-

cal, and pharmaceutical supplies at each clinic.
(h) Create and maintain records recording the details of pens available at

each clinic and the allocation of pets to pens.
(i) Create and maintain pet owner/pet appointments at each clinic.

(2) The database should be capable of supporting the following example query
transactions:

(a) Present a report listing the Manager’s name, clinic address, and tele-
phone number for each clinic, ordered by clinic number.

334 ■ Second worked example

(b) Present a report listing the names and owner numbers of pet owners
with the details of their pets.

(c) List the historic details of examinations for a given pet.
(d) List the details of the treatments provided to a pet based on the results

of a given examination.
(e) List the details of an unpaid invoice for a given pet owner.
(f) Present a report on invoices that have not been paid by a given date,

ordered by invoice number.
(g) List the details of pens available on a given date for clinics in New York,

ordered by clinic number.
(h) Present a report that provides the total monthly salary for staff at each

clinic, ordered by clinic number.
(i) List the maximum, minimum, and average cost for treatments.
(j) List the total number of pets in each pet type, ordered by pet type.
(k) Present a report of the names and staff numbers for all vets and nurses

over 50 years old, ordered by staff name.
(l) List the appointments for a given date and for a particular clinic.
(m) List the total number of pens in each clinic, ordered by clinic number.
(n) Present a report of the details of invoices for pet owners between 2000

and 2002, ordered by invoice number.
(o) List the pet number, name, and description of pets owned by a particu-

lar owner.
(p) Present a report listing the pharmaceutical supplies that need to be

reordered at each clinic, ordered by clinic number.
(q) List the total cost of the non-surgical and surgical supplies currently in

stock at each clinic, ordered by clinic number.

17.2 Using the logical database design
methodology

In this section, we’re going to work through the steps in the logical database
design methodology to produce a logical data model that satisfies the above
requirements for PerfectPets. We assume that the requirements collection and
analysis stage has identified only one user view.

Step 1.1 Identify entities

The first step in logical database design is to identify the main entities that you
have to represent in the database. From the description of the practice given
above, you may identify the following entities:

PerfectPets – Logical database design ■ 335

Methodology
summarized in
Appendix B

Entities defined
in Section 7.1

Clinic Staff
PetOwner Pet
Examination Treatment
Pen PetTreatment
Invoice Appointment
Stock (with specializations Surgical, NonSurgical, and Pharmaceuticals)

Document entities

As you identify entities, assign them names that are meaningful and obvious to
the user, and record this information in a data dictionary. Figure 17.1 shows an
extract from the data dictionary that documents the entities for PerfectPets.

Step 1.2 Identify relationships

Having identified the entities, your next step is to identify all the relationships
that exist between these entities. For PerfectPets, you may identify the relation-
ships shown in Figure 17.2.

Determine the multiplicity constraints of relationships

Having identified the relationships you wish to model, you now want to deter-
mine the multiplicity of each relationship. For PerfectPets, you should identify
the multiplicity constraints shown in Figure 17.3.

336 ■ Second worked example

Figure 17.1

Extract from the
data dictionary for
PerfectPets showing
description of
entities.

Entity name Description

Clinic Veterinary clinics.

Staff General term describing
all staff employed by
PerfectPets.

Aliases

Surgery

Occurrence

One or more
PerfectPets clinics
located in main cities
throughout the US.

Vet,
Nurse,
Secretary

Each member of
staff works at a
particular clinic.

PetOwner Owners of pets taken to
PerfectPets.

Owner takes his/her
pet to a particular
clinic.

Relationships
defined in
Section 7.2

Multiplicity
defined in
Section 7.5

PerfectPets – Logical database design ■ 337

Figure 17.2

First draft of
relationships for
PerfectPets.

Entity Relationship Entity

Clinic Has Staff

Holds Stock

Registers Pet

Provides Pen

Schedules Appointment

IsContactedBy PetOwner

Staff Manages Clinic

Performs Examination

PetOwner Owns Pet

Pays Invoice

Attends Appointment

Pet Undergoes Examination

IsAllocatedTo Pen

Attends Appointment

Examination ResultsIn PetTreatment

Treatment UsedIn PetTreatment

Invoice ResultsFrom Examination

Figure 17.3

Multiplicity
constraints for
relationships
identified above.

Entity Multiplicity Relationship Multiplicity Entity

Clinic 1..1 Has 1..* Staff

1..* Holds 1..* Stock

1..1 Registers 1..* Pet

1..1 Provides 20..30 Pen

1..1 Schedules..* 1..* Appointment

1..1 IsContactedBy 1..* PetOwner

Staff 1..1 Manages 0..1 Clinic

1..1 Performs 0..* Examination

PetOwner 1..1 Owns 1..* Pet

1..1 Pays 1..* Invoice

1..1 Attends 1..* Appointment

Pet 1..1 Undergoes 1..* Examination

1..* IsAllocatedTo 0..* Pen

1..1 Attends 1..* Appointment

Examination 1..1 ResultsIn 1..* PetTreatment

Treatment 1..1 UsedIn 1..* PetTreatment

Invoice 1..1 ResultsFrom 1..1 Examination

Use Entity–Relationship (ER) modeling

Throughout the database design phase, you’ll create several versions of the ER
diagram representing PerfectPets. Figure 17.4 shows the first draft ER diagram for
PerfectPets.

Step 1.3 Identify and associate attributes with entities or relationships

The next step is to identify the attributes that are associated with the entities
and relationships that you’ve identified. For PerfectPets, you should identify the
attributes with the associated entities, as shown in Figure 17.5(a).

However, when examining the information on pens, you may have difficulty
associating the attributes dateIn and dateOut, representing the date a pet was put
in and taken out of a pen, and the attribute comments with either the Pen or Pet
entity. Similarly, you may have difficulty associating the attribute inStock, repre-
senting the amount of quantity in stock for the different categories of supplies,
and the attributes reorderLevel and reorderQty with either the Clinic or Stock entities.
In both these cases, you should ensure that you have not missed one or more
entities for these attributes in Step 1.1 or associate the attributes with the corre-
sponding relationships, as shown in Figure 17.5(b).

You should also be careful not to include the same attribute in two entities,
when the occurrence of the attribute actually represents a relationship between
the entities. For example, in the requirements specification given in Section
17.1.1 under Examinations, it states that the details of each examination
includes ‘the name of the vet’. You might be misled here to include the name of
the vet in both the Staff and Examination entities. However, this would be incor-
rect: the appearance of the vet’s name in this situation represents a relationship
and you should not include it as an attribute of the Examination entity. If you
were to do this, it would subsequently result in the Examination table not con-
forming to third normal form (3NF).

Document attributes

As you identify attributes, assign them names that are meaningful and obvious
to the user, and record their details in a data dictionary, as discussed in Step 1.3
in Chapter 9.

338 ■ Second worked example

Attributes
defined in
Section 7.3

3NF discussed in
Section 8.5

This is quite a common mistake for inexperienced designers to make,

so you should look out for it.

TIP

PerfectPets – Logical database design ■ 339

Fi
gu

re
 1

7.
4

Fi
rs

t
d

ra
ft

 E
R

 d
ia

gr
am

 f
or

 P
er

fe
ct

Pe
ts

.

St
oc

k

C
li

n
ic

Is
C

on
ta

ct
ed

B
y

Pe
n

Pr
ov

id
es

Pe
tO

w
n

er

A
p

p
oi

n
tm

en
t

St
af

f

H
ol

d
s

PO
A

tt
en

d
s

M
an

ag
es

H
as

1.
.1

1.
.1

1.
.*

1.
.*

1.
.1

0.
.1

1.
.*

1.
.1

1.
.1

1.
.*

1.
.*

1.
.1

20
..3

0

0.
.*

Sc
h

ed
u

le
s

1.
.*

1.
.1

R
eg

is
te

rs

Pe
t

1.
.*

1.
.*

PA
tt

en
d

s

1.
.*

1.
.1

O
w

n
s

1.
.*

Pe
rf

or
m

s

Is
A

ll
oc

at
ed

To

Ex
am

in
at

io
n

U
n

d
er

go
es

1.
.1

1.
.*

0.
.*

In
vo

ic
e

1.
.*

1.
.1

Pa
ys

R
es

u
lt

sF
ro

m

1.
.1

1.
.1

R
es

u
lt

sI
n

Tr
ea

tm
en

t

1.
.1

Pe
tT

re
at

m
en

t

1.
.*

U
se

d
In

1.
.*

1.
.1

1.
.1

1.
.1

Step 1.4 Determine attribute domains

You should now add into your data dictionary the necessary domains to sup-
port the attributes you identified in the previous step.

Step 1.5 Determine candidate, primary, and alternate key attributes

This step is concerned with identifying the candidate key(s) for an entity and
then selecting one to be the primary key. In the process of identifying primary
keys, note whether an entity is strong or weak.

340 ■ Second worked example

Figure 17.5

Attributes for PerfectPets: (a) attributes associated with entities; (b) attributes associated with
relationships.

Entity Attributes

Clinic clinicNo, address (street, city, state, zipCode), telNo, faxNo

Staff staffNo, sName (sFName, sLName), sAddress (sStreet, sCity, sState, sZipCode),
sTelNo, DOB, sex, SSN, position, salary

PetOwner ownerNo, oName (oFName, oLName), oAddress (oStreet, oCity, oState, oZipCode),
oTelNo

Pet petNo, petName, petType, petDescription, pDOB, dateRegistered,
petStatus

Examination examNo, examDate, examTime, examResults

Treatment treatNo, description, cost

Pen penNo, penCapacity, penStatus

Invoice invoiceNo, invoiceDate, datePaid, paymentMethod

Stock: Item itemNo, itemName, itemDescription, itemCost

Stock: Pharmacy drugNo, drugName, drugDescription, dosage, methodAdmin,
drugCost

Appointment appNo, aDate, aTime

PetTreatment startDate, endDate, quantity, ptComments

Relationship Attributes

IsAllocatedTo dateIn, dateOut, comments

Holds inStock, reorderLevel, reorderQty

(a)

(b)

Domains defined
in Section 2.2.1

Keys defined in
Section 2.2.3

Strong and weak
entities defined
in Section 7.4

In trying to identify candidate keys, you should observe that the clinic
number for the Clinic entity, the staff number for the Staff entity, the treatment
number for the Treatment entity, the invoice number for the Invoice entity, and the
item/drug number for the Stock entity are unique for the entire practice. On the
other hand, the owner number for the PetOwner entity, the pet number for the Pet
entity, and the pen number for the Pen entity are only unique for a particular
clinic. It’s not uncommon for a company to give different offices a degree of
local autonomy. However, in a centralized database system it’s sometimes more
appropriate to have uniqueness throughout the company. In discussion with the
PerfectPets management, it’s agreed that all numbers should be allocated across
the entire practice, as opposed to each clinic. If this had not been the decision, it
would have been necessary to add the clinic number to those numbers only
unique within each clinic to gain uniqueness across the practice.

With this in mind, you should now identify the primary keys shown in
Figure 17.6 (other alternate keys are shown in Figure 17.9). In particular, you
should identify PetTreatment as a weak entity.

Step 1.6 Specialize/Generalize entities (optional step)

The identification of the Stock entity in its current form is perfectly acceptable
to continue with the logical database design methodology. However, there is
additional information given that you may wish to add, to model the practice
more accurately. The requirements specification states that there are surgical
and non-surgical supplies that have a unique item number to distinguish them.
There are also pharmaceutical supplies that have a unique drug number to dis-
tinguish them. In addition, these two types of supplies have slightly different
attributes associated with them. Therefore, we could consider Surgical/Non-
Surgical Stock and Pharmaceuticals to be particular types of the Stock entity. This
specialization/generalization is shown in Figure 17.6. For simplicity, we have
renamed Surgical/Non-Surgical Stock as Item and Pharmaceuticals as Pharmacy.

You may also identify Vet, Nurse, Secretary, and Cleaner as particular types of
Staff. Although these job titles all have the same attributes, only the Vet entity
participates in the Performs relationship with Examination. This is a perfectly valid
way of modeling staff. However, to keep the model simple, we omit this special-
ization/generalization.

Step 1.7 Check model for redundancy

At this point, you now have a logical data model for PerfectPets. However, the
data model may contain some redundancy which should be removed. More
specifically, you have to:

(1) Re-examine one-to-one (1:1) relationships.

(2) Remove redundant relationships.

PerfectPets – Logical database design ■ 341

Specialization/
Generalization
covered in Chapter 11

342 ■ Second worked example

Fi
gu

re
 1

7.
6

ER
 d

ia
gr

am
 f

or
 P

er
fe

ct
Pe

ts
w

it
h

 p
ri

m
ar

y
ke

ys
 s

h
ow

n
 a

n
d

 s
p

ec
ia

li
za

ti
on

/g
en

er
al

iz
at

io
n

 o
f

St
oc

k.

St
oc

k

C
li

n
ic

Is
C

on
ta

ct
ed

B
y

Pe
n

Pr
ov

id
es

Pe
tO

w
n

er

A
p

p
oi

n
tm

en
t

St
af

f

H
ol

d
s

PO
A

tt
en

d
s

M
an

ag
es

H
as

1.
.1

1.
.1

1.
.*

1.
.*

1.
.1

0.
.1

1.
.*

1.
.1

1.
.1

1.
.*

1.
.*

1.
.1

20
..3

0

0.
.*

Sc
h

ed
u

le
s

1.
.*

1.
.1

R
eg

is
te

rs

Pe
t

1.
.*

1.
.*

PA
tt

en
d

s

1.
.*

1.
.1

O
w

n
s

1.
.*

Pe
rf

or
m

s

Is
A

ll
oc

at
ed

To

Ex
am

in
at

io
n

U
n

d
er

go
es

1.
.1

1.
.*

0.
.*

In
vo

ic
e

1.
.*

1.
.1

Pa
ys

R
es

u
lt

sF
ro

m

1.
.1

1.
.1

R
es

u
lt

sI
n

Tr
ea

tm
en

t

1.
.1

Pe
tT

re
at

m
en

t

1.
.*

U
se

d
In

1.
.*

cl
in

ic
N

o

p
en

N
o

ow
n

er
N

o

ap
p

N
o

st
af

fN
o

p
et

N
o

ex
am

N
o

in
vo

ic
eN

o

tr
ea

tN
o

It
em

it
em

N
o

Ph
ar

m
ac

y

d
ru

gN
o

{M
an

d
at

or
y,

 O
r}

1.
.1

1.
.1

1.
.1

One-to-one (1:1) relationships

From Figure 17.6, there are two 1:1 relationships: Staff Manages Clinic and Invoice
ResultsFrom Examination. However, in both cases the two entities are clearly dis-
tinct and should not be merged together.

Redundant relationships

From Figure 17.6, there are a number of relationships between PetOwner, Pet, Clinic,
and Appointment, and a closer examination is useful to identify any redundant rela-
tionships. First of all, note that the PetOwner/Pet entities have mandatory
participation in the POAttends/PAttends/Owns relationships, and that a PetOwner may
own many pets. Therefore, for any given Appointment we can identify the Owner
through the POAttends relationship, but we cannot then identify the Pet through the
Owns relationship. However, for any given Appointment, we can identify the Pet
through the PAttends relationship and for any given Pet we can identify the PetOwner
through the Owns relationship, which suggests that the POAttends relationship is
redundant. In a similar way, through the PAttends relationship we can identify the
Pet, and through the Registers relationship we can identify the Clinic involved in the
Appointment, which suggests the Schedules relationship is also redundant.

Note that the IsContactedBy relationship between Clinic and PetOwner also
appears to be redundant. However, PerfectPets notes the details of pet owners
when they first make contact and only obtains the details of pets at the first
appointment, and so the IsContactedBy relationship is retained. The revised ER
diagram is shown in Figure 17.7.

Step 1.8 Check model supports user transactions

In this step, you check that the logical data model you have developed supports
the transactions identified by the users. This involves checking that:

■ the required attributes are present in the data model, and

■ where attributes have to be taken from more than one entity, there is a path-
way between the two entities; in other words, there is an identified
relationship, either direct or indirect, between the two entities.

The transaction pathway diagram for the query transactions identified in
Section 17.1.2 is shown in Figure 17.8, and you can readily check that the
required attributes are available from an individual entity or from multiple enti-
ties via one or more relationships.

Step 2.1 Create tables

In this step, you create tables from the logical data model to represent the enti-
ties and relationships described in the user’s view of the practice, using a
Database Design Language (DBDL) for relational databases.

PerfectPets – Logical database design ■ 343

1:1 relationships
defined in
Section 7.5.1

Participation
defined in
Section 7.5.5

DBDL discussed
in Step 2.1 in
Chapter 10

344 ■ Second worked example

Fi
gu

re
 1

7.
7

R
ev

is
ed

 E
R

 d
ia

gr
am

 f
or

 P
er

fe
ct

Pe
ts

w
it

h
 r

ed
u

n
d

an
t

re
la

ti
on

sh
ip

s
re

m
ov

ed
.

St
oc

k

C
li

n
ic

Is
C

on
ta

ct
ed

B
y

Pe
n

Pr
ov

id
es

Pe
tO

w
n

er

A
p

p
oi

n
tm

en
t

St
af

f

H
ol

d
s

M
an

ag
es

H
as

1.
.1

1.
.*

1.
.1

0.
.1

1.
.*

1.
.1

1.
.1

1.
.*

1.
.*

1.
.1

20
..3

0

0.
.*

1.
.1

R
eg

is
te

rs Pe
t

1.
.*

1.
.*

PA
tt

en
d

s

1.
.*

1.
.1

O
w

n
s

1.
.*

Pe
rf

or
m

s

Ex
am

in
at

io
n

U
n

d
er

go
es

1.
.1

1.
.*

0.
.*

In
vo

ic
e

1.
.*

1.
.1

Pa
ys

R
es

u
lt

sF
ro

m

1.
.1

1.
.1

R
es

u
lt

sI
n

Tr
ea

tm
en

t

1.
.1

Pe
tT

re
at

m
en

t

1.
.*

U
se

d
In

1.
.*

cl
in

ic
N

o

p
en

N
o

ow
n

er
N

o

ap
p

N
o

st
af

fN
o

p
et

N
o

ex
am

N
o

in
vo

ic
eN

o

tr
ea

tN
o

It
em

it
em

N
o

Ph
ar

m
ac

y

d
ru

gN
o

{M
an

d
at

or
y,

 O
r}

Is
A

ll
oc

at
ed

To

1.
.1

1.
.1

PerfectPets – Logical database design ■ 345

Fi
gu

re
 1

7.
8

Tr
an

sa
ct

io
n

 p
at

h
w

ay
 d

ia
gr

am
 f

or
 P

er
fe

ct
Pe

ts
.

C
li

n
ic

Pe
n

Pe
tO

w
n

er

A
p

p
oi

n
tm

en
t

St
af

f

Pe
t

Ex
am

in
at

io
n

In
vo

ic
e

Tr
ea

tm
en

t
Pe

tT
re

at
m

en
t

cl
in

ic
N

o

p
en

N
o

ow
n

er
N

o

ap
p

N
o

st
af

fN
o

p
et

N
o

ex
am

N
o

in
vo

ic
eN

o

tr
ea

tN
o

it
em

N
o

d
ru

gN
o

St
oc

k
2(

q
)

2(
p

)

2(
h

)
2(

k)

It
em

Ph
ar

m
ac

y
1(

g)

1(
b)

1(
a)

, 2
(a

)

2(
m

)

1(
c)

2(
l)

1(
i)

2(
g)

1(
h

)

2(
j)

2(
e)

2(
f)

2(
n

)

2(
b)

, 2
(o

)

1(
f)

2(
c)

1(
d

)
2(

i)

1(
e)

2(
d

)

Document tables and foreign key attributes

At the end of Step 2.1, you document the full composition of the tables created
from the logical data model. Each table is described using the DBDL, as shown
in Figure 17.9.

346 ■ Second worked example

Figure 17.9

Tables created from logical data model for PerfectPets.

Clinic (clinicNo, street, city, state, zipcode,
telNo, faxNo, mgrStaffNo)
Primary Key clinicNo
Alternate Key zipCode
Alternate Key telNo
Alternate Key faxNo
Foreign Key mgrStaffNo references Staff(staffNo)

PetOwner (ownerNo, oFName, oLName, oState, oZipCode,
oTelNo, clinicNo)
Primary Key ownerNo
Foreign Key clinicNo references Clinic(clinicNo)

Staff (staffNo, sFName, sLName, sStreet, sCity,
sState, sZipCode, sTelNo, DOB, sex, SSN, position,
salary, clinicNo)
Primary Key staffNo
Alternate Key SSN
Foreign Key clinicNo references Clinic(clinicNo)

Pet (petNo, petName, petType, petDescription, pDOB,
dateRegistered, petStatus, ownerNo, clinicNo)
Primary Key petNo
Foreign Key ownerNo references Owner(ownerNo)
Foreign Key clinicNo references Clinic(clinicNo)

Examination (examNo, examDate,
examTime, examResults, petNo, staffNo)
Primary Key examNo
Alternate Key staffNo, examDate, examTime
Foreign Key petNo references Pet(petNo)
Foreign Key staffNo references Staff(staffNo)

Treatment (treatNo, description, cost)
Primary Key treatNo

Pen (penNo, penCapacity, penStatus, clinicNo)
Primary Key penNo
Foreign Key clinicNo references Clinic(clinicNo)

PetPen (penNo, petNo, dateIn, dataOut, comments)
Primary Key penNo, petNo, dateIn
Alternate Key penNo, petNo, dateOut
Foreign Key penNo references Pen(penNo)
Foreign Key petNo references Pet(petNo)

PetTreatment (examNo, treatNo, startDate, endDate,
quantity, ptComments)
Primary Key examNo, treatNo
Foreign Key examNo references Examination(examNo)
Foreign Key treatNo references Treatment(treatNo)

Item (itemNo, itemName, itemDescription, itemCost)
Primary Key itemNo

Pharmacy (drugNo, drugName, drugDescription, dosage,
methodAdmin, drugCost)
Primary Key drugNo

ItemClinicStock (itemNo, clinicNo, inStock,
reorderLevel, reorderQty)
Primary Key itemNo, clinicNo
Foreign Key itemNo references Item(itemNo)
Foreign Key clinicNo references Clinic(clinicNo)

PharmClinicStock (drugNo, clinicNo, inStock,
reorderLevel, reorderQty)
Primary Key drugNo, clinicNo
Foreign Key drugNo references Pharmacy(drugNo)
Foreign Key clinicNo references Clinic(clinicNo)

Invoice (invoiceNo, invoiceDate, datePaid,
paymentMethod, ownerNo, examNo)
Primary Key invoiceNo
Foreign Key ownerNo references Owner(ownerNo)
Foreign Key examNo references Examination(examNo)

Appointment (appNo, aDate, aTime, petNo)
Primary Key appNo
Foreign Key petNo references Pet(petNo)

Step 2.2 Check table structures using normalization

In this step, you want to ensure that each table created in the previous step is in
at least third normal form (3NF). If you identify tables that are not in 3NF, this
may indicate that part of the logical data model is incorrect, or you have intro-
duced an error when deriving the tables from the model. However, you can
readily check that the tables identified in Figure 17.9 are in 3NF.

Step 2.3 Check tables support user transactions

This step is similar to Step 1.8, except in this step you’re checking that the map-
ping from entities to tables and the posting of primary keys to act as foreign
keys have been undertaken correctly. In this case, you can again readily check
the mapping has been performed correctly and the tables do support the user
transactions identified in Section 17.1.2.

Step 2.4 Check business rules

Business rules are the constraints that you wish to impose in order to protect the
database from becoming inconsistent. Of the six types of business rules, four were
identified in previous steps and documented in the data dictionary, namely:
required data, column domain constraints, entity integrity, and multiplicity. We
consider the remaining two here: referential integrity and other business rules.

Referential integrity

There are two issues to consider here:

(1) Identify whether nulls are allowed for the foreign key. In general, if the partici-
pation of the child table in the relationship is mandatory, then the strategy
is that nulls are not allowed. On the other hand, if the participation of the
child table is optional, then nulls should be allowed.

(2) Identify the existence constraints under which a foreign key may be inserted,
updated, or deleted. In general, this involves specifying two actions for each
foreign key: an ON UPDATE action and an ON DELETE action, relating to
what should happen to maintain referential integrity if a record in the
parent table is updated/deleted. Figure 17.10 shows the necessary actions
for the foreign keys identified in Figure 17.9.

Other business rules

Finally, consider whether there are any other types of constraints that
PerfectPets has defined that have not been covered elsewhere in the data model.
Such constraints are more generally called business rules.

PerfectPets – Logical database design ■ 347

Normalization
covered in
Chapter 8

Participation
defined in
Section 7.5.5

Business rules
discussed in
Section 2.3

348 ■ Second worked example

Figure 17.10

The referential integrity constraints for the PerfectPets tables.

Foreign Key mgrStaffNo references Staff(staffNo) ON UPDATE CASCADE ON DELETE NO ACTION

Foreign Key clinicNo references Clinic(clinicNo) ON UPDATE CASCADE ON DELETE NO ACTION

Foreign Key clinicNo references Clinic(clinicNo) ON UPDATE CASCADE ON DELETE NO ACTION

Foreign Key ownerNo references Owner(ownerNo) ON UPDATE CASCADE ON DELETE CASCADE
Foreign Key clinicNo references Clinic(clinicNo) ON UPDATE CASCADE ON DELETE NO ACTION

Foreign Key petNo references Pet(petNo) ON UPDATE CASCADE ON DELETE CASCADE
Foreign Key staffNo references Staff(staffNo) ON UPDATE CASCADE ON DELETE NO ACTION

Foreign Key clinicNo references Clinic(clinicNo) ON UPDATE CASCADE ON DELETE CASCADE

Foreign Key penNo references Pen(penNo) ON UPDATE CASCADE ON DELETE CASCADE
Foreign Key petNo references Pet(petNo) ON UPDATE CASCADE ON DELETE CASCADE

Foreign Key treatNo references Treatment(treatNo) ON UPDATE CASCADE ON DELETE NO ACTION

Foreign Key itemNo references Item(itemNo) ON UPDATE CASCADE ON DELETE NO ACTION
Foreign Key clinicNo references Clinic(clinicNo) ON UPDATE CASCADE ON DELETE NO ACTION

Foreign Key drugNo references Pharmacy(drugNo) ON UPDATE CASCADE ON DELETE NO ACTION
Foreign Key clinicNo references Clinic(clinicNo) ON UPDATE CASCADE ON DELETE NO ACTION

Foreign Key ownerNo references Owner(ownerNo) ON UPDATE CASCADE ON DELETE NO ACTION
Foreign Key examNo references Examination(examNo) ON UPDATE CASCADE ON DELETE NO ACTION

Foreign Key petNo references Pet(petNo) ON UPDATE CASCADE ON DELETE CASCADE

Clinic

Staff

PetOwner

Pet

Examination

Pen

PetPen

PetTreatment

ItemClinicStock

PharmClinicStock

Invoice

Appointment

Document all business rules

All business rules are documented in the data dictionary for consideration
during physical database design.

Step 2.5 Review logical database design with users

The logical database design is now complete and fully documented. At this
point, you should review the logical data model and supporting documentation
with the users. We’ll assume that this does not identify any major deficiencies
in the design. This completes the logical database design methodology for
PerfectPets. In the next chapter, we’ll proceed to the physical database design phase.

PerfectPets – Logical database design ■ 349

In this chapter, we go through the steps of physical database design for the
PerfectPets case study introduced in the previous chapter. To demonstrate some
of the physical implementation aspects we use Oracle 9i. As we mentioned at
the start of the last chapter, we recommend that you attempt the steps in the
methodology yourself before reading this chapter. You can then check your
solution against our sample solution. If you are unfamiliar with file organiza-
tions and indexes, read Appendix D first. You may also find the summary of the
methodology in Appendix B helpful.

18.1 Using the physical database design
methodology

In this section, we work through the steps in the physical database design
methodology to produce a suitable physical design for the PerfectPets database.

Step 3.1 Design base tables

During logical database design you produced a design for a number of base
tables to represent the entities and relationships in the logical data model. This
included a description of:

■ each table, its attributes, the primary, alternate, and foreign keys, and
integrity constraints;

■ each attribute, its domain, an optional default value, whether it can hold
nulls, and whether it’s derived.

The design of the base tables also included a definition of domains, default
values, and null indicators. For example, for the Pen table of PerfectPets, you may
produce the design shown in Figure 18.1 using an extended Database Design
Language (DBDL). You use this information to determine how to implement
the base tables in the target DBMS, which for this case study is Oracle 9i.

Chapter 18

PerfectPets – Physical
database design

Base tables
defined in
Section 2.3.2

DBDL discussed
in Step 2.1 in
Chapter 10

Creating base tables in Oracle 9i

In some systems that do not fully comply with the 1999 SQL standard (SQL3),
there is no support for one or more of the clauses PRIMARY KEY, FOREIGN
KEY, DEFAULT. Similarly, many systems do not support domains. However,
Oracle 9i supports many of the SQL3 CREATE TABLE clauses, so you can define:

■ primary keys, using the PRIMARY KEY clause;

■ alternate keys, using the UNIQUE keyword;

■ default values, using the DEFAULT clause;

■ not null columns, using the NOT NULL keyword;

■ foreign keys, using the FOREIGN KEY clause;

■ other column or table constraints using the CHECK and CONSTRAINT
clauses.

However, there is no facility to create domains, although Oracle 9i does allow
user-defined types to be created. In addition, the data types are slightly different
from the SQL standard, as shown in Table 18.1 (compare this with Table 12.1).

In Chapter 12, we saw that Microsoft Access had an Autonumber data type
that created a new sequential number for a column value whenever a record
was inserted. Oracle does not have such a data type but it does have a similar
facility through the (non-standard) SQL CREATE SEQUENCE statement. For
example, the statement:

CREATE SEQUENCE appNoSeq
START WITH 1 INCREMENT BY 1 CACHE 30;

PerfectPets – Physical database design ■ 351

Figure 18.1

DBDL for the Pen table.

domain Pen_Numbers
domain Pen_Capacity
domain Pen_Status

domain Clinic_Numbers

fixed length character string length 4
integer value, between 1 and 4
one character, indicating whether pen
is available (A) or not available (N)
fixed length character string length 5

Pen(penNo Pen_Numbers NOT NULL,
penCapacity Pen_Capacity NOT NULL DEFAULT 2,
penStatus Pen_Status NOT NULL DEFAULT ‘A’,
clinicNo Clinic_Numbers NOT NULL)
Primary Key penNo
Foreign Key clinicNo References Clinic(clinicNo)ON UPDATE CASCADE ON DELETE NO ACTION

352 ■ Second worked example

Table 18.1 Partial list of Oracle data types.

Data type Use Size

CHAR(size) Stores fixed length character data Up to 2000 bytes

(default size is 1).

NCHAR(size) Same as char data type, except the

maximum length is determined by the

character set of the database (for example,

American English, Eastern European,

or Korean).

VARCHAR2(size) Stores variable length character data. Up to 4000 bytes

NVARCHAR2(size) Same as VARCHAR2 with the same caveat

as for nchar data type.

VARCHAR Currently the same as char. However, use Up to 2000 bytes

of VARCHAR2 is recommended as varchar

might become a separate data type with

different comparison semantics in a later

release.

NUMBER(l, d) Stores fixed-point or floating-point 1.0E-130 ..

9.99E125

numbers, where l stands for length and

d stands for the number of decimal digits.

For example, NUMBER(5,2) could contain

nothing larger than 999.99 without

an error.

DECIMAL(l, d), Same as number. Provided for

DEC(l, d), or compatibility with SQL standard.

NUMERIC(l, d)

INTEGER, INT, Provided for compatibility with SQL

or SMALLINT standard. Converted to NUMBER(38).

DATE Stores dates from 1 Jan 4712 B.C. to

31 Dec 4712 A.D.

BLOB A binary large object. Up to 4 Gigabytes

CLOB A character large object. Up to 4 Gigabytes

RAW(size) Raw binary data, such as a sequence of Up to 2000 bytes

graphics characters or a digitized picture.

creates a sequence, called appNoSeq, that starts with the initial value one and
increases by one each time. The CACHE 30 clause specifies that Oracle should
preallocate 30 sequence numbers and keep them in memory for faster access.

Once a sequence has been created, you can access its values in SQL state-
ments with the following pseudocolumns:

CURRVAL which returns the current value of the sequence;
NEXTVAL which increments the sequence and returns the new value.

For example, the SQL statement:

INSERT INTO Appointment(appNo, aDate, aTime, petNo)
VALUES (appNoSeq.NEXTVAL, SYSDATE, ’12.00’, ‘010090’);

inserts a new record into the Appointment table with the value for column appNo
(the appointment number) set to the next available number in the sequence.

Creating a blank table in Oracle 9i using SQL*Plus

To illustrate the process of creating a blank table in Oracle, we first use
SQL*Plus, which is an interactive, command-line-driven, SQL interface to the
Oracle database. Figure 18.2 shows the creation of the Pen table using the Oracle
SQL CREATE TABLE statement.

PerfectPets – Physical database design ■ 353

Figure 18.2

Creation of the Pen
table using the
Oracle SQL CREATE
TABLE statement.

Oracle allows named constraints to be enabled (the default setting) and dis-
abled. In certain situations, it may be desirable to disable constraints
temporarily for performance reasons, for example:

■ when loading large amounts of data into a table using SQL*Loader;

■ when performing batch operations that make a significant number of
changes to a table;

■ when importing or exporting one table at a time.

By default, Oracle enforces referential integrity on the named foreign keys.
Thus, it enforces the referential actions ON DELETE NO ACTION and ON
UPDATE NO ACTION. It also allows the additional clauses ON DELETE CAS-
CADE to be specified (to allow deletions from the parent table to cascade to the
child table) and ON DELETE SET NULL (to allow deletions from the parent table
to cause the corresponding foreign key value to be set to NULL). However, it
does not support the ON UPDATE CASCADE action nor the SET DEFAULT
action. If any of these actions are required, you will have to consider imple-
menting them as triggers or within the application code. We’ll consider this in
Step 3.3 shortly.

Creating a table using the Table Wizard

An alternative approach in Oracle 9i is to use the Table Wizard that is part of
the Enterprise Manager Console. Using a series of interactive forms, the Table
Wizard takes you through the process of defining each of the columns with its
associated data type, defining any constraints on the columns and/or con-
straints on the table that you may require, and defining the key fields. Figure
18.3 shows some of the pages from the Table Wizard when creating the
Treatment table.

Document design of base tables

The design of the base tables is fully documented along with the reasons for
selecting the proposed design. In particular, document the reasons for selecting
one approach where many alternatives exist.

Step 3.2 Design representation of derived data

The requirements given in Section 17.1.1 indicate only one derived item,
namely that the total cost of all treatments given to a pet should be recorded
on the invoice. The calculation to derive this information can be written using
the following SQL statement:

354 ■ Second worked example

Referential actions
discussed in Step
2.4 in Chapter 10

SELECT SUM(pt.quantity*t.cost)
FROM Invoice i, Examination e, PetTreatment pt, Treatment t
WHERE i.examNo = e.examNo AND e.examNo = pt.examNo AND

pt.treatNo = t.treatNo;

If access to the Invoice table is frequent, there may be performance benefits to
be gained by storing the total cost in the Invoice table. However, from the
expected frequency data (see Table 18.2 later in chapter), you’ll see that the
access to the Invoice table is not particularly frequent, and so you may decide in
this case just to calculate the total whenever it’s required.

PerfectPets – Physical database design ■ 355

Figure 18.3

Treatment table
created using the
Oracle Table
Wizard.

Step 3.3 Design remaining business rules

Updates to tables may be constrained by business rules. The design of such rules
is again dependent on the target DBMS; some systems provide more facilities
than others for defining business rules. In Chapter 12, we saw that if the system
is compliant with the 1999 SQL standard, some rules may be easy to imple-
ment. As we’ve seen above, Oracle 9i allows constraints to be defined as part of
the SQL CREATE TABLE statement using the CHECK and CONSTRAINT clauses,
and also allows additional constraints to be defined using before triggers and after
triggers. For more flexibility, Oracle 9i also allows procedures to be created and
invoked from SQL.

For example, from Figure 18.1 the foreign key clinicNo in the Pen table should
have the action ON UPDATE CASCADE. Unfortunately, as we’ve already noted,
the Oracle CREATE TABLE statement does not support this action. However,
this action can be implemented using the triggers shown in Figure 18.4.

Trigger 1 (Pen_Clinic_Check_Before)

The trigger in Figure 18.4(a) is fired whenever the clinicNo column in the Pen
table is updated. The trigger checks before the update takes place that the new
value specified exists in the Clinic table. If an Invalid_Clinic exception is raised,
the trigger issues an error message and prevents the change from occurring. The
following points should be noted:

■ The BEFORE keyword indicates that the trigger should be executed before the
update to the clinicNo column is applied to the Pen table.

■ The FOR EACH ROW keyword indicates that this is a row-level trigger, which
executes for each row of the Pen table that is updated in the transaction. The
alternative type of trigger is a statement-level trigger, which executes once
for each transaction. We’ll see examples of statement-level triggers shortly.

■ The WHEN clause specifies a condition that must be met for the trigger to fire.

■ The new keyword is used to refer to the new value of the column and the
old keyword is used to refer to the old value of the column.

Changes to support triggers on the Clinic table

The three triggers shown in Figure 18.4(b) are fired whenever the clinicNo
column in the Clinic table is updated. Before the definition of the triggers, a
sequence number updateSequence is created along with a public variable
updateSeq (which is accessible to the three triggers through the seqPackage
package). In addition, the Pen table is modified to add a column called updateId,
which is used to flag whether a record has been updated, to prevent it from
being updated more than once during the cascade operation.

356 ■ Second worked example

PerfectPets – Physical database design ■ 357

Figure 18.4

Oracle triggers to enforce ON UPDATE CASCADE on the foreign key clinicNo in the Pen table when the
primary key clinicNo is updated in the Clinic table: (a) trigger for the Pen table.

-- Before the clinicNo column is updated in the Pen table, fire this trigger
-- to verify that the new foreign key value is present in the Clinic table.
CREATE TRIGGER Pen_Clinic_Check_Before

BEFORE UPDATE OF clinicNo ON Pen
FOR EACH ROW WHEN (new.clinicNo IS NOT NULL)

DECLARE
dummy CHAR(5);
invalid_clinic EXCEPTION;
valid_clinic EXCEPTION;
mutating_table EXCEPTION;
PRAGMA EXCEPTION_INIT (mutating_table, -4091);

-- Use cursor to verify parent key value exists.
-- Use FOR UPDATE OF to lock parent key’s record so that it cannot be deleted
-- by another transaction until this transaction completes.
CURSOR update_cursor (sn CHAR(5)) IS

SELECT clinicNo FROM Clinic
WHERE clinicNo = sn
FOR UPDATE OF clinicNo;
BEGIN

OPEN update_cursor (:new.clinicNo);
FETCH update_cursor INTO dummy;

-- Verify parent key. Raise exceptions as appropriate.
IF update_cursor%NOTFOUND THEN

RAISE invalid_clinic;
ELSE

RAISE valid_clinic;
END IF;
CLOSE update_cursor;

EXCEPTION
 WHEN invalid_clinic THEN

CLOSE update_cursor;
raise_application_error(-20000, ‘Invalid Clinic Number ’ || :new.clinicNo);

 WHEN valid_clinic THEN
CLOSE update_cursor;

-- A mutating table is a table that is currently being modified by an INSERT, UPDATE,
-- or DELETE statement, or one that might need to be updated by the effects of a declarative
-- DELETE CASCADE referential integrity constraint.
-- This error would raise an exception, but in this case the exception is OK, so trap it,
-- but don’t do anything.

 WHEN mutating_table THEN
NULL;

END;
(a)

Before trigger

Condition for
trigger to fire

Row-level trigger

Invalid clinicNo
specified

358 ■ Second worked example

Figure 18.4 Continued

Oracle triggers to enforce ON UPDATE CASCADE on the foreign key clinicNo in the Pen table when the
primary key clinicNo is updated in the Clinic table: (b) triggers for the Clinic table.

-- Create a sequence number and a public variable UPDATESEQ.
CREATE SEQUENCE updateSequence INCREMENT BY 1 MAXVALUE 500 CYCLE;
CREATE PACKAGE SeqPackage AS

updateSeq NUMBER;
END SeqPackage;
CREATE or REPLACE PACKAGE BODY SeqPackage AS END SeqPackage;

-- Add a new column to the Pen table to flag changed records.
ALTER TABLE Pen ADD updateId NUMBER;

-- Before updating the Clinic table using this statement trigger, generate a new
-- sequence number and assign it to the public variable UPDATESEQ.
CREATE TRIGGER Cascade_ClinicNo_Update1
 BEFORE UPDATE OF clinicNo ON Clinic
 DECLARE

dummy NUMBER;
BEGIN

SELECT updateSequence.NEXTVAL
INTO dummy FROM dual;
SeqPackage.updateSeq := dummy;

END;

-- Create a row after-trigger that cascades the update to the Pen table.
-- Only cascade the update if the child row has not already been updated by the trigger.
CREATE TRIGGER Cascade_ClinicNo_Update2
 AFTER UPDATE OF clinicNo ON Clinic
 FOR EACH ROW
 BEGIN

UPDATE Pen SET clinicNo = :new.clinicNo, updateId = SeqPackage.updateSeq
WHERE Pen.clinicNo = :old.clinicNo AND updateId IS NULL;

 END;

-- Create a final statement after-trigger to reset the updateId flags
CREATE TRIGGER Cascade_ClinicNo_Update3
 AFTER UPDATE OF clinicNo ON Clinic
 BEGIN

UPDATE Pen SET updateId = NULL
WHERE updateId = SeqPackage.updateSeq;

 END;
(b)

Package to hold
sequence

Add extra column
to Pen table

Statement-level
before trigger

Set new
sequence

number for
update

Row-level after
trigger

Update Pen table and
set updated flag for

these records

Statement-level
after trigger; resets

flags for
updated records

Trigger 2 (Cascade_ClinicNo_Update1)

The (statement-level) trigger, Cascade_ClinicNo_Update1, fires before the
update to the column clinicNo in the Clinic table to set a new sequence number
for the update.

Trigger 3 (Cascade_ClinicNo_Update2)

The (row-level) trigger, Cascade_ClinicNo_Update2, fires to update all records in
the Pen table that have the old clinicNo value (:old.clinicNo) to the new value
(:new.clinicNo), and to flag the record as having been updated.

Trigger 4 (Cascade_ClinicNo_Update3)

The final (statement-level) trigger, Cascade_ClinicNo_Update3, fires after the
update to reset the flagged records back to unflagged.

Step 4.1 Analyze transactions
Having set up the base tables, integrity constraints, and business rules, the next
step is to analyze the transactions to help determine appropriate file organiza-
tions and indexes for each base table. Let’s assume that the transactions
identified in Section 17.1.2 are the most important transactions for PerfectPets.
To focus on areas that may be problematic, we suggested in Chapter 13 that one
way to proceed is to:

(1) Map all transaction paths to tables.

(2) Determine which tables are most frequently accessed by transactions.

(3) Analyze selected transactions that involve these tables.

The first step has already been carried out in Steps 1.8 and 2.3 (see Figure 17.9).
To carry out the second step, you need to estimate the frequency with which
tables will be accessed. If possible, you could add the frequency information to
the transaction path diagram. This sometimes makes the diagram very cluttered
and difficult to interpret, and you may prefer to keep the information separate.
In discussion with the staff of PerfectPets, the frequency information shown in
Figure 18.5 is obtained. All this information has to be analyzed to identify those
areas that may require special consideration.

PerfectPets – Physical database design ■ 359

Don’t worry too much about the details of how these triggers work. What is

important to note is the significant amount of programming effort required to

implement these actions. Put another way, think how much effort can be

saved if the DBMS provides this functionality instead!

360 ■ Second worked example

Fi
gu

re
 1

8.
5

Lo
gi

ca
l

d
at

a
m

od
el

 f
or

 P
er

fe
ct

Pe
ts

sh
ow

in
g

ex
p

ec
te

d
 o

cc
u

rr
en

ce
s.

C
li

n
ic

St
oc

k
(1

12
 5

00
)

C
li

n
ic

(5
0)

Is
C

on
ta

ct
ed

B
y

Pe
n

(1
00

0)

Pr
ov

id
es

Pe
tO

w
n

er
(5

0
00

0)

A
p

p
oi

n
tm

en
t

(3
00

 0
00

)

St
af

f
(5

00
)

C
on

ta
in

s

M
an

ag
es

H
as

1.
.1

1.
.*

1.
.1

0.
.1

1.
.*

1.
.1

1.
.1

1.
.*

1.
.1

1.
.1

20
..3

0

1.
.1

1.
.1

R
eg

is
te

rs

Pe
t

(1
00

 0
00

)

1.
.1

1.
.*

PA
tt

en
d

s

1.
.*

1.
.1

O
w

n
s

1.
.*

Pe
rf

or
m

s

Ex
am

in
at

io
n

(3
00

 0
00

)

U
n

d
er

go
es

1.
.1

1.
.*

0.
.*

In
vo

ic
e

(3
00

 0
00

)

1.
.*

1.
.1

Pa
ys

R
es

u
lt

sF
ro

m

1.
.1

1.
.1

R
es

u
lt

sI
n

Tr
ea

tm
en

t
(2

00
)

1.
.1

Pe
tT

re
at

m
en

t
(9

00
 0

00
)

1.
.*

U
se

d
In

1.
.*

It
em

(2
50

)
Ph

ar
m

ac
y

(2
00

)

{M
an

d
at

or
y,

 O
r}

St
oc

k

1.
.*

1.
.1

Su
p

p
li

es

U
se

d
B

y

1.
.*

Pe
tP

en
(1

00
 0

00
)

0.
.*

av
g

=
25

0
m

ax
 =

 3
50

av
g

=
10

m
ax

 =
 1

5

av
g

=
1

m
ax

 =
 1

av
g

=
22

50
m

ax
 =

 4
00

0

av
g

=
10

00
m

ax
 =

 1
50

0

av
g

=
20

00
m

ax
 =

 2
50

0

av
g

=
2

m
ax

 =
 5

av
g

=
6

m
ax

 =
 5

0

av
g

=
3

m
ax

 =
 2

5

av
g

=
20

m
ax

 =
 3

0

En
te

rs

av
g

=
60

0
m

ax
 =

 7
50

av
g

=
1

m
ax

 =
 1

0
av

g
=

3
m

ax
 =

 2
5

av
g

=
3

m
ax

 =
 2

5
av

g
=

45
00

m
ax

 =
 1

0
00

0

av
g

=
1

m
ax

 =
 1

1.
.1

1.
.1

av
g

=
10

0
m

ax
 =

 2
00

Step 4.2 Choose file organizations

The objective of this step is to choose an optimal file organization for each
table, if the target DBMS allows this. To undertake this step, you need to under-
stand how the target DBMS operates at both the logical and physical levels. In
this step, we examine how Oracle stores data. The discussion is fairly technical
but it should give you a feel for the type of knowledge you need to undertake
this step in practice.

Oracle’s logical database structure

At the logical level, Oracle maintains tablespaces, schemas, and data blocks and
extents/segments, as we now explain.

Tablespaces

An Oracle database is divided into logical storage units called tablespaces. A
tablespace is used to group related logical structures together. For example,
tablespaces commonly group all the application's objects to simplify some
administrative operations.

Every Oracle database contains a tablespace named SYSTEM, which is created
automatically when the database is created. The SYSTEM tablespace always con-
tains the system catalog tables for the entire database. A small database might
need only the SYSTEM tablespace; however, it’s recommended that you create
at least one additional tablespace to store user data separate from the system
catalog, to reduce contention among dictionary objects and schema objects for
the same datafiles (see Figure 16.1). Figure 18.6 illustrates an Oracle database
consisting of the SYSTEM tablespace and a USERS tablespace.

A new tablespace can be created using the CREATE TABLESPACE command;
for example:

CREATE TABLESPACE USERS
DATAFILE ‘DATA3.ORA’ SIZE 100K;

A table can then be associated with a specific tablespace using the CREATE
TABLE or ALTER TABLE statement; for example:

CREATE TABLE Pen (penNo CHAR(4) NOT NULL, ….)
TABLESPACE USERS;

If no tablespace is specified when creating a new table, the default tablespace
associated with the user when the user account was set up is used. We’ll see
how this can be specified in Step 6.

PerfectPets – Physical database design ■ 361

System catalog
defined in
Section 1.2.1

Users, schemas, and schema objects

A user (sometimes called a username) is a name defined in the database that can
connect to, and access, objects. A schema is a named collection of objects, such
as tables, views, clusters, and procedures, associated with a particular user.
Schemas and users help DBAs manage database security.

To access a database, a user must run a database application (such as an
Oracle form or SQL*Plus) and connect using a username defined in the data-
base. When a database user is created, a corresponding schema of the same
name is created for the user. By default, once a user connects to a database, the
user has access to all objects contained in the corresponding schema. As a user
is associated only with the schema of the same name, the terms user and
schema are often used interchangeably.

Data blocks, extents, and segments

The data block is the smallest unit of storage that Oracle can use or allocate. One
data block corresponds to a specific number of bytes of physical disk space. You
set the data block size for each Oracle database when you create the database.

362 ■ Second worked example

Figure 18.6

Relationship
between an Oracle
database,
tablespaces, and
datafiles.

DATA2.ORA
1 Mb

DATA1.ORA
1 Mb

SYSTEM tablespace

Oracle database

DATA3.ORA
100 Mb

USERS tablespace

Datafiles

cluster

index

index

table

table

Note, there is no relationship between a tablespace and a schema; objects in

the same schema can be in different tablespaces, and a tablespace can hold

objects from different schemas.

This data block size should be a multiple of the operating system’s block size
(within the system’s maximum operating limit) to avoid unnecessary I/O.

The next level of logical database space is called an extent. An extent is a spe-
cific number of contiguous data blocks allocated for storing a specific type of
information. The level above an extent is called a segment. A segment is a set of
extents allocated for a certain logical structure. For example, each table's data is
stored in its own data segment, while each index's data is stored in its own
index segment. Figure 18.7 shows the relationship between data blocks, extents,
and segments.

Oracle dynamically allocates space when the existing extents of a segment
become full. Because extents are allocated as needed, the extents of a segment
may or may not be contiguous on disk.

Oracle’s physical database structure

The main physical database structures in Oracle are datafiles, redo log files, and
control files.

Datafiles

Every Oracle database has one or more physical datafiles. The data of logical
database structures (such as tables and indexes) is physically stored in these
datafiles. One or more datafiles form a tablespace. The simplest Oracle database
would have one tablespace and one datafile. A more complex database might
have four tablespaces, each consisting of two datafiles, giving a total of eight
datafiles. The architecture for datafiles and tablespaces is shown in Figure 18.6.

PerfectPets – Physical database design ■ 363

Figure 18.7

Relationship between Oracle data blocks, extents, and segments.

2K

2K

2K

2K Ex
te

n
t

8K

2K data
block

8K extent
made up of 4
data blocks

2K

2K

2K

2K

2K

2K

2K

2K

2K

2K

2K

2K

Extent
24K

Segment
32K

32K segment
made up of an 8K
and 24K extent

Redo log files

Every Oracle database has a set of two or more redo log files, which record all
changes made to data for recovery purposes. Should a failure prevent modified
data from being permanently written to the datafiles, the changes can be
obtained from the redo log, thus preventing work from being lost.

Control files

Every Oracle database has a control file, which contains entries that specify the
physical structure of the database, such as:

■ the database name;

■ the names and locations of a database's datafiles and redo log files;

■ the time stamp of database creation.

PCTFREE and PCTUSED

The two space management parameters, PCTFREE and PCTUSED, may also have
a significant effect on performance. You specify these parameters when creating
or altering a table or cluster (which has its own data segment). You can also
specify the storage parameter PCTFREE when creating or altering an index
(which has its own index segment). The parameters are used as follows:

■ PCTFREE sets the minimum percentage of a data block to be reserved as free
space for possible updates to records that already exist in that block (default
value is 10);

■ PCTUSED sets the minimum percentage of a block that can be used for record
data plus any overhead required by Oracle before new records will be added to
the block (default value is 40). After a data block is filled to the limit deter-
mined by PCTFREE, Oracle considers the block unavailable for the insertion of
new records until the percentage of that block falls below the parameter
PCTUSED. Until this value is achieved, Oracle uses the free space of the data
block only for updates to records already contained in the data block.

A lower value for PCTFREE reserves less space for updates to existing records,
and allows inserts to fill the block more completely. This might save you space
but it increases processing costs because blocks frequently need to be reorga-
nized as their free space area becomes filled with new/updated records. A lower
value for PCTUSED increases the unused space in a database but reduces pro-
cessing costs during insert/update operations.

Clearly the sum of PCTFREE and PCTUSED can be no greater than 100. If the
sum is less than 100, the optimum setting to balance use of space and I/O is a
sum of the two parameters that differs from 100 by the percentage of space

364 ■ Second worked example

Recovery briefly
discussed in
Section 1.3

occupied by a record. For example, if the block size is 2048 bytes with a 100
byte overhead, and the record size is 390 bytes, which is 20 percent of the avail-
able block size, then a good value for the sum of PCTFREE and PCTUSED would
be 80 percent to make best use of space. On the other hand, if the sum equals
100, Oracle would attempt to keep no more than PCTFREE free space, which
would result in the highest processing costs. The combined use of PCTFREE and
PCTUSED is illustrated in Figure 18.8.

File organizations

Oracle 9i supports clustered and non-clustered tables. The choice of whether to
use a clustered or non-clustered table depends on the analysis of the transac-
tions undertaken previously, but the choice can have an impact on
performance. Before considering the appropriateness of clustering, it’s a good
idea to ignore small tables from further consideration, as small tables can usu-
ally be processed in memory. From Figure 18.5, we can see that the small tables
in the PerfectPets database are Clinic, Staff, Pen, Treatment, Item, and Pharmacy. We

PerfectPets – Physical database design ■ 365

Figure 18.8

Combined use of
PCTFREE and
PCTUSED with
PCTFREE = 20
percent and
PCTUSED = 40
percent.

Records are inserted
until the block is
80 percent full,
because PCTFREE
specifies that 20
percent of the block
must remain available
for updates to
existing records.

Updates to existing
records use the free
space reserved in
the block. No new
records can be
inserted into the
block until the
amount of used
space is less than
40 percent.

The above descriptions of the logical and physical database structures used by

Oracle are not intended to be detailed. Rather, they have been included to give

you a feel for the type of knowledge of the target DBMS you need to acquire to

allow you to successfully undertake some aspects of physical database design.

We have also included them to emphasize the differences between systems.

For example, having read this step, look back at Step 4.2 in Chapter 13, which

dealt with Microsoft Access. You’ll see in that step that there was really noth-

ing to do – the file organization in Microsoft Access 2002 is fixed. For PC

RDBMSs, this is not unusual. If you were to look now at another multi-user

RDBMS, such as Ingres or SQL Server, you’d find that the logical and physical

structures used by these systems are different again.

Clustered files
discussed in
Appendix D.7

therefore exclude these tables from further consideration. If we now consider
the remaining tables, we produce a summary of interactions between the base
tables for the query transactions listed in Section 17.1.2, as shown in Table
18.2. Based on the guidelines provided in Appendix D.7, we decide to create an
indexed cluster for the tables PetOwner and Pet based on the join column
ownerNo.

Step 4.3 Choose indexes

Oracle automatically adds an index for each primary key. In addition, Oracle
recommends that you do not explicitly define unique indexes on tables but
instead define UNIQUE integrity constraints on the desired columns. Oracle
enforces UNIQUE integrity constraints by automatically defining a unique
index on the unique key. Exceptions to this recommendation are usually per-
formance related. For example, using a CREATE TABLE … AS SELECT with a
UNIQUE constraint is slower than creating the table without the constraint and
then manually creating a UNIQUE index.

Let’s assume that the tables will be created with the identified primary, alter-
nate, and foreign keys specified. What you have to do now is identify whether
any additional indexes are required. In Chapter 13, we suggested creating a
‘wish-list’ and then considering each potential index in the wish-list to deter-

366 ■ Second worked example

Table 18.2 Interactions between tables and query transactions.

Table Transaction Access Frequency (per day)

Appointment 2(l) join: Pet on petNo 250

search condition: aDate

Examination 2(c), 2(d) join: Pet on petNo 100

2(d) join: Staff on staffNo

Invoice 2(e), 2(f) join: PetOwner on ownerNo 10

search condition: datePaid IS NULL

2(n) join: PetOwner on ownerNo 1 per month

search condition: invoiceDate

ItemClinicStock 2(q) search condition: inStock < reorderLevel 50 per month

Pet 2(b) join: PetOwner on ownerNo 1 per month

2(j) group: petType 1

order by: petType

aggregate: count on petType

2(l) join: Clinic on clinicNo 250

2(o) join: PetOwner on ownerNo 1500

PharmClinicStock 2(p) search condition: inStock < reorderLevel 50 per month

Indexes
discussed in
Appendix D.5

mine whether the increase in query performance outweighs the performance
degradation when updates occur. Before creating the wish-list, we again ignore
the small tables (Clinic, Staff, Pen, Treatment, Item, and Pharmacy) from further con-
sideration, as small tables can usually be processed in memory without
requiring additional indexes. We now consider the remaining tables and their
interactions, as shown in Table 18.2. We conclude that there may be perfor-
mance benefits in adding the indexes shown in Table 18.3.

Step 5 Design user views

Oracle 9i supports the SQL CREATE VIEW statement, so each user view can be
easily created. In addition, using the Oracle Forms Builder, you can create forms
based on one or more tables or based on a view. For example, you may decide
to create a view for clinic manager details. Figure 18.9(a) illustrates the creation
of a view called ClinicManagers using the Enterprise Manager Console, and Figure
18.9(b) shows a form built from this view.

Step 6 Design security measures

As part of the database analysis phase, you need to determine the types of users
who’ll be working with the system and the levels of access that they must be
given to accomplish their designated tasks. As we mentioned in Step 6 in Chapter
14, database security usually involves both system security and data security. One
form of system security used by Oracle is the standard username and password

PerfectPets – Physical database design ■ 367

Table 18.3 Additional indexes for the PerfectPets database.

Table Index

Pet clinicNo

Appointment aDate

petNo

Invoice ownerNo

invoiceDate

Note that the search condition used by transaction 2(e) (datePaid IS NULL)

would suggest creating an index on the datePaid column. However, Oracle does

not use an index when the search condition involves an IS NULL/IS NOT NULL
condition. Further, because transaction 2(j) only runs once a day and there are

not many pet types, an index on petType in the Pet table is unwarranted.

mechanism, whereby a user has to provide a valid username and password before
access can be gained to the database, although the responsibility to authenticate
users can be devolved to the operating system. Figure 18.10 illustrates the cre-
ation of a new user called ADAMS with password authentication set. Whenever
user ADAMS tries to connect to the database, this user will be presented with a
Connect or Log On dialog box similar to the one illustrated in Figure 18.11,
prompting for a username and password to access the specified database.

Privileges

A privilege is a right to execute a particular type of SQL statement or to access
another user’s objects. Some examples of privileges include the right to:

■ connect to the database (create a session);

■ create a table;

■ select rows from another user’s table.

368 ■ Second worked example

Figure 18.9

Creating and using a user view: (a) creation of a view using the Oracle Enterprise Manager Console;
(b) form built from this view.

(a) (b)

You grant privileges to users so these users can accomplish the tasks required for
their jobs. As excessive granting of unnecessary privileges can compromise secu-
rity, you should grant a privilege only to a user who absolutely requires the
privilege to accomplish his or her work. In Oracle, there are two distinct cate-
gories of privileges:

(a) system privileges

(b) object privileges.

PerfectPets – Physical database design ■ 369

Figure 18.10

Creation of a new
user called ADAMS,
with password
authentication set.

Password
authentication

chosen

Name of new user

Tablespace
to be used as

default

Figure 18.11

Connect dialog box
requesting user-
name, password,
and database to
connect to.

System privileges

A system privilege is the right to perform a particular action or to perform an
action on any schema objects of a particular type. For example, the privileges to
create tablespaces and to create users in a database are system privileges. There
are over 80 distinct system privileges. System privileges are granted to, or
revoked from, users and roles using either of the following:

■ Grant System Privileges/Roles dialog box and Revoke System Privileges/Roles
dialog box of the Oracle Security Manager;

■ SQL GRANT and REVOKE statements.

However, only users who have been granted a specific system privilege with the
ADMIN OPTION or users with the GRANT ANY PRIVILEGE system privilege can
grant or revoke system privileges.

Object privileges

An object privilege is a privilege or right to perform a particular action on a spe-
cific table, view, sequence, procedure, function, or package. Different object
privileges are available for different types of objects. For example, the privilege
to delete rows from the table Pen is an object privilege.

Some schema objects (such as clusters, indexes, and triggers) do not have
associated object privileges; their use is controlled with system privileges. For
example, to alter a cluster, a user must own the cluster or have the ALTER ANY
CLUSTER system privilege.

A user automatically has all object privileges for schema objects contained in
his or her schema. A user can grant any object privilege on any schema object
he or she owns to any other user or role. If the grant includes the WITH GRANT
OPTION (of the GRANT statement), the grantee can further grant the object
privilege to other users; otherwise, the grantee can use the privilege but cannot
grant it to other users.

The object privileges for tables and views are shown in Table 18.4.

Roles

A user can receive a privilege in two different ways:

■ You can grant privileges to users explicitly. For example, you can explicitly
grant the privilege to insert records into the Clinic table to the user ADAMS
using the following SQL statement:

GRANT INSERT ON Clinic TO ADAMS;

370 ■ Second worked example

Roles discussed
shortly

GRANT and
REVOKE covered
in Chapter 14

■ You can also grant privileges to a role (a named group of privileges), and then
grant the role to one or more users. For example, you can grant the privileges
to select, insert, update, and delete records from the Clinic table to the role
named DEPUTYMANAGER, which in turn you can grant to the users ADAMS
and GLENN. A user can have access to several roles, and several users can be
assigned the same roles. Figure 18.12 illustrates the granting of these privi-
leges to the role DEPUTYMANAGER using the Oracle Security Manager.

PerfectPets – Physical database design ■ 371

Table 18.4 What each object privilege allows a grantee to do with tables and
views.

Object/
Privilege Table View

ALTER Change the table definition with N/A

the ALTER TABLE statement.

DELETE Remove rows from the table with the Remove rows from the view

DELETE statement. Note: you must with the DELETE statement.

grant the SELECT privilege on the

table along with the DELETE privilege.

INDEX Create an index on the table with the N/A

CREATE INDEX statement.

INSERT Add new rows to the table with the Add new rows to the view with

INSERT statement. the INSERT statement.

REFERENCES Create a constraint that refers to the N/A

table. You cannot grant this privilege

to a role.

SELECT Query the table with the SELECT Query the view with the

statement. SELECT statement.

UPDATE Change data in the table with the Change data in the view with

UPDATE statement. Note: you must the UPDATE statement.

grant the SELECT privilege on the

table along with the UPDATE privilege.

Because roles allow for easier and better management of privileges,

you should normally grant privileges to roles and not to specific users.

TIP

Step 7 Consider the introduction of controlled redundancy

In Step 1.7, the relationship Clinic Schedules Appointment was considered to be
redundant. However, this causes a potential performance problem. For exam-
ple, the Pet table has to be accessed just to determine an available time for an
appointment at a clinic. In this case, it may be preferable to reinstate the
Schedules relationship and add the primary key of the Clinic table (clinicNo) to the
Appointment table to act as a foreign key.

Consider implications of denormalization

Owing to the addition of the column clinicNo to the Appointment table, it would
probably be worthwhile considering the creation of an index on this column to
improve the performance of transaction 2(l).

Implementation

You’re now in a position to start implementing the base tables, file organiza-
tions, indexes, views, and security mechanisms, and thereafter, to start

372 ■ Second worked example

Figure 18.12

Setting the Delete,
Insert, Select, and
Update privileges
on the Clinic table to
the role
DEPUTYMANAGER.

Name of
table

Privileges
selected

Available
privileges
for this

type of object

populating the database. However, as discussed in Chapter 16, this is not the
end of database design – the ongoing monitoring and tuning of the operational
system is a vital activity to achieve continued success for the system. In addi-
tion, it’s highly likely that once the system goes live, changes will be required as
a result of user feedback and changing requirements. In some cases, the changes
will be cosmetic, requiring alterations to the user interface, with no impact on
the database itself. In others, however, there will be a need to modify the struc-
ture of the database, and in these cases, you will have to go through some of
the steps in both the logical and physical design methodology again to ensure
that the changes are designed and implemented correctly.

PerfectPets – Physical database design ■ 373

Part 6

Current and
emerging trends

19 Current and emerging trends 377

To complete this book, we devote this chapter to examining current and emerg-
ing trends in database systems. Many of the topics we consider are significant
areas in their own right and we can only provide a brief introduction here. For
further information the interested reader is referred to Connolly and Begg
(2002). In this chapter we consider:

■ advanced database applications;

■ weaknesses of the current relational DBMSs;

■ distributed DBMSs and replication servers;

■ object-oriented DBMSs and object-relational DBMSs;

Chapter 19

Current and
emerging trends

In this chapter you will learn:

The requirements for advanced database applications.

Why relational DBMSs are currently not well suited to supporting
advanced database applications.

The main concepts of Distributed DBMSs (DDBMSs).

The main concepts associated with database replication.

The main concepts of Object-oriented DBMSs (OODBMSs) and
Object-relational DBMSs (ORDBMSs).

The main concepts of data warehousing.

The main concepts of OnLine Analytical Processing (OLAP) and data mining.

Approaches for integrating databases into the Web environment.

■ data warehousing;

■ OLAP and data mining;

■ Web–database integration and XML.

19.1 Advanced database applications
The past decade has seen significant changes in the computer industry. In data-
base systems, we have seen the widespread acceptance of Relational DBMSs
(RDBMSs) for traditional business applications, such as order processing, inven-
tory control, banking, and airline reservations. However, existing RDBMSs have
proven inadequate for applications with needs that are quite different from
those of traditional business database applications. These applications include:

■ computer-aided design;

■ computer-aided manufacturing;

■ office information systems and multimedia systems;

■ geographic information systems;

■ interactive and dynamic Web sites.

Computer-aided Design (CAD)

A CAD database stores data relating to mechanical and electrical design cover-
ing, for example, buildings, aircraft, and integrated circuit chips. Designs of this
type have some common characteristics:

■ Design data is characterized by a large number of types, each with a small
number of instances. Conventional databases are typically the opposite. For
example, the StayHome database consists of only a dozen or so tables,
although tables such as VideoForRent, Member, and RentalAgreement may contain
thousands of records.

■ Designs may be very large, perhaps consisting of millions of parts, often with
many interdependent subsystem designs.

■ The design is not static but evolves through time. When a design change
occurs, its implications must be propagated through all design representa-
tions. The dynamic nature of design may mean that some actions cannot be
foreseen at the beginning.

■ Updates are far-reaching because of topological or functional relationships, toler-
ances, and so on. One change is likely to affect a large number of design objects.

■ Often, many design alternatives are being considered for each component,
and the correct version for each part must be maintained. This involves some
form of version control and configuration management.

378 ■ Current and emerging trends

■ There may be hundreds of staff involved with the design, and they may
work in parallel on multiple versions of a large design. Even so, the end
product must be consistent and coordinated. This is sometimes referred to
as cooperative engineering.

Computer-aided Manufacturing (CAM)

A CAM database stores similar data to a CAD system, in addition to data relat-
ing to discrete production (such as cars on an assembly line) and continuous
production (such as chemical synthesis). For example, in chemical manufactur-
ing, there are applications that monitor information about the state of the
system, such as reactor vessel temperatures, flow rates, and yields. There are also
applications that control various physical processes, such as opening valves,
applying more heat to reactor vessels, and increasing the flow of cooling sys-
tems. These applications must respond in real time and be capable of adjusting
processes to maintain optimum performance within tight tolerances. In this
example, the system has to maintain large volumes of data that is hierarchical
in nature and maintain complex relationships between the data. It must also be
able to rapidly navigate the data to review and respond to changes.

Office Information Systems (OIS) and multimedia systems

An OIS database stores data relating to the computer control of information in a
business, including e-mail, documents, invoices, and so on. To provide better
support for this area, we need to handle a wider range of data types other than
names, addresses, dates, and currency. Modern systems now handle free-form
text, photographs, diagrams, audio, and video sequences. For example, a multi-
media document may handle text, photographs, animation, spreadsheets, and
voice commentary. The documents may have a specific structure imposed on
them, perhaps described using a mark-up language such as SGML (Standardized
Generalized Markup Language), HTML (HyperText Markup Language), or XML
(eXtensible Markup Language), as we’ll discuss in Section 19.8.

Documents may be shared among many users using systems such as e-mail
and bulletin boards based on Internet technology.* Again, such applications
need to store data that has a much richer structure than records consisting of
numbers and text strings. There is also an increasing need to capture handwrit-
ten notes using electronic devices. Although many notes can be transcribed into
ASCII text using handwriting analysis techniques, most such data cannot. In
addition to words, handwritten data can include sketches, diagrams, and so on.

Current and emerging trends ■ 379

* A criticism of database systems, as noted by a number of observers, is that the largest ‘data-
base’ in the world – the World Wide Web – has developed with little or no use of database
technology. We will discuss the integration of the Web and DBMSs in Section 19.8.

Geographic Information Systems (GIS)

A GIS database stores various types of spatial and temporal information, such as
that used in land management and underwater exploration. Much of the data
in these systems is derived from survey and satellite photographs, and tends to
be very large. Searches may involve identifying features based, for example, on
shape, color, or texture, using advanced pattern-recognition techniques.

For example, EOS (Earth Observing System) is a collection of satellites
launched by NASA in the last decade to gather information that will support
scientists concerned with long-term trends regarding the earth’s atmosphere,
oceans, and land. It’s anticipated that these satellites will return over one-third
of a petabyte (1015 bytes) of data per year. This data will be integrated with
other data sources and will be stored in EOSDIS (EOS Data and Information
System). EOSDIS will supply the information needs of both scientists and non-
scientists. For example, schoolchildren will be able to access EOSDIS to see a
simulation of world weather patterns. The immense size of this database and
the need to support thousands of users with very heavy volumes of information
requests will provide many challenges for DBMSs.

Interactive and dynamic Web sites

Consider a Web site that has an online catalog for selling clothes. The Web site
maintains a set of preferences for previous visitors to the site and allows a visi-
tor to:

■ browse through thumbnails of the items in the catalog and select one to
obtain a full-size image with supporting details;

■ search for items that match a user-defined set of criteria;

■ obtain a 3D rendering of any item of clothing based on a customized specifi-
cation (for example, color, size, fabric);

■ select a voiceover commentary giving additional details of the item;

■ view a running total of the bill, with appropriate discounts;

■ conclude the purchase through a secure online transaction.

The requirements for this type of application are not that different from some of
the above advanced applications: there is a need to handle multimedia content
(text, audio, image, video data, and animation) and to interactively modify the
display based on user preferences and user selections. As well as handling com-
plex data, the site also has the added complexity of providing 3D rendering.

As we’ll discuss in Section 19.8, the Web now provides a relatively new para-
digm for data management, and languages such as XML hold significant
promise particularly for the e-commerce market. The Forrester Research Group
is predicting that business-to-business transactions will reach $2.1 trillion in

380 ■ Current and emerging trends

Europe and $7 trillion in the US by 2006. Overall, e-commerce is expected to
account for $12.8 trillion in worldwide corporate revenue by 2006 and poten-
tially represent 18 percent of sales in the global economy. As the use of the
Internet increases and the technology becomes more sophisticated, then we’ll
see Web sites and business-to-business transactions handle much more complex
and interrelated data.

19.2 Weaknesses of Relational DBMSs (RDBMSs)
In Chapter 2, we mentioned that the relational model has a strong theoretical
foundation, based on first-order predicate logic. This theory supported the develop-
ment of SQL, a declarative language that has now become the standard language
for defining and manipulating relational databases. Other strengths of the rela-
tional model are its simplicity, its suitability for OnLine Transaction Processing
(OLTP), and its support for data independence. However, the relational data model,
and RDBMSs in particular, are not without their disadvantages. In this section, we
briefly discuss some of the more often-cited disadvantages.

Poor representation of ‘real world’ entities

Normalization generally leads to the creation of tables that do not correspond
to entities in the ‘real world’. The fragmentation of a ‘real world’ entity into
many tables, with a physical representation that reflects this structure, is ineffi-
cient, leading to many joins during query processing.

Semantic overloading

The relational model has only one construct for representing data and relation-
ships between data, namely the table. For example, to represent a
many-to-many (*:*) relationship between two entities A and B, we create three
tables, one to represent each of the entities A and B, and one to represent the
relationship. There is no mechanism to distinguish between entities and rela-
tionships, or to distinguish between different kinds of relationship that exist
between entities. For example, a 1:* relationship might be Has, Supervises,
Manages, and so on. If such distinctions could be made, then it might be poss-
ible to build the semantics into the operations. It is said that the relational
model is semantically overloaded.

Poor support for business rules

In Section 2.3, we introduced the concepts of entity and referential integrity, and
in Section 2.2.1 we introduced domains, which are also types of business rules.
Unfortunately, many commercial systems do not fully support these rules, and it’s

Current and emerging trends ■ 381

necessary to build them into the applications. This, of course, is dangerous and
can lead to duplication of effort and, worse still, inconsistencies. Furthermore,
there is no support for other types of business rules in the relational model,
which again means they have to be built into the DBMS or the application.

Limited operations

The relational model has only a fixed set of operations, such as set and record-
oriented operations, operations that are provided in the SQL specification.
However, SQL currently does not allow new operations to be specified. Again,
this is too restrictive to model the behavior of many ‘real world’ objects. For
example, a GIS application typically uses points, lines, line groups, and poly-
gons, and needs operations for distance, intersection, and containment.

Difficulty handling recursive queries

Atomicity of data means that repeating groups are not allowed in the relational
model. As a result, it’s extremely difficult to handle recursive queries: that is,
queries about relationships that a table has with itself (directly or indirectly). To
overcome this problem, SQL can be embedded in a high-level programming
language, which provides constructs to facilitate iteration. Additionally, many
RDBMSs provide a report writer with similar constructs. In either case, it is the
application rather than the inherent capabilities of the system that provides the
required functionality.

Impedance mismatch

In Section 3.1.1, we noted that until the most recent version of the standard, SQL
lacked computational completeness. To overcome this problem and to provide addi-
tional flexibility, the SQL standard provides embedded SQL to help develop more
complex database applications. However, this approach produces an impedance
mismatch because we are mixing different programming paradigms:

(1) SQL is a declarative language that handles rows of data, whereas a high-
level language such as C is a procedural language that can handle only one
row of data at a time.

(2) SQL and 3GLs use different models to represent data. For example, SQL pro-
vides the built-in data types Date and Interval, which are not available in
traditional programming languages. Thus, it’s necessary for the application
program to convert between the two representations, which is inefficient,
both in programming effort and in the use of runtime resources.
Furthermore, since we are using two different type systems, it’s not possible
to automatically type-check the application as a whole.

382 ■ Current and emerging trends

The latest release of the SQL standard, SQL3, addresses some of the above defi-
ciencies with the introduction of many new features, such as the ability to
define new data types and operations as part of the data definition language, and
the addition of new constructs to make the language computationally complete.

19.3 Distributed DBMSs and replication servers
A major motivation behind the development of database systems is the desire to
integrate the operational data of an organization and to provide controlled access
to the data. Although we may think that integration and controlled access imply
centralization, this is not the intention. In fact, the development of computer net-
works promotes a decentralized mode of work. This decentralized approach mirrors
the organizational structure of many companies, which are logically distributed
into divisions, departments, projects, and so on, and physically distributed into
offices, plants, factories, where each unit maintains its own operational data. The
development of a distributed DBMS that reflects this organizational structure,
makes the data in all units accessible, and stores data proximate to the location
where it’s most frequently used should improve our ability to share the data and
should improve the efficiency with which we can access the data.

A Distributed Database Management System (DDBMS) consists of a single
logical database that is split into a number of fragments. Each fragment is
stored on one or more computers (replicas) under the control of a separate
DBMS, with the computers connected by a communications network. Each site
is capable of independently processing user requests that require access to local
data (that is, each site has some degree of local autonomy) and is also capable
of processing data stored on other computers in the network.

Users access the distributed database via applications. Applications are classi-
fied as those that do not require data from other sites (local applications) and
those that do require data from other sites (global applications). We require a
DDBMS to have at least one global application. A DDBMS therefore has the fol-
lowing characteristics:

Current and emerging trends ■ 383

Distributed database

A logically interrelated collection of shared data (and a description of this data), physi-

cally distributed over a computer network.

Distributed DBMS

The software system that permits the management of the distributed database and

makes the distribution transparent to users.

■ a collection of logically related shared data;

■ the data is split into a number of fragments (fragments can be horizontal or
vertical, similar to the horizontal and vertical partitions that we discussed in
Chapter 15);

■ fragments may be replicated;

■ fragments/replicas are allocated to sites;

■ the sites are linked by a communications network;

■ the data at each site is under the control of a DBMS;

■ the DBMS at each site can handle local applications, autonomously;

■ each DBMS participates in at least one global application.

It’s not necessary for every site in the system to have its own local database, as
illustrated by the topology of the DDBMS shown in Figure 19.1.

From the definition of the DDBMS, the system is expected to make the dis-
tribution transparent (invisible) to the user. Thus, the fact that a distributed
database is split into fragments that can be stored on different computers, and
perhaps replicated, should be hidden from the user. The objective of
transparency is to make the distributed system appear like a centralized
system. This is sometimes referred to as the fundamental principle of distributed
DBMSs. This requirement provides significant functionality for the end-user
but, unfortunately, creates many additional problems that have to be handled
by the DDBMS.

384 ■ Current and emerging trends

Figure 19.1

Distributed database
management
system.

DB

DB

Site 4

Computer
network

Site 2

Site 1

Site 3

DB

Distributed processing

It’s important to make a distinction between a distributed DBMS and distrib-
uted processing:

The key point with the definition of a DDBMS is that the system consists of
data that is physically distributed across a number of sites in the network. If the
data is centralized, even though other users may be accessing the data over the
network, we do not consider this to be a DDBMS, simply distributed processing.
We illustrate the topology of distributed processing in Figure 19.2. Compare
this figure, which has a central database at site 2, with Figure 19.1, which shows
several sites each with their own database.

19.3.1 Advantages and disadvantages of DDBMSs

The distribution of data and applications has potential advantages over tradi-
tional centralized database systems. Unfortunately, there are also disadvantages.
In this section, we briefly review the advantages and disadvantages of DDBMSs.

Current and emerging trends ■ 385

Distributed processing

A centralized database that can be accessed over a computer network.

Figure 19.2

Distributed
processing.

DB

Site 4

Computer
network

Site 2

Site 1

Site 3

Advantages

Reflects organizational structure Many organizations are naturally distributed
over several locations. It’s natural for databases used in such an application to
be distributed over these locations.

Improved shareability and local autonomy The geographical distribution of an
organization can be reflected in the distribution of the data; users at one site
can access data stored at other sites. Data can be placed at the site close to the
users who normally use that data. In this way, users have local control of the
data, and they can consequently establish and enforce local policies regarding
the use of this data.

Improved availability In a centralized DBMS, a computer failure terminates the
operations of the DBMS. However, a failure at one site of a DDBMS, or a failure
of a communication link making some sites inaccessible, does not make the
entire system inoperable.

Improved reliability As data may be replicated so that it exists at more than one
site, the failure of a node or a communication link does not necessarily make
the data inaccessible.

Improved performance As the data is located near the site of ‘greatest demand’,
and given the inherent parallelism of DDBMSs, it may be easier to improve the
speed of database accesses than if we had a remote centralized database.
Furthermore, since each site handles only a part of the entire database, there
may not be the same contention for CPU and I/O services as characterized by a
centralized DBMS.

Economics It’s generally accepted that it costs much less to create a system of
smaller computers with the equivalent power of a single large computer. This
makes it more cost-effective for corporate divisions and departments to obtain
separate computers. It’s also much more cost-effective to add workstations to a
network than to update a mainframe system.

Modular growth In a distributed environment, it’s much easier to handle expan-
sion. New sites can be added to the network without affecting the operations of
other sites. This flexibility allows an organization to expand relatively easily.

Disadvantages

Complexity A DDBMS that hides the distributed nature from the user and pro-
vides an acceptable level of performance, reliability, and availability is
inherently more complex than a centralized DBMS. Replication also adds an
extra level of complexity which, if not handled adequately, will lead to degrada-
tion in availability, reliability, and performance compared with the centralized
system, and the advantages we cited above will become disadvantages.

386 ■ Current and emerging trends

Cost Increased complexity means that we can expect the procurement and
maintenance costs for a DDBMS to be higher than those for a centralized
DBMS. Furthermore, a DDBMS requires additional hardware to establish a net-
work between sites. There are ongoing communication costs incurred with the
use of this network. There are also additional staff costs to manage and main-
tain the local DBMSs and the underlying network.

Security In a centralized system, access to the data can be easily controlled.
However, in a DDBMS not only does access to replicated data have to be con-
trolled in multiple locations, but the network itself has to be made secure. In
the past, networks were regarded as an insecure communication medium.
Although this is still partially true, significant developments have been made
recently to make networks more secure.

Integrity control more difficult Enforcing integrity constraints generally requires
access to a large amount of data that defines the constraint, but is not involved in
the actual update operation itself. In a DDBMS, the communication and process-
ing costs that are required to enforce integrity constraints may be prohibitive.

Lack of standards Although DDBMSs depend on effective communication, we
are only now starting to see the appearance of standard communication and
data access protocols. This lack of standards has significantly limited the poten-
tial of DDBMSs. There are also no tools or methodologies to help users convert
a centralized DBMS into a distributed DBMS.

Lack of experience General-purpose DDBMSs have not been widely accepted,
although many of the protocols and problems are well understood.
Consequently, we do not yet have the same level of experience in industry as
we have with centralized DBMSs. For a prospective adopter of this technology,
this may be a significant deterrent.

Database design more complex Besides the normal difficulties of designing a central-
ized database, the design of a distributed database has to take account of
fragmentation of data, allocation of fragments to specific sites, and data replication.

As we mentioned earlier, to date, general-purpose DDBMSs have not been
widely accepted, although many of the protocols and problems are well under-
stood. Instead, data replication, the copying and maintenance of data on
multiple servers, appears to be a more preferred solution. Every major database
vendor has a replication solution of one kind or another, and many non-data-
base vendors also offer alternative methods for replicating data. The replication
server is an alternative, and potentially a more simplified approach to data dis-
tribution, as we now discuss.

Current and emerging trends ■ 387

19.3.2 Replication servers

Replication is an important mechanism because it enables organizations to pro-
vide users with access to current data where and when they need it. Replication
provides a number of benefits, including improved performance when central-
ized resources get overloaded, increased reliability and data availability, and
support for mobile computing and data warehousing. In this section, we discuss
several background concepts relating to data replication, including expected
functionality and data ownership. We start with a discussion of when replicated
data is updated.

Synchronous versus asynchronous replication

Typically protocols for updating replicated data in a DDBMS work on the basis
that the replicated data is updated immediately when the source data is
updated (that is, as part of the enclosing transaction). This type of replication is
called synchronous replication. While this mechanism may be appropriate for
environments that, by necessity, must keep all replicas fully synchronized (such
as financial transactions), it does have several disadvantages. For example, the
transaction will be unable to fully complete if one or more of the sites that hold
replicas are unavailable. Further, the number of messages required to coordinate
the synchronization of data places a significant burden on corporate networks.

Many commercial DBMSs provide an alternative mechanism to synchronous
replication, called asynchronous replication. With this mechanism, the target data-
base is updated after the source database has been modified. The delay in
regaining consistency may range from a few seconds to several hours or even
days. However, the data eventually synchronizes to the same value at all repli-
cated sites. Although this violates the principle of distributed data independence,
it appears to be a practical compromise between data integrity and availability
that may be more appropriate for organizations that are able to work with repli-
cas that do not necessarily have to be synchronized and current.

Functionality

At its basic level, we expect a distributed data replication service to be capable
of copying data from one database to another, synchronously or asynchro-
nously. However, there are many other functions that need to be provided,
such as:

388 ■ Current and emerging trends

Replication

The process of generating and reproducing multiple copies of data at one or more sites.

■ Specification of replication schema The system should provide a mechanism to
allow a privileged user to specify the data and objects to be replicated.

■ Subscription mechanism The system should provide a mechanism to allow a
privileged user to subscribe to the data and objects available for replication.

■ Initialization mechanism The system should provide a mechanism to allow
for the initialization of a target replica.

■ Scalability The service should be able to handle the replication of both small
and large volumes of data.

■ Mapping and transformation The service should be able to handle replication
across different DBMSs and platforms. This may involve mapping and trans-
forming the data from one data model into a different data model, or the
data in one data type to a corresponding data type in another DBMS.

■ Object replication It should be possible to replicate objects other than data.
For example, some systems allow indexes and stored procedures (or triggers)
to be replicated.

■ Easy administration It should be easy for the DBA to administer the system
and to check the status and monitor the performance of the replication
system components.

Data ownership

Ownership relates to which site has the privilege to update the data. The main
types of ownership are master/slave, workflow, and update-anywhere (some-
times referred to as peer-to-peer or symmetric replication).

Master/slave ownership

With master/slave ownership, asynchronously replicated data is owned by one
site, the master or primary site, and can be updated only by that site. Using a
‘publish-and-subscribe’ metaphor, the master site (the publisher) makes data
available. Other sites ‘subscribe’ to the data owned by the master site, which
means that they receive read-only copies on their local systems. Potentially,
each site can be the master site for non-overlapping data sets. However, there
can only ever be one site that can update the master copy of a particular data
set, and so update conflicts cannot occur between sites.

A master site may own the data in an entire table, in which case other sites
subscribe to read-only copies of that table. Alternatively, multiple sites may own
distinct fragments of the table, and other sites then subscribe to read-only copies
of the fragments. This type of replication is also known as asymmetric replication.

Current and emerging trends ■ 389

Workflow ownership

Like master/slave ownership, this model avoids update conflicts while at the
same time providing a more dynamic ownership model. Workflow ownership
allows the right to update replicated data to move from site to site. However, at
any one moment, there is only ever one site that may update that particular data
set. A typical example of workflow ownership is an order processing system,
where the processing of orders follows a series of steps, such as order entry, credit
approval, invoicing, shipping, and so on. In a centralized DBMS, applications of
this nature access and update the data in one integrated database: each applica-
tion updates the order data in sequence when, and only when, the state of the
order indicates that the previous step has been completed.

Update-anywhere (symmetric replication) ownership

The two previous models share a common property: at any given moment, only
one site may update the data; all other sites have read-only access to the repli-
cas. In some environments, this is too restrictive. The update-anywhere model
creates a peer-to-peer environment where multiple sites have equal rights to
update replicated data. This allows local sites to function autonomously, even
when other sites are not available.

Shared ownership can lead to conflict scenarios and the replication architec-
ture has to be able to employ a methodology for conflict detection and
resolution. A simple mechanism to detect conflict within a single table is for
the source site to send both the old and new values (before- and after-images) for
any records that have been updated since the last refresh. At the target site, the
replication server can check each record in the target database that has also
been updated against these values. However, consideration has to be given to
detecting other types of conflict such as violation of referential integrity
between two tables. There have been many mechanisms proposed for conflict
resolution, but some of the most common are: earliest/latest timestamps, site
priority, and holding for manual resolution.

19.4 Object-oriented DBMSs and object-relational
DBMSs

In Section 19.2, we reviewed the weaknesses of the relational model against the
requirements for the types of advanced database applications that are emerging.
In this section, we briefly introduce two competing approaches that attempt to
overcome these perceived weaknesses. Both are based on the concepts of object-
orientation, which solve some of the classic problems of software development.

390 ■ Current and emerging trends

19.4.1 Object-oriented DBMSs (OODBMSs)

One approach to integrating object-oriented concepts with database systems is
the Object-oriented Database Management System (OODBMS). The
OODBMS started initially in the engineering and design domains, and has also
become the favored system for financial and telecommunications applications.
There are many different definitions that have been proposed for an object-ori-
ented data model. For example, Kim (1991) defines an Object-oriented Data
Model (OODM), Object-oriented Database (OODB), and Object-oriented DBMS
(OODBMS) as:

These definitions are very non-descriptive and tend to reflect the fact that
there is no one object-oriented data model equivalent to the underlying data
model of relational systems. Each system provides its own interpretation of base
functionality. Based on some of the current commercial OODBMSs, we can see
that the concepts of object-oriented data models are drawn from different areas,
as shown in Figure 19.3.

Current and emerging trends ■ 391

OODM

A (logical) data model that captures the semantics of objects supported in object-ori-

ented programming.

OODB

A persistent and sharable collection of objects defined by an OODM.

OODBMS

The manager of an OODB.

Figure 19.3

Origins of object-
oriented data
model.

Traditional
database systems

• Persistence
• Sharing
• Transactions
• Concurrency control
• Recovery control
• Security
• Integrity
• Querying

Semantic
data models

• Generalization
• Aggregation

Object-oriented
programming

• Object identity
• Encapsulation
• Inheritance
• Types and classes
• Methods
• Complex objects
• Polymorphism
• Extensibility

Special
requirements

• Versioning
• Schema evolution

Object-oriented
Data Model

One of the early criticisms often cited about OODBMSs was that they lacked
a formal data model. However, within the past decade, several important ven-
dors (including Sun Microsystems, eXcelon Corporation, Objectivity Inc., POET
Software, Computer Associates, and Versant Corporation) have formed the
Object Data Management Group (ODMG) to define standards for OODBMSs.
The ODMG has produced an object model that specifies a standard model for
the semantics of database objects. The model is important because it deter-
mines the built-in semantics that the OODBMS understands and can enforce.
The ODMG also provides an Object Definition Language and an Object Query
Language, which together form a superset of SQL.

Advantages of OODBMSs

Many of the advantages of OODBMSs are a result of the incorporation of
object-orientation within the system. For example:

■ enriched modeling capabilities;

■ extensibility;

■ removal of impedance mismatch;

■ applicability to advanced database applications.

Others are the result of employing more appropriate protocols. For example:

■ support for schema evolution;

■ support for long-duration transactions.

Two other advantages often cited are:

■ More expressive query language OODBMSs generally use navigational access to
move from one object to the next. This is in contrast to the associative access
of SQL (that is, declarative statements with selection based on one or more
predicates). Navigational access is more suitable for handling parts explosion,
recursive queries, and so on.

■ Improved performance There have been a number of benchmarks that have
suggested OODBMSs provide significant performance improvements over
RDBMSs. For example, in 1989 and 1990, the OO1 benchmark was run on
the OODBMSs GemStone, Ontos, ObjectStore, Objectivity/DB, and Versant,
and the RDBMSs INGRES and Sybase. The results showed an average 30-fold
performance improvement for the OODBMS over the RDBMS.

Disadvantages of OODBMSs

Some of the disadvantages often cited about the OODBMS are:

■ lack of experience;

■ lack of standards;

392 ■ Current and emerging trends

■ competition from RDBMSs;

■ complexity;

■ lack of support for views;

■ lack of support for security.

19.4.2 Object-relational DBMSs (ORDBMSs)

Moving away from the traditional relational data model is sometimes referred
to as a revolutionary approach to integrating object-oriented concepts with data-
base systems. In contrast, the Object-relational DBMS (ORDBMS) is a more
evolutionary approach to integrating object-oriented concepts with database sys-
tems that extends the relational model.

Until recently, the choice of DBMS seemed to be between the RDBMS and
the OODBMS. However, many vendors of RDBMS products were conscious of
the threat and promise of the OODBMS. They agreed that traditional RDBMSs
were not suited to the advanced applications discussed in Section 19.1, and that
added functionality was required. However, they rejected the claim that
extended RDBMSs will not provide sufficient functionality or will be too slow to
cope adequately with the new complexity.

If we examine the advanced database applications that are emerging, we find
they make extensive use of many object-oriented features such as a user-exten-
sible type system, encapsulation, inheritance, polymorphism, dynamic binding
of methods, complex objects including non-first normal form objects, and
object identity (see Figure 19.3). The most obvious way to remedy the short-
comings of the relational model is to extend the model with these types of
features. This is the approach that has been taken by many extended RDBMSs,
although each has implemented different combinations of features. Thus, there
is no single extended relational model; rather, there are a variety of these
models, whose characteristics depend upon the way and the degree to which
extensions were made. However, all the models do share the same basic rela-
tional tables and query language, all incorporate some concept of ‘object’, and
some have the ability to store methods (or procedures or triggers) as well as data
in the database.

Three of the leading RDBMS vendors – Oracle, Informix, and IBM – have all
extended their systems into ORDBMSs, although the functionality provided by
each is slightly different. The concept of the ORDBMS, as a hybrid of the
RDBMS and the OODBMS, is very appealing, preserving the wealth of knowl-
edge and experience that has been acquired with the RDBMS. So much so, that
some analysts predict the ORDBMS will have a 50 percent larger share of the
market than the RDBMS.

As might be expected, the standards activity in this area is based on exten-
sions to the SQL standard. The national standards bodies have been working

Current and emerging trends ■ 393

on object extensions to SQL since 1991. These extensions have become part
of the 1999 SQL standard, commonly referred to as SQL3. The SQL3 standard is
an ongoing attempt to standardize extensions to the relational model and
query language.

Advantages of ORDBMSs

Apart from the advantages of resolving many of the weaknesses cited in Section
19.2, the main advantages of extending the relational data model come from
reuse and sharing. Reuse comes from the ability to extend the DBMS server to
perform standard functionality centrally, rather than have it coded in each
application. For example, applications may require spatial data types that repre-
sent points, lines, and polygons, with associated functions that calculate the
distance between two points, the distance between a point and a line, whether
a point is contained within a polygon, and whether two polygonal regions
overlap, among others. If we can embed this functionality in the server, it saves
having to define it in each application that needs it, and consequently allows
the functionality to be shared by all applications. These advantages also give
rise to increased productivity both for the developer and for the end-user.

Another obvious advantage is that the extended relational approach preserves
the significant body of knowledge and experience that has gone into developing
relational applications. This is a significant advantage, as many organizations
would find it prohibitively expensive to change. If the new functionality is
designed appropriately, this approach should allow organizations to take advan-
tage of the new extensions in an evolutionary way without losing the benefits of
current database features and functions. Thus, an ORDBMS could be introduced
in an integrative fashion, as proof-of-concept projects. The recent SQL3 standard
is designed to be upwardly compatible with the SQL2 standard, and so any
ORDBMS that complies with SQL3 should provide this capability.

Disadvantages of ORDBMSs

The ORDBMS approach has the obvious disadvantages of complexity and asso-
ciated increased costs. Further, there are the proponents of the relational
approach that believe the essential simplicity and purity of the relational model
are lost with these types of extensions. There are also those that believe that the
RDBMS is being extended for what will be a minority of applications that do
not achieve optimal performance with current relational technology.

In addition, object-oriented purists are not attracted by these extensions
either. They argue that the terminology of ORDBMSs is revealing. Instead of dis-
cussing object models, terms like user-defined data types are used. The
terminology of object-orientation abounds with terms like abstract types, class
hierarchies, and object models. However, ORDBMS vendors are attempting to

394 ■ Current and emerging trends

portray object models as extensions to the relational model with some addi-
tional complexities. This potentially misses the point of object-orientation,
highlighting the large semantic gap between these two technologies. Object
applications are simply not as data-centric as relational-based ones. Object-ori-
ented models and programs deeply combine relationships and encapsulated
objects to mirror more closely the ‘real world’. In fact, objects are fundamen-
tally not extensions of data, but a completely different concept with far greater
power to express ‘real world’ relationships and behaviors.

19.5 Data warehousing
Since the 1970s, organizations have largely focused their investment in new
computer systems (called OnLine Transaction Processing (OLTP) systems) that
automate business processes. In this way, organizations gained competitive
advantage through systems that offered more efficient and cost-effective ser-
vices to the customer. Throughout this period, organizations accumulated
growing amounts of data stored in their operational databases. However, in
recent times, where such systems are commonplace, organizations are focusing
on ways to use operational data to support decision making, as a means of
regaining competitive advantage.

Operational systems were never primarily designed to support business deci-
sion making and so using such systems may never be an easy solution. The
legacy is that a typical organization may have numerous operational systems
with overlapping and sometimes contradictory definitions, such as data types.
The challenge for an organization is to turn its archives of data into a source of
knowledge, so that a single integrated/consolidated view of the organization’s
data is presented to the user. The concept of a data warehouse was deemed the
solution to meet the requirements of a system capable of supporting decision
making, receiving data from multiple operational data sources.

The data held in a data warehouse is described as being subject-oriented,
integrated, time-variant, and non-volatile (Inmon, 1993):

■ Subject-oriented as the warehouse is organized around the major subjects of
the organization (such as customers, products, and sales) rather than the major
application areas (such as customer invoicing, stock control, and product

Current and emerging trends ■ 395

Data warehouse

A consolidated/integrated view of corporate data drawn from disparate operational

data sources and a range of end-user access tools capable of supporting simple to

highly complex queries to support decision making.

sales). This is reflected in the need to store decision-support data rather than
application-oriented data.

■ Integrated because of the coming together of source data from different organi-
zation-wide applications systems. The source data is often inconsistent, using,
for example, different data types and/or formats. The integrated data source
must be made consistent to present a unified view of the data to the users.

■ Time-variant because data in the warehouse is only accurate and valid at
some point in time or over some time interval. The time-variance of the data
warehouse is also shown in the extended time that the data is held, the
implicit or explicit association of time with all data, and the fact that the
data represents a series of snapshots.

■ Non-volatile as the data is not updated in real time but is refreshed from oper-
ational systems on a regular basis. New data is always added as a supplement
to the database, rather than a replacement. The database continually absorbs
this new data, incrementally integrating it with the previous data.

The typical architecture of a data warehouse is shown in Figure 19.4.

396 ■ Current and emerging trends

Figure 19.4

The typical architecture of a data warehouse.

Archive/backup data

OLAP tools

Lightly
summarized

data

Highly
summarized

data

Detailed
data

Meta-data

Warehouse Manager

Query
Manager

Load
Manager

DBMS

Warehouse Manager

Operational
data source 1

Operational
data source 2

Operational
data source n

Operational
data store (ODS)

Reporting, query,
application development,

and EIS tools

Data mining tools

End-user
access tools

The source of operational data for the data warehouse is supplied from main-
frames, proprietary file systems, private workstations and servers, and external
systems such as the Internet. An Operational Data Store (ODS) is a repository of
current and integrated operational data used for analysis. It is often structured
and supplied with data in the same way as the data warehouse, but may in fact
act simply as a staging area for data to be moved into the warehouse. The load
manager performs all the operations associated with the extraction and loading of
data into the warehouse. The warehouse manager performs all the operations asso-
ciated with the management of the data, such as the transformation and merging
of source data, creation of indexes and views on base tables, generation of aggre-
gations, and backing up and archiving data. The query manager performs all the
operations associated with the management of user queries. Detailed data is not
stored online but is made available by summarizing the data to the next level of
detail. However, on a regular basis, detailed data is added to the warehouse to
supplement the summarized data. The warehouse stores all the predefined lightly
and highly summarized data generated by the warehouse manager. The purpose of
summary information is to speed up the performance of queries. Although there
are increased operational costs associated with initially summarizing the data,
this is offset by removing the requirement to continually perform summary oper-
ations (such as sorting or grouping) in answering user queries. The summary data
is updated continuously as new data is loaded into the warehouse. Detailed and
summarized data is stored offline for the purposes of archiving and backup. Meta-
data (data about data) definitions are used by all the processes in the warehouse,
including the extraction and loading processes, the warehouse management
process, and as part of the query management process.

The principal purpose of data warehousing is to provide information to busi-
ness users for strategic decision making. These users interact with the
warehouse using end-user access tools. The data warehouse must efficiently sup-
port ad hoc and routine analysis as well as more complex data analysis. The
types of end-user access tools typically include reporting and query tools, appli-
cation development tools, Executive Information System (EIS) tools, OnLine
Analytical Processing (OLAP) tools, and data mining tools. We discuss OLAP
and data mining tools in the following sections.

19.5.1 Data marts

Accompanying the emergence of data warehouses is the related concept of
data marts.

Current and emerging trends ■ 397

Data mart

A subset of a data warehouse that supports the decision making requirements of a

particular department or business area.

A data mart holds a subset of the data in a data warehouse, normally in the
form of summary data relating to a particular department or business area such
as Marketing or Customer Services. The data mart can be standalone or linked
centrally to the corporate data warehouse. As a data warehouse grows larger, the
ability to serve the various needs of the organization may be compromised. The
popularity of data marts stems from the fact that corporate data warehouses
proved difficult to build and use.

There are several approaches to building data marts. One approach is to
build several data marts with a view to the eventual integration into a data
warehouse and another approach is to build the infrastructure for a corporate
data warehouse while at the same time building one or more data marts to sat-
isfy immediate business needs.

Data mart architectures can be built as two-tier or three-tier database applica-
tions. The data warehouse is the optional first tier (if the data warehouse
provides the data for the data mart), the data mart is the second tier, and the
end-user workstation is the third tier. Data is distributed amongst the tiers.
There are many reasons for creating a data mart, which include:

■ To give users access to the data they need to analyze most often.

■ To provide data in a form that matches the collective view of the data by a
group of users in a department or business area.

■ To improve end-user response time due to the reduction in the volume of
data to be accessed.

■ To provide appropriately structured data as dictated by the requirements of
end-user access tools such as OnLine Analytical Processing (OLAP) and data
mining tools, which may require their own internal database structures. In
practice, these tools often create their own data mart designed to support
their specific functionality.

■ Data marts normally use less data so tasks such as data cleansing, loading,
transformation, and integration are far easier, and hence implementing
and setting up a data mart is simpler compared with establishing a corporate
data warehouse.

■ The cost of implementing data marts is normally less than that required to
establish a data warehouse.

■ The potential users of a data mart are more clearly defined and can be more
easily targeted to obtain support for a data mart project rather than a corpo-
rate data warehouse project.

Databases designed to support data warehousing or data mart applications are
necessarily different from those that support traditional OLTP applications.
Readers interested in learning how to design databases for decision support
applications are referred to Connolly and Begg (2002).

398 ■ Current and emerging trends

19.6 OnLine Analytical Processing (OLAP)
Over the past few decades, we have witnessed the increasing popularity and
prevalence of RDBMSs such that we now find a significant proportion of corpo-
rate data is housed in such systems. Relational databases have been used
primarily to support traditional OLTP systems. To provide appropriate support
for OLTP systems, RDBMSs have been developed to enable the highly efficient
execution of a large number of relatively simple transactions.

In the past few years, RDBMS vendors have targeted the data warehousing
market and have promoted their systems as tools for building data warehouses.
A data warehouse stores operational data and is expected to support a wide
range of queries from the relatively simple to the highly complex. However, the
ability to answer particular queries is dependent on the types of end-user access
tools available for use on the data warehouse. General-purpose tools such as
reporting and query tools can easily support ‘who?’ and ‘what?’ questions
about past events. A typical query submitted directly to a data warehouse is:
‘What was the total revenue for Seattle in the third quarter of 2003?’ However,
accessing a data warehouse using a tool called OnLine Analytical Processing
(OLAP) can allow for far more advanced querying and analysis of the data.

OLAP is a term describing a technology that uses a multi-dimensional view of
summarized data to provide quick access to strategic information for the purposes
of advanced analysis. OLAP enables users to gain a deeper understanding and
knowledge about various aspects of their corporate data through fast, consistent,
interactive access to a wide variety of possible views of the data. OLAP allows the
user to view corporate data in such a way that it is a better model of the true
dimensionality of the organization. While OLAP systems can easily answer
‘who?’ and ‘what?’ questions, it’s their ability to answer ‘what if?’ and ‘why?’
questions that distinguishes them from general-purpose query tools. OLAP
enables decision making about future actions. A typical OLAP calculation can be
more complex than simply summarizing data; for example, ‘What would be the
effect on property sales in the different regions of the US if legal costs went up by
3.5 percent and government taxes went down by 1.5 percent for properties over
$100,000?’ Hence, the types of analysis available from OLAP range from basic
navigation and browsing (referred to as ‘slicing and dicing’), to calculations, to
more complex analyses such as time series and complex modeling.

There are many examples of OLAP applications in various business areas, as
listed in Table 19.1.

Current and emerging trends ■ 399

OnLine Analytical Processing (OLAP)

The dynamic synthesis, analysis, and consolidation of large volumes of multi-dimen-

sional data.

An essential requirement of all OLAP applications is the ability to provide
users with Just-in-Time (JIT) information, which is necessary to make effective
decisions about an organization's strategic directions. JIT information is com-
puted data that usually reflects complex relationships and is often calculated on
the fly. Analyzing and modeling complex relationships are practical only if
response times are consistently short. In addition, because the nature of data
relationships may not be known in advance, the data model must be flexible. A
truly flexible data model ensures that OLAP systems can respond to changing
business requirements as required for effective decision making. Although
OLAP applications are found in widely divergent business areas, they all require
multi-dimensional views of corporate data, support for complex calculations
(such as forecasting), and time intelligence. Time intelligence is a key feature of
almost any analytical application as performance is almost always judged over
time; for example, this month versus last month or this month versus the same
month last year.

The benefits that potentially follow the successful implementation of an
OLAP application include:

■ More controlled and timely access to strategic information can allow more
effective decision making.

■ Reduced backlog of applications development for IT staff by making end-
users self-sufficient enough to make their own database changes and build
their own models.

■ Retention of organizational control over the integrity of corporate data as
OLAP applications are dependent on data warehouses and OLTP systems to
refresh their source-level data.

■ Reduced amount of queries and network traffic on OLTP systems or on the
data warehouse.

■ Improved potential revenue and profitability by enabling the organization to
respond more quickly to market demands.

400 ■ Current and emerging trends

Table 19.1 Examples of OLAP applications in various business areas.

Business area Examples of OLAP applications

Finance Budgeting, activity-based costing, financial performance analysis,

and financial modeling.

Sales Sales analysis and sales forecasting.

Marketing Market research analysis, sales forecasting, promotions analysis,

customer analysis, and market/customer segmentation.

Manufacturing Production planning and defect analysis.

19.7 Data mining
Simply storing information in a data warehouse does not provide the benefits
an organization is seeking. To realize the value of a data warehouse, it’s neces-
sary to extract the knowledge hidden within the warehouse. However, as the
amount and complexity of the data in a data warehouse grow, it becomes
increasingly difficult, if not impossible, for business analysts to identify trends
and relationships in the data using simple query and reporting tools. Data
mining is one of the best ways to extract meaningful trends and patterns from
huge amounts of data. Data mining discovers information within data ware-
houses that queries and reports cannot effectively reveal.

Data mining is concerned with the analysis of data and the use of software
techniques for finding hidden and unexpected patterns and relationships in
sets of data. The focus of data mining is to reveal information that is hidden
and unexpected, as there is little value in finding patterns and relationships
that are already intuitive. Examining the underlying rules and features in the
data identifies the patterns and relationships.

Data mining analysis tends to work from the data up and the techniques
that produce the most accurate results normally require large volumes of data
to deliver reliable conclusions. The analysis process starts by developing an
optimal representation of the structure of sample data, during which time
knowledge is acquired. This knowledge is then extended to larger sets of data,
working on the assumption that the larger data set has a structure similar to the
sample data.

Data mining can provide huge paybacks for companies who have made a sig-
nificant investment in data warehousing. Although data mining is still a
relatively new technology, it’s already used in a number of industries. Table
19.2 lists examples of applications of data mining in retail/marketing, banking,
insurance, and medicine.

There are four main operations associated with data mining techniques,
which include predictive modeling, database segmentation, link analysis, and devia-
tion detection. Although any of the four major operations can be used for
implementing any of the business applications listed in Table 19.2, there are
certain recognized associations between the applications and the corresponding
operations. For example, direct marketing strategies are normally implemented
using the database segmentation operation, while fraud detection could be

Current and emerging trends ■ 401

Data mining

The process of extracting valid, previously unknown, comprehensible, and actionable

information from large databases and using it to make crucial business decisions.

implemented by any of the four operations. Further, many applications work
particularly well when several operations are used. For example, a common
approach to customer profiling is to segment the database first and then apply
predictive modeling to the resultant data segments.

Techniques are specific implementations of the data mining operations.
However, each operation has its own strengths and weaknesses. With this in
mind, data mining tools sometimes offer a choice of operations to implement a
technique. The selection is often based on the suitability for certain input data
types, transparency of the mining output, tolerance of missing variable values,
level of accuracy possible, and increasingly, the ability to handle large volumes
of data.

19.8 Web–database integration and XML
Just over a decade after its conception in 1989, the World Wide Web (Web for
short) is arguably the most popular and powerful networked information
system to date. Its growth in the past few years has been near exponential and
it has started an information revolution that will continue through the next
decade. Now the combination of the Web and databases brings many new
opportunities for creating advanced database applications (we cited one exam-
ple in Section 19.1).

402 ■ Current and emerging trends

Table 19.2 Examples of data mining applications.

Retail/Marketing

Identifying buying patterns of customers

Finding associations among customer demographic characteristics

Predicting response to mailing campaigns

Market basket analysis

Banking

Detecting patterns of fraudulent credit card use

Identifying loyal customers

Predicting customers likely to change their credit card affiliation

Determining credit card spending by customer groups

Insurance

Claims analysis

Predicting which customers will buy new policies

Medicine

Characterizing patient behavior to predict surgery visits

Identifying successful medical therapies for different illnesses

The Web is a compelling platform for the delivery and dissemination of data-
centric, interactive applications. Organizations are now rapidly building new
database applications or re-engineering existing ones to take full advantage of
the Web as a strategic platform for implementing innovative business solutions,
in effect becoming Web-centric organizations.

From initially connecting a handful of nodes with ARPANET, the Internet
was estimated to have over 100 million users in January 1997.† One year later,
the estimate had risen to over 270 million users in over 100 countries, and in
early 2001 the revised estimate was over 390 million users, rising to over 600
million in 2003. One projection for expected growth predicts 940 million users
by 2004. In addition, some estimate that there are presently about 2.5 billion
documents on the Internet, growing at 7.5 million a day. If we include
intranets and extranets, the number of documents could be as much as an
incredible 800 billion.

19.8.1 Static and dynamic Web pages

An HTML/XML document stored in a file is an example of a static Web page:
the content of the document does not change unless the file itself is changed.
On the other hand, the content of a dynamic Web page is generated each time
it’s accessed. As a result, a dynamic Web page can have features that are not
found in static pages, such as:

■ It can respond to user input from the browser. For example, returning data
requested by the completion of a form or the results of a database query.

■ It can be customized by and for each user. For example, once a user has speci-
fied some preferences when accessing a particular site or page (such as area of
interest or level of expertise), this information can be retained and informa-
tion returned appropriate to these preferences.

When the documents to be published are dynamic, such as those resulting from
queries to databases, the hypertext needs to be generated by the server. To
achieve this, we can write scripts that perform conversions from different data
formats into HTML ‘on the fly’. These scripts also need to understand the
queries performed by clients through HTML forms and the results generated by
the applications owning the data (for example, the DBMS). As a database is
dynamic, changing as users create, insert, update, and delete data, then generat-
ing dynamic Web pages is a much more appropriate approach than creating
static ones. We cover some approaches for creating dynamic Web pages shortly.

Many Web sites today are file-based, where each Web document is stored in a
separate file. For small Web sites, this approach is not too much of a problem.

Current and emerging trends ■ 403

† In this context, the Internet means the Web, e-mail, FTP, Gopher, and Telnet services.

However, for large sites, this can lead to significant management problems. For
example, maintaining current copies of hundreds or thousands of different doc-
uments in separate files is difficult enough, but also maintaining links between
these files is even more formidable, particularly when the documents are cre-
ated and maintained by different authors.

A second problem stems from the fact that many Web sites now contain
more information of a dynamic nature, such as product and pricing informa-
tion. Maintaining such information both in a database and in separate
HTML/XML files can be an enormous task, and difficult to keep synchronized.
For these and other reasons, allowing databases to be accessed directly from the
Web is increasingly the approach that is being adopted for the management of
dynamic Web content. The storage of Web information in a database can either
replace or complement file storage.

19.8.2 Requirements for Web–DBMS integration

While many DBMS vendors are working to provide proprietary database con-
nectivity solutions for the Web, most organizations require a more general
solution to prevent them from being tied into one technology. In this section,
we briefly list some of the most important requirements for the integration of
database applications with the Web. These requirements are ideals and not fully
achievable at the present time, and some may need to be traded off against
others. Not in any ranked order, the requirements are as follows:

■ The ability to access valuable corporate data in a secure manner.

■ Data and vendor independent connectivity to allow freedom of choice in the
selection of the DBMS now and in the future.

■ The ability to interface to the database independent of any proprietary Web
browser or Web server.

■ A connectivity solution that takes advantage of all the features of an organi-
zation’s DBMS.

■ An open-architecture approach to allow interoperability with a variety of sys-
tems and technologies.

■ A cost-effective solution that allows for scalability, growth, and changes in
strategic directions, and helps reduce the costs of developing and maintain-
ing applications.

■ Support for transactions that span multiple HTTP requests.

■ Support for session- and application-based authentication.

■ Acceptable performance.

■ Minimal administration overhead.

■ A set of high-level productivity tools to allow applications to be developed,
maintained, and deployed with relative ease and speed.

404 ■ Current and emerging trends

19.8.3 Approaches to integrating the Web and DBMSs

There are many approaches to integrating databases into the Web environment
and in such a rapidly changing arena, new approaches are appearing regularly.
Some common examples are:

■ scripting languages such as JavaScript and VBScript;

■ Common Gateway Interface (CGI), one of the early, and possibly one of the
most widely used, techniques;

■ HTTP cookies;

■ extensions to the Web server, such as the Netscape API (NSAPI) and
Microsoft’s Internet Information Server API (ISAPI);

■ Java and JDBC, SQLJ, Servlets, and JavaServer Pages (JSP);

■ vendor-specific solutions such as Microsoft’s Web Solution Platform with
Active Server Pages (ASPs) and ActiveX Data Objects (ADO) and Oracle’s
Internet Platform with Oracle Portal and Oracle PL/SQL Server Pages (PSP).

19.8.4 XML

Most documents on the Web are currently stored and transmitted in HTML.
One of the strengths of HTML is its simplicity, allowing it to be used by a wide
variety of users. However, its simplicity is arguably also one of its weaknesses,
with the growing need from users who want tags to simplify some tasks and
make HTML documents more attractive and dynamic. In an attempt to satisfy
this demand, vendors introduced some browser-specific HTML tags, which
made it difficult to develop sophisticated, widely viewable Web documents. To
prevent this split, the World Wide Web Consortium (W3C) has produced a new
standard called XML (eXtensible Markup Language), which could preserve the
general application independence that makes HTML portable and powerful.
XML is a restricted version of SGML (Standard Generalized Markup Language),
designed especially for Web documents. For example, XML supports links that
point to multiple documents, as opposed to an HTML link that can reference
just one destination document.

XML is set to impact every aspect of programming, including graphical inter-
faces, embedded systems, distributed systems, and from our perspective,
database management. For example, since XML describes the structure of data,
it could become a useful mechanism for defining the structure of heterogeneous
databases and data sources. With the ability to define an entire database

Current and emerging trends ■ 405

XML

A meta-language (a language for describing other languages) that enables designers to

create their own customized tags to provide functionality not available with HTML.

schema, XML could potentially be used to take the contents of an Oracle
schema, for example, and translate it to an Informix or Sybase schema. It is
already becoming the de facto standard for data communication within the soft-
ware industry, and it is quickly replacing EDI (Electronic Data Interchange)
systems as the primary medium for data interchange among organizations.
Some analysts believe it will become the language in which most documents
are created and stored, both on and off the Internet.

XML and databases

As the amount of data in XML format expands, there will be an increasing
demand to store, retrieve, and query this data. It’s anticipated that there will be
two main models that will exist: data-centric and document-centric. In a data-
centric model, XML is used as the storage and interchange format for data that
is structured, appears in a regular order, and is most likely to be machine
processed instead of read by a human. In a data-centric model, the fact that the
data is stored and transferred as XML is incidental and other formats could also
have been used. In this case, the data could be stored in a relational, object-rela-
tional, or object-oriented DBMS. For example, Oracle has completely integrated
XML into its Oracle 9i system. XML can be stored as entire documents using the
data types XMLType or CLOB/BLOB (Character/Binary Large Object) or can be
decomposed into its constituent elements and stored that way. The Oracle query
language has also been extended to permit searching of XML-based content.

In a document-centric model, the documents are designed for human con-
sumption (for example, books, newspapers, and e-mail). Due to the nature of
this information, much of the data will be irregular or incomplete, and its struc-
ture may change rapidly or unpredictably. Unfortunately, relational,
object-relational, and object-oriented DBMSs do not handle data of this nature
particularly well. Content management systems are an important tool for handling
these types of documents. Underlying such a system, you may now find a native
XML database:

Query languages

As mentioned above, DBMS vendors have extended SQL to handle the query of
XML-based content. A number of companies have joined together to standard-
ize XML extensions to SQL. This effort is known as SQL/XML and the initial

406 ■ Current and emerging trends

Native XML database

Defines a (logical) data model for an XML document (as opposed to the data in that

document) and stores and retrieves documents according to that model. At a mini-

mum, the model must include elements, attributes, PCDATA, and document order.

The XML document must be the unit of (logical) storage, although it is not restricted

by any underlying physical storage model (so traditional DBMSs are not ruled out).

work has been submitted to ISO and ANSI. In addition, W3C formed an XML
Query Working Group to produce a data model for XML documents, a set of
query operators on this model, and a query language based on these query
operators (called XQuery). Queries operate on single documents or fixed collec-
tions of documents, and they can select entire documents or subtrees of
documents that match conditions based on document content and structure.
Queries can also construct new documents based on what has been selected.
Ultimately, collections of XML documents will be accessed like databases.

The technology surrounding the Web is highly dynamic and it is likely that
we will see significant developments in this area over the next few years.

Chapter summary
Advanced database applications include Computer-aided Design (CAD),
Computer-aided Manufacturing (CAM), Office Information Systems (OIS)
and multimedia systems, Geographic Information Systems (GIS), and
interactive and dynamic Websites.

The relational model, and relational systems in particular, have weak-
nesses such as poor representation of ‘real world’ entities, semantic
overloading, poor support for business rules, limited operations, difficulty
handling recursive queries, and impedance mismatch. The limited mod-
eling capabilities of RDBMSs have made them unsuitable for advanced
database applications.

A distributed database is a collection of logically interrelated, shared
data (and a description of this data), physically distributed over a com-
puter network. The DDBMS is the software that transparently manages
the distributed database. A DDBMS is distinct from distributed process-
ing, where a centralized DBMS is accessed over a network.

The advantages of a DDBMS are that it reflects the organizational struc-
ture, it makes remote data more sharable, it improves reliability,
availability, and performance, it may be more economical, and it
provides for modular growth. The major disadvantages are cost, com-
plexity, lack of standards, and experience.

Replication is the process of generating and reproducing multiple copies
of data at one or more sites. Replication provides a number of benefits,
including improved performance when centralized resources get over-
loaded, increased reliability and data availability, and support for mobile
computing and data warehousing facilitating decision support.

Current and emerging trends ■ 407

An Object-oriented DBMS (OODBMS) is a manager of an OODB. An
OODB is a persistent and sharable repository of objects defined in an
OODM. An OODM is a data model that captures the semantics of
objects supported in object-oriented programming. Advantages of
OODBMSs include enriched modeling capabilities, extensibility, removal
of impedance mismatch, more expressive query language.

Several important vendors have formed the Object Data Management
Group (ODMG) to define standards for OODBMSs. The ODMG has pro-
duced an Object Model that specifies a standard model for the
semantics of database objects. The model is important because it deter-
mines the built-in semantics that the OODBMS understands and can
enforce. The design of class libraries and applications that use these
semantics should be portable across the various OODBMSs that support
the Object Model.

There is no single extended relational data model; rather, there are a vari-
ety of these models, whose characteristics depend upon the way and the
degree to which extensions were made. However, all the models do share
the same basic relational tables and query language, all incorporate some
concept of ‘object’, and some have the ability to store methods or proce-
dures/triggers as well as data in the database. These systems are generally
referred to now as Object-relational DBMSs (ORDBMSs).
A data warehouse is a consolidated/integrated view of corporate data
drawn from disparate operational data sources and a range of end-user
access tools capable of supporting simple to highly complex queries to
support decision making. The data held in a data warehouse is described
as being subject-oriented, integrated, time-variant, and non-volatile. A
data mart is a subset of a data warehouse that supports the decision
making requirements of a particular department or business area.

OLAP is the dynamic synthesis, analysis, and consolidation of large vol-
umes of multi-dimensional data. OLAP describes a technology that uses
a multi-dimensional view of summarized data to provide quick access to
strategic information for the purposes of advanced analysis.

Data mining is the process of extracting valid, previously unknown,
comprehensible, and actionable information from large databases and
using it to make crucial business decisions.

The Web is now the most popular and powerful networked information
system to date. To prevent storing data redundantly outside the data-

408 ■ Current and emerging trends

base in static Web pages, it is important to integrate the operational
database into the Web environment. There are many different
approaches to Web–database integration and the area is likely to see
change over the next few years as the technologies mature.

XML (eXtensible Markup Language) is a meta-language (a language for
describing other languages) that enables designers to create their own cus-
tomized tags to provide functionality not available with HTML. XML is set
to impact every aspect of programming, including database management.

Review questions
19.1 Discuss the general characteristics of advanced database applications.

19.2 Discuss why the weaknesses of the relational data model and relational
DBMSs may make them unsuitable for advanced database applications.

19.3 Explain what is meant by a DDBMS, and discuss the motivation in pro-
viding such a system.

19.4 Compare and contrast a DDBMS with distributed processing. Under what
circumstances would you choose a DDBMS over distributed processing?

19.5 Discuss the advantages and disadvantages of a DDBMS.

19.6 Describe the expected functionality of a replication server.

19.7 Compare and contrast the different ownership models for replication.
Give examples to illustrate your answer.

19.8 Give a definition of an OODBMS. What are the advantages and disad-
vantages of an OODBMS?

19.9 Give a definition of an ORDBMS. What are the advantages and disadvan-
tages of an ORDBMS?

19.10 Give a definition of a data warehouse. Discuss the benefits of implement-
ing a data warehouse.

19.11 Describe the characteristics of the data held in a data warehouse.

19.12 Discuss how data marts differ from data warehouses and identify the
main reasons for implementing a data mart.

19.13 Discuss what OnLine Analytical Processing (OLAP) is and how OLAP differs
from data warehousing.

19.14 Describe OLAP applications and identify the characteristics of such
applications.

19.15 Discuss how data mining can realize the value of a data warehouse.

19.16 Why would we want to dynamically generate Web pages from data held
in the operational database? List some general requirements for
Web–database integration.

19.17 What is XML? Discuss the approaches for managing XML-based data.

Current and emerging trends ■ 409

Appendices

A Alternative data modeling notations 413

B Summary of the database design methodology 420

C Advanced logical database design 428

D File organizations and indexes 442

E Common data models 462

In Chapter 7, you learned how to create an Entity–Relationship (ER) model
using an increasingly popular notation called UML (Unified Modeling
Language). In this appendix you are shown two additional notations that are
often used to create ER models. The first ER notation is called the Chen nota-
tion and the second is called the Crow’s Feet notation. We demonstrate each by
presenting a table that shows the notation used for each of the main concepts
of the ER model and then we present the notation using as an example the ER
model shown in Figure 9.9.

A.1 ER modeling using the Chen notation
Table A.1 shows the Chen notation for the main concepts of the ER model and
Figure A.1 shows the ER model in Figure 9.9 redrawn using the Chen notation.

A.2 ER modeling using the Crow’s Feet notation
Table A.2 shows the Crow’s Feet notation for the main concepts of the ER
model and Figure A.2 shows the ER model in Figure 9.9 redrawn using the
Crow’s Feet notation.

Appendix A

Alternative data
modeling notations

In this chapter you will learn:

Alternative data modeling notations.

414 ■ Appendices

Notation Meaning

Strong entity

Weak entity

Relationship

Relationship associated with
a weak entity

Relationship
name

Relationship
name

Recursive relationship with
role names to identify the

roles played by the entity in
the relationship

Relationship
name

Role
name

Role
name

Attribute

Primary key attribute

Multi-valued attribute

Entity name

Entity name

Entity name

Attribute name

Attribute name

Attribute name

Table A.1

The Chen notation
for ER modeling.

Alternative data modeling notations ■ 415

Derived attribute

One-to-one (1:1) relationship

One-to-many
(1:M) relationship

One-to-many relationship
with mandatory participation

for both entities A and B

11

M1

Many-to-many
(M:N) relationship

NM

M1
A B

One-to-many relationship
with optional participation
for entity A and mandatory

participation for entity B

M1
A B

One-to-many relationship
with optional participation

for both entities A and B

M1
A B

Subclass Subclass

Superclass Generalization/Specialization.
If circle contains ‘d’ relationship is

disjoint; if circle contains ‘o’
relationship is nondisjoint.

Double lines from superclass
represent mandatory participation;

single line represents optional
participation

Attribute
name

Ternary relationship
between entities

A, B, and C

A B

C

Table A.1 Continued

416 ■ Appendices

Figure A.1

The ER model shown in Figure 9.9 redrawn using the Chen notation.

1

N

1

M

M 1 M1

1

Supervisee Supervisor

1M

staffNo

M

1

1

M

1

1M

1

M

Director

Video Actor

Branch StaffVideoForRent

MemberRentalAgreement

actorNo

rentalNo memberNo

branchNovideoNo

catalogNo

directorNo

PlaysIn

Supervises

Requests

Manages

Has

Directs

Is

IsAllocated

IsPartOf

M

1

Register
M

telNo

M

Alternative data modeling notations ■ 417

Table A.2

The Crow’s Feet
notation for ER
modeling.

Notation Meaning

Entity

Relationship

Recursive relationship with
role names to identify the

roles played by the entity in
the relationship

Role
name

Role
name

Attributes are listed in the lower
section of the entity symbol

The primary key attribute is
underlined

Multi-valued attribute placed
in curly brackets { }

Entity name

Relationship name

Entity name

Relationship name

Entity name

One-to-one relationshipRelationship name

One-to-many relationshipRelationship name

Many-to-many relationshipRelationship name

Attribute name

Attribute 1
Attribute 2
Attribute n

418 ■ Appendices

Table A.2

Continued One-to-many relationship with
mandatory participation for both

entities A and B

Relationship name

A B

One-to-many relationship with
optional participation for entity A

and mandatory participation
for entity B

Relationship name

A B

One-to-many relationship with
optional participation for both

entities A and B

Relationship name

A B

‘Box-in-box’ convention is widely
used to represent generalization/
specialization, and supported by

several CASE tools, including
Oracle CASE Designer

Superclass

Subclass Subclass

Ternary relationship
between entities

A, B, and C

A B

C

Alternative data modeling notations ■ 419

Figure A.2

The ER model shown in Figure 9.9 redrawn using the Crow’s Feet notation.

Requests

Plays

Directs

Has

Manages

Supervises

Supervisee Supervisor

Director

Video Actor

Branch StaffVideoForRent

MemberRentalAgreement

directorNo

catalogNo actorNo

branchNo

memberNorentalNo

staffNo

IsPartOf

videoNo

IsAllocated

Is

Registers

In this book, we present a database design methodology for relational data-
bases. This methodology is made up of the two main phases logical database
design and physical database design, which were described in detail in Chapters
9, 10, and 12 to 16. In this appendix, we summarize the steps involved in these
phases for those readers who are already familiar with database design.

Step 1 Create and check ER model
During analysis, you will have identified a number of user views. Depending on
the amount of overlap, for manageability you may decide to merge some of
these views. The purpose of this step is to build a logical data model of the orga-
nization (or part of the organization) for each of these (possibly merged) views.

Step 1.1 Identify entities

Identify and document the main entities in the organization.

Appendix B

Summary of the database
design methodology

In this chapter you will learn:

Database design is composed of two main phases: logical and physical
database design.

The steps involved in the main phases of the database design
methodology.

Step 1.2 Identify relationships

Identify the important relationships that exist between the entities that you
have identified. Determine the multiplicity constraints of the relationships.
Document relationships. Use Entity–Relationship (ER) modeling when necessary.

Step 1.3 Identify and associate attributes with entities or relationships

Associate attributes with the appropriate entities or relationships. Identify
simple/composite attributes, single-valued/multi-valued attributes, and derived
attributes. Document attributes.

Step 1.4 Determine attribute domains

Determine domains for the attributes in the ER model. Document attribute
domains.

Step 1.5 Determine candidate, primary key, and alternate attributes

Identify the candidate key(s) for each entity and, if there is more than one can-
didate key, choose one to be the primary key, the others becoming alternate
keys. Document candidate, primary, and alternate keys for each strong entity.

Step 1.6 Specialize/Generalize entities (optional step)

Identify superclass and subclass entities, where appropriate.

Step 1.7 Check model for redundancy

Examine the ER model to ensure there is no redundancy. Specifically, re-
examine 1:1 relationships and remove redundant relationships.

Step 1.8 Check model supports user transactions

Ensure that the ER model supports the transactions required by the users.

Step 1.9 Review model with users

Step 2 Map ER model to tables
Map the ER model to a set of tables and check the structure of the tables.

Summary of the database design methodology ■ 421

Step 2.1 Map tables

In this step, you produce a set of tables to represent the entities, relationships,
attributes, and constraints for the ER model created in Step 1. The structures of
the tables are derived from the information that describes the ER model. This
information includes the data dictionary, and any other documentation that
describes the model. Also, document any new primary or candidate keys that
have been formed as a result of the process of creating tables for the ER model.

The basic rules for creating tables are as follows:

(a) For each entity, create a table that includes all the entity’s simple attributes.

(b) Relationships can be represented by the primary key/foreign key mecha-
nism. In deciding where to post the foreign key, you must identify the
‘parent’ and ‘child’ entities in the relationship. The parent entity then posts
a copy of its primary key into the child table, to act as the foreign key.

A summary of the rules for creating tables from an ER model is shown in Table B.1.

422 ■ Appendices

Table B.1 Summary of how to represent entities, relationships, and multi-
valued attributes as tables.

Entity/Relationship/Attribute Representation as table(s)

Strong or weak entity Create table that includes all simple attributes.

1:* binary relationship Post copy of primary key of entity on ‘one’

side to table representing entity on ‘many’

side. Any attributes of relationship are also

posted to ‘many’ side.

1:* recursive relationship As entity on ‘one’ and ‘many’ side is the same,

the table representing the entity receives a

second copy of the primary key, which is

renamed, and also any attributes of the

relationship.

1:1 binary relationship:

Mandatory participation on both sides Combine entities into one table.

Mandatory participation on one side Post copy of primary key of entity with

optional participation to table representing

entity with mandatory participation. Any

attributes of relationship are also posted to

table representing entity with mandatory

participation.

You may use Step 1.6 to introduce specialization/generalization into your ER
model. For each superclass/subclass relationship, you identify the superclass as
the parent entity and the subclass as the child entity. There are various options
on how you may best represent such a relationship as one or more tables. The
selection of the most appropriate option is dependent on the participation and
disjoint constraints on the superclass/subclass relationship. A summary of how
to map tables from your EER model is shown in Table B.2.

Summary of the database design methodology ■ 423

Table B.1 Continued

Entity/Relationship/Attribute Representation as table(s)

Optional participation on both sides Without further information, post copy of

primary key of one entity to the other.

However, if information is available, treat

entity that is closer to having mandatory

participation as being the child entity.

: binary relationship/ Create a table to represent the relationship

complex relationship and include any attributes associated with the

relationship. Post a copy of the primary key

from each parent entity into the new table to

act as foreign keys.

Multi-valued attribute Create a table to represent the multi-valued

attribute and post a copy of the primary key

of the parent entity into the new table to act

as a foreign key.

Table B.2 Options available for the representation of a superclass/subclass
relationship based on the participation and disjoint constraints.

Participation constraint Disjoint constraint Tables required

Mandatory Nondisjoint {And} Single table

Optional Nondisjoint {And} Two tables: one table for superclass

and one table for all subclasses

Mandatory Disjoint {Or} Many tables: one table for each

combined superclass/subclass

Optional Disjoint {Or} Many tables: one table for

superclass and one for each subclass

Step 2.2 Check table structures using normalization

The purpose of this step is to examine the groupings of columns in each table
created in Step 2.1. You check the composition of each table using the rules of
normalization. Each table should be in at least third normal form (3NF).

Step 2.3 Check tables support user transactions

In this step, you ensure that the tables support the required transactions, which
are described in the users’ requirements specifications.

Step 2.4 Check business rules

Check that all business rules are represented in the logical database design.
These include specifying the required data, attribute domain constraints, entity
integrity, multiplicity, referential integrity, and any other business rules.
Document all business rules.

Step 2.5 Review logical database design with users

Ensure that the logical database design is a true representation of the data
requirements of the organization (or part of the organization) to be supported
by the database.

Step 2.6 Build and check global logical data model*

Combine the individual local logical data models into a single global logical
data model that represents the data requirements of the organization (or part of
the organization) to be supported by the database.

Step 2.6.1 Merge local logical data models into global model

Merge the individual local logical data models into a single global logical data
model. Some typical tasks of this step are as follows:

(1) Review the names and contents of entities/tables and their primary keys.

(2) Review the names and contents of relationships/foreign keys.

(3) Merge entities/tables from the local data models.

(4) Include (without merging) entities/tables unique to each local data model.

(5) Merge relationships/foreign keys from the local data models.

424 ■ Appendices

* Step 2.6 is only required when creating a multi-user view database, using the view integration

approach (described in Appendix C).

(6) Include (without merging) relationships/foreign keys unique to each local
data model.

(7) Check for missing entities/tables and relationships/foreign keys.

(8) Check foreign keys.

(9) Check business rules.

(10) Draw the global ER/table diagram.

(11) Update the documentation.

Step 2.6.2 Check global logical data model

This step is equivalent to Steps 2.3 and 2.4, where you check the structure of
the tables created for the global data model using normalization and then
check that these tables are capable of supporting all user transactions.

Step 2.6.3 Check for future growth

Determine whether there are any significant changes likely in the foreseeable
future and assess whether the global logical data model can accommodate these
changes.

Step 2.6.4 Review global logical data model with users

Ensure that the global logical data model is a true representation of the data
requirements of the organization (or the part of the organization) to be sup-
ported by the database.

Step 3 Translate logical database design for
target DBMS

Produce a basic working set of tables from the logical data model.

Step 3.1 Design base tables

Decide how to represent the base tables you have identified in the logical data
model in the target DBMS. Document design of tables.

Step 3.2 Design representation of derived data

Consider how derived data will be represented. The choice is to calculate
derived data each time it’s needed or to introduce redundancy and store the
derived data as a column in a table. Document design of derived data.

Summary of the database design methodology ■ 425

Step 3.3 Design remaining business rules

Design the remaining business rules for the target DBMS. Document design of
the remaining business rules.

Step 4 Choose file organizations and indexes
Determine the file organizations that will be used to store the base tables; that
is, the way in which tables and records will be held on secondary storage.
Consider the addition of indexes to improve performance.

Step 4.1 Analyze transactions

Understand the functionality of the transactions that will run on the database
and analyze the important transactions.

Step 4.2 Choose file organizations

Determine an efficient file organization for each base table.

Step 4.3 Choose indexes

Determine whether adding indexes will improve the performance of the system.

Step 5 Design user views
Design the user views that you identified during the requirements collection
and analysis stage.

Step 6 Design security mechanisms
Design the security measures for the database implementation as specified by
the users during the requirements collection and analysis stage. Document the
design of the security measures.

426 ■ Appendices

Step 7 Consider the introduction of
controlled redundancy

Determine whether introducing redundancy in a controlled manner by relaxing
the normalization rules will improve the performance of the system. Consider
duplicating columns or joining tables together to achieve improved perfor-
mance. In particular, consider combining one-to-one (1:1) relationships,
duplicating nonkey columns in one-to-many (1:*) relationships to reduce joins,
duplicating foreign key columns in one-to-many (1:*) relationships to reduce
joins, duplicating columns in many-to-many (*:*) relationships to reduce joins,
introducing repeating groups, creating extract tables, and partitioning tables.

Step 8 Monitor and tune the operational system
Monitor the operational system and improve the performance of the system to
correct inappropriate design decisions or reflect changing requirements.

Summary of the database design methodology ■ 427

This appendix describes what you should do when you’re creating a reasonably
complex database system with several user views and you have chosen to
manage these user views (wholly or partly) using the view integration
approach. This appendix assumes that you have created local data models each
representing one or more user views using Steps 1 and 2 of the database design
methodology described in Chapters 9 and 10.

In Chapter 6, we identified several user views for the StayHome database
system, namely Director, Manager, Supervisor, Assistant, and Buyer. Following
analysis of the requirements for each user view, we decided to manage these
user views using a mixture of the centralized and view integration approaches.
We used the centralized approach to merge the requirements for the Manager,
Supervisor, and Assistant user views into a collection of user views called Branch
and merged the requirements for the Director and Buyer user views into a col-
lection of user views called Business. In Chapters 9 and 10, we used the Branch
user views to demonstrate the building of a local logical data model using Steps
1 and 2 of the methodology. The ER diagram was shown in Figure 9.9 and a
description of the tables was shown in Figure 10.11.

Appendix C

Advanced logical
database design

In this appendix you will learn:

How to merge local logical data models into a global logical data model of
the data requirements of the organization.

How to ensure that the resultant global model is a true and accurate
representation of the data requirements of the organization (or part of the
organization) being modeled.

Methodology
summarized in
Appendix B

View integration
approach discussed in
Sections 4.5 and 6.4.4

Centralized approach
discussed in Sections
4.5 and 6.4.4

In this appendix, we first present the users’ requirements specification for the
Business user views of StayHome. We don’t demonstrate the building of the local
logical data model for this collection of user views but instead present impor-
tant components of the logical model, namely the ER diagram and a
description of the tables based on this model. We then use the local logical data
models for the Branch and Business user views to demonstrate how to merge
data models.

C.1 The Business user views of StayHome

In this section, we present the users’ requirements specification for the Business
user views of StayHome and the corresponding local logical data model.

C.1.1 Users’ requirements specification

The requirements specification for the Business user views is listed in two sec-
tions: the first describes the data used by the Business user views and the second
provides examples of how the data is used (that is, the transactions performed
on the data).

Data requirements

The details held on a branch of StayHome are the branch address and the tele-
phone number. Each branch is given a branch number, which is unique
throughout the company.

Each branch of StayHome has staff, which includes a Manager. The details held
on a member of staff are his or her name, position, and salary. Each member of
staff is given a staff number, which is unique throughout the company.

Each branch of StayHome is allocated a stock of videos. The details held on a
video are the catalog number, video number, title, category, daily rental rate,
and purchase price. The catalog number uniquely identifies each video.
However, in most cases there are several copies of each video at a branch, and
the individual copies are identified using the video number.

Each branch of StayHome receives videos from video suppliers. The details held
on video suppliers are the supplier number, name, address, telephone number,
and status. Orders for videos are placed with these suppliers and the details held

Advanced logical database design ■ 429

You may find it useful to read the requirements in the following sec-

tion and then attempt Steps 1 and 2 of the methodology yourself. You can

then check your solution against our sample solution.

TIP
Step 1 was covered
in Chapter 9.

Step 2 was covered
in Chapter 10.

on a video order are the order number, supplier number, supplier address, video
catalog number, video title, video purchase price, quantity, date order placed, date
order received, and the address of the branch receiving the order.

A customer of StayHome must first register as a member of a local branch of
StayHome. The details held on a member are name, address, and the date that
the member registered at a branch. Each member is given a member number,
which is unique throughout all branches of the company and is used even
when a member chooses to register at more than one branch.

The details held on each video rented are the rental number, full name and
member number, the video number, title, and daily rental rate, and the dates
the video is rented out and returned. The rental number is unique throughout
the company.

Transaction requirements

Data entry
(a) Enter the details for a newly released video (such as details of a video called

Return of the King).

(b) Enter the details of a video supplier (such as a supplier called WorldView
Videos).

(c) Enter the details of a video order (such as ordering 10 copies of Return of the
King for branch B002).

Data update/deletion
(d) Update/delete the details of a given video.

(e) Update/delete the details of a given video supplier.

(f) Update/delete the details of a given video order.

Data queries
(g) List the name, position, and salary of staff at all branches, ordered by

branch number.

(h) List the name and telephone number of the Manager at a given branch.

(i) List the catalog number and title of all videos at a given branch, ordered
by title.

(j) List the number of copies of a given video at a given branch.

(k) List the number of members at each branch, ordered by branch number.

(l) List the number of members who joined this year at each branch, ordered
by branch number.

(m) List the number of video rentals at each branch between certain dates,
ordered by branch number.

430 ■ Appendices

(n) List the number of videos in each category at a given branch, ordered by
category.

(o) List the name, address, and telephone number of all video suppliers,
ordered by supplier number.

(p) List the name and telephone number of a video supplier.

(q) List the details of all video orders placed with a given supplier, sorted by the
date ordered.

(r) List the details of all video orders placed on a certain date.

(s) List the total daily rentals for videos at each branch between certain dates,
ordered by branch number.

C.1.2 Local logical data model

As we’ve just mentioned, rather than go through the process of building the
local logical data model for the Business user views of StayHome, we assume
instead that this model was produced using Steps 1 and 2 of the methodology
and present the important components of the logical model, namely:

■ ER diagram, shown in Figure C.1;

■ tables, shown in Figure C.2.

Let’s now use the Branch and Business local logical data models to build a
global logical data model for StayHome. We describe the process of merging the
two data models by including additional steps to Step 2 of the logical database
design methodology described in Chapter 10.

Step 2.6 Build and check global logical data model

In this continuation of Step 2, you build a global logical data model, which rep-
resents all user views by merging together the local logical data models
produced for each user view of the database. However, if you’re also using the
centralized approach for managing multiple user views, a local logical data
model represents the merged requirements for two or more user views. Having
combined the models together it may be necessary to check that the tables
based on the global model are appropriately normalized and still support the

Advanced logical database design ■ 431

Objective

To combine the individual local logical data models into a single global logical

data model that represents the data requirements of the organization (or part

of the organization) that is being modeled.

required transactions, as you did in Steps 2.2 and 2.3 of Chapter 10. However,
you need only check those areas of the model that resulted in any change
during the merging process. In a large system, this will significantly reduce the
amount of rechecking that needs to be performed.

Although each local logical data model should be correct, comprehensive,
and unambiguous, each model is only a representation of one or more but not
all user views of the database. In other words, the model is not strictly a model
of the function of the organization, but it’s a model of one or more user views
and hence may not be complete. This may mean that there may be inconsis-
tencies as well as overlaps when you look at the complete set of user views.
Thus, when you merge the local logical data models into a single global model,
you must resolve conflicts between the user views and any overlaps that exist.

432 ■ Appendices

Figure C.1

ER model for the Business user views of StayHome.

VideoOrderLine

BranchIsAllocated

MemberRequests

Video

VideoForRent

RentalAgreement

Is

IsPartOf

Manages

Has

PartOf

Supplier

catalogNo

supplierNo

Comprises VideoOrder

orderNo

branchNovideoNo

memberNorentalNo

RegistrationAgrees

Supplies

1..1

1..*

1..1

1..*

1..1 1..* 1..* 1..1

Staff

staffNo1..* 1..1

1..1 1..*

0..1 1..11..1

0..*

0..* 1..1 1..1 1..*

Registers
1..1

1..*

1..*
Places

1..1

The tasks involved in Step 2.6 are:

■ Step 2.6.1 Merge local logical data models into global model

■ Step 2.6.2 Check global logical data model

■ Step 2.6.3 Check for future growth

■ Step 2.6.4 Review global logical data model with users

Step 2.6.1 Merge local logical data models into global model

Up to this point, for each local logical data model you have produced an ER dia-
gram, a set of tables, a data dictionary, and supporting documentation that
describes the constraints on the data. In this step, you use these components to
identify the similarities and differences between the models, to help merge them.

Advanced logical database design ■ 433

Figure C.2

Tables for the Business user views of StayHome.

Branch (branchNo, address, telNo, mgrStaffNo)
Primary Key branchNo
Alternate Key telNo
Foreign Key mgrStaffNo references Staff(staffNo)

Registration (branchNo, memberNo, dateJoined)
Primary Key branchNo, memberNo
Foreign Key branchNo references Branch(branchNo)
Foreign Key memberNo references Member(memberNo)

Member (memberNo, name, address)
Primary Key memberNo

RentalAgreement (rentalNo, dateOut, dateReturn, memberNo, videoNo)
Primary Key rentalNo
Alternate Key memberNo, videoNo, dateOut
Foreign Key memberNo references Member(memberNo)
Foreign Key videoNo references Video(videoNo)

Staff (staffNo, name, position, salary, branchNo)
Primary Key staffNo
Foreign Key branchNo references Branch(branchNo)

Supplier (supplierNo, sName, sAddress, sTelNo, status)
Primary Key supplierNo
Alternate Key sTelNo

Video (catalogNo, title, category, dailyRental, price, supplierNo)
Primary Key catalogNo
Foreign Key supplierNo references Supplier(supplierNo)

VideoForRent (videoNo, available, catalogNo, branchNo)
Primary Key videoNo
Foreign Key catalogNo references Video(catalogNo)
Foreign Key branchNo references Branch(branchNo)

VideoOrder (orderNo, dateOrdered, dateReceived, branchNo)
Primary Key orderNo
Foreign Key branchNo references Branch(branchNo)

VideoOrderLine (orderNo, catalogNo, quantity)
Primary Key orderNo, catalogNo
Foreign Key orderNo references VideoOrder(orderNo)
Foreign Key catalogNo references Video(catalogNo)

Objective

To merge the individual local logical data models into a single global logical

data model.

For simple database systems with a relatively small number of entities/tables,
it’s an easy task to compare the local models, merge them together, and resolve
any differences that exist. However, in a large system, a more systematic
approach must be taken. We present one approach that may be used to merge
the local models together and resolve any inconsistencies found. Some typical
tasks of this approach are:

(1) Review the names and contents of entities/tables and their primary keys.

(2) Review the names and contents of relationships/foreign keys.

(3) Merge entities/tables from the local data models.

(4) Include (without merging) entities/tables unique to each local data model.

(5) Merge relationships/foreign keys from the local data models.

(6) Include (without merging) relationships/foreign keys unique to each local
data model.

(7) Check for missing entities/tables and relationships/foreign keys.

(8) Check foreign keys.

(9) Check integrity constraints.

(10) Draw the global ER/table diagram.

(11) Update the documentation.

In some of the above tasks, we have used the terms ‘entities/tables’ and
‘relationships/foreign keys’ because you may prefer to:

■ examine the ER diagrams and their supporting documentation, or

■ examine the tables that have been produced from the ER diagrams and sup-
porting documentation, or

■ use a combination of both sources of information.

To ensure that you are comparing like with like, it’s important that each local
model has been created following Steps 1 and 2 of the methodology.

434 ■ Appendices

Perhaps the easiest way to merge several local data models together is

to first merge two of the data models to produce a new model, and then to

successively merge the remaining local data models until all the local models

are represented in the final global data model. This may prove a simpler

approach than trying to merge all the local data models at the same time.

TIP

Review the names and contents of entities/tables and their primary keys

It may be worthwhile reviewing the names and descriptions of entities/tables
that appear in the local data models by inspecting the data dictionary. Problems
can arise when two or more entities/tables:

■ have the same name but are, in fact, different (homonyms);

■ are the same but have different names (synonyms).

It may be necessary to compare the data content of each entity/table to resolve
these problems. In particular, you may use the primary keys (or candidate keys)
to help identify equivalent entities/tables that may be named differently across
user views. A comparison of the tables and primary keys in the Branch and
Business user views of StayHome is shown in Table C.1. The tables that are
common to both views are highlighted.

Review the names and contents of relationships/foreign keys

This activity is the same as that described for entities/tables. A comparison of
the relationships/foreign keys in the Branch and Business user views of
StayHome is shown in Table C.2. The relationships/foreign keys that are
common to both views are again highlighted.

Advanced logical database design ■ 435

Table C.1 Comparison of tables and primary keys for the Branch and Business user views of StayHome.

Branch user views Business user views

Table Primary key Table Primary key

Branch branchNo Branch branchNo

Staff staffNo Staff staffNo

Telephone telNo

Video catalogNo Video catalogNo

VideoForRent videoNo VideoForRent videoNo

Supplier supplierNo

VideoOrder orderNo

VideoOrderLine orderNo, catalogNo

RentalAgreement rentalNo RentalAgreement rentalNo

Member memberNo Member memberNo

Registration branchNo, memberNo Registration branchNo, memberNo

Actor actorNo

Role catalogNo, actorNo

Director directorNo

436 ■ Appendices

Table C.2 Comparison of relationships/foreign keys for the Branch and Business user views of
StayHome.

Branch user views Business user views

Child table Foreign key Parent table Child table Foreign key Parent table
Branch MgrStaffNo → Staff(staffNo) Branch MgrStaffNo → Staff(staffNo)

Telephone branchNo → Branch(branchNo)

Registration branchNo → Branch(branchNo) Registration branchNo → Branch(branchNo)

memberNo → Member(memberNo) memberNo → Member(memberNo)

staffNo → Staff(staffNo)

Staff branchNo → Branch(branchNo) Staff branchNo → Branch(branchNo)

supervisorStaffNo → Staff(staffNo)

Video directorNo → Director(directorNo) Video supplierNo → Supplier(supplierNo)

VideoForRent catalogNo → Video(catalogNo) VideoForRent catalogNo → Video(catalogNo)

branchNo → Branch(branchNo) branchNo → Branch(branchNo)

RentalAgreement memberNo → Member(memberNo) RentalAgreement memberNo → Member(memberNo)

videoNo → VideoForRent(videoNo) videoNo → VideoForRent(videoNo)

VideoOrder branchNo → Branch(branchNo)

VideoOrderLine orderNo → VideoOrder(orderNo)

catalogNo → Video(catalogNo)

Role actorNo → Actor(actorNo)

catalogNo → Video(catalogNo)

Merge entities/tables from the local data models

You should examine the name and content of each entity/table in the models
to be merged to determine whether entities/tables represent the same thing and
can therefore be merged. Typical activities involved in this task include:

■ Merge entities/tables with the same name and the same primary key.

■ Merge entities/tables with the same name using different primary keys.

■ Merge entities/tables with different names using the same or different pri-
mary keys.

Include (without merging) entities/tables unique to each local data model

The previous tasks should identify all entities/tables that are the same. All
remaining entities/tables are included in the global model without change.

Merge relationships/foreign keys from the local data models

In this step, you examine the name and purpose of each relationship/foreign
key in the data models. Before merging relationships/foreign keys, it’s impor-
tant to resolve any conflicts between the relationships such as differences in
multiplicity constraints. The activities in this step include merging relation-
ships/foreign keys with the same name and the same purpose, and then
merging relationships/foreign keys with different names but the same purpose.

Include (without merging) relationships/foreign keys unique to each local data model

Again, the previous task should identify relationships/foreign keys that are the
same (by definition, they must be between the same entities/tables, which
would have been merged together earlier). All remaining relationships/foreign
keys are included in the global model without change.

Check for missing entities/tables and relationships/foreign keys

Perhaps one of the most difficult tasks in producing the global model is identi-
fying missing entities/tables and relationships/foreign keys between different
local data models. If a corporate data model exists for the organization, which
identifies all of the important data used by an organization, this may reveal
entities/tables and relationships that do not appear in any local data model.
Alternatively, as a preventative measure, when interviewing the users of a spe-
cific user view, ask them to pay particular attention to the entities/tables and
relationships/foreign keys that also exist in other user views. Otherwise, exam-
ine the attributes/columns of each entity/table and look for references to
entities/tables in other local data models. You may find that you have an

Advanced logical database design ■ 437

attribute/column associated with an entity/table in one local data model that
corresponds to a primary key, alternate key, or even a nonkey attribute/column
of an entity/table in another local data model.

Check foreign keys

During this step, entities/tables and relationships may have been merged, pri-
mary keys changed, and new relationships identified. Check that the foreign
keys in child tables are still correct, and make any necessary modifications that
are required. The tables that represent the global logical data model for the
StayHome database are shown in Figure C.3.

Check integrity constraints and business rules

Check that the integrity constraints and business rules for the global logical
data model do not conflict with those originally specified for each user view. If
any new relationships have been identified and new foreign keys have been cre-
ated, ensure that appropriate referential integrity constraints are specified. Any
conflicts must be resolved in consultation with the users.

438 ■ Appendices

Figure C.3

Table structures for the global logical data model of StayHome.

Actor (actorNo, actorName)
Primary Key actorNo

Registration (branchNo, memberNo, staffNo, dateJoined)
Primary Key branchNo, memberNo
Foreign Key branchNo references Branch(branchNo)
Foreign Key memberNo references Member(memberNo)
Foreign Key staffNo references Staff(staffNo)

Branch (branchNo, street, city, state, zipCode, mgrStaffNo)
Primary Key branchNo
Alternate Key zipCode
Foreign Key mgrStaffNo references Staff(staffNo)

RentalAgreement (rentalNo, dateOut, dateReturn, memberNo, videoNo)
Primary Key rentalNo
Alternate Key memberNo, videoNo, dateOut
Foreign Key memberNo references Member(memberNo)
Foreign Key videoNo references Video(videoNo)

Role (catalogNo, actorNo, character)
Primary Key catalogNo, actorNo
Foreign Key catalogNo references Video(catalogNo)
Foreign Key actorNo references Actor(actorNo)

Staff (staffNo, name, position, salary, branchNo, supervisorStaffNo)
Primary Key staffNo
Foreign Key branchNo references Branch(branchNo)
Foreign Key supervisorStaffNo references Staff(staffNo)

Supplier (supplierNo, name, address, telNo, status)
Primary Key supplierNo
Alternate Key telNo

Telephone (telNo, branchNo)
Primary Key telNo
Foreign Key branchNo references Branch(branchNo)

Video (catalogNo, title, category, dailyRental, price, directorNo, supplierNo)
Primary Key catalogNo
Foreign Key directorNo references Director(directorNo)
Foreign Key supplierNo references Supplier(supplierNo)

VideoForRent(videoNo, available, catalogNo, branchNo)
Primary Key videoNo
Foreign Key catalogNo references Video(catalogNo)
Foreign Key branchNo references Branch(branchNo)

Director (directorNo, directorName)
Primary Key directorNo

Member (memberNo, fName, lName, address)
Primary Key memberNo

VideoOrder (orderNo, dateOrdered, dateReceived, branchNo)
Primary Key orderNo
Foreign Key branchNo references Branch(branchNo)

VideoOrderLine (orderNo, catalogNo, quantity)
Primary Key orderNo, catalogNo
Foreign Key orderNo references VideoOrder(orderNo)
Foreign Key catalogNo references Video(catalogNo)

Draw the global ER/table diagram

You now draw a final diagram that represents all the merged local logical data
models. If tables have been used as the basis for merging, we call the resulting dia-
gram a global table diagram, which shows primary keys and foreign keys. If
local ER diagrams have been used, the resulting diagram is simply a global ER dia-
gram. The global table diagram for the StayHome database is shown in Figure C.4.

Advanced logical database design ■ 439

Figure C.4

The global table diagram for the StayHome database system.

VideoOrderLine

Telephone

BranchIsAllocated

MemberRequests

Video

VideoForRent

RentalAgreement

Staff

Is

IsPartOf

Manages

Has

Supervisee
Supervises

Supervisor

1..*

1..1

1..1

1..*

1..1

1..*

1..1

0..*

1..1

1..*

0..*

1..1

0..1

1..*

1..1

0..*

1..1

0..1

PartOf

telNo {PK}
branchNo {FK}

Director

catalogNo {PK}
directorNo {FK}
supplierNo {FK}

directorNo

Comprises VideoOrder

1..11..*

1..3

1..1
Provides

branchNo {PK}
mgrStaffNo {FK}

videoNo {PK}
branchNo {FK}
catalogNo {FK}

memberNo {PK}rentalNo {PK}
videoNo {FK}

memberNo {FK}

Registration

1..*

Agrees

1..1

Registers Processes

0..*

staffNo {PK}
branchNo {FK}

supervisorStaffNo {FK}

Directs

Role

0..*

Features Plays Actor

actorNo {PK}1..11..*

1..* 1..1

1..1

Supplier

supplierNo

1..1

Supplies

1..1

Places

1..*

1..*

1..1

actorNo {PK, FK}
catalogNo {PK, FK}

orderNo {PK, FK}
catalogNo {PK, FK}

orderNo {PK}
branchNo {FK}

memberNo {PK, FK}
branchNo {PK, FK}

staffNo {FK}

Update the documentation

Update the documentation to reflect any changes made during the develop-
ment of the global data model. It’s very important that the documentation is
up to date and reflects the current data model. If changes are made to the
model subsequently, either during database implementation or during mainte-
nance, then the documentation should be updated at the same time.
Out-of-date information will cause considerable confusion at a later time.

Step 2.6.2 Check global logical data model

In this step you check the structure of the tables created for the global data
model using normalization and also check that these tables are capable of sup-
porting all user transactions, as you did in Steps 2.2 and 2.3 covered in Chapter
10. However, you need only check those areas of the model that resulted in any
change during the merging process. In a large system, this will significantly
reduce the amount of rechecking that needs to be performed.

Step 2.6.3 Check for future growth

It’s important that the global logical data model can be easily expanded. If the
model can sustain current requirements only, then the life of the model may be
relatively short and significant reworking may be necessary to accommodate new
requirements. It’s important to develop a model that is extensible, and has the abil-
ity to evolve to support new requirements with minimal effect on existing users.
Of course, this can be very difficult to achieve, as the organization may not know
what it wants to do in the future. Even if it does, it may be prohibitively expen-
sive in both time and money to accommodate possible future enhancements
now. Therefore, you may have to be very selective in what you accommodate.

440 ■ Appendices

Objective

To check the tables created from the global logical data model are appropri-

ately structured using normalization and support the required transactions,

if necessary.

Objective

To determine whether there are any significant changes likely in the foresee-

able future and to assess whether the global logical data model can

accommodate these changes.

Step 2.6.4 Review global logical data model with users

The global logical data model for the organization should now be complete and
accurate. The model and the documentation that describes the model should be
reviewed with the users to ensure that it’s a true representation of the data
requirements of the organization.

You are now ready to translate the logical design into a physical design. This
is covered in Steps 3 to 8 of the methodology, which we describe in Chapters 12
to 16.

Appendix summary
Step 2.6 of Step 2 of the logical database design methodology is
optional and only required when creating a reasonably complex data-
base system with multiple and varied user views that are to be managed
using the view integration approach.

Advanced logical database design ■ 441

Objective

To ensure that the global logical data model is a true representation of the

data requirements of the organization.

Steps 4.2 and 4.3 of the physical database design methodology presented in
Chapter 13 concern the selection of appropriate file organizations and indexes
for the base tables that have been created to represent the data requirements of
the organization (or the part of the organization) being modeled. In this appen-

Appendix D

File organizations
and indexes

In this appendix you will learn:

The distinction between primary and secondary storage.

The meanings of file organization and access method.

How heap files are organized.

How sequential files are organized.

How hash files are organized.

What an index is and how it can be used to speed up database retrievals.

The distinction between primary, secondary, and clustered indexes.

How multilevel indexes are organized.

How B+-Trees are organized.

How bitmap indexes are organized.

How join indexes are organized.

How to select an appropriate file organization.

How indexed clusters and hash clusters are organized.

dix, we introduce the main concepts regarding the physical storage of the data-
base on secondary storage devices such as magnetic disks and optical disks.
The computer’s primary storage, that is main memory, is inappropriate for
storing the database. Although the access times for primary storage are much
faster than secondary storage, primary storage is not large or reliable enough to
store the quantity of data that a typical database might require. As the data
stored in primary storage disappears when power is lost, we refer to primary
storage as volatile storage. In contrast, the data on secondary storage persists
through power loss, and is consequently referred to as non-volatile storage.
Further, the cost of storage per unit of data is an order of magnitude greater for
primary storage than for disk.

In the following section we introduce the basic concepts of physical storage
and then discuss the main types of file organization, namely heap (unsorted),
sequential (sorted), and hash files. In Section D.5, we discuss how indexes can
be used to improve the performance of database retrievals. In particular, we
look at multilevel indexes, B+-Trees, bitmap indexes, and join indexes. The
examples in this appendix are drawn from the StayHome case study introduced
in Section 6.4.4.

D.1 Basic concepts
The database on secondary storage is organized into one or more files, where
each file consists of one or more records and each record consists of one or more
fields. Typically, a record corresponds to an entity occurrence and a field to an
attribute/column. Consider the Staff table from the StayHome case study shown
in Figure D.1.

We may expect each record in this table to map onto a record in the operat-
ing system file that holds the Staff table. Each field in a record would store one
column from the Staff table. When you request a record from the DBMS, for
example Staff record S0003, the DBMS maps this logical record onto a physical
record and retrieves the physical record into the DBMS buffers in primary storage
using the operating system file access routines.

File organizations and indexes ■ 443

staffNo name position salary branchNo

S1500 Tom Daniels Manager 46000 B001

S0003 Sally Adams Assistant 30000 B001

S0010 Mary Martinez Manager 50000 B002

S3250 Robert Chin Supervisor 32000 B002

S2250 Sally Stern Manager 48000 B004

S0415 Art Peters Manager 41000 B003

Figure D.1

Staff table from the
StayHome case
study.

The physical record is the unit of transfer between disk and primary storage,
and vice versa. Generally, a physical record consists of more than one logical
record although, depending on size, a logical record may correspond to one
physical record. It is even possible for a large logical record to span more than
one physical record. The terms ‘block’ and ‘page’ are generally used in place of
physical record. In the remainder of this appendix we use the term ‘page’. For
example, the Staff records in Figure D.1 may be stored on two pages, as shown
in Figure D.2.

The order in which records are stored and accessed in the file is dependent
on the file organization:

The main types of file organization are:

■ Heap (unordered) files Records are placed on disk in no particular order.

■ Sequential (sorted) files Records are ordered by the value of a specified field.

■ Hash files Records are placed on disk according to a hash function.

Along with a file organization, there is a set of access methods:

Since some access methods can be applied only to certain file organizations
(for example, we cannot apply an indexed access method to a file without an
index), the terms file organization and access method are used interchangeably.
In the remainder of this appendix, we discuss the main types of file organiza-
tion and provide guidelines for choosing appropriate file organizations.

444 ■ Appendices

Figure D.2

Storage of the Staff
table in pages.

staffNo name position salary branchNo

S1500 Tom Daniels Manager 46000 B001

S0003 Sally Adams Assistant 30000 B001

S0010 Mary Martinez Manager 50000 B002

S3250 Robert Chin Supervisor 32000 B002

S2250 Sally Stern Manager 48000 B004

S0415 Art Peters Manager 41000 B003

Page

1

2

File organization

A way of arranging the records in a file when the file is stored on disk.

Access method

The steps involved in storing and retrieving records from a file.

D.2 Heap files
An unordered file, sometimes called a heap file, is the simplest type of file organi-
zation. Records are placed in the file in the same order as they are inserted. A
new record is inserted in the last page of the file; if there is insufficient space in
the last page, a new page is added to the file. This makes insertion very effi-
cient. However, as a heap file has no particular ordering with respect to field
values, a linear search must be performed to access a record. A linear search
involves reading pages from the file until the required record is found. This
makes retrievals from heap files that have more than a few pages relatively slow,
unless the retrieval involves a large proportion of the records in the file.

To delete a record, the required page first has to be retrieved, the record marked
as deleted, and the page written back to disk. The space with deleted records is not
reused. Consequently, performance progressively deteriorates as deletions occur.
This means that heap files have to be periodically reorganized by the Database
Administrator (DBA) to reclaim the unused space of deleted records.

Heap files are one of the best organizations for bulk loading data into a table,
as records are inserted at the end of the sequence; there is no overhead incurred
in calculating what page the record should go on.

D.3 Ordered files
The records in a file can be sorted on the values of one or more of the fields,
forming a key-sequenced data set. The field(s) that the file is sorted on is called
the ordering field. If the ordering field is also a key field of the file, and therefore
guaranteed to have a unique value in each record, the field is also called the
ordering key for the file. For example, consider the following SQL query:

SELECT *
FROM Staff
ORDER BY staffNo;

If the records of the Staff table are already ordered according to the ordering
column staffNo, it should be possible to reduce the execution time for the query,
as no sorting is necessary.

File organizations and indexes ■ 445

Keys defined in
Section 2.2.3

Although in Section 2.2 we stated that records in the relational model are

unordered, this applies as an external (logical) property not as an implementa-

tional (physical) property. There will always be a first record, second record,

and nth record.

If the records are ordered on staffNo, under certain conditions we can use a
binary search to execute queries that involve a search condition based on staffNo.
For example, consider the following SQL query:

SELECT *
FROM Staff
WHERE staffNo = ‘S1500’;

If we use the sample records shown in Figure D.1 and for simplicity assume
there is one record per page, we would get the ordered file shown in Figure D.3.
The binary search proceeds as follows:

(1) Retrieve the mid-page of the file. Check whether the required record is
between the first and last record of this page. If so, the required record lies
in this page and no more pages need to be retrieved.

(2) If the value of the key field in the first record on the page is greater than the
required value, the required value (if it exists) occurs on an earlier page.
Therefore, we repeat the above steps using the lower half of the file as the
new search area.

(3) If the value of the key field in the last record on the page is less than
the required value, the required value occurs on a later page, and so we
repeat the above steps using the top half of the file as the new search area.
In this way, half the search space is eliminated from the search with each
page retrieved.

In our case, the middle page is page 3, and the record on the retrieved page
(S0415) does not equal the one we want (S1500). The value of the key field
in page 3 is less than the one we want, so we can discard the first half of the
file from the search. We now retrieve the mid-page of the top half of the file,
that is page 5. This time the value of the key field (S2250) is greater than
S1500, which enables us to discard the top half of this search space. We now
retrieve the mid-page of the remaining search space (page 4), which is the
record we want.

446 ■ Appendices

staffNo name position salary branchNo

S0003 Sally Adams Assistant 30000 B001

S0010 Mary Martinez Manager 50000 B002

S0415 Art Peters Manager 41000 B003

S1500 Tom Daniels Manager 46000 B001

S2250 Sally Stern Manager 48000 B004

S3250 Robert Chin Supervisor 32000 B002

Figure D.3

Binary search on
ordered Staff file.

Page

1

2

3

4

5

6

(1)

(3)

(2)

In general, the binary search is more efficient than a linear search. However,
binary search is applied more frequently to data in primary storage than sec-
ondary storage.

Inserting and deleting records in a sorted file is problematic because the
order of records has to be maintained. To insert a new record, we must find the
correct position in the ordering for the record and then find space to insert it. If
there is sufficient space in the required page for the new record, then the single
page can be reordered and written back to disk. If this is not the case, then it
would be necessary to move one or more records onto the next page. Again, the
next page may have no free space and the records on this page must be moved,
and so on.

Inserting a record near the start of a large file could be very time-consuming.
One solution is to create a temporary unsorted file, called an overflow file.
Insertions are added to the overflow file and, periodically, the overflow file is
merged with the main sorted file. This makes insertions very efficient, but has a
detrimental effect on retrievals. If the record is not found during the binary
search, the overflow file has to be searched linearly. Inversely, to delete a record
we must reorganize the records to remove the now free slot.

Ordered files are rarely used for database storage unless a primary index is
added to the file (see Section D.5.1).

D.4 Hash files
In a hash file, records do not have to be written sequentially to the file. Instead,
a hash function calculates the address of the page in which the record is to be
stored based on the values of one or more of the fields in the record. The base
field is called the hash field, or if the field is also a key field of the file, it is called
the hash key. Records in a hash file will appear to be randomly distributed
across the available file space. For this reason, hash files are sometimes called
random, or direct, files.

The hash function is chosen so that records are as evenly distributed as poss-
ible throughout the file. One technique, called division–remainder hashing, uses
the MOD function, which takes the field value, divides it by some predeter-
mined integer value, and uses the remainder of this division as the disk address.

The problem with most hashing functions is that they do not guarantee a
unique address because the number of possible values a hash field can take is typi-
cally much larger than the number of available addresses for records. Each address
generated by a hashing function corresponds to a page, or bucket, with slots for
multiple records. Within a bucket, records are placed in order of arrival. When the
same address is generated for two or more records, a collision is said to have
occurred and we must insert the second record in another position. Collision man-
agement complicates hash file management and degrades overall performance.

File organizations and indexes ■ 447

D.5 Indexes
In this section, we discuss techniques for making the retrieval of data more effi-
cient using indexes.

An index in a database is similar to an index in a book. It is an auxiliary
structure associated with a file that can be referred to when searching for an
item of information, just like searching the index of a book, in which you look
up a keyword and get a list of one of more pages the keyword appears on. An
index prevents you from having to scan sequentially through the file each time
you want to find the item. In the case of database indexes, the required item
will be one or more records in a file. As in the book index analogy, the index is
ordered, and each index entry contains the item required and one or more loca-
tions (record identifiers) where the item can be found.

While indexes are not strictly necessary to use the DBMS, they can have a
significant impact on performance. As with the book index, you could find the
desired keyword by looking through the entire book, but this would be tedious
and time-consuming. Having an index at the back of the book in alphabetical
order of keyword allows you to go directly to the page or pages you want.

An index structure is associated with a particular search key, and contains
records consisting of the key value and the address of the logical record in the
file containing the key value. The file containing the logical records is called the
datafile and the file containing the index records is called the index file. The
values in the index file are ordered according to the indexing field, which is usu-
ally based on a single column.

D.5.1 Types of indexes

There are different types of indexes, the main ones being:

Primary index The datafile is sequentially ordered by an ordering key field (see
Section D.3), and the indexing field is built on the ordering key field, which is
guaranteed to have a unique value in each record.

Clustering index The datafile is sequentially ordered on a nonkey field, and
the indexing field is built on this nonkey field, so that there can be more than
one record corresponding to a value of the indexing field. The nonkey field is
called a clustering field.

Secondary index An index that is defined on a non-ordering field of the data-
file.

448 ■ Appendices

Index

A data structure that allows the DBMS to locate particular records in a file more

quickly, and thereby speed up response to user queries.

A file can have at most one primary index or one clustering index, and in
addition can have several secondary indexes. In addition, an index can be
sparse or dense: a sparse index has an index record for only some of the search
key values in the file; a dense index has an index record for every search key
value in the file.

The search key for an index can consist of one or more fields. Figure D.4
looks at four dense indexes on the (reduced) Staff table: one based on the salary
column, one based on the branchNo column, one based on the composite index
(salary, branchNo), and one based on the composite index (branchNo, salary).

D.5.2 Secondary indexes

A secondary index is also an ordered file similar to a primary index. However,
whereas the datafile associated with a primary index is sorted on the index key,
the datafile associated with a secondary index may not be sorted on the index-
ing key. Further, the secondary index key need not contain unique values,
unlike a primary index. For example, we may wish to create a secondary index
on the branchNo column of the Staff table. From Figure D.1, we can see that the
values in the branchNo column are not unique.

Secondary indexes improve the performance of queries that use columns
other than the primary key. However, the improvement to queries has to be
balanced against the overhead involved in maintaining the indexes while the
database is being updated. This is part of physical database design and was dis-
cussed in Chapter 13.

File organizations and indexes ■ 449

staffNo name salary branchNo

S1500 Tom Daniels 46000 B001

S0003 Sally Adams 30000 B001

S0010 Mary Martinez 50000 B002

S3250 Robert Chin 32000 B002

Figure D.4

Indexes on the Staff table: (a) (salary, branchNo) and salary; (b) (branchNo, salary) and branchNo.

30000, B001

32000, B002

46000, B001

50000, B002

30000

32000

46000

50000

(salary, branchNo) salary

staffNo name salary branchNo

S1500 Tom Daniels 46000 B001

S0003 Sally Adams 30000 B001

S0010 Mary Martinez 50000 B002

S3250 Robert Chin 32000 B002

B001, 30000

B001, 46000

B002, 32000

B002, 50000

B001

B001

B002

B002

(branchNo, salary) branchNo

(a)

(b)

D.5.3 Multilevel indexes

Consider again the Staff table, this time sorted on the salary column, and the
query ‘Find all staff with a salary between $32,000 and $45,000’. We have
already noted that if the file is ordered, we can perform a binary search to find
the first record and then a sequential scan from that point on to find the
remaining qualifying records. However, if the Staff file is large, the initial binary
search could be quite slow.

One method to overcome this is to create an index file based on the salary
column. If the index contains an entry for the first value of the salary column
on each page of the datafile, we could then perform a binary search on the index
file to find the page containing the first salary value greater than $32,000.

However, when the index file becomes large and extends over many pages,
the search time for the required index increases. A multilevel index attempts to
overcome this problem by reducing the search range. It does this by treating the
index like any other file, splits the index into a number of smaller indexes, and
maintains an index to the indexes. Figure D.5 shows an example of a two-level
(sparse) index for the Staff table of Figure D.1. Each page in the datafile can
store two records. For illustration, there are also two index records per page,
although in practice there would be many index records per page. Each index
record stores an access key (salary) value and a page address. The stored access
key value is the first in the addressed page.

To locate the records we require, we start from the second-level index and
search the page for the last access key value that is less than or equal to 32 000,
in our case 30 000. This record contains an address to the first-level index page
to continue the search. Repeating the above process leads to page 1 in the data-

450 ■ Appendices

S0003 Sally Adams Assistant 30000 B001

S3250 Robert Chin Supervisor 32000 B002

S0415 Art Peters Snr Assistant 41000 B003

S1500 Tom Daniels Manager 46000 B001

S2250 Sally Stern Manager 48000 B004

S0010 Mary Martinez Manager 50000 B002

30000 ●

41000 ●

48000 ●

30000 ●

48000 ●

Page

1

2

3

Level 2 index Level 1 index Data File

Figure D.5

Example of multilevel index.

file, where the first record is stored. We can now find the remaining qualifying
records by reading serially through the datafile.

IBM’s Indexed Sequential Access Method (ISAM) is based on a two-level
index structure. Insertion is handled by overflow pages, as discussed in Section
D.3. In general, an n-level index can be built, although three levels are common
in practice; a file would have to be very large to require more than three levels.
In the following section, we discuss a particular type of multilevel dense index
called a B+-Tree.

D.5.4 B+-Trees

The major disadvantage of ISAM is that as the database grows, performance
deteriorates rapidly due to overflows and so the DBA needs to periodically reor-
ganize the index. Reorganization not only is expensive but makes the file
unavailable while it takes place. The B+-Tree structure overcomes this problem
by splitting a node whenever it overflows.

A B+-Tree is a special type of multilevel index in which the number of levels
from the top of the tree (called the root node) to the bottom of the tree (called
the leaf nodes) are the same; in other words, the tree is balanced. The leaf nodes
contain pointers to the records of the table, rather than the records themselves.

A B+-Tree always takes approximately the same time to access any data record
by ensuring that the same number of nodes is searched: in other words, by
ensuring that the tree has a constant depth. Being a dense index, every record is
addressed by the index so there is no requirement for the datafile to be sorted.
However, balancing can be costly to maintain as the tree contents are updated.

In practice, each node in the tree is actually a page, so we can generally store
several key values on the same page. For example, if we assume that a page has
4096 bytes and the key field and its associated pointer requires 4 bytes of stor-
age, and each page has a 4-byte pointer to the next node on the same level, we
could store (4096 – 4)/(4 + 4) = 511 index records per page. The root can store
511 records and can have 512 children. Each child can also store 511 records,
giving a total of 261 632 records. Each child can also have 512 children, giving
a total of 262 144 children on level 2 of the tree. Each of these children can
have 511 records giving a total of 133 955 584. This gives a theoretical maxi-
mum number of index records as:

root: 511
Level 1: 261632
Level 2: 133955584
TOTAL 134217727

Thus, we can randomly access one record in the file containing 134 217 727

File organizations and indexes ■ 451

records within four disk accesses (in fact, the root is normally stored in main
memory, so there is one less disk access). In practice, however, the number of
records held in each page would be smaller as not all pages would be full.

D.5.5 Bitmap indexes

Another type of index that is becoming increasingly popular, particularly in
data warehousing, is the bitmap index. Bitmap indexes are generally used on
columns that have a sparse domain (that is, the domain contains a relatively
low number of possible values). Rather than storing the actual value of the
column, the bitmap index stores a bit vector for each column indicating which
records contain this particular domain value. Each bit that is set to 1 in the
bitmap corresponds to a row identifier. If the number of different domain
values is small, then bitmap indexes are very space efficient.

For example, consider the Video table shown in Figure D.6(a). Let’s assume
that the category column can take only one of the values present (that is, Action,
Children, Fantasy, or Sci-Fi) and similarly let’s assume that the dailyRental
column can take only one of the values present (that is, $4.00, $4.50, or $5.00).
We could construct bitmap indexes to represent these two columns as shown in
Figure D.6(b).

Bitmap indexes provide two important advantages over B+-tree indexes.

452 ■ Appendices

Figure D.6:
(a) Video table;
(b) bitmap indexes
on the category and
dailyRental columns.

catalogNo title category dailyRental price directorNo

207132 Die Another Day Action 5.00 21.99 D1001

902355 Harry Potter Children 4.50 14.50 D7834

330553 Lord of the Rings Fantasy 5.00 31.99 D4576

781132 Shrek Children 4.00 18.50 D0078

445624 Men in Black II Action 4.00 29.99 D5743

634817 Independence Day Sci-Fi 4.50 32.99 D3765

4.00 4.50 5.00

0 0 1

0 1 0

0 0 1

1 0 0

1 0 0

0 1 0

Action Children Fantasy Sci-Fi

1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

(a)

(b)

First, they can be more compact than B+-tree indexes requiring less storage
space and they lend themselves to compression techniques. Second, bitmap
indexes can provide significant performance improvements when the query
involves multiple predicates each with its own bitmap index. For example, con-
sider the query:

SELECT catalogNo, title
FROM Video
WHERE category = ‘Fantasy’ AND dailyRental = 5.00;

In this case, we can take the third bit vector for category and perform a bit-
wise AND with third bit vector for dailyRental to obtain a bit vector that has a 1
for every Fantasy video with a daily rental rate of $5.00.

D.5.6 Join indexes

Another type of index that is becoming increasingly popular, again particularly in
data warehousing, is the join index. A join index is an index on columns from two
or more tables that come from the same domain. For example, consider the
extended Branch and Member tables shown in Figure D.7(a). We could create a join
index on the nonkey city column to generate the index table shown in Figure
D.7(b). We’ve chosen to sort the join index on the BranchRowID but it could
have been sorted on any of the three columns. Sometimes two join indexes are
created, one as shown and one with the two rowID columns reversed.

This type of query could be common in data warehousing applications
where we’re attempting to find out facts about related pieces of data (in this
case, we’re attempting to find how many members come from a city that has an
existing branch). The index join precomputes the join of the Branch and Member
tables based on the city column, thereby removing the need to perform the join
each time the query is run, and improving the performance of the query. This
could be particularly important if the query has a high frequency. Oracle com-
bines the bitmap index and the join index to provide a bitmap join index.

D.6 Guidelines for selecting file organizations
As an aid to understanding file organizations more fully, in this section we provide
guidelines for selecting a file organization based on the following types of files:

■ heap

■ hash

■ Indexed Sequential Access Method (ISAM)

■ B+-Tree.

File organizations and indexes ■ 453

454 ■ Appendices

Figure D.7

(a) Branch and Member tables; (b) join index on the nonkey city column.

rowID branchNo street city state zipCode mgrStaffNo

20001 B001 8 Jefferson Way Portland OR 97201 S1500

20002 B002 City Center Plaza Seattle WA 98122 S0010

20003 B003 14 – 8th Avenue New York NY 10012 S0415

20004 B004 16 – 14th Avenue Seattle WA 98128 S2250

20005 …

rowID memberNo fName lName street city state zipCode

30001 M250178 Bob Adams 57 – 11th Avenue Seattle WA 98105

30002 M166884 Art Peters 89 Redmond Rd Portland OR 97117

30003 M115656 Serena Parker 22 W. Capital Way Portland OR 97201

30004 M284354 Don Nelson 123 Suffolk Lane Seattle WA 98117

30005 …

Member

Branch

branchRowID memberRowID city

20001 30002 Portland

20001 30003 Portland

20002 30001 Seattle

20002 30004 Seattle

20004 30001 Seattle

20004 30004 Seattle

20005 …

Join Index

(a)

(b)

Heap (unsorted)

Heap is a good storage structure in the following situations:

(1) When data is being bulk-loaded into the table. For example, you may want
to insert a batch of records into a table after it has been created. If you
choose heap as the initial file organization, it may be more efficient to
restructure the file after you’ve completed the insertions.

(2) The table is only a few pages long. In this case, the time to locate any
record is short, even if the entire table has to be searched sequentially.

(3) When every record in the table has to be retrieved (in any order) every time
the table is accessed. For example, retrieve the addresses of all members of
StayHome.

(4) When the table has an additional access structure, such as an index key,
heap storage can be used to conserve space.

Heap files are inappropriate when only selected records of a table are to
be accessed.

Hash

Hash is a good storage structure when records are retrieved based on an exact
match on the hash field value, particularly if the access order is random. For
example, if the Member table is hashed on memberNo, retrieval of the record with
memberNo equal to M250178 is efficient. However, hash is not a good storage
structure in the following situations:

(1) When records are retrieved based on a pattern match of the hash field
value. For example, retrieve all members whose member number (memberNo)
begins with the characters ‘M2’.

(2) When records are retrieved based on a range of values for the hash field. For
example, retrieve all members with a member number between ‘M200000’
and ‘M200100’.

(3) When records are retrieved based on a column other than the hash
column. For example, if the Member table is hashed on memberNo, then hash-
ing could not be used to search for a record based on the lName column. In
this case, it would be necessary to perform a linear search to find the
record, or add lName as a secondary index.

(4) When records are retrieved based on only part of the hash field. For exam-
ple, if the Role table is hashed on catalogNo and actorNo, then hashing could
not be used to search for a record based on the catalogNo column alone.
Again, it would be necessary to perform a linear search to find the record.

File organizations and indexes ■ 455

(5) When the hash column is frequently updated. When a hash column is
updated, the DBMS must delete the entire record and possibly relocate it to
a new address (if the hash function results in a new address). Thus, frequent
updating of the hash column impacts performance.

Indexed Sequential Access Method (ISAM)

ISAM is a more versatile storage structure than hash; it supports retrievals based
on exact key match, pattern matching, range of values, and part key specifica-
tion. However, the ISAM index is static, created when the file is created. Thus,
you’ll find that the performance of an ISAM file deteriorates as the table is
updated. Updates also cause an ISAM file to lose the access key sequence, so
that retrievals in order of the access key will become slower. These two prob-
lems are overcome by the B+-Tree file organization.

B+-Tree

Again, B+-Tree is a more versatile storage structure than hashing. It supports
retrievals based on exact key match, pattern matching, range of values, and part
key specification. The B+-Tree index is dynamic, growing as the table grows.
Thus, unlike ISAM, the performance of a B+-Tree file does not deteriorate as the
table is updated. The B+-Tree also maintains the order of the access key even
when the file is updated, so retrieval of records in the order of the access key is
more efficient than ISAM. However, if the table is not frequently updated, the
ISAM structure may be more efficient as it has one less level of index than the
B+-Tree, whose leaf nodes contain pointers to the actual records of the table
rather than the actual records themselves.

D.7 Clustered and non-clustered tables
Some DBMSs, such as Oracle, support clustered and non-clustered tables. The
choice of whether to use a clustered or non-clustered table depends on the
analysis of the transactions undertaken previously, but the choice can have an
impact on performance. In this section, we briefly examine both types of struc-
tures and provide guidelines for the use of clustered tables.

Clusters are groups of one or more tables physically stored together because
they share common columns and are often used together. With related records
being physically stored together, disk access time is improved. The related
columns of the tables in a cluster are called the cluster key. The cluster key is
stored only once, and so clusters store a set of tables more efficiently than if the
tables were stored individually (not clustered).

456 ■ Appendices

Figure D.8 illustrates how the Branch and Staff tables would be stored if we
clustered the tables based on the column branchNo. When these two tables are
clustered, each unique branchNo value is stored only once, in the cluster key. To
each branchNo value are attached the columns from both these tables.

As we now discuss, Oracle supports two types of clusters: indexed clusters
and hash clusters.

D.7.1 Indexed clusters

In an indexed cluster, records with the same cluster key are stored together.
Oracle suggests using indexed clusters when:

■ queries retrieve records over a range of cluster key values;

■ clustered tables may grow unpredictably.

Clusters can improve performance of data retrieval, depending on the data dis-
tribution and what SQL operations are most often performed on the data. In
particular, tables that are joined in a query benefit from the use of clusters
because the records common to the joined tables are retrieved with the same
I/O operation.

To create an indexed cluster in Oracle called BranchIndexedCluster with the
cluster key column branchNo, we could use the following SQL statement:

CREATE CLUSTER BranchIndexedCluster
(branchNo CHAR(4))

SIZE 512
STORAGE (INITIAL 100K NEXT 50K PCTINCREASE 10);

File organizations and indexes ■ 457

Figure D.8

How the Branch and Staff tables would be stored clustered on branchNo.

street city state zipCode mgrStaffNo branchNo staffNo name position salary

8 Jefferson Way Portland OR 97201 S1500 B001 S1500 Tom Daniels Manager 46000

S0003 Sally Adams Assistant 30000

City Center Plaza Seattle WA 98122 S0010 B002 S0010 Mary Martinez Manager 50000

S3250 Robert Chin Supervisor 32000

…

Branch table

Cluster key

Staff table

The SIZE parameter specifies the amount of space (in bytes) to store all
records with the same cluster key value. The size is optional and, if omitted,
Oracle reserves one data block for each cluster key value. The INITIAL parameter
specifies the size (in bytes) of the cluster’s first extent, and the NEXT parameter
specifies the size (in bytes) of the next extent to be allocated. The PCTIN-
CREASE parameter specifies the percentage by which the third and subsequent
extents grow over the preceding extent (default 50). In our example, we have
specified that each subsequent extent should be 10 percent larger than the pre-
ceding extent.

Once the hash cluster has been created, we can create the tables that will be
part of the structure. For example:

CREATE TABLE Branch
(branchNo CHAR(4) PRIMARY KEY,
…)

CLUSTER BranchIndexedCluster (branchNo);

Guidelines for using indexed clusters

You may find the following guidelines helpful when deciding whether to clus-
ter tables:

■ Consider clustering tables that are often accessed in join statements.

■ Do not cluster tables if they are joined only occasionally or their common
column values are modified frequently. (Modifying a record's cluster key
value takes longer than modifying the value in an unclustered table, because
Oracle may have to migrate the modified record to another block to main-
tain the cluster.)

■ Do not cluster tables if a full search of one of the tables is often required. (A
full search of a clustered table can take longer than a full search of an unclus-
tered table. Oracle is likely to read more blocks because the tables are stored
together.)

■ Consider clustering tables involved in one-to-many (1:*) relationships if you
often select a record from the parent table and then the corresponding
records from the child table. (Child records are stored in the same data
block(s) as the parent record, so they are likely to be in memory when you
select them, requiring Oracle to perform less I/O.)

■ Consider storing a child table alone in a cluster if you often select many
child records of the same parent. (This measure improves the performance of
queries that select child records of the same parent but does not decrease the
performance of a full search of the parent table.)

458 ■ Appendices

1:* relationships
defined in
Section 7.5.2

■ Do not cluster tables if the data from all tables with the same cluster key
value exceeds more than one or two Oracle blocks. (To access a record in a
clustered table, Oracle reads all blocks containing records with that value. If
these records occupy multiple blocks, accessing a single record could require
more reads than accessing the same record in an unclustered table.)

D.7.2 Hash clusters

Hash clusters also cluster table data in a manner similar to index clusters.
However, a record is stored in a hash cluster based on the result of applying a
hash function to the record’s cluster key value. All records with the same hash
key value are stored together on disk. Oracle suggests using hash clusters when:

■ queries retrieve records based on equality conditions involving all cluster key
columns (for example, return all records for branch B001);

■ clustered tables are static or we can determine the maximum number
of records and the maximum amount of space required by the cluster when
it is created.

To create a hash cluster in Oracle called BranchHashCluster clustered by the
column branchNo, we could use the following SQL statement:

CREATE CLUSTER BranchHashCluster
(branchNo CHAR(4))
HASH IS branchNo HASHKEYS 5000;

Guidelines for using hash clusters

You may find the following guidelines helpful when deciding whether to use
hash clusters:

■ Consider using hash clusters to store tables that are frequently accessed using
a search clause containing equality conditions with the same column(s).
Designate these column(s) as the cluster key.

■ Store a table in a hash cluster if you can determine how much space is
required to hold all records with a given cluster key value, both now and in
the future.

■ Do not use hash clusters if space is scarce and you cannot afford to allocate
additional space for records to be inserted in the future.

■ Do not use a hash cluster to store a constantly growing table if the process of
occasionally creating a new, larger hash cluster to hold that table is impractical.

■ Do not store a table in a hash cluster if a search of the entire table is often
required and you must allocate a significant amount of space to the hash
cluster in anticipation of the table growing. (Such full searches must read all

File organizations and indexes ■ 459

blocks allocated to the hash cluster, even though some blocks may contain
few records. Storing the table alone would reduce the number of blocks read
by a full table search.)

■ Do not store a table in a hash cluster if your application frequently modifies
the cluster key values.

■ Storing a single table in a hash cluster can be useful, regardless of whether
the table is often joined with other tables, provided that hashing is appropri-
ate for the table based on the previous guidelines.

Appendix summary
Heap files are good for inserting a large number of records into the file.
They are inappropriate when only selected records are to be retrieved.

Hash files are good when retrieval is based on an exact key match. They
are not good when retrieval is based on pattern matching, range of
values, part keys, or when retrieval is based on a column other than the
hash field.

ISAM is more versatile than hashing, supporting retrievals based on
exact key match, pattern matching, range of values, and part key speci-
fication. However, the ISAM index is static and so performance
deteriorates as the table is updated. Updates also cause the ISAM file to
lose the access key sequence, so that retrievals in order of the access
key become slower.

These two problems are overcome by the B+-Tree file organization,
which has a dynamic index. If a table is not frequently updated or not
very large nor likely to be, the ISAM structure may be more efficient as
it has one less level of index than the B+-Tree, whose leaf nodes contain
record pointers.

Secondary indexes provide a mechanism for specifying an additional key
for a base table that can be used to retrieve data more efficiently.
However, there is an overhead involved in the maintenance and use of
secondary indexes that has to be balanced against the performance
improvement gained when retrieving data.

Clusters are groups of one or more tables physically stored together
because they share common columns and are often used together. With
related records being physically stored together, disk access time is
improved. The related columns of the tables in a cluster are called the

460 ■ Appendices

cluster key. The cluster key is stored only once, and so clusters store a
set of tables more efficiently than if the tables were stored individually
(not clustered). Oracle supports two types of clusters: indexed clusters
and hash clusters.

File organizations and indexes ■ 461

In this appendix, we introduce some common data models that you may find
useful. In fact, it has been estimated that one-third of a data model consists of
common constructs that are applicable to most companies and the remaining
two-thirds are either industry-specific or company-specific. Thus, most data
modeling work is re-creating constructs that have already been produced many
times before in other companies.

The two mains aims of this appendix therefore are to provide you with:

(1) additional knowledge of building data models;

(2) data model templates that you may find useful in your business. The
models featured here may not represent your company exactly, but they
may provide a starting point from which you can develop a more suitable
model that matches your company’s specific requirements.

We provide models for the following common business areas:

■ Customer order entry

■ Inventory control

■ Asset management

■ Project management

Appendix E

Common data models

In this appendix you will learn:

More about building logical data models.

About common logical data models.

■ Course management

■ Human resource management

■ Payroll management.

We also provide the following data models which are less common but may still
be useful from both a business perspective and a learning perspective:

■ Vehicle rentals

■ Student accommodation

■ Client transportation

■ Publisher printing

■ County library

■ Real estate rentals

■ Travel agent

■ Student results.

In each case, we provide a short description of the requirements, and show an
example of a typical logical data model and the mapping of the model to a set
of tables. We assume that you are familiar with the modeling notation used
throughout this book. If you are not, look at Chapter 7 on ER modeling, which
introduces the main concepts and notations we use in this appendix. You will
also find a summary of the database design methodology in Appendix B.

E.1 Customer order entry
A company wishes to create a database for its order entry activities. A customer
can place one or more orders, with each order for one or more products. Each
order gives rise to one invoice, which can be paid by a number of methods,
such as check, credit card, or cash. The name of the employee who initially
processes the customer order is recorded.

An employee in the Shipping Department is responsible for packaging the
order and sending it to the customer. If an ordered product is not in stock,
Shipping send out what is in stock, so more than one shipment may be
required to fulfill the order. The logical data model is shown in Figure E.1 and
the associated tables in Figure E.2.

Common data models ■ 463

464 ■ Appendices

Figure E.1

Logical data model for customer order entry.

Invoice

invoiceNo

1..1

PaymentMethod

pMethodNo 1..1

Product

productNo

1..1

pMethodFor

1..*

Order

orderNo

0..*

Customer

customerNo 1..1

OrderDetail

1..1

Places

1..* 1..1

Has

1..*

PartOf

Raises
1..1 1..*

Employee

employeeNo

Shipment

1..*

1..1

Prepares

0..*

PackagedIn

Processes
1..1 1..*

shipmentNo

ShipmentMethod

1..1

sMethodNo

sMethodFor

Common data models ■ 465

Figure E.2

Tables for customer order entry.

Customer (customerNo, customerName, customerStreet, customerCity, customerState,
customerZipCode, custTelNo, custFaxNo, DOB, maritalStatus, creditRating)
Primary Key customerNo
Alternate Key custTelNo
Alternate Key custFaxNo

Employee (employeeNo, title, firstName, middleName, lastName, address, workTelExt, homeTelNo,
empEmailAddress, socialSecurityNumber, DOB, position, sex, salary, dateStarted)
Primary Key employeeNo
Alternate Key socialSecurityNumber

Invoice (invoiceNo, dateRaised, datePaid, creditCardNo, holdersName, expiryDate, orderNo,
pMethodNo)
Primary Key invoiceNo
Foreign Key orderNo references Order(orderNo)
Foreign Key pMethodNo references PaymentMethod(pMethodNo)

Order (orderNo, orderDate, billingStreet, billingCity, billingState, billingZipCode, promisedDate,
status, customerNo, employeeNo)
Primary Key orderNo
Foreign Key customerNo references Customer(customerNo)
Foreign Key employeeNo references Employee(employeeNo)

OrderDetail (orderNo, productNo, quantityOrdered)
Primary Key orderNo, productNo
Foreign Key orderNo references Order(orderNo)
Foreign Key productNo references Product(productNo)

PaymentMethod (pMethodNo, paymentMethod)
Primary Key pMethodNo

Product (productNo, productName, serialNo, unitPrice, quantityOnHand, reorderLevel,
reorderQuantity, reorderLeadTime)
Primary Key productNo
Alternate Key serialNo

Shipment (shipmentNo, quantity, shipmentDate, completeStatus, orderNo, productNo,
employeeNo, sMethodNo)
Primary Key shipmentNo
Foreign Key orderNo, productNo references OrderDetail(orderNo, productNo)
Foreign Key employeeNo references Employee(employeeNo)
Foreign Key sMethodNo references ShipmentMethod(sMethodNo)

ShipmentMethod (sMethodNo, shipmentMethod)
Primary Key sMethodNo

E.2 Inventory control
A company wishes to create a database to control its inventory, which consists
of a number of products divided into a number of categories, such as clothing,
food, and stationery. An employee raises a purchase order when a product has
to be reordered from the supplier. The tracking records supplies received, units
sold, and any wastage. The logical data model is shown in Figure E.3 and the
associated tables in Figure E.4.

466 ■ Appendices

Figure E.3

Logical data model for inventory control.

Employee

employeeNo

1..1

Transaction

transactionNo

1..*

Product

productNo 1..1

PurchaseOrder

1..*

UsedIn

1..* 1..* 1..1

Raises

0..*

ProductCategory

categoryNo

Supplier

Contains
1..1 1..1

supplierNo

Fulfills

OrderFor

purchaseOrderNo

Common data models ■ 467

Figure E.4

Tables for inventory control.

Employee As defined in Section D.1.2

Product (productNo, productName, serialNo, unitPrice, quantityOnHand, reorderLevel,
reorderQuantity, reorderLeadTime, categoryNo)
Primary Key productNo
Alternate Key serialNo
Foreign Key categoryNo references ProductCategory(categoryNo)

ProductCategory (categoryNo, categoryDescription)
Primary Key categoryNo

PurchaseOrder (purchaseOrderNo, purchaseOrderDescription, orderDate, dateRequired, shippedDate,
freightCharge, supplierNo, employeeNo)
Primary Key purchaseOrderNo
Foreign Key supplierNo references Supplier(supplierNo)
Foreign Key employeeNo references Employee(employeeNo)

Supplier (supplierNo, supplierName, supplierStreet, supplierCity, supplierState, supplierZipCode,
suppTelNo, suppFaxNo, suppEmailAddress, suppWebAddress, contactName,
contactTelNo, contactFaxNo, contactEmailAddress, paymentTerms)
Primary Key supplierNo
Alternate Key supplierName
Alternate Key suppTelNo
Alternate Key suppFaxNo

Transaction (transactionNo, transactionDate, transactionDescription, unitPrice, unitsOrdered,
unitsReceived, unitsSold, unitsWastage, productNo, purchaseOrderNo)
Primary Key transactionNo
Foreign Key productNo references Product(productNo)
Foreign Key purchaseOrderNo references PurchaseOrder(purchaseOrderNo)

E.3 Asset management
A company wishes to create a database to monitor each of its assets (such as
PCs, printers, cars, desks, chairs). Assets are divided into a number of categories,
such as computers and furniture. An asset is assigned to an employee. On a reg-
ular basis, an employee in the Finance Department checks each asset to
determine its current market value, and records the date and the current value
of the asset. As a result of the assessment, the company may decide to sell the
asset. Also on a regular basis, maintenance is carried out on each asset. In some
cases, the maintenance is carried out by an employee, but in others, the asset
has to be sent to an external company for maintenance. The logical data model
is shown in Figure E.5 and the associated tables in Figure E.6.

468 ■ Appendices

Figure E.5

Logical data model for asset management.

AssetCategory

categoryNo

1..1

ServiceAgent

agentNo

Status

statusNo

1..1

Asset

assetNo

0..*

Maintenance

maintenanceNo 1..*

MaintainedBy

1..1

1..1

ValuedBy

1..*

Employee

employeeNo

Valuation

1..1

Prepares

0..*

Assigned
1..1 1..*

valuationNo

Contains
0..1

0..*

Performs

CarriesOut

0..1

1..*

For

0..*

E.4 Project management
A consultancy company wishes to create a database to help manage its projects.
Each project is for a specific client and has a nominated project manager. The
project is divided into a number of work packages and employees bill their time
and expenses against a work package. Each employee has a specific role, which
defines the charging rate for the client. Over time, an employee can work on
several work packages associated with the same project. In addition, most, but
not all, work packages have a number of associated documents as deliverables,
each of which may be written by more than one employee. The logical data
model is shown in Figure E.7 and the associated tables in Figure E.8.

Common data models ■ 469

Figure E.6

Tables for asset management.

Employee As defined in Section D.1.2

Asset (assetNo, assetDescription, serialNo, dateAcquired, purchasePrice, currentValue, dateSold,
nextMaintenanceDate, employeeNo, assetCategoryNo, statusNo)
Primary Key assetNo
Alternate Key serialNo
Foreign Key employeeNo references Employee(employeeNo)
Foreign Key assetCategoryNo references AssetCategory(assetCategoryNo)
Foreign Key statusNo references Status(statusNo)

AssetCategory (assetCategoryNo, assetCategoryDescription)
Primary Key assetCategoryNo

Maintenance (maintenanceNo, maintenanceDate, maintenanceDescription, maintenanceCost,
assetNo, employeeNo, agentNo)
Primary Key maintenanceNo
Foreign Key assetNo references Asset(assetNo)
Foreign Key employeeNo references Employee(employeeNo)
Foreign Key agentNo references ServiceAgent(agentNo)

ServiceAgent (agentNo, agentName, agentStreet, agentCity, agentState, agentZipCode, agentTelNo,
agentFaxNo, agentEmailAddress, agentWebAddress, contactName, contactTelNo,
contactFaxNo, contactEmailAddress)
Primary Key agentNo
Alternate Key agentName
Alternate Key agentTelNo
Alternate Key agentFaxNo

Status (statusNo, statusDescription)
Primary Key statusNo

Valuation (valuationNo, valuationDate, valuationPrice, assetNo, employeeNo)
Primary Key valuationNo
Foreign Key assetNo references Asset(assetNo)
Foreign Key employeeNo references Employee(employeeNo)

470 ■ Appendices

Figure E.7

Logical data model for project management.

TimeBooked

1..*

ExpenseType

expenseTypeNo

1..1

WorkPackage

workPackageNo

1..1

Project

projectNo 1..1

Expense

1..* 1..1

Causes

0..*

IsTypeFor

WorkedBy
1..1 1..*

Document

documentNo

DocumentAuthor

1..1

WrittenBy

1..*

Produces

0..*

1..*

Client

clientNo

Places
1..1

expenseNo

0..*

Role

roleNo

1..1

Employee

employeeNo

For

1..*

WorksOn
1..1

0..*

1..1

Manages

1..1

Raises

Writes

Approves0..*

0..*

FormedInto

1..1
1..1

0..*

Common data models ■ 471

Figure E.8

Tables for project management.

Client (clientNo, clientName, clientStreet, clientCity, clientState, clientZipCode, clientTelNo,
clientFaxNo, clientWebAddress, contactName, contactTelNo, contactFaxNo,
contactEmailAddress)
Primary Key clientNo
Alternate Key clientName
Alternate Key clientTelNo
Alternate Key clientFaxNo

Document (documentNo, documentTitle, documentDate, versionNo, workPackageNo,
approvedByEmployeeNo)
Primary Key documentNo
Foreign Key workPackageNo references WorkPackage(workPackageNo)
Foreign Key approvedByEmployeeNo references Employee(employeeNo)

DocumentAuthor (documentNo, employeeNo)
Primary Key documentNo, employeeNo
Foreign Key documentNo references Document(documentNo)
Foreign Key employeeNo references Employee(employeeNo)

Employee (employeeNo, dateStartRole, firstName, middleName, lastName, address, workTelExt,
homeTelNo, empEmailAddress, socialSecurityNumber, DOB, position, sex, salary,
dateStarted, roleNo)
Primary Key employeeNo
Alternate Key socialSecurityNumber
Foreign Key roleNo references Role(roleNo)

Expense (expenseNo, expenseDate, expenseDescription, expenseAmount, workPackageNo,
employeeNo, expenseTypeNo)
Primary Key expenseNo
Alternate Key workPackageNo, employeeNo, expenseDate
Foreign Key workPackageNo references WorkPackage(workPackageNo)
Foreign Key employeeNo references Employee(employeeNo)
Foreign Key expenseTypeNo reference ExpenseType(expenseTypeNo)

ExpenseType (expenseTypeNo, expenseTypeDescription)
Primary Key expenseTypeNo

Project (projectNo, projectName, plannedStartDate, plannedEndDate, actualStartDate,
actualEndDate, projectedCost, actualCost, clientNo, managerEmployeeNo)
Primary Key projectNo
Foreign Key clientNo references Client(clientNo)
Foreign Key managerEmployeeNo references Employee(employeeNo)

Role (roleNo, roleDescription, billingRate)
Primary Key roleNo

TimeBooked (workPackageNo, employeeNo, dateStartWork, dateStopWork, timeWorked)
Primary Key workPackageNo, employeeNo
Foreign Key workPackageNo references WorkPackage(workPackageNo)
Foreign Key employeeNo references Employee(employeeNo)

WorkPackage (workPackageNo, plannedStartDate, plannedEndDate, actualStartDate, actualEndDate,
projectedCost, actualCost, projectNo)
Primary Key workPackageNo
Foreign Key projectNo references Project(projectNo)

E.5 Course management
A training company wishes to create a database of its course information. The
company delivers a number of seminars and training courses. Each course is
delivered by one member of staff at some location (such as internal seminar
room S10, Hilton Hotel Suite 100). The fees vary for each course and on the
number of delegates a company sends. For example, if a company sends one
person, the charge may be $1000. If the company sends two people, the first
may be charged $1000, but the second may be charged $750. The course can be
attended by a number of delegates, subject to some upper limit for the course. A
delegate can register as an individual or through his or her company. The name
of the employee who registers the delegate is recorded. An invoice is sent either
to the delegate or to his or her company. The logical data model is shown in
Figure E.9 and the associated tables in Figure E.10.

472 ■ Appendices

Common data models ■ 473

Figure E.9

Logical data model for course management.

CourseFee

1..*

Course

courseNo

CourseType

courseTypeNo 1..1

RegistrationCTypeFor

1..* 1..1

Has

1..*

RegFeeFor

1..1 1..1

Employee

0..* 1..1

Booking

bookingNo

Delivers

registrationNo

Books

courseFeeNo

FeeFor

0..*

Raises

Invoice

invoiceNo

PaymentMethod

1..1

1..*

pMethodNo

MethodFor

Makes

1..*

1..1 0..*

1..1

employeeNo

1..*

Location

locationNo

1..1
BookedBy

Registers

Client

clientNo

Delegate

1..*

0..1

delegateNo

Sends

RegistersFor

1..1

1..1

1..*

1..1

1..1

0..*

474 ■ Appendices

Figure E.10

Tables for course management.

Client As defined in Section D.4.2

Employee As defined in Section D.1.2

PaymentMethod As defined in Section D.1.2

Delegate (delegateNo, delegateTitle, delegateFName, delegateLName, delegateStreet, delegateCity,
delegateState, delegateZipCode, attTelNo, attFaxNo, attEmailAddress, clientNo)
Primary Key delegateNo
Foreign Key clientNo references Client(clientNo)

Booking (bookingNo, bookingDate, locationNo, courseNo, bookingEmployeeNo)
Primary Key bookingNo
Foreign Key locationNo references Location(locationNo)
Foreign Key courseNo references Course(courseNo)
Foreign Key bookingEmployeeNo references Employee(employeeNo)

Course (courseNo, courseName, courseDescription, startDate, startTime, endDate, endTime,
maxDelegates, confirmed, delivererEmployeeNo, courseTypeNo)
Primary Key courseNo
Foreign Key delivererEmployeeNo references Employee(employeeNo)
Foreign Key courseTypeNo references CourseType(courseTypeNo)

CourseFee (courseFeeNo, feeDescription, fee, courseNo)
Primary Key courseFeeNo
Foreign Key courseNo references Course(courseNo)

CourseType (courseTypeNo, courseTypeDescription)
Primary Key courseTypeNo

Invoice (invoiceNo, dateRaised, datePaid, creditCardNo, holdersName, expiryDate,
registrationNo, pMethodNo)
Primary Key invoiceNo
Foreign Key registrationNo references Registration(registrationNo)
Foreign Key pMethodNo references PaymentMethod(pMethodNo)

Location (locationNo, locationName, maxSize)
Primary Key locationNo

Registration (registrationNo, registrationDate, delegateNo, courseFeeNo, registerEmployeeNo,
courseNo)
Primary Key registrationNo
Foreign Key delegateNo references Delegate(delegateNo)
Foreign Key courseFeeNo references CourseFee(courseFeeNo)
Foreign Key registerEmployeeNo references Employee(employeeNo)
Foreign Key courseNo references Course(courseNo)

E.6 Human resource management
An HRM Department wishes to create a database to monitor its employees. The
company is divided into a number of departments, and employees are assigned
to one department. The department has a designated Manager who has overall
responsibility for the department and the employees in the department.
However, to help manage the department, a number of employees are nomi-
nated to supervise groups of staff. When a new employee joins the company,
information on previous work history and qualifications is required. On a regu-
lar basis, each employee is required to undergo a review, which is normally
carried out by the Manager, but may be delegated to a nominated representative.

The company has defined a number of position types, such as Manager,
Business Analyst, Salesperson, Secretary, and each type has a number of grades
associated with it, which for most non-senior positions determines the
employee’s salary. At a senior level, salary is negotiable. Posts are allocated to a
department depending on its workload. For example, a department may be
allocated two new Business Analyst posts. A post will be filled by one employee,
although over time, employees will fill a number of different posts.

The logical data model is shown in Figure E.11 and the associated tables in
Figure E.12.

Common data models ■ 475

476 ■ Appendices

Figure E.11

Logical data model for human resource management.

Employee

employeeNo

1..1

PositionType

positionTypeNo

Position

1..*

GradePost Post

1..*

Provides

1..1

HasGrades

0..*

1..1

Grade

gradeNo,
validFromDate

Makes
1..*

Defines

1..1 1..*

Review

1..1

0..*

Reviews HasReview Fills

1..1

Department

departmentNo

1..1

Has

Manages
1..*1..1

1..10..1

1..11..1
0..*

0..1

Supervisee

Supervisor

Supervises

GainsWorkedFor

QualificationWorkHistory 0..*

qualificationName

Employed
1..1

1..*

Awards
1..1

1..*

InstitutionPrevCompany

institutionNoprevCompanyNo

1..11..*

IsAllocated

postNo,
availableFromDate

0..*

0..*

Common data models ■ 477

Figure E.12

Tables for human resource management.

Department (departmentNo, departmentName, deptLocation, managerEmployeeNo)
Primary Key departmentNo
Foreign Key managerEmployeeNo references Employee(employeeNo)

Employee (employeeNo, title, firstName, middleName, lastName, address, workTelExt, homeTelNo,
empEmailAddress, socialSecurityNumber, DOB, position, sex, salary, dateStarted,
dateLeft, departmentNo, supervisorEmployeeNo)
Primary Key employeeNo
Alternate Key socialSecurityNumber
Foreign Key departmentNo references Department(departmentNo)
Foreign Key supervisorEmployeeNo references Employee(employeeNo)

Grade (gradeNo, validFromDate, validToDate, gradeDescription, gradeSalary,
noDaysLeaveEntitlement, positionTypeNo)
Primary Key gradeNo, validFromDate
Foreign Key positionTypeNo references PositionType(positionTypeNo)

GradePost (gradeNo, validFromDate, postNo, availableFromDate)
Primary Key gradeNo, validFromDate, postNo, availableFromDate
Foreign Key gradeNo, validFromDate references Grade(gradeNo, validFromDate)
Foreign Key postNo, availableFromDate references Post(postNo, availableFromDate)

Institution (institutionNo, institutionName, instAddress, instTelNo, instFaxNo, instWebAddress,
contactName, contactTelNo, contactFaxNo, contactEmailAddress)
Primary Key institutionNo
Alternate Key institutionName
Alternate Key instTelNo
Alternate Key instFaxNo

Position (employeeNo, postNo, startDate, endDate)
Primary Key employeeNo, postNo, startDate
Foreign Key employeeNo references Employee(employeeNo)
Foreign Key postNo, startDate references Post(postNo, availableFromDate)

PositionType (positionTypeNo, positionTypeDescription)
Primary Key positionTypeNo

Post (postNo, availableFromDate, availableToDate, postDescription, salariedHourly,
fullPartTime, temporaryPermanent, freeLaborStandardsActExempt, departmentNo)
Primary Key postNo, availableFromDate
Foreign Key departmentNo references Department(departmentNo)

PrevCompany (prevCompanyNo, pCompanyName, pCompanyStreet, pCompanyCity, pCompanyState,
pCompanyZipCode, pCompanyTelNo, pCompanyFaxNo, pCompanyWebAddress,
contactName, contactTelNo, contactFaxNo, contactEmailAddress)
Primary Key prevCompanyNo
Alternate Key pCompanyName
Alternate Key pCompanyTelNo
Alternate Key pCompanyFaxNo

Qualification (qualificationName, employeeNo, gradeObtained, startQualDate, endQualDate,
gpa, institutionNo)
Primary Key qualificationName, employeeNo
Foreign Key employeeNo references Employee(employeeNo)
Foreign Key institutionNo references Institution(institutionNo)

E.7 Payroll management
The Payroll Department wishes to create a database to monitor employees’
salary payments. To calculate an employee’s salary, Payroll need to take into
consideration holidays taken against holiday entitlement, number of days’ sick
leave in pay period, bonuses, and deductions. An employee must specify how
his or her salary should be paid, although this may change over time. Most
employees are paid by electronic bank transfer, but some types of employees
may be paid by cash or check. If payment is electronic, then a routing number
and account type are required. Payment can be made by only one method.
There are various reasons for deductions being made; for example, federal tax,
state tax, medical plan, retirement plan, or cash advance.

The logical data model is shown in Figure E.13 and the associated tables in
Figure E.14.

478 ■ Appendices

Figure E.12

Continued

Review (revieweeEmployeeNo, reviewerEmployeeNo, reviewDate, comments)
Primary Key revieweeEmployeeNo,
reviewerEmployeeNo, reviewDate
Foreign Key revieweeEmployeeNo references Employee(employeeNo)
Foreign Key reviewerEmployeeNo references Employee(employeeNo)

WorkHistory (prevCompanyNo, employeeNo, prevPosition, prevGrade, prevSalary, prevLocation,
prevResponsibilities)
Primary Key prevCompanyNo, employeeNo
Foreign Key prevCompanyNo references PrevCompany(prevCompanyNo)
Foreign Key employeeNo references Employee(employeeNo)

Common data models ■ 479

Figure E.13

Logical data model for payroll management.

Employee

employeeNo

PayHistory

payNo 1..*

Bonus

1..1 1..1

PaidIn

0..*

PayDetailsDeduction

0..*

1..1 1..1

0..*

1..*

DeductType

deductTypeNo

1..1
DeductTypeFor

PayType

payTypeNo

BonusType

1..*

1..1

bonusTypeNo

PayTypeFor

BonusTypeFor

SickLeaveHoliday 0.* 0..*

Gains

1..*

HasDeducts

SuffersTakes
1..1 1..1

1..1

480 ■ Appendices

Figure E.14

Tables for payroll management.

Employee As defined in Section D.1.2

Bonus (employeeNo, bonusDate, bonusAmount, bonusTypeNo)
Primary Key employeeNo, bonusDate
Foreign Key employeeNo references Employee(employeeNo)
Foreign Key bonusTypeNo references BonusType(bonusTypeNo)

BonusType (bonusTypeNo, bonusDescription)
Primary Key bonusTypeNo

Deduction (employeeNo, deductDate, deductAmount, deductTypeNo)
Primary Key employeeNo, deductDate
Foreign Key employeeNo references Employee(employeeNo)
Foreign Key deductTypeNo references DeductType(deductTypeNo)

DeductType (deductTypeNo, deductDescription)
Primary Key deductTypeNo

Holiday (employeeNo, startDate, endDate)
Primary Key employeeNo, startDate
Foreign Key employeeNo references Employee(employeeNo)

PayDetails (employeeNo, startDate, routingNumber, accountType, bankName, bankAddress, payTypeNo)
Primary Key employeeNo, startDate
Foreign Key employeeNo references Employee(employeeNo)
Foreign Key payTypeNo references PayType(payTypeNo)

PayHistory (payNo, employeeNo, payDate, checkNumber, payAmount)
Primary Key payNo
Foreign Key employeeNo references Employee(employeeNo)

PayType (payTypeNo, payTypeDescription)
Primary Key payTypeNo

SickLeave (employeeNo, startDate, endDate, reason)
Primary Key employeeNo, startDate
Foreign Key employeeNo references Employee(employeeNo)

E.8 Vehicle rentals
A vehicle rental company wishes to create a database to monitor the renting of
vehicles to clients. The company has various outlets and each outlet has staff
including a Manager and several Senior Mechanics who are responsible for
supervising the work of allocated groups of Mechanics. Each outlet has a stock
of vehicles for rent that may be rented by clients for various periods of time,
from a minimum of four hours to a maximum of six months. Each rental agree-
ment between a client and the company is uniquely identified using a rental
number. A client must take out insurance cover for each vehicle rental period.
Each vehicle is checked for faults after each rental. The logical data model is
shown in Figure E.15 and the associated tables in Figure E.16.

Common data models ■ 481

Figure E.15

Logical data model for vehicle rentals.

Employee

1..*

FaultReport

1..*

Outlet

outletNo

Vehicle

1..1

Rents

1..*

1..1 1..1

RentalAgreement

rentalNo

Insurance

1..1 1..1

1..*

Client

clientNo

vehLicenseNo

Covers

1..1 1..*

Requests

1..1For

policyNo

1..1

Manages
0..1

1..1

Undertakes

0..*employeeNo

0..1

0..*

Supervisee

Supervises

Supervisor

Has HasFault

482 ■ Appendices

Figure E.16

Tables for vehicle rentals.

Client As defined in Section D.4.2

Employee (employeeNo, title, firstName, middleName, lastName, address, workTelExt, homeTelNo,
empEmailAddress, socialSecurityNumber, DOB, position, sex, salary, dateStarted, outletNo,
supervisorEmployeeNo)
Primary Key employeeNo
Alternate Key socialSecurityNumber
Foreign Key outletNo references Outlet(outletNo)
Foreign Key supervisorEmployeeNo references Employee(employeeNo)

FaultReport (vehLicenseNo, dateChecked, timeChecked, comments, employeeNo)
Primary Key vehLicenseNo, dateChecked
Foreign Key vehLicenseNo references Vehicle(vehLicenseNo)
Foreign Key employeeNo references Employee(employeeNo)

Outlet (outletNo, outletStreet, outletCity, outletState, outletZipCode, outletTelNo, outletFaxNo,
managerEmployeeNo)
Primary Key outletNo
Alternate Key outletTelNo
Alternate Key outletFaxNo
Foreign Key managerEmployeeNo references Employee(employeeNo)

RentalAgreement (rentalNo, dateStart, timeStart, dateReturn, timeReturn, mileageBefore, mileageAfter,
policyNo, insuranceCoverType, insurancePremium, clientNo, vehLicenseNo)
Primary Key rentalNo
Alternate Key policyNo
Foreign Key clientNo references Client(clientNo)
Foreign Key vehLicenseNo references Vehicle(vehLicenseNo)

Vehicle (vehLicenseNo, vehicleMake, vehicleModel, color, noDoors, capacity, hireRate, outletNo)
Primary Key vehLicenseNo
Foreign Key outletNo references Outlet(outletNo)

E.9 Student accommodation
The Accommodation Office of a university wishes to create a database to moni-
tor the allocation of accommodation to students. Each student requiring
accommodation fills out an application form, which holds the student’s details
and an indication of the type of accommodation required and the duration.
Students may rent a room in a hall of residence or student apartment. The halls
provide only single rooms, which have a room number, place number, and
monthly rental rate. The place number uniquely identifies each room in all the
halls controlled by the Accommodation Office and is used when renting a room
to a student. Each hall is managed by a member of the Accommodation Office.

The Accommodation Office also offers student apartments, each identified
by a unique apartment number. These apartments are fully furnished and pro-
vide single room accommodation for groups of three, four, or five students.
Each bedroom in an apartment has a monthly rental rate, a room number, and
a place number. The place number uniquely identifies each room available in
all student apartments and is used when renting a room to a student.
Apartments are inspected by members of the Accommodation Office on a regu-
lar basis to ensure that the accommodation is well maintained.

New lease agreements are negotiated at the start of each academic year with
a minimum rental period of one semester and a maximum rental period of one
year. The students pay for their accommodation throughout the academic year
and are sent an invoice at the start of each semester. If a student does not pay
by a certain date, two reminder letters are sent. The logical data model is shown
in Figure E.17 and the associated tables in Figure E.18.

Common data models ■ 483

484 ■ Appendices

Figure E.17

Logical data model for student accommodation.

Hall

1..1

Student

1..1

Room

placeNo

Lease

1..1 1..*

Holds

1..* 0. .*

Reminder Invoice

0..2 1..1

Apartment

apartNo

leaseNo

Generates

For

invoiceNo

Provides

hallName

Employee

1..1

ApartInspection

1..1

1..*

0..*

Undertakes

1..1

Manages

0..1employeeNo

1..*

PaymentMethod

1..1

pMethodNo

studentNo

1..*

1..1
Has

pMethodFor

1..1
Raises

1..*
HasInspection

Common data models ■ 485

Figure E.18

Tables for student accommodation.

Employee As defined in Section D.1.2

PaymentMethod As defined in Section D.1.2

Apartment (apartNo, apartAddress, noOfRoomsInApart)
Primary Key apartNo

ApartInspection (apartNo, dateOfInspection, comments, status, employeeNo)
Primary Key apartNo, dateOfInspection
Foreign Key apartNo references Apartment(apartNo)
Foreign Key employeeNo references Employee(employeeNo)

Hall (hallName, hallAddress, hallTelNo, hallFaxNo, noOfRoomsInHall, managerEmployeeNo)
Primary Key hallName
Alternate Key hallTelNo
Alternate Key hallFaxNo
Foreign Key managerEmployeeNo references Employee(employeeNo)

Invoice (invoiceNo, semester, dateDue, datePaid, leaseNo, pMethodNo)
Primary Key invoiceNo
Foreign Key leaseNo references Lease(leaseNo)
Foreign Key pMethodNo references PaymentMethod(pMethodNo)

Reminder (invoiceNo, dateReminder1sent, dateReminder2sent, dateInterview, comments)
Primary Key invoiceNo
Foreign Key invoiceNo references Invoice(invoiceNo)

Lease (leaseNo, duration, dateStart, dateLeave, studentNo, placeNo)
Primary Key leaseNo
Alternate Key placeNo, dateStart
Alternate Key studentNo, dateStart
Foreign Key studentNo references Student(studentNo)
Foreign Key placeNo references Room(placeNo)

Room (placeNo, roomNo, rentPerSemester, hallName, apartNo)
Primary Key placeNo
Alternate Key roomNo, hallName
Alternate Key roomNo, apartNo
Foreign Key hallName references Hall(hallName)
Foreign Key apartNo references Apartment(apartNo)

Student (studentNo, studentFirstName, studentMiddleInitial, studentLastName, studentHomeStreet,
studentHomeCity, studentHomeState, studentHomeZipCode, studentHomeTelNo,
studentSex, studentDOB, studentType, studentStatus, accommodationTypeRequired,
accommodationDuration)
Primary Key studentNo

E.10 Client transportation
A haulage company that specializes in the transportation of loads throughout
the US wishes to create a database to control client orders for transportation.
The company has many offices throughout the US to process client orders. A
client registers with an office and can place one or more orders. Each order
describes the load to be transported along with the collection address and the
delivery address. The transportation requirements for each order are then calcu-
lated. The transport requirements describe the number of units and trailers
required to transport the load. Each office is allocated several units and trailers.
One unit can pull one or two trailers. The logical data model is shown in Figure
E.19 and the associated tables in Figure E.20.

486 ■ Appendices

Figure E.19

Logical data model for client transportation.

ClientOrder TransportReqts

1..*

Unit

unitVehLicenseNo

Trailer

1..1 1..1

trailerVehLicenseNo

orderNo

Client

1..*

Office

1..*

1..1

Registers

1..1

Places

1..*clientNo 1..1

Requires

1..*

officeNo 1..1

Provides

1..1
Has

UsedIn
Fills

1..*

1..*

Common data models ■ 487

Figure E.20

Tables for client transportation.

Client (clientNo, clientName, clientStreet, clientCity, clientState, clientZipCode, clientTelNo,
clientFaxNo, clientWebAddress, contactName, contactTelNo, contactFaxNo,
contactEmailAddress, officeNo)
Primary Key clientNo
Alternate Key clientTelNo
Alternate Key clientFaxNo
Foreign Key officeNo references Office(officeNo)

Office (officeNo, officeAddress, officeTelNo, officeFaxNo)
Primary Key officeNo
Alternate Key officeTelNo
Alternate Key officeFaxNo

ClientOrder (orderNo, dateOrder, collectionDate, collectionAddress, deliveryDate, deliveryAddress,
loadWeight, loadDescription, clientNo)
Primary Key orderNo
Foreign Key clientNo references Client(clientNo)

Trailer (trailerVehLicenseNo, trailerDescription, trailerLength, maxCarryingWeight, officeNo)
Primary Key trailerVehLicenseNo
Foreign Key officeNo references Office(officeNo)

TransportReqts (orderNo, transportReqPartNo, unitVehLicenseNo, trailerVehLicenseNo1,
trailerVehLicenseNo2)
Primary Key orderNo, transportReqPartNo
Foreign Key unitVehLicenseNo references Unit(unitVehLicenseNo)
Foreign Key trailerVehLicenseNo1 references Trailer(trailerVehLicenseNo)
Foreign Key trailerVehLicenseNo2 references Trailer(trailerVehLicenseNo)

Unit (unitVehLicenseNo, unitDescription, maxPayLoad, officeNo)
Primary Key unitVehLicenseNo
Foreign Key officeNo references Office(officeNo)

E.11 Publisher printing
A printing company that handles print jobs for book publishers wishes to create
a database to control client requests for printing. A book publisher submits an
order that describes the printing job. A print job requires the use of materials,
such as paper and ink, which are assigned to a job through one or more pur-
chase orders. Each print job is assigned to a Print Manager, who has the
responsibility to ensure that the job is carried out correctly. For larger print
jobs, additional employees are normally allocated to help with the printing.
The logical data model is shown in Figure E.21 and the associated tables in
Figure E.22.

488 ■ Appendices

Figure E.21

Logical data model for publisher printing.

PrintJob PurchaseOrder

1..1

Employee

employeeNo

POItem

1..*

printJobNo

Publisher

0..*

EmpPrintJob

1..1

1..1

1..1

Places

1..*publisherNo 1..1

Requires

1..*

0..*

Details

IsAllocated

1..*

purchaseOrderNo

Manages
1..*

1..1

WorkOn

Item

itemNo

Uses
1..1

PrintJobType

1..1

1..*

TypeFor

pJobTypeNo

Common data models ■ 489

Figure E.22

Tables for publisher printing.

Employee As defined in Section D.1.2

EmpPrintJob (employeeNo, printJobNo, jobDate)
Primary Key employeeNo, printJobNo
Foreign Key employeeNo references Employee(employeeNo)
Foreign Key printJobNo references PrintJob(printJobNo)

Item (itemNo, itemDescription, itemPrice, itemQuantityInStock, itemReorderLevel,
itemReorderQuantity, itemReorderLeadTime)
Primary Key itemNo

PrintJob (printJobNo, printJobDescription, printJobDateReceived, printJobDateCompleted,
managerEmployeeNo, publisherNo, printJobTypeNo)
Primary Key printJobNo
Foreign Key managerEmployeeNo references Employee(employeeNo)
Foreign Key publisherNo references Publisher(publisherNo)
Foreign Key printJobTypeNo references PrintJobType(printJobTypeNo)

Publisher (publisherNo, publisherName, publisherStreet, publisherCity, publisherState,
publisherZipCode, pubTelNo, pubFaxNo, pubWebAddress, contactName, contactTelNo,
contactFaxNo, contactEmailAddress, creditRating)
Primary Key publisherNo
Alternate Key publisherName
Alternate Key pubTelNo
Alternate Key pubFaxNo

POItem (purchaseOrderNo, itemNo, quantity)
Primary Key purchaseOrderNo, itemNo
Foreign Key purchaseOrderNo references PurchaseOrder (purchaseOrderNo)
Foreign Key itemNo references Item(itemNo)

PrintJobType (printJobTypeNo, printJobTypeDescription)
Primary key printJobTypeNo

PurchaseOrder (purchaseOrderNo, printJobNo, purchaseOrderDate)
Primary Key purchaseOrderNo
Foreign Key printJobNo references PrintJob(printJobNo)

E.12 County library
A county wishes to create a database to control its local libraries. Each library has
a number of employees, one of whom is designated as the manager of the library
and is responsible for supervising employees and the general day-to-day manage-
ment of the library. Each library stores a number of books and CDs. A citizen has
to become a member of a library before he or she is allowed to borrow any
books, but thereafter can borrow books from any county library. Books are stored
on shelves and CDs are stored in a number of racks in the center of the library.
Generally, a library stocks a number of copies of each book title and each CD.
Details of book publishers are maintained but not CD publishers. To find an
item, searches can be performed based on the book/CD title, the author/artist’s
name, the category of the book/CD, or the publisher’s name. The logical data
model is shown in Figure E.23 and the associated tables in Figure E.24.

490 ■ Appendices

Common data models ■ 491

Figure E.23

Logical data model for county library.

BookAuthor BookCopy

bookShelfNo

CDCopy

cdRackNo

CDArtist

Book

ISBN

CD

cdNo

BookCategory

bookCategoryNo

CDCategory

cdCategoryNo

HasBookCopy

1..*

1..1 HasCDCopy

1..*

1..1

HasBookCategory

1..*

1..1 HasCDCategory

1..*

1..1

WrittenBy

0..*

Publisher

1..1

1..*

Publishes 1..1

RecordedBy

1..*

1..1

Author Artist

1..1 1..1

1..*

authorNo artistNo

1..*

Writes

Item 1..*

catalogNo

{Mandatory,Or} Records

Loan

IsBorrowedBy

0..*

1..1

Stores

Library

libraryNo

Employee

0..1 1..1

Member

memberNo Manages1..* 1..1 employeeNo
1..1 1..*

Has
Registers

1..11..1
Borrows

0..*

publisherNo

492 ■ Appendices

Figure E.24

Tables for county library.

Publisher As defined in Section D.11.2

Artist (artistNo, name)
Primary Key artistNo

Author (authorNo, name)
Primary Key authorNo

Book (ISBN, title, year, publisherNo, bookCategoryNo)
Primary Key ISBN
Foreign Key publisherNo references Publisher(publisherNo)
Foreign Key bookCategoryNo references BookCategory(bookCategoryNo)

BookAuthor (ISBN, authorNo)
Primary Key ISBN, authorNo
Foreign Key ISBN references Book(ISBN)
Foreign Key authorNo references Author(authorNo)

BookCategory (bookCategoryNo, bookCatDescription)
Primary Key bookCategoryNo

BookCopy (catalogNo, bookShelfNo, ISBN, dateInStock, libraryNo)
Primary Key catalogNo
Alternate Key bookShelfNo
Foreign Key ISBN references Book(ISBN)
Foreign Key libraryNo references Library(libraryNo)

CD (cdNo, title, releaseDate, cdCategoryNo)
Primary Key cdNo
Foreign Key cdCategoryNo references CDCategory(cdCategoryNo)

CDArtist (cdNo, artistNo)
Primary Key cdNo, artistNo
Foreign Key cdNo references CD(cdNo)
Foreign Key artistNo references Artist(artistNo)

CDCategory (cdCategoryNo, cdCatDescription)
Primary Key cdCategoryNo

CDCopy (catalogNo, cdRackNo, cdNo, dateInStock, libraryNo)
Primary Key catalogNo
Alternate Key cdRackNo
Foreign Key cdNo references CD(cdNo)
Foreign Key libraryNo references Library(libraryNo)

Employee (employeeNo, title, firstName, middleName, lastName, address, workTelExt, homeTelNo,
empEmailAddress, socialSecurityNumber, DOB, position, sex, salary, dateStarted, libraryNo)
Primary Key employeeNo
Alternate Key socialSecurityNumber
Foreign Key libraryNo references Library(libraryNo)

Library (libraryNo, libStreet, libCity, libState, libZipCode, libTelNo,
libFaxNo, libWebAddress, managerEmployeeNo)
Primary Key libraryNo
Alternate Key libTelNo
Alternate Key libFaxNo

E.13 Real estate rentals
A real estate agency with branches throughout the US wishes to create a data-
base to control the properties it rents out on behalf of owners, who are
classified as Business and Private owners. Within each branch, staff oversee the
rental of properties, and are responsible for handling property viewings and
lease agreements. Some staff are also given the role Supervisor, responsible for
overseeing a group of staff and ensuring the efficient management of the
branch. The administrative work of each group of staff is supported by a
Secretary. The logical data model is shown in Figure E.25 and the associated
tables in Figure E.26.

Common data models ■ 493

Figure E.24

Continued

Foreign Key managerEmployeeNo references Employee(employeeNo)

Loan (catalogNo, memberNo, dateOut, dateReturn)
Primary Key catalogNo, memberNo
Foreign Key catalogNo references BookCopy(catalogNo) and CDCopy(catalogNo)
Foreign Key memberNo references Member(memberNo)

Member (memberNo, memTitle, memFirstName, memMiddleName, memLastName, memAddress,
memWorkTelExt, memHomeTelNo, memDOB, memSex, dateJoined, libraryNo)
Primary Key memberNo
Foreign Key libraryNo references Library(libraryNo)

494 ■ Appendices

Figure E.25

Logical data model for real estate agency.

PropertyForRent

propertyNo

Owner

1..* 1..1

Viewing Takes

0..* 1..1 ownerNo

Owns

BusinessOwnerPrivateOwner

{Mandatory, Or}

PropertyType

propTypeNo

Lease

leaseNo

1..1 1..*

Holds

PTypeFor

1..10..*0..*

Branch

branchNo

Renter

renterNo

Attends
1..1

0..*

1..*

1..1

Registers
1..1

1..*

Employee

employeeNo

1..1

Oversees

0..*

Has

1..1 1..*

Manager

1..1

1..1
Manages

Secretary Supervisor

{Optional, Or}

AllocatedEmpSupervises

1..1 1..*

Joins

0..1

1..1

Supports

1..1 1..*

pTypeForRenter 1..1

LeaseFor

Common data models ■ 495

Figure E.26

Tables for real estate agency.

AllocatedEmp (superviseeEmployeeNo, supervisorEmployeeNo, secretaryEmployeeNo)
Primary Key superviseeEmployeeNo
Foreign Key superviseeEmployeeNo references Employee(employeeNo)
Foreign Key supervisorEmployeeNo references Employee(employeeNo)
Foreign Key secretaryEmployeeNo references Employee(employeeNo)

Branch (branchNo, branchStreet, branchCity, branchState, branchZipCode, branchTelNo,
branchFaxNo, managerEmployeeNo)
Primary Key branchNo
Alternate Key branchTelNo
Alternate Key branchFaxNo
Foreign Key managerEmployeeNo references Employee(employeeNo)

BusinessOwner (ownerNo, businessName, businessAddress, businessTelNo, businessFaxNo, contactName,
contactTelNo, contactFaxNo, contactEmailAddress)
Primary Key ownerNo
Alternate Key businessName
Alternate Key businessTelNo
Alternate Key businessFaxNo

Employee (employeeNo, title, firstName, middleName, lastName, address, workTelExt, homeTelNo,
empEmailAddress, socialSecurityNumber, DOB, position, sex, salary, typingSpeed,
dateStarted, branchNo)
Primary Key employeeNo
Alternate Key socialSecurityNumber
Foreign Key branchNo references Branch(branchNo)

Lease (leaseNo, rentStart, rentFinish, depositPaid, renterNo, propertyNo)
Primary Key leaseNo
Foreign Key renterNo references Renter(renterNo)
Foreign Key propertyNo references PropertyForRent(propertyNo)

PrivateOwner (ownerNo, ownerName, ownerAddress, ownerTelNo)
Primary Key ownerNo

PropertyForRent (propertyNo, propStreet, propCity, propState, propZipCode, noRooms, rent, propTypeNo,
ownerNo, employeeNo, branchNo)
Primary Key propertyNo
Foreign Key propTypeNo references PropertyType(propTypeNo)
Foreign Key ownerNo references PrivateOwner(ownerNo) and BusinessOwner(ownerNo)
Foreign Key employeeNo references Employee(employeeNo)
Foreign Key branchNo references Branch(branchNo)

PropertyType (propTypeNo, propTypeDescription)
Primary Key propTypeNo

Renter (renterNo, rFName, rLName, rAddress, rTelNo, maxRent, prefTypeNo)
Primary Key renterNo
Foreign Key prefTypeNo references PropertyType(propTypeNo)

Viewing (propertyNo, renterNo, dateView, comments)
Primary Key propertyNo, renterNo, dateView
Foreign Key propertyNo references PropertyForRent(propertyNo)
Foreign Key renterNo references Renter(renterNo)

E.14 Travel agent
A travel agent wishes to create a database for its customer holiday booking
activities. The travel agent has numerous branches spread through the major
cities in the US. A customer can call into, or contact by telephone, any branch
and book a holiday. A holiday normally includes a flight and accommodation,
although sometimes customers require only a flight or only accommodation.
Once the travel agent has found a suitable holiday for a customer, the flight
and accommodation requirements are reserved for the customer. However, the
reservation can only be held for up to 24 hours by which time the customer
must accept or decline the booking. Once the booking is accepted, the cus-
tomer is invoiced for the holiday and must pay the invoice in full, a minimum
of four weeks before the departure date. The name of the employee who ini-
tially processes the customer booking is recorded. The ER model is shown in
Figure E.27 and the associated tables in Figure E.28.

496 ■ Appendices

Common data models ■ 497

Figure E.27

ER model for travel agent.

hotelNo

Hotel

Branch Employee

1..1

Holiday

holidayNo

Flight

branchNo

Invoice

1..1

Customer

1..*

1..*

1..* 1..1invoiceNo

0..1 1..1

1..1

1..*

employeeNo

Operator

operatorNo

Provides
1..1

Raises
Manages

1..1 1..*

Has

Organizes
Arranges

1..1

ResultsIn
1..*

1..1
Pays

customerNo

Books 0..* 0..1

PartOfInward

0..* 0..1

PartOfOutward

0..*

CustomerParty

1..1

1..*

IsPartOf
IsFor

1..*

1..1

flightNo

1..1

AccommodationAccommFacility

1..*

1..1

1..* 1..1

Contains

Includes

IsOfferedBy

{Mandatory, Or}

resortNo

Resort

1..1
Has

Offers

1..*

1..*

1..*

HasResort
1..1

apartmentNo

Apartment

Facility

facilityNo

Country

countryNo

0..*

0..1

1..1

498 ■ Appendices

Figure E.28

Tables for travel agent.

Branch As defined in Section D.13.2

ApartFacility (apartmentNo, facilityNo, comments)
Primary Key apartmentNo, facilityNo
Foreign Key apartmentNo references Apartment(apartmentNo)
Foreign Key facilityNo references Facility(facilityNo)

Apartment (apartmentNo, apartmentName, apartmentType, apartmentDescription, apartmentRating,
apartmentStreet, apartmentCity, apartmentState, apartmentCountry, apartmentZipCode,
noOfRooms, operatorNo, resortNo)
Primary Key apartmentNo
Foreign Key operatorNo references Operator(operatorNo)
Foreign Key resortNo references Resort(resortNo)

Country (countryNo, countryName)
Primary Key countryNo
Alternate Key countryName

Customer (customerNo, customerName, customerStreet, customerCity, customerState,
customerZipCode, custTelNo, custFaxNo, nationality, sex, DOB, passportNo)
Primary Key customerNo
Alternate Key custTelNo
Alternate Key custFaxNo
Alternate Key passportNo

CustomerParty (customerNo, holidayNo)
Primary Key customerNo, holidayNo
Foreign Key customerNo references Customer(customerNo)
Foreign Key holidayNo references Holiday(holidayNo)

Employee (employeeNo, title, firstName, middleName, lastName, address, workTelExt, homeTelNo,
empEmailAddress, socialSecurityNumber, DOB, position, sex, salary, dateStarted, branchNo)
Primary Key employeeNo
Alternate Key socialSecurityNumber
Foreign Key branchNo references Branch(branchNo)

Facility (facilityNo, description, additionalCharge)
Primary Key facilityNo

Flight (flightNo, planeType, seatCapacity, airportDepart, departTime, airportArrive, arriveTime,
operatorNo)
Primary Key flightNo
Foreign Key operatorNo references Operator(operatorNo)

Hotel (hotelNo, hotelName, hotelStreet, hotelCity, hotelState, hotelCountry, hotelZipCode,
hotelTelNo, hotelFaxNo, hotelType, hotelDescription, hotelRating, hotelManagerName,
operatorNo, resortNo)
Primary Key hotelNo
Foreign Key operatorNo references Operator(operatorNo)
Foreign Key resortNo references Resort(resortNo)

HotelFacility (hotelNo, facilityNo, comments)
Primary Key hotelNo, facilityNo
Foreign Key hotelNo references Hotel(hotelNo)
Foreign Key facilityNo references Facility(facilityNo)

E.15 Student results
A university wishes to create a database for recording the results of students.
When a student joins the university he or she registers with a particular course.
Each student is also assigned an Advisor of Studies. Each year of each course is
made up of modules. The minimum and maximum number of modules that
make up a year of a course is 6 and 8, respectively. A student must take and pass
each module in a given year before he or she is allowed to move into the next
year of the course or to graduate. A student is normally allowed three attempts
to pass a module; however, additional attempts are allowed at the discretion of
the university. A particular module can be offered as part of one or more
courses.

The university has several departments, each of which offers a portfolio of
courses. Each department has a Head of Department (HOD) and each course
has a Course Leader. Each module is assigned to a member of staff called a
Module Coordinator, who has the responsibility to oversee the teaching and
the assessment of the module. The ER model is shown in Figure E.29 and the
associated tables in Figure E.30.

Common data models ■ 499

Figure E.28

Continued

Holiday (holidayNo, status, dateBooked, cateringType, startDate, finishDate, invoiceNo, totalCost,
dateSent, datePaid, bookCustomerNo, hotelNo, apartmentNo, inwardFlightNo,
inwardNoOfSeats, outwardFlightNo, outwardNoOfSeats, employeeNo, branchNo)
Primary Key holidayNo
Foreign Key bookCustomerNo references Customer(customerNo)
Foreign Key hotelNo references Hotel(hotelNo)
Foreign Key apartmentNo references Apartment(apartmentNo)
Foreign Key inwardFlightNo references Flight(flightNo)
Foreign Key outwardFlightNo references Flight(flightNo)
Foreign Key employeeNo references Employee(employeeNo)
ForeignKey branchNo references Branch(branchNo)

Operator (operatorNo, operatorName, operatorType, operatorStreet, operatorCity, operatorState,
operatorZipCode, operTelNo, operFaxNo, contactName, contactTelNo, contactFaxNo,
contactEmailAddress)
Primary Key operatorNo
Alternate Key operTelNo
Alternate Key operFaxNo

Resort (resortNo, resortName, distanceFromAirport, timeFromAirport, countryNo)
Primary Key resortNo
Foreign Key countryNo references Country(countryNo)

500 ■ Appendices

Figure E.29

ER model for student results.

Module

moduleNo

StudentModule

1..1

TakenBy

1..*

CourseModule StudentResults

1..*

Department

departmentNo 1..1 1..*

Provides

1..1

ProducesPartOf

1..*

1..1

Student

1..* 1..1 studentNo

Takes

1..*

Module
Coordinator

1..*

Coordinates

1..1

Head of
Department

1..1

Manages

1..1

Advisor of
Studies

1..*

Oversees

1..1

Course

courseNo 1..*

1..1

1..1

Course
Leader

6..8
Contains

1..1

1..1

Staff

staffNo

{Optional, And}

1..*

Has

Registers

Advises

Common data models ■ 501

Figure E.30

Tables for student results.

Course (courseNo, courseName, level, entranceRequirements, maxNumber, courseLeaderNo)
Primary Key courseNo
Alternate Key courseName
Foreign Key courseLeaderNo references Staff(staffNo)

CourseModule (courseNo, moduleNo)
Primary Key courseNo, moduleNo
Foreign Key courseNo references Course(courseNo)
Foreign Key moduleNo references Module(moduleNo)

Department (departmentNo, departmentName, location, HODstaffNo)
Primary Key departmentNo
Alternate Key departmentName
Foreign Key HODstaffNo references Staff(staffNo)

Module (moduleNo, moduleName, semesterDelivered, moduleAims, moduleObjectives,
moduleSyllabus, moduleResources, moduleModeOfAssessment, moduleCoordinatorStaffNo,
departmentNo)
Primary Key moduleNo
Alternate Key moduleName
Foreign Key moduleCoordinatorStaffNo references Staff(staffNo)
Foreign Key departmentNo references Department(departmentNo)

Staff (staffNo, title, firstName, lastName, address, homeTelNo, workTelExt, empEmailAddress,
socialSecurityNumber, DOB, position, sex, salary, dateStarted, departmentNo)
Primary Key staffNo
Alternate Key socialSecurityNumber
Foreign Key departmentNo references Department(departmentNo)

Student (studentNo, studentFirstName, studentMiddleName, studentLastName, studentHomeStreet,
studentHomeCity, studentHomeState, studentHomeZipCode, studentHomeTelNo,
familyHomeStreet, familyHomeCity, familyHomeState, familyHomeZipCode,
familyHomeTelNo, studentDOB, studentSex, nationality, courseNo, advisorStaffNo)
Primary Key studentNo
Foreign Key courseNo references Course(courseNo)
Foreign Key advisorStaffNo references Staff(staffNo)

StudentModule (studentNo, moduleNo)
Primary key studentNo, moduleNo
Foreign Key studentNo references Student(studentNo)
Foreign Key moduleNo references Module(moduleNo)

StudentResult (studentNo, moduleNo, attempt, attemptDate, mark,
proposal, additionalComments)
Primary key studentNo, moduleNo, attempt
Foreign Key studentNo, moduleNo references StudentModule(studentNo, moduleNo)

Access method. The steps involved in storing and retrieving records from a file.

Alias. An alternative name given to an attribute. In SQL, you may substitute an alias for a
table name.

Alternate keys (ER/relational model). The candidate keys that are not selected as the
primary key of the entity/table.

Anomalies. See Update anomalies.

Application design. A stage of the database system development lifecycle that
involves designing the user interface and the application programs that use and process
the database.

Application server. Handles the business logic and data processing layer in a three-tier
client–server architecture.

Attribute (ER model). A property of an entity or a relationship.

Attribute (relational model). An attribute is a named column of a relation.

Attribute inheritance. The process by which a member of a subclass may possess sub-
class-specific attributes, and inherit those attributes associated with the superclass.

Authentication. A mechanism that determines whether a user is who he or she claims to be.

Authorization. The granting of a right or privilege that enables a subject to have legiti-
mate access to a database system or a database system’s object.

Backup. The process of periodically taking a copy of the database and log file (and possi-
bly programs) onto offline storage media.

Base table. A named table whose records are physically stored in the database.

Binary relationship. An ER term used to describe a relationship between two entities. For
example, Branch Has Staff.

Bottom-up approach (to database design). A design philosophy that begins by identify-
ing individual design components and then aggregates these components into larger
units. In database design, you start at the bottom level by identifying the attributes, and
then group the attributes together to form tables that represent entities and relationships.

Business rules. Rules that define or constrain some aspect of the organization.

Glossary

Candidate key (ER/relational model). A superkey that contains only the minimum
number of attributes/columns necessary for unique identification.

Cardinality. Describes the number of possible relationships for each participating entity.

Centralized approach (to database design). Requirements for each user view are merged
into a single set of requirements for the new database application.

Chasm trap. Suggests the existence of a relationship between entities, but the pathway
does not exist between certain entity occurrences.

Client. A software application that requests services from one or more servers. See also
Two-tier/Three-tier client–server architecture.

Clustering field. Any nonkey field in a record that is used to cluster (group together) the
rows that have a common value for this field.

Clustering index. An index defined on a clustering field of a file. A file can have at most
one primary index or one clustering index.

Column (relational model). Same as attribute.

Complex relationship. A relationship where the degree is higher than binary.

Composite attribute. An attribute composed of multiple single components.

Composite key. A primary key that contains more than one column.

Concurrency control. A DBMS service that coordinates the simultaneous execution of
transactions in a multi-user environment while preserving data integrity.

Constraint. A consistency rule that the database is not permitted to violate.

Data administration. The management and control of the company data, including
database planning, development and maintenance of standards, policies and procedures,
and conceptual and logical database design.

Data conversion and loading. A stage of the database system development lifecycle that
involves transferring any existing data into the new database and converting any existing
applications to run on the new database.

Data dictionary. See System catalog.

Data independence. The separation of data descriptions from the applications that use
the data. This means that if new data structures are added to the database or existing
structures in the database are modified then the application programs that use the data-
base are unaffected, provided they don’t directly depend upon what has been modified.

Data mart. A subset of a data warehouse that supports the requirements of a particular
department or business area.

Data mining. The process of extracting valid, previously unknown, comprehensible, and
actionable information from large databases and using it to make crucial business decisions.

Data model. An integrated collection of concepts for describing data, relationships
between data, and constraints on the data used by an organization.

Data redundancy. Same as redundant data.

Data security. Covers access and use of database objects (such as tables and views) and
the actions that users can have on the objects.

Data warehouse. A consolidated/integrated view of corporate data drawn from disparate
operational data sources and a range of end-user access tools capable of supporting simple
to highly complex queries to support decision making.

504 ■ Glossary

Database. A shared collection of logically related data (and a description of this data),
designed to meet the information needs of an organization.

Database administration. The management and control of the physical realization of a
database application, including physical database design and implementation, setting
security and integrity controls, monitoring system performance, and reorganizing the
database as necessary.

(Database) application program. A computer program that interacts with the database
by issuing an appropriate request (typically an SQL statement) to the DBMS.

Database design. A stage of the database system development lifecycle that involves cre-
ating a design for a database that will support the organization’s mission statement and
mission objectives for the required database.

Database integrity. Refers to the correctness and consistency of stored data. Integrity is
usually expressed in terms of constraints.

Database Management System (DBMS). A software system that enables users to define,
create, and maintain the database, and provides controlled access to this database.

Database planning. The management activities that allow the stages of the database
system development lifecycle to be realized as efficiently and effectively as possible.

Database security. The mechanisms that protect the database against intentional or
accidental threats. RDBMSs generally provide two types of security: data security and
system security.

Database server. Same as server (see Two-tier/Three-tier client–server architecture).

DBMS engine. Same as server (see Two-tier client–server architecture).

DBMS selection. A stage of the database system development lifecycle that involves the
selection of an appropriate DBMS to support the database system.

Degree of a relationship. The number of participating entities in a relationship.

Denormalization. Formally, the term refers to a change to the structure of a base table,
such that the new table is in a lower normal form than the original table. However, the
term is also used more loosely to refer to situations where we combine two tables into one
new table, where the new table is in the same normal form but contains more nulls than
the original tables.

Derived attribute. An attribute that represents a value that is derivable from the value of
a related attribute, or a set of attributes, not necessarily in the same entity.

Design methodology. A structured approach that uses procedures, techniques, tools, and
documentation aids to support and facilitate the process of design.

Disjoint constraint. Describes the relationship between members of the subclasses and
indicates whether it’s possible for a member of a superclass to be a member of one, or
more than one, subclass.

Distributed database. A collection of multiple, logically interrelated, shared data (and a
description of this data), physically distributed over a computer network.

Distributed DBMS (DDBMS). The software that transparently manages the distributed
database.

Domain. The set of allowable values for one or more attributes.

Glossary ■ 505

Encryption. The encoding of the data by a special algorithm that renders the data
unreadable by any program without the decryption key.

Entity. A set of objects with the same properties that are identified by a user or organiza-
tion as having an independent existence.

Entity integrity. In a base table, no column of a primary key can be null.

Entity occurrence. A uniquely identifiable object in an entity.

Entity–Relationship model. A detailed logical representation of entities, attributes, and
relationships for an organization.

Fact-finding. The formal process of using techniques such as interviews and question-
naires to collect facts about systems, requirements, and preferences.

Fan trap. Occurs when two entities have a 1:* relationship that fan out from a third
entity, but the two entities should have a direct relationship between them to provide the
necessary information.

Field (relational model). Same as tuple.

File. A named collection of related records stored on secondary storage.

File-based system. A collection of programs designed to manage (create, insert, delete,
update, and retrieve) data in one or more files and to produce applications (usually
reports) based on the data in these files.

File organization. A way of arranging the records in a file when the file is stored on disk.

First normal form (1NF). A table in which the intersection of every column and record
contains only one value.

Foreign key. A column, or set of columns, within one table that matches the candidate
key of some (possibly the same) table.

4GL (Fourth-Generation Language). A nonprocedural language, such as SQL, that only
requires the user to define what must be done; the 4GL translates the what into details of
how this should be executed.

Full functional dependency. A condition in which a column is functionally dependent
on a composite key but not on any subset of that key.

Functional dependency. A property of the meaning of the columns in a table indicating
how columns relate to one another. It describes the relationship between columns in a
table. For example, if A and B are columns of a table, B is functionally dependent on A
(denoted A → B), if each value of A is associated with exactly one value of B. (A and B may
each consist of one or more columns.)

Generalization. The process of minimizing the differences between entities by identify-
ing their common features.

Generalization hierarchy. Same as type hierarchy.

Global logical data model. A data model that represents the data requirements of all
user views of an organization.

Implementation. A stage of the database system development lifecycle that involves the
physical realization of the database and application designs.

Index. A data structure that allows the DBMS to locate particular records in a file more
quickly, and thereby speed up response to user queries.

506 ■ Glossary

Information system. The resources that enable the collection, management, control, and
dissemination of data/information throughout an organization.

Inheritance. See Attribute inheritance.

Integrity constraints. Constraints imposed to prevent the database from becoming
inconsistent.

IS-A hierarchy. Same as type hierarchy.

Journaling. The process of keeping and maintaining a log file (or journal) of all changes
made to the database to enable recovery to be undertaken effectively in the event of
a failure.

Local logical data model. A data model that represents the data requirements of one or
more, but not all, user views of an organization.

Logical database design. The process of constructing a model of the data used in an
organization based on a specific data model, but independent of a particular DBMS and
other physical considerations.

Meta-data. Data about data; see System catalog.

Mission objective. Identifies a particular task that the database system must support.

Mission statement. Defines the major aims of the database system.

Multiplicity. Defines the number of occurrences of one entity that may relate to a single
occurrence of an associated entity.

Multi-valued attribute. An attribute that holds multiple values for an entity occurrence.

Nonkey attribute/column. An attribute/column that is not part of a key.

Normal forms. Stages in the normalization process. The first three normal forms are
called first normal form (1NF), second normal form (2NF), and third normal form (3NF).

Normalization. A technique for producing a set of tables with desirable properties that
supports the requirements of a user or organization.

Null. Represents a value for a column that is currently unknown or is not applicable for
this record.

Object-oriented Data Model (OODM). A data model that captures the semantics of
objects supported in object-oriented programming.

Object-oriented Database (OODB). A persistent and sharable repository of objects
defined in an object-oriented data model.

Object-oriented DBMS (OODBMS). A manager of an object-oriented database.

Object-relational DBMS (ORDBMS). An extension to the relational DBMS to incorporate
some concept of ‘object’. There is no single ORDBMS, rather a number of such systems,
whose characteristics depend upon the way and the degree to which the extension has
been made.

OnLine Analytical Processing (OLAP). The dynamic synthesis, analysis, and consolida-
tion of large volumes of multi-dimensional data. OLAP describes a technology that uses a
multi-dimensional view of summarized data to provide quick access to strategic informa-
tion for the purposes of advanced analysis.

Glossary ■ 507

Operational maintenance. A stage of the database system development lifecycle that
involves monitoring and maintaining the system following installation.

Participation constraint (EER model). Determines whether every occurrence in the
superclass must participate as a member of a subclass.

Participation constraint (ER model). Determines whether all or only some entity occur-
rences participate in a relationship.

Physical database design. The process of producing a description of the implementation
of the database on secondary storage; it describes the base tables, file organizations, and
indexes used to achieve efficient access to the data, and any associated integrity con-
straints and security restrictions.

Primary index. An index built on the ordering key field of the file. A file can have at
most one primary index or one clustering index. The ordering key is guaranteed to have a
unique value in each record.

Primary key (ER model). The candidate key that is selected to identify each entity occurrence.

Primary key (relational model). The candidate key that is selected to identify records
uniquely within the table.

Privileges. The actions that a user is permitted to carry out on a given base table or view.

Prototyping. A stage of the database system development lifecycle that involves building
a working model of a database application.

QBE (Query-by-Example). A nonprocedural database language for relational DBMSs.
QBE is a graphical ‘point-and-click’ way of querying the database.

RDBMS. Relational DBMS.

Record (relational model). Same as tuple.

Recovery control. The process of restoring the database to a correct state in the event of
a failure.

Recursive relationship. A relationship where the same entity participates more than
once in different roles. For example, Staff Supervises Staff.

Redundant data. Duplicated data that is stored in more than one table.

Referential integrity. If a foreign key exists in a table, either the foreign key value must
match a candidate key value of some record in its home table or the foreign key value
must be wholly null.

Relation. A relation is a table with columns and rows.

Relational database. A collection of normalized tables.

Relational model. A data model that represents data in the form of tables (or relations).

Relationship. A meaningful association among entities.

Relationship occurrence. A uniquely identifiable association between two entities.

Replication. The process of generating and reproducing multiple copies of data at one or
more sites.

Requirements collection and analysis. A stage of the database system development life-
cycle that involves collecting and analyzing information about the organization to be

508 ■ Glossary

supported by the database system, and using this information to identify the require-
ments for the new database system.

Row (relational model). Same as tuple.

Second normal form (2NF). A table that is already in 1NF and in which the values in
each non-primary-key column can be worked out from the values in all the columns that
make up the primary key.

Secondary index. An index that is defined on a non-ordering field of the datafile.

Security. Same as database security.

Server. A software application that provides services to requesting clients. See also Two-
tier/Three-tier client–server architecture.

Simple attribute. An attribute composed of a single component.

Single-valued attribute. An attribute that holds a single value for an entity occurrence.

Specialization. The process of maximizing the differences between members of an entity
by identifying their distinguishing characteristics.

Specialization hierarchy. Same as type hierarchy.

SQL (Structured Query Language). A nonprocedural database language for RDBMSs. In
other words, you specify what information you require, rather than how to get it. SQL has
been standardized by the International Organization for Standardization (ISO), making it
both the formal and de facto standard language for defining and manipulating RDBMSs.

Strong entity. An entity that is not dependent on the existence of another entity for its
primary key.

Subclass. A distinct grouping of occurrences of an entity, which require to be represented
in a data model. See also Specialization and Generalization.

Superclass. An entity that includes one or more distinct groupings of its occurrences, which
require to be represented in a data model. See also Specialization and Generalization.

Superkey (ER model). An attribute, or set of attributes, that uniquely identifies each
entity occurrence.

Superkey (relational model). A column, or set of columns, that uniquely identifies a
record within a table.

System catalog. Holds data about the structure of the database, users, applications, and
so on.

System definition. A stage of the database system development lifecycle that involves
defining the scope and boundary of the database system, including its major user views.

System security. Covers access and use of the database at the system level, such as a user-
name and password.

Table (relational model). Same as relation.

Table diagram. A diagrammatic representation of the tables in a database (including
primary and foreign keys).

Ternary relationship. A relationship between three entities. For example, the relationship
Registers between Branch, Staff, and Member.

Testing. A stage of the database system development lifecycle that involves executing the
application programs with the intent of finding errors.

Glossary ■ 509

Third normal form (3NF). A table that is already in 1NF and 2NF, and in which the
values in all non-primary-key columns can be worked out from only the primary key
column(s) and no other columns.

3GL (Third-Generation Language). A procedural language such as COBOL, C, C++, that
requires the user (usually a programmer) to specify what must be done and also how it
must be done.

Threat. Any situation or event, whether intentional or unintentional, that may adversely
affect a system and consequently the organization.

Three-tier client–server architecture. Consists of a client that handles the user interface,
an application server that handles the business logic and data processing layer, and a data-
base server that runs the DBMS.

Top-down approach (to database design). A design philosophy that begins by defining
the main structures of the system and then moves to smaller units within those struc-
tures. In database design, you start at the top level by identifying the entities and
relationships between the data, then you add more details, such as the information you
want to hold about the entities and relationships (called attributes) and any constraints
on the entities, relationships, and attributes.

Transaction. An action, or series of actions, carried out by a single user or application
program, which accesses or changes the contents of the database.

Transaction Processing Monitor (TPM). A program that controls data transfer between
clients and servers in order to provide a consistent environment for OnLine Transaction
Processing (OLTP).

Transitive dependency. A condition where A, B, C are columns of a table, such that if B is
functionally dependent on A (A → B) and C is functionally dependent on B (B → C), then
C is transitively dependent on A via B (provided that A is not functionally dependent on B
or C). If a transitive dependency exists on the primary key, the table is not in 3NF. The
transitive dependency must be removed for a table to achieve 3NF.

Tuple (relational model). A record of a relation.

Two-tier client–server architecture. Consists of a client program that handles the main
business and data processing logic and interfaces with the user, and a server program that
manages and controls access to the database.

Type hierarchy. The collection of an entity and its subclasses and their subclasses, and
so on.

UML (Unified Modeling Language). The successor to a number of object-oriented analy-
sis and design methods introduced in the 1980s and 1990s.

Update anomalies. Inconsistencies that may arise when a user attempts to update a table
that contains redundant data. There are three types of anomalies: insertion, deletion, and
modification.

User view. Defines what is required of a database application from the perspective of a
particular job (such as Manager or Supervisor) or business application area (such as mar-
keting, personnel, or stock control).

View. A ‘virtual table’ that does not actually exist in the database but is generated by the
DBMS from the underlying base tables whenever it’s accessed.

510 ■ Glossary

View integration approach (to database design). Requirements for each user view are
used to build a separate data model to represent that user view. The resulting data models
are merged at a later stage in database design.

Weak entity. An entity that is partially or wholly dependent on the existence of some
other entity (or entities) for its primary key.

XML (eXtensible Markup Language). A meta-language (a language for describing other
languages) that enables designers to create their own customized tags to provide function-
ality not available with HTML.

Glossary ■ 511

Chen P.P (1976). The Entity-Relationship model – Toward a unified view of data. ACM
Transactions on Database Systems, 1(1), 9–36

Codd E.F. (1970). A relational model of data for large shared data banks. Communications
of the ACM, 13(6), 377–387

Connolly T.M. and Begg C.E. (2002). Database Systems: A Practical Approach to Design,
Implementation, and Management, 3rd edn. Harlow, England: Addison-Wesley

Inmon W.H. (1993). Building the Data Warehouse. New York: John Wiley & Sons

Kim W. (1991). Object-oriented database systems: strengths and weaknesses. Journal of
Object-Oriented Programming, 4(4), 21–29

OASIG (1996). Research report. Available at
http://www.comlab.ox.ac.uk/oucl/users/john.nicholls/oas-sum.html

Shneiderman D. (1992). Design the User Interface: Strategies for Effective Human–Computer
Interaction, 2nd edn. Reading, MA: Addison-Wesley

Sommerville I. (2000). Software Engineering, 6th edn. Harlow, England: Addison-Wesley

References

A

access controls 105
access method 444, 503
Active Server Pages (ASP) 405
ActiveX Data Objects (ADO) 405
advanced database applications 378–81
aggregrate functions in SQL 51–3
alias (SQL) 59, 503
alternate keys (ER/relational model) 28,

153, 503
in logical database design 209–11,

421
American National Standards Institute

(ANSI) 38
anomalies 503
application design 89, 503
application program 3, 8
application programmers 10
application server 12, 503
architecture see client–server architecture
asymmetric encryption 110
asymmetric replication 389
asynchronous replication 388
atomic attributes 151
attribute domains

in logical database design 208–9, 421
in PerfectPets case study 340
in StayHome case study 208–9

attribute inheritance 247, 249, 503
attribute (relational model) 23, 503
attributes

documentation of 338

in PerfectPets case study 338–40
in StayHome case study 204–7

attributes (ER model) 151–4, 503
derived 152–3
diagrammatic representation of

153–4
documentation 207–8
domains, determining 208–9
identifying and associating with enti-

ties or relationships 204–8, 421
key attributes 209–11
keys 153–4
on relationships 162–3
simple vs composite 151
single vs multi-valued 152

authentication 106, 503
authorization 15, 105, 503

identifier (SQL) 299

B

backup 108, 503
base tables 33, 503

designing 265–70, 425
documentation of 270
in Microsoft Access 266–70
in PerfectPets case study 350–4
in StayHome case study 265–70

Begg, C.E. 16, 37
binary relationship 149, 503

in logical database design 222–3
binary search 446–7, 450
bitmap indexes 452–3
Booch, G. xix

Index

bottom-up approach (to database
design) 171, 503

Boyce–Codd normal form (BCNF) 185
B+-trees 451–2, 456
browser 12
bucket 447
buffers 443
built-in function 286, 290
business logic and data processing layer

12
business rules 34, 503

in logical database design 239–42,
424

and multiplicity 155–6
in PerfectPets case study 347, 356–9
in physical database design 272–6,

426
documentation of 275–6
in Microsoft Access 2002 274

in RDBMS 381–2
in StayHome case study 239–42

C

calculated columns 270–2
calculated fields (SQL) 44–5
candidate key (ER model) 153

in logical database design 209–11,
421

in PerfectPets case study 340–1
in StayHome case study 209–11
and third normal form 183–4

candidate key (relational model) 27,
504

cardinality 162, 504
case insensitive statements in SQL 40
catalog see system catalog
centralized approach (to database

design) 85, 504
in StayHome case study 135, 428

Character/Binary Large Objects
(CLOB/BLOB) 406

chasm traps 165–7, 202, 504
Chen, P.P. xix, xxii
Chen notation in ER model 413,

414–16
child entities 155
client 10, 504

‘fat’ vs ‘thin’
client–server architecture 10–12

two-tier vs three-tier 11–12
closed systems 106
closed-ended questions 120
clustered tables 456–60

in Oracle 365–6
clustering field 448, 504
clustering index 287, 448, 504
clustering key 456
Codd, E.F. 21, 172
collision management 447
column (relational model) 504

defining 64–5
domain constraints 239

common data models 462–501
Common Gateway Interface (CGI) 405
communication networks, threats to

104
complex relationship 149, 504

in logical database design 230–1
complexity 18
composite attribute 151, 504

in logical database design 204–8
composite key 28, 504
computational completeness 39
computer-aided design (CAD) 378–9
computer-aided manufacturing (CAM)

379
conceptual database design 193
concurrency control 504

services 14–15
connection traps 163
Connolly, T.M. 16, 37
constants in DML 41
constraint 18, 504
control files in Oracle 364
controlled redundancy 305–18, 427

documentation of 318
extract tables 314
foreign key columns, duplicating

310–12
many-to-many relationships,

duplicating 312–13
one-to-many relationships,

duplicating 308–12

516 ■ Index

one-to-one relationships, combining
307–8

partitioning tables 315–16
in PerfectPets case study 372–3
repeating groups 313–14

cookies 405
Core SQL 39
CPU 322
Crow’s Feet notation in ER model 413,

417–19
cryptosystem 109

D

data 10
data administration 98, 504

and DBA differences 100
Data Administrator (DA) 98–9
data blocks in Oracle 362–3
data capture 117
data communication 15
data consistency 18
data conversion and loading 92, 504
Data Definition Language (DDL) 39
data dictionary 7, 504
Data Encryption Standard (DES) 109
data independence 7, 18, 504

services promoting 16
data integrity 18
Data Manipulation Language (DML) 92
data mart 397–8, 504
data mining 401–2, 504
data modeling notations see Chen’s

notation; Crow’s Feet notation;
UML

data models 22, 462–501, 504
data redundancy 17, 504

and normalization 172–5
data requirements

for StayHome case study 139, 429–30
for PerfectPets case study 123–6

data retrieval 12–13
data security 299, 504
data sharing 18
data storage 12–13
data striping 323
data update 12–13
data usage analysis 283–6

data warehouse 395–8, 504
database 7, 505

advanced applications 378–81
threats to 104

database administration 98, 505
and DA differences 100
tasks 100

Database Administrator (DBA) 98, 320,
445

(database) application program 8, 505
Database Design Language (DBDL)

193, 220, 265
database design 6, 17, 86–8, 505

as iterative process 196
bottom-up vs top-down approach

171
critical success factors 193
methodology 194–6
see also logical database design; physical

database design
database generation 401
database integrity 15–16, 505
database management system (DBMS)

3, 8, 505
advantages/disadvantages 17–19
components 10
costs 18–19
functions 12–16
threats to 104

database planning 80, 505
in StayHome case study 126–32

database security see security
database server 12, 505
database statistics, updating 291–2
database system 3

examples 4–7
database system development lifecycle

80
application design 89
data conversion and loading 92
database design 86–8
database planning 80–2
DBMS selection 88
implementation 91–2
information systems lifecycle 79–80
operational maintenance 94
prototyping 90–1

Index ■ 517

database system development lifecycle
Continued

requirements collection and analysis
83–6

centralized approach 85
view integration approach 86, 87

software crisis 78–9
stages 81
system definition 82–3
testing 93
transaction design 89–90
user interface design 90
user views 83
see also logical database design;

physical database design
data-centric applications 403
data-centric model 406
datafiles in Oracle 363
datasheet in Microsoft Access 267
DBMS architectures 10–12
DBMS engine 505
DBMS selection 88, 505
decryption 303
default value 265
degree 149
degree of a relationship 149–50, 505
deletion anomalies 174
denormalization 306, 505

advantages/disadvantages 317
implications of 317
in PerfectPets case study 372

dependency
full functional 179
functional 177, 508
partial 179
transitive 183, 512

dependent entities 155
derived attribute 152–3, 505

in logical database design 205
derived data, designing 270–2, 425

documentation of 272
in PerfectPets case study 354–6
in StayHome case study 270–2

design methodology 192, 505
detailed data 397
deviation detection 401
direct files 447
disjoint constraint 505

in EER model 253–4
disk storage 320
distributed database 383, 505
distributed DBMS (DDBMS) 383–90,

505
advantages 386
disadvantages 386–7
replication servers 388–90

distributed processing 385
division–remainder hashing 447
document–centric model 406
domain constraint 32
domains 23, 505

see also attribute domains
dominant entities 155
dynamic web pages 403–4
dynamic websites 380–1

E

Earth Observing System Data and
Information System (EOSDIS) 380

Earth Observing System (EOS) 380
encryption 109, 303, 506
end-user access tools 397
enhanced entity–relationship (EER)

model 246–7
generalization 247–54

attribute inheritance 249
process of 250–2
superclasses and subclasses 247
superclass/subclass relationships

247–9
tables representing 254–5

specialization 247–54
attribute inheritance 249
process of 249–50
specialization process 249–50
superclasses and subclasses 247
superclass/subclass relationships

247–9, 252–4
tables representing 254–6

entities 147–8, 506
documentation 199
identifying 197–9, 420
in PerfectPets case study 335–6
in StayHome case study 197–9
representation 220–1

518 ■ Index

specialize/generalize 211–12
strong vs weak 155

entity integrity 32, 33, 506
in logical database design 240

entity occurrence 147, 506
entity–relationship (ER) model 146–7,

506
Chen notation in 413, 414–16
Crow’s Feet notation in 413, 417–19
in logical database design 201

error–correction 323
escape character (SQL) 49
exact-match key retrieval 283
existence constraints 240–2
expressions 292
eXtensible Mark-up Language (XML)

379, 405–7
extent in Oracle 363
extract tables 314

F

fact-finding 115, 506
choice of 116–18
documentation produced 117
techniques 118–22

documentation examined 118
interviewing 118–20
observation of business 120
questionnaires 121–2
research 120–1

use of 116
fan traps 163–5, 202, 506
fat client 11
fault tolerance 110
Federal Information Processing

Standard (FIPS) 38
feedback loop 80
fields 443

in relational model 67, 506
validation rules for 274

fifth normal form (5NF) 185
file organization 426, 442–61, 506

in Oracle 365–6
in PerfectPets case study 361–6
in physical database design 286–7

documentation of 287
in StayHome case study 286–7

selecting, guidelines for 453–6
file-based system 506
files 443, 506
first normal form (1NF) 175–6, 506
fixed-format questionnaires 122
foreign key 24, 28, 29, 506

duplicating 310–12
in logical database design 234

documentation of 346
and referential integrity 66
in PerfectPets case study 348
in StayHome case study 436

forms, validation rules for 275
four-table join operation 60–1, 73
4GL (fourth generation language) 92,

506
fourth normal form (4NF) 185
fragmentation in DDBMS 383
free-format questionnaires 122
full functional dependency 179, 506
functional dependency 177, 506

G

generalization 506
in EER model 247–54

attribute inheritance 249
process of 250–2
superclasses and subclasses 247
superclass/subclass relationships

247–9
tables representing 254–5

in logical database design 211–12,
421

in PerfectPets case study 341
generalization hierarchy 249, 506
Geographic Information Systems (GIS)

380
global applications in DDBMS 383
global data model 506
global logical data model 86, 424–5,

431–41
group, users as 301
grouped query 53
grouping columns 53

H

hardware 10
threats to 104

Index ■ 519

hash clusters 459–60
hash field 447
hash files 447, 455–6
hash function 447
hash key 447
heap files 445, 455
homonyms 198
horizontal partitioning 315
Hypertext Mark-up Language (HTML)

379

I

IBM 38, 67, 109, 393
impedance mismatch in RDBMS 382–3
implementation 91–2, 506
index 448–53, 506

in PerfectPets case study 366–7
in physical database design 279–92

choosing 286–92, 426
guidelines for 292–3
specifying 288

in StayHome case study 287–92
types 448–9
using 448–53
see also bitmap indexes, join indexes,

multilevel indexes, secondary
indexes

index-only plan 290
index file 448
indexed clusters 457–9
Indexed Sequential Access Method

(ISAM) 451, 456
indexing field 448
information system 79, 507
Informix 393
inheritance 507

of attributes 249
Inmon, W.H. 395
insertion anomalies 174
integrity constraints 109, 507

in logical database design 347–9
documentation of 349

in physical database design 269–70
integrity rules 21, 32
interactive websites 380–1
International Organization for

Standardization (ISO) 38

Internet 5, 13, 379, 397, 403
interviewing 118–20

advantages/disadvantages 119
I/O 332–3
IS-A hierarchy 249, 507

J

Jacobson, I. xix
Java 92, 405
JavaScript 405
JavaServer Pages (JSP) 405
JDBC 405
join indexes 452–3
join operation 58
journaling 108, 507

K

keys see alternate key; candidate key;
composite key; foreign key;
primary key; superkey

Kim, W. 39

L

leaf node of B+-trees 451
legacy system 19
linear search 445
link analysis 401
literals in DML 41
load balancing 323
load manager in data warehouse 397
local applications in DDBMS 383
Local Area Network (LAN) 15
local logical data model 86, 431, 507
log file 108
logical database design 192–3, 507

advanced design 428–41
global model 431–41
local model 431
user requirements specification

429–31
create and check ER model 197–217,

420–1
attribute domains 208–9, 421
attributes associated with 204–8,

421
entities, identification 197–9, 420
key attributes 209–11, 421

520 ■ Index

redundancy checking 212–14, 421
relationships, identification

199–204, 421
review model 217
specialize/generalize entities

211–12
user transactions 215–16, 421

map ER model to tables 219–43,
421–5

business rules 239–42, 424
map tables 220–34, 422–3
review 242–3, 424
table structure, checking 234–5,

424
tables and user transactions,

checking 235–8, 424
phases 192
see also PerfectPets; physical database

design
logical record 443
lookup tables 309

M

main memory 443
mandatory participation 162

in EER model 252–3
in one-to-one relationships 224–8

many-to-many relationships 159
duplicating 312–13
in logical database design 229–30

master/slave workflow 389
meta-data 507
methodology see design methodology
Microsoft Access DBMS 67, 266–70,

291
base tables, designing 266–70
base tables, implementing 266–8
business rules, creating 274
data types 267–8
file organizations and indexes 292–4

guidelines for 292–3
indexes, creating and choosing 293
referential integrity, defining 270
relationships, creating 268–70
security in 300–3
user views 298

Microsoft Internet Information Server
API (ISAPI) 405

Microsoft Web Solution Platform 405
mission objective 80, 507

in StayHome case study 127, 128–32
mission statement 80, 507

in StayHome case study 126–8
mixed transaction 90
modification anomalies 174–5
multilevel indexes 450–1
multimedia systems 379
multiple inheritance 249
multiplicity 155, 507

constraints on relationships 155–62
cardinality 162
complex 159–61
many-to-many 159
one-to-many 157–9
one-to-one 156–7
summary 161

in logical database design 201–2, 240
in PerfectPets case study 336–8
in StayHome case study 202

multi-valued attribute 152, 507
in logical database design 205, 231–3

multilevel indexes 450–2

N

native XML database 406
nested query 56
Netscape API 405
non-clustered tables 456

in Oracle 365–6
nonkey attribute/column 507

duplicating 308–10
non-volatile storage 443
normal forms 172, 507

Boyce–Codd normal form (BCNF)
175–6

first normal form (1NF) 175–6
second normal form (2NF) 177–80
third normal form (3NF) 180–5

normalization 25, 172, 507
data redundancy and update

anomalies 172–5
deletion anomalies 174
insertion anomalies 174

Index ■ 521

normalization Continued
modification anomalies 174–5

table structure, checking using 234–5
table structures, checking 347

nulls 32, 507
in logical database design 240

O

Object Data Management Group
(ODMG) 392

Object Linking and Embedding (OLE)
268, 325

object privileges 370–1
object-oriented data model (OODM)

391, 507
object-oriented database (OODB) 391,

507
object-oriented DBMS (OODBMS)

391–3, 507
advantages 392
disadvantages 392–3

object-relational DBMS (ORDBMS)
393–5, 507

observation of business for fact-finding
120

Office Information Systems (OIS) 379
one-to-many relationships 157–9

binary relationships 222–3
duplicating columns 308–10
in physical database design 270
recursive relationships 223

one-to-one relationships 156–7
binary relationships 224–9
combining 307–8
recursive relationships 229
redundancy 213

OnLine analytical processing
(OLAP) 399–400, 507

OnLine Transaction Processing (OLTP)
12, 381, 395, 398

open systems 106
open-ended questions 120
operational data 397
operational data store (ODS) 397
operational maintenance 94, 508
operations, limited in RDBMS 382
optional element in SQL 40

optional participation 162
in one-to-one relationships 224, 229

optional repetition in SQL 40
Oracle DBMS 291, 393

creating base tables in 351–4
data types 352
data storage 361
indexes in 366–7
logical database structure 361–3
physical database structure 363–5
privileges in 368–72
security measures in 367–72
Table Wizard 354–5
user views in 367
XML in 406

Oracle Internet Platform 405
ordering field 445
ordered files 445–7
ordering key 445
overflow file 447
owner entities 155
ownership 106–7

P

paging 321
parent entities 155
parity schemes 323
partial dependency 179
participation constraint (EER model)

252–3, 508
participation constraint (ER model)

162, 508
partitioning tables 315–16
passwords

in Microsoft Access 301
in Oracle 367–8

pattern matching 283
PCTFREE and PCTUSED in Oracle

364–5
peak load 280, 282
peer-to-peer systems 389
PerfectPets case study 331–5

data requirements 331–4
logical database design in 335–49
physical database design 350–73

base tables 350–4
business rules 356–9

522 ■ Index

controlled redundancy 372–3
derived data, designing 354–6
file organization in 361–6
indexes 366–7
security measures 367–72
transaction analysis 359–60
user views 367

transaction requirements 334–5
permissions in user-level security

301–2
physical database design 193, 261, 508

controlled redundancy 305–18, 427
documentation of 318
extract tables 314
foreign key columns, duplicating

310–12
many-to-many relationships,

duplicating 312–13
one-to-many relationships,

duplicating 308–12
one-to-one relationships,

combining 307–8
partitioning tables 315–16
repeating groups 313–14

file organizations and indexes
279–92, 426

choosing 286–92, 426
transaction analysis 280–6, 4216

methodology overview 263–4
operational system, monitor and

tune 320–6, 427
documentation of 325
new requirements 325–6
system resources 321–4

in PerfectPets case study 372–3
security mechanisms, designing

298–303, 426
in StayHome case study 292–4
steps 195
translate logical database design

264–76, 425–6
base tables, designing 265–70, 425
business rules, designing 272–6,

426
derived data, designing 270–2, 425

user views, designing 296–8, 426

physical database designer 262
physical record 443
pick list 309
predicate 45
predictive modeling 401
Pretty Good Privacy (PGP) 110
primary index 24, 287, 448, 508
primary key (ER model) 153–4, 508

and data integrity 66
in logical database design 209–11,

421
in PerfectPets case study 340–1
in StayHome case study 210–11

primary key (relational model) 28, 508
primary storage 443
privileges 106–7, 299–300, 508

in Oracle 368–72
procedures 10
prototyping 90–1, 508
public key cryptosystem 110
publish-and-subscribe 389
Python 92

Q

QBE (query-by-example) 34, 67–73,
508

Query Execution Plan (QEP) 291
query languages 8, 406–7
query manager in data warehouse 397
query optimizer 279
questionnaires for fact-finding 121–2

advantages/disadvantages 122

R

random files 447
range search 283
‘real world’ entities in RDBMS 381
record

logical vs physical 443–4
relational model 25, 508
validation rules for 274–5

recovery 108
recovery control 15, 508
recovery services 15
recursive queries in RDBMS 382
recursive relationship 150, 508

Index ■ 523

recursive relationship Continued
in logical database design 200, 223

redo log files in Oracle 364
redundancy

in logical database design 212–14,
421

in PerfectPets case study 341–3
see also controlled redundancy

redundant array of independent disks
(RAID) 110, 323–4

redundant data 173, 508
redundant relationships 343
reference table 309
referential action 66
referential integrity 32, 33, 508

constraints, in physical database
design 269–70

in logical database design 240
in PerfectPets case study 347–8
in StayHome case study 270

relation 22, 508
relational data structure 22–3
relational database 25, 508

representing 29–31
relational database management

systems (RDBMS) 21, 378, 508
weaknesses 381–3

relational integrity 32–4
relational keys 26–7
relational languages 34
relational model 21–36, 508
relational tables, properties 26
relations 21
relationship occurrence 148, 508
relationships 148–50, 508

attributes of 162–3
degree of a relationship 149–50
design problems 163–7

chasm traps 165–7
fan traps 163–5

diagrammatic representation of
148–9

documentation 202, 204
identifying 199–204, 421
multiplicity constraints 155–62

cardinality 162
complex 159–61

in logical database design 201–2
many-to-many 159
one-to-many 157–9
one-to-one 156–7
participation constraint 162

in PerfectPets case study 336–8
recursive relationship 150
representation 221–2
in StayHome case study 207, 436
strong entities 155
weak entities 155

Remote Data Access (RDA) 38
repeating group 313–4
replicas in DDBMS 383
replication 388, 508
replication servers 388–90
required data 239
required element in SQL 40
required relationships in logical

database design 200
requirements collection and analysis

83, 508
in StayHome case study 135–43,

430–1
data requirements 139
legal issues 143
system requirements 136–7
transaction requirements 140–3
on user views 135–6, 138–9

requirements specification 84
research for fact-finding 120–1
reserved words in SQL 40
response time 320
retrieval transaction 90
role in Oracle 370–2
root node of B+-trees 451
row (relational model) 509
Rumbaugh, J. xix
Rushmore 292–3

S

schema object in Oracle 362
schemas in Oracle 362
search condition 283, 293, 366

in SQL 45–50
second normal form (2NF) 177–80,

307, 509

524 ■ Index

secondary index 287, 448, 449, 509
choosing 288–9, 289–90
removing 291

secondary storage 443
security 101, 505, 509

countermeasures 103–10
authentication 106
authorization 105
backup and recovery 108
encryption 110 109
integrity 109
journaling 108
privileges 106–7
view 108

of data 299, 504
mechanisms in physical database

design 298–303, 426
in Microsoft Access 300–3
in Oracle 367–72
in PerfectPets case study 367–72
in StayHome case study 298–303
threats 102–3
user-level 301–2

documentation of 303
segment in Oracle 363
semantic overloading in RDBMS 381
SEQUEL 38
server 10
simple attribute 151, 509

in logical database design 204–8
simple join operation 59–60, 72
single-value attribute 152, 509
single-valued per group 53
slots 447
software 10
software crisis 78–9
Sommerville, I. 93
sort key 51

major 51
minor 51

space management in Oracle 364–5
specialization 509

in EER model 247–54
attribute inheritance 249
process of 249–50
specialization process 249–50
superclasses and subclasses 247

superclass/subclass relationships
247–9, 252–4

tables representing 254–6
in logical database design 211–12,

421
in PerfectPets case study 341

specialization hierarchy 249, 509
Standardized Generalized Mark-up

Language (SGML) 379
static web pages 403–4
StayHome case study 123–43

business user views
global model 431–41
local model 431
user requirements specification

429–31
database design 143
database planning 126–32
file organizations 292–3
indexes for 293–4
new requirements from 325–6
overview 123–6
requirements collection and analysis

135–43
data requirements 139
legal issues 143
system requirements 136–7
transaction requirements 140–3,

430–1
on user views 135–6, 138–9

system definition 133–4
systems boundary 133
tables required 236–8
user views 133–4

storage
volatile vs non-volatile 443
structures see file organization;

indexes
striping unit 323
strong entity 155, 210, 509
structured interviews 120
Structured Query Language (SQL) 8,

34, 37–40, 509
aggregate functions 51–3
AVG function 51–3

Index ■ 525

Structured Query Language (SQL)
Continued

base tables in, designing 267–8
BETWEEN/NOT BETWEEN conditions

47, 68–9
characteristics 38
commands, writing 40
conformance 39
COUNT function 51–3, 70–1
CREATE VIEW 67
data definition 63–7

CREATE TABLE 63–6
CREATE VIEW 63, 66

data manipulation see Data
Manipulation Language

DELETE statement 63
GROUP BY clause 53–6
grouping results 53–6
HAVING clause 55–6, 71–2
importance of 38
IN/NOT IN conditions 48
INSERT statement 61–2
IS NULL/IS NOT NULL conditions 50
LIKE/NOT LIKE conditions 48–9
literals 41
MAX function 51–3
MIN function 51–3
multi-table queries 58–61
objectives 39
ORDER BY clause 50–1
row selection 45–50
scalar subquery 56
SELECT statement 42–4
simple queries 42–5
sorting results 50–1, 69–70
SQL aggregate functions 51–3
subqueries 56–8
SUM function 51–3, 70–1
terminology 39–40
UPDATE statement 62
user views 297–8
WHERE clause 45–7

subclass 247, 509
relationships in EER model 247–9

constraints 252–4

subordinate entities 155
subselect 56
superclass 247, 509

relationships in EER model 247–9
constraints 252–4

superkey (ER model) 153
superkey (relational model) 26–7, 509
symmetric replication 389, 390
synchronous replication 388
synonyms 198
system catalog 7, 509
system definition 82–3, 509

in StayHome case study 133–4
system privileges 370
System -R 38
system resources 321–4

CPU 322
disk I/O 322–3
main memory 321–2
network 324
RAID 323–4

system security 299, 509
Systems Application Architecture (SAA)

38
systems boundaries 133
systems specification 135

T

table diagram 439
tables 22, 509

documentation of 346
mapping 220–34, 422–3
in PerfectPets case study 343–7
in StayHome case study 236–8
structure, checking 234–5, 424
summary 233–4
and user transaction 347, 424

tablespaces in Oracle 361
ternary relationship 149, 509

in logical database design 200
testing 93, 509
3GL (third-generation language) 92,

510
third normal form (3NF) 180–5, 307,

510

526 ■ Index

threats 102–3, 510
examples 103

three-tier client–server architecture 11,
510

throughput 320
top-down approach (to database

design) 171, 510
transaction design 89–90
transaction pathways 215–16
transaction processing monitor (TPM)

12, 510
transaction requirements

for StayHome case study 140–3,
430–1

for PerfectPets case study 359–60
transactions 510

analysis of 280–6, 426
and denormalization 317
throughput 320
types 90

transaction/table cross-reference matrix
280

transaction usage map 282
transitive dependency 183, 510
triggers

and denormalization 317
in physical database design 273

in PerfectPets case study 356–9
tuple (relational model) 24, 25, 509
two-tier client–server architecture 10,

510
type hierarchy 249, 510

U

unary relationship 149
Unified Modeling Language (UML)

147, 201, 413, 510
UNIX 38
unordered file 445
unstructured interviews 119
update anomalies 510

and normalization 172–5
deletion 174
insertion 174
modification 174–5

update-anywhere ownership 389, 390
update transaction 90

user in Oracle
user interface design 90
user interface layer 12
user requirements specification 135

in StayHome case study 429–31
user transactions

create and check model 215–16, 421
map ER model to tables 235–8
in PerfectPets case study 343, 347
in StayHome case study 140

user views 510
in logical database design 196
in Oracle 367
in PerfectPets case study 367
in physical database design 296–8,

426
documentation of 303

in StayHome case study 133–4
requirements of 135–6, 138–9

user-accessible catalog 13
users

in Oracle 362
threats to 104

utility services 16

V

validation rules
for fields (Access) 274
for forms (Access) 275
for records (Access) 274–5

VB.net 92
VBScript 405
vertical partitioning 315
view integration approach (to database

design) 86, 87, 511
in StayHome case study 135, 428

view mechanism 9
views 8–10, 108, 510

definition 9
virtual table 108
volatile storage 443

W

warehouse manager in data warehouse
397

weak entity 155, 210, 511
web-based integration 402–5

requirements for 404

Index ■ 527

web-centric organizations 403
websites 380–1
Wide Area Network (WAN) 12
wish-list 289
wizards 266, 268, 354
workflow ownership 390
workgroup information file 301

workload 278, 322
World Wide Web 86, 380–1, 402–7

X

XML (eXtensible Mark-up Language)
511

X/OPEN 38

528 ■ Index

