IlhomasiConnolly & Carolyn Begg

Database
Solutions

A step-by-step guide to bmldlng databases

A& R
S

second
edition

\

BR .. | 7 saket &

Use the online resources \i‘

for this book at
www.booksites.net _—

Database Solutions

A step-by-step guide to building databases

PEARSON

| Education

We work with leading authors to develop the
strongest educational materials in computing,
bringing cutting-edge thinking and best
learning practice to a global market.

Under a range of well-known imprints, including
Addison-Wesley, we craft high-quality print and
electronic publications which help readers to understand
and apply their content, whether studying or at work.

To find out more about the complete range of our
publishing, please visit us on the World Wide Web at:
www.pearsoned.co.uk

Database Solutions

A step-by-step approach to building databases

Second edition

Thomas M. Connolly
Carolyn E. Begg

A
AA4

PEARSON

| —

Addison
Wesley

Harlow, England « London « New York « Boston « San Francisco « Toronto « Sydney « Singapore « Hong Kong
Tokyo « Seoul « Taipei « New Delhi « Cape Town « Madrid « Mexico City « Amsterdam « Munich « Paris « Milan

Pearson Education Limited
Edinburgh Gate

Harlow

Essex CM20 2JE

England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsoned.co.uk

First published 2000
Second edition published 2004

© Pearson Education Limited 2000, 2004

The rights of Thomas Connolly and Carolyn Begg to be identified as authors of this
work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without either the prior written permission of the
publisher or a licence permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP.

The programs in this book have been included for their instructional value. They have been tested
with care but are not guaranteed for any particular purpose. The publisher does not offer any
warranties or representations nor does it accept any liabilities with respect to the programs.

All trademarks used herein are the property of their respective owners. The use of any trademark
in this text does not vest in the author or publisher any trademark ownership rights in such
trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this
book by such owners.

Screen shots reprinted by permission from Microsoft Corporation.

ISBN 0321 17350 3

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

10987654321
09 08 07 06 05 04

Typeset by 30
Printed and bound in Great Britain by Biddles Ltd, Guildford and King's Lynn

The publisher’s policy is to use paper manufactured from sustainable forests.

To

To

To

Sheena,

and to my three beautiful children Kathryn, Michael, and little Stephen,
all of whom | owe so much to and love dearly.

Carolyn, for her friendship.
Thomas M. Connolly

Neil,
and to our sons Calum and David.

Carolyn E. Begg

Brief contents

Background
1 Introduction 3
2 The relational model 21
3 SQL and QBE 37
4 The database system development lifecycle 78
5 Database administration and security 97

Database analysis and design techniques

6 Fact-finding 115
7 Entity-Relationship modeling 146
8 Normalization 171

Logical database design

9 Logical database design — Step 1 191
10 Logical database design — Step 2 219
11 Enhanced ER modeling techniques 246

Physical database design

12 Physical database design — Step 3 261
13 Physical database design — Step 4 278
14 Physical database design - Steps 5 and 6 296
15 Physical database design — Step 7 305

16 Physical database design — Step 8 319

viii l Brief contents

Second worked example

17 PerfectPets — Logical database design 331

18 PerfectPets — Physical database design 350
Current and emerging trends

19 Current and emerging trends 377
Appendices
Appendix A Alternative data modeling notations 413
Appendix B Summary of the database design

methodology 420

Appendix C Advanced logical database design 428
Appendix D File organizations and indexes 442
Appendix E Common data models 462
Glossary 503
References 513
Index 515

Contents

Preface xvii

Background

1 Introduction 3
1.1 Examples of the use of database systems 4
1.2 Database approach 7

1.2.1 The database 7
1.2.2 The Database Management System (DBMS) 8
1.2.3 (Database) application programs 8
1.2.4 Views 8
1.2.5 Components of the DBMS environment 10
1.2.6 DBMS architectures 10
1.3 Functions of a DBMS 12
1.4 Database design 17
1.5 Advantages and disadvantages of DBMSs 17
Chapter summary 19
Review questions 20

2 The relational model 21
2.1 What is a data model? 22
2.2 Terminology 22

2.2.1 Relational data structure 22
2.2.2 Properties of relational tables 26
2.2.3 Relational keys 26
2.2.4 Representing relational databases 29
2.3 Relational integrity 32
2.3.1 Nulls 32
2.3.2 Entity integrity 33

2.3.3 Referential integrity 33

x H Contents

2.3.4 Other business rules
2.4 Relational languages
Chapter summary
Review questions

SQL and QBE
3.1 Structured Query Language (SQL)
3.1.1 Objectives of SQL
3.1.2 Terminology
3.1.3 Writing SQL commands
3.2 Data manipulation
3.2.1 Simple queries
3.2.2 Row selection (WHERE clause)
3.2.3 Sorting results (ORDER BY clause)
3.2.4 Using the SQL aggregate functions
3.2.5 Grouping results (GROUP BY clause)
3.2.6 Subqueries
3.2.7 Multi-table queries
3.2.8 INSERT, UPDATE, and DELETE statements
3.3 Data definition
3.3.1 CREATE TABLE
3.3.2 CREATE VIEW
3.4 Query-by-Example (QBE)
Chapter summary
Review questions
Exercises

The database system development lifecycle
4.1 The software crisis
4.2 The information systems lifecycle
4.3 The database system development lifecycle
4.4 Database planning
4.5 System definition
4.5.1 User views
4.6 Requirements collection and analysis
4.7 Database design
4.8 DBMS selection
4.9 Application design
4.9.1 Transaction design
4.9.2 User interface design
4.10 Prototyping
4.11 Implementation
4.12 Data conversion and loading
4.13 Testing
4.14 Operational maintenance
Chapter summary
Review questions

34
34
35
35

37
38
39
39
40
41
42
45
50
51
53
56
58
61
63
63
67
67
73
75
75

78
78
79
80
80
82
83
83
86
88
89
89
90
90
91
92
93
94
94
96

Contents M xi

5 Database administration and security 97
5.1 Data administration and database administration 98
5.1.1 Data administration 98

5.1.2 Database administration 99

5.1.3 Comparison of data and database administration 99

5.2 Database security 100
5.2.1 Threats 102

5.2.2 Countermeasures — computer-based controls 103
Chapter summary 111
Review questions 112

Database analysis and design techniques

6 Fact-finding 115
6.1 When are fact-finding techniques used? 116
6.2 What facts are collected? 116
6.3 Fact-finding techniques 118

6.3.1 Examining documentation 118
6.3.2 Interviewing 118
6.3.3 Observing the business in operation 120
6.3.4 Research 120
6.3.5 Questionnaires 121
6.4 The StayHome case study 123
6.4.1 The StayHome case study — an overview 123
6.4.2 The StayHome case study — database planning 126
6.4.3 The StayHome case study — system definition 133
6.4.4 The StayHome case study — requirements
collection and analysis 135
6.4.5 The StayHome case study — database design 143
Chapter summary 144
Review questions 144

7 Entity-Relationship modeling 146
7.1 Entities 147
7.2 Relationships 148

7.2.1 Degree of a relationship 149
7.2.2 Recursive relationships 150
7.3 Attributes 151
7.3.1 Simple and composite attributes 151
7.3.2 Single-valued and multi-valued attributes 152
7.3.3 Derived attributes 152
7.3.4 Keys 153

7.4 Strong and weak entities 155

xii l Contents

7.5 Multiplicity constraints on relationships 155
7.5.1 One-to-one (1:1) relationships 156
7.5.2 Onme-to-many (1:*) relationships 157
7.5.3 Many-to-many (*:*) relationships 159
7.5.4 Multiplicity for complex relationships 159
7.5.5 Cardinality and participation constraints 162

7.6 Attributes on relationships 162

7.7 Design problems with ER models 163
7.7.1 Fan traps 163
7.7.2 Chasm traps 165

Chapter summary 168

Review questions 169

Exercises 169

Normalization 171

8.1 Introduction 172

8.2 Data redundancy and update anomalies 172
8.2.1 Insertion anomalies 174
8.2.2 Deletion anomalies 174
8.2.3 Modification anomalies 174

8.3 First normal form (1NF) 175

8.4 Second normal form (2NF) 177

8.5 Third normal form (3NF) 180

Chapter summary 185

Review questions 186

Exercises 186

Logical database design

Logical database design — Step 1 191

9.1 Introduction to the database design methodology 192
9.1.1 What is a design methodology? 192
9.1.2 Phases of database design 192
9.1.3 Critical success factors in database design 193

9.2 Overview of the database design methodology 194

9.3 Introduction to Step 1 of the logical database
design methodology 196

Step 1 Create and check ER model 197
Step 1.1 Identify entities 197
Step 1.2 Identify relationships 199
Step 1.3 Identify and associate attributes with entities

or relationships 204
Step 1.4 Determine attribute domains 208
Step 1.5 Determine candidate, primary, and alternate

key attributes 209

Step 1.6 Specialize/Generalize entities (optional step) 211
Step 1.7 Check model for redundancy 212
Step 1.8 Check model supports user transactions 215
Step 1.9 Review model with user 217
Chapter summary 217
Review questions 218
Exercise 218
10 Logical database design — Step 2 219
Step 2 Map ER model to tables 219
Step 2.1 Create tables 220
Step 2.2 Check table structures using normalization 234
Step 2.3 Check tables support user transactions 235
Step 2.4 Check business rules 239
Step 2.5 Review logical database design with users 242
Chapter summary 243
Review questions 244
Exercise 245
11 Enhanced ER modeling techniques 246
11.1 Specialization/Generalization 247
11.1.1 Superclasses and subclasses 247
11.1.2 Superclass/Subclass relationships 247
11.1.3 Attribute inheritance 249
11.1.4 Specialization process 249
11.1.5 Generalization process 250
11.1.6 Constraints on superclass/subclass relationships 252
11.2 Creating tables to represent specialization/generalization 254
Chapter summary 256
Review questions 257
Exercises 257
Physical database design
12 Physical database design — Step 3 261
12.1 Comparison of logical and physical database design 262
12.2 Overview of the physical database design methodology 263
Step 3 Translate logical database design for target DBMS 264
Step 3.1 Design base tables 265
Step 3.2 Design representation of derived data 270
Step 3.3 Design remaining business rules 272
Chapter summary 276
Review questions 277

Exercise

277

Contents M xiii

xiv l Contents

13 Physical database design — Step 4 278
Step 4 Choose file organizations and indexes 279
Step 4.1 Analyze transactions 280
Step 4.2 Choose file organizations 286
Step 4.3 Choose indexes 287
13.1 File organizations and indexes for StayHome with
Microsoft Access 2002 292
13.1.1 Guidelines for indexes 292
13.1.2 Indexes for StayHome 293
Chapter summary 294
Review questions 295
Exercise 295
14 Physical database design — Steps 5 and 6 296
Step 5§ Design user views 296
Step 6 Design security mechanisms 298
Chapter summary 303
Review questions 304
Exercise 304
15 Physical database design — Step 7 305
Step 7 Consider the introduction of controlled redundancy 305
Chapter summary 318
Review questions 318
Exercise 318
16 Physical database design — Step 8 319
Step 8 Monitor and tune the operational system 320
Understanding system resources 321
Summary 324
New requirement from StayHome 325
Chapter summary 326
Review questions 327
Second worked example
17 PerfectPets — Logical database design 331
17.1 PerfectPets 331
17.1.1 Data requirements 331
17.1.2 Transaction requirements 334
17.2 Using the logical database design methodology 335
18 PerfectPets — Physical database design 350
18.1 Using the physical database design methodology 350

Current and emerging trends

19 Current and emerging trends 377
19.1 Advanced database applications 378
19.2 Weaknesses of Relational DBMSs (RDBMSs) 381
19.3 Distributed DBMSs and replication servers 383

19.3.1 Advantages and disadvantages of DDBMSs 385

19.3.2 Replication servers 388

19.4 Object-oriented DBMSs and object-relational DBMSs 390

19.4.1 Object-oriented DBMSs (OODBMSs) 391

19.4.2 Object-relational DBMSs (ORDBMSs) 393

19.5 Data warehousing 395

19.5.1 Data marts 397

19.6 OnlLine Analytical Processing (OLAP) 399

19.7 Data mining 401

19.8 Web-database integration and XML 402

19.8.1 Static and dynamic Web pages 403

19.8.2 Requirements for Web-DBMS integration 404

19.8.3 Approaches to integrating the Web and DBMSs 405

19.8.4 XML 405

Chapter summary 407

Review questions 409
Appendices

A Alternative data modeling notations 413

A.1 ER modeling using the Chen notation 413

A.2 ER modeling using the Crow’s Feet notation 413

B Summary of the database design methodology 420

C Advanced logical database design 428

C.1 The Business user views of StayHome 429

C.1.1 Users’ requirements specification 429

C.1.2 Local logical data model 431

Step 2.6 Build and check global logical data model 431

Appendix summary 441

D File organizations and indexes 442

D.1 Basic concepts 443

D.2 Heap files 445

D.3 Ordered files 445

D.4 Hash files 447

D.5 Indexes

448

Contents l xv

xvi l Contents

D.5.1 Types of indexes
D.5.2 Secondary indexes
D.5.3 Multilevel indexes
D.5.4 B*-Trees
D.5.5 Bitmap indexes
D.5.6 Join indexes
D.6 Guidelines for selecting file organizations
D.7 Clustered and non-clustered tables
D.7.1 Index clusters
D.7.2 Hash clusters
Appendix summary

E Common data models
E.1 Customer order entry
E.2 Inventory control
E.3 Asset management
E.4 Project management
E.5 Course management
E.6 Human resource management
E.7 Payroll management
E.8 Vehicle rentals
E.9 Student accommodation
E.10 Client transportation
E.11 Publisher printing
E.12 County library
E.13 Real estate rentals
E.14 Travel agent
E.15 Student results

Glossary
References

Index

448
449
450
451
452
453
453
456
457
459
460

462
463
466
468
469
472
475
478
481
483
486
488
490
493
496
499

503
513

515

Preface

Background

The database is now the underlying framework of the information system and
has fundamentally changed the way many companies and individuals work.
The developments in this technology over the last few years have produced
database systems that are more powerful and more intuitive to use, and users
are creating databases and applications without the necessary knowledge to
produce an effective and efficient system. Looking at the literature, we found
many excellent books that examine a part of the database system development
lifecycle. However, we found very few that covered analysis, design, and imple-
mentation and described the development process in a simple-to-understand
way that could be used by both technical and non-technical readers.

Our original concept therefore was to provide a book for both the academic
and business community that explained as clearly as possible how to analyze,
design, and implement a database. This would cover both simple databases con-
sisting of a few tables and large databases containing tens to hundreds of tables.
During the initial reviews that we carried out, it became clear that the book
would also be useful for the academic community and provide a very simple and
clear presentation of a database design methodology that would complement a
more extensive recommended textbook, such as our own book Database Systems.

The methodology we present in this book for relational Database
Management Systems (DBMSs) — the predominant system for business applica-
tions at present — has been tried and tested over the years in both industrial and
academic environments. The methodology is divided into two phases:

a logical database design phase, in which we develop a model of what we’re
trying to represent while ignoring implementation details;

xvii

xviii Il Preface

a physical database design phase, in which we decide how we’re going to
realize the implementation in the target DBMS, such as Microsoft Access,
Microsoft SQL Server, Oracle, DB2, or Informix.

We present each phase as a series of simple-to-follow steps. For the inexperi-
enced designer, we expect that the steps will be followed in the order described,
and guidelines are provided throughout to help with this process. For the expe-
rienced designer, the methodology can be less prescriptive, acting more as a
framework or checklist.

Helping to understand database design

To help you use the methodology and understand the important issues, we pro-
vide a comprehensive worked example that is integrated through the book
based on a video rental company called StayHome. To reinforce the methodol-
ogy we work through a second case study in Chapters 17 and 18 based on a
veterinary clinic called PerfectPets.

To help you further, we have included additional database solutions in
Appendix E (with corresponding SQL scripts included on the accompanying
Website). Each solution has a small introduction, which you may like to read
and then try to produce the database design yourself before looking at our
sample solution.

Common data models

As well as providing you with additional experience of designing databases,
Appendix E also provides you with many common data models that you may
find useful. In fact, it has been estimated that one-third of a data model consists
of common constructs that are applicable to most companies and the remain-
ing two-thirds are either industry-specific or company-specific. Thus, most
database design work consists of re-creating constructs that have already been
produced many times before in other companies. The models featured may not
represent your company exactly, but they may provide a starting point from
which you can develop a more suitable model that matches your company’s
specific requirements. Some of the models we provide cover the following
common business areas:

Customer Order Entry
Inventory Control
Asset Management

Project Management

Course Management
Human Resource Management

Payroll Management.

UML (Unified Modeling Language)

Increasingly, companies are standardizing the way in which they model data by
selecting a particular approach to data modeling and using it throughout their
database development projects. A popular high-level data model used in logical
database design, and the one we use in this book, is based on the concepts of
the Entity—Relationship (ER) model. Currently there is no standard notation for
an ER model. Most books that cover database design for relational DBMSs tend
to use one of two conventional notations:

Chen’s notation, consisting of rectangles representing entities and diamonds
representing relationships, with lines linking the rectangles and diamonds;

Crow’s Feet notation, again consisting of rectangles representing entities and
lines between entities representing relationships, with a crow’s foot at the
end of a line representing a one-to-many relationship.

Both notations are well supported by current CASE tools. However, they can
be quite cumbersome to use and a bit difficult to explain. In this book, we
instead use the class diagram notation from the latest object-oriented modeling
language called UML (Unified Modeling Language). UML is a notation that
combines elements from the three major strands of object-oriented design:
Rumbaugh’s OMT modeling, Booch’s Object-Oriented Analysis and Design, and
Jacobson'’s Objectory. It is anticipated that UML will become a standard and the
Object Management Group (OMG) has adopted UML as the standard notation
for object methods.

We believe you will find this notation easier to understand and use.

What's new in the second edition

The first edition of the book has been revised to improve readability, to update
or extend the coverage of existing material, and to include new material. The
major changes in the second edition are as follows:

New tutorial-style chapter on SQL (Structured Query Language) and QBE
(Query-by-Example). SQL and QBE are the two main languages for relational
DBMSs.

New chapter on database administration and security.

Preface M xix

ER modeling
covered in
Chapter 7

xx H Preface

Improvements to the database design methodology. In particular, the merg-
ing of user views during logical database design has been moved to an
appendix to keep the basic methodology simple.

New chapter on current and emerging trends, discussing the requirements
for advanced database applications and why current relational systems are
not well suited to these requirements, and then providing an introduction to
distributed DBMSs, data replication, object-oriented DBMSs, object-relational
DBMSs, data warehousing, OnLine Analytical Processing (OLAP) and data
mining, and approaches for integrating databases into the Web environment.
A more academic presentation with review questions at the end of most
chapters and an accompanying Website with additional review questions,
exercises, exam questions, transparencies, databases, and SQL scripts for the
common data models in Appendix E.

Showing how to implement a design

We believe it is important to show you how to convert a database design into a
physical implementation. In this book, we show how to implement the first case
study (the video rental company called StayHome) in the Microsoft Access 2002
DBMS. In contrast, we show how to map the database design for the second case
study (the veterinary clinic called PerfectPets) in the Oracle 91 DBMS.

Who should read this book?

Who should read this book? We have tried to write this book in a self-contained
way. The exception to this is physical database design, where you need to have
a good understanding of how the target DBMS operates. Our intended audience
is anyone who needs to develop a database, including but not limited to the
following:

information modelers and database designers;
database application designers and implementers;
database practitioners;

data and database administrators;

information systems, business IT, and computing science professors specializ-
ing in database design;

database students, namely undergraduate, advanced undergraduate, and graduate;

anyone wishing to design and develop a database system.

Preface B xxi

Structure of this book

We have divided the book into six parts and a set of five appendices:

Part 1 — Background. We provide an introduction to DBMSs, the relational
model, and a tutorial-style chapter on SQL and QBE in Chapters 1, 2, and 3.
We also provide an overview of the database system development lifecycle in
Chapter 4 and a discussion of database administration and security in
Chapter 5.

Part 2 — Database Analysis and Design Techniques. We discuss techniques for
database analysis in Chapter 6 and show how to use some of these tech-
niques to analyze the requirements for the video rental company StayHome.
We show how to draw Entity-Relationship (ER) diagrams using UML in
Chapter 7 and how to apply the rules of normalization in Chapter 8. ER
models and normalization are important techniques that are used in the
database design methodology we describe in Part 3.

Part 3 - Logical Database Design. We describe a step-by-step approach for
logical database design. In Step 1 presented in Chapter 9, we create an ER
model for the video rental company StayHome. In Step 2 presented in
Chapter 10, we map the ER model to a set of database tables. To support the
design of more complex databases, we present the main concepts associated
with enhanced ER modeling in Chapter 11. Also in this chapter, we describe
how such concepts are mapped to tables.

Part 4 — Physical Database Design. We describe a step-by-step approach for
physical database design. In Step 3 presented in Chapter 12, we design a set
of base tables for the target DBMS. In Step 4 presented in Chapter 13, we
choose file organizations and indexes. In Steps 5 and 6 presented in Chapter
14, we consider the design of user views and the design of security mecha-
nisms that will protect the data from unauthorized access. In Step 7
presented in Chapter 15, we describe how the introduction of controlled
redundancy into a database can achieve improved performance. Finally, in
Step 8 presented in Chapter 16, we monitor and tune the operational system.
As we've just mentioned, we show you how to implement the design for the
StayHome database system in Microsoft Access 2002.

Part 5 — Second Worked Example. In Chapters 17 and 18, we work through a
second case study about the veterinary clinic PerfectPets. We show you how
to implement the design for the PerfectPets database application in Oracle 9i.

Part 6 — Current and Emerging Trends. In Chapter 19, we discuss the require-
ments for advanced database applications and why current relational systems
are not well suited to these requirements. We then provide an introduction
to Distributed DBMSs (DDBMSs), data replication, Object-oriented DBMSs
(OODBMSs), Object-relational DBMSs (ORDBMSs), data warehousing,

xxii Il Preface

OnlLine Analytical Processing (OLAP) and data mining, and approaches for
integrating databases into the Web environment.

Appendices. Appendix A examines the two main alternative ER notations:
Chen’s notation and the Crow’s Feet notation. Appendix B provides a sum-
mary of the methodology as a quick reference guide. Appendix C presents an
extension to the basic logical database design methodology for database sys-
tems with multiple user views that have requirements which are managed
using the view integration approach. Appendix D provides some background
information on file organization and storage structures that may help you
understand some aspects of the physical database design methodology pre-
sented in Part 3. Appendix E provides a set of 15 common data models.

Pedagogy

To make the book as readable as possible, we have adopted the following style
and structure:

A set of objectives for each chapter, clearly highlighted at the start of the
chapter.

A summary at the end of each chapter covering the main points introduced.
Review questions at the end of most chapters.

Each important concept that is introduced is clearly defined and highlighted
by placing the definition in a box.

A series of notes and tips — you'll see these throughout the book with an
adjacent icon to highlight them.

Diagrams liberally used throughout to support and clarify concepts.

A very practical orientation. Each chapter contains many worked examples
to illustrate the points covered.

A glossary at the end of the book, which you may find useful as a quick refer-
ence guide. We also tend to use the margins to give you a reference to the
section of the book that defines a concept we’re discussing.

Accompanying Instructor's Guide and Website

A comprehensive supplement containing numerous instructional resources is
available for this textbook, upon request to Pearson Education. The accompanying
Instructor’s Guide includes:

Teaching suggestions These include lecture suggestions, teaching hints, and
student project ideas that make use of the chapter content.

Solutions Sample answers are provided for all review questions.

Examination questions Examination questions (similar to the questions at the
end of each chapter), with solutions.

Transparency masters (created using PowerPoint) containing the main points
from each chapter, enlarged illustrations, and tables from the text are pro-
vided to help the instructor associate lectures and class discussion to the
material in the textbook.

An implementation of the StayHome database system in Microsoft Access
2002.

An SQL script to create an implementation of the PerfectPets database system.
This script can be used to create a database in many relational DBMSs, such
as Oracle, Informix, and SQL Server.

An SQL script for each common data model defined in Appendix E to create
the corresponding set of base tables for the database system. Once again,
these scripts can be used to create a database in many relational DBMSs.

Additional information about the Instructor’s Guide and the book can be found
on the Pearson Education Website at:

http://www.booksites.net/connbegg

Corrections and suggestions

As this type of textbook is so vulnerable to errors, disagreements, omissions,
and confusion, your input is solicited for future reprints and editions.
Comments, corrections, and constructive suggestions should be sent to Pearson
Education, or by electronic mail to:

thomas.connolly@paisley.ac.uk

Acknowledgements

This book is the outcome of many years of work by the authors in industry,
research, and academia. It is therefore difficult to name all the people who have
directly or indirectly helped us in our efforts; an idea here and there may have
appeared insignificant at the time but may have had a significant causal effect.
For those people we are about to omit, we apologize now. However, special
thanks and apologies must first go to our families, who over the years have
been neglected, even ignored, while we have been writing our books.

We would first like to thank Kate Brewin, our editor, and Mary Lince, our desk
editor. We should also like to thank the reviewers of this book, who contributed

Preface M xxiii

xxiv [l Preface

their comments, suggestions, and advice. In particular, we would like to men-

tion Stuart Anderson and Andy Osborn, who reviewed the first edition, Aurélie

Bechina and Nick Measor, who reviewed the second edition, and Willie Favero

who reviewed both editions.

We should also like to thank our secretaries Lyndonne MacLeod and June
Blackburn, for their help and support during the years.

Thomas M. Connolly

Carolyn E. Begg

Glasgow, May 2003

Background

1 Introduction 3

2 The relational model 21

3 SQL and QBE 37

4 The database system development lifecycle 78

5 Database administration and security 97

Introduction

In this chapter you will learn:

Some common uses of database systems.

The meaning of the term database.

The meaning of the term Database Management System (DBMS).
The major components of the DBMS environment.

The typical functions and services a DBMS should provide.

The advantages and disadvantages of DBMSs.

A A A A AA

The database is now such an integral part of our day-to-day life that often we’re
not aware we are using one. To start our discussion of database systems, we
briefly examine some of their applications. For the purposes of this discussion,
we consider a database to be a collection of related data and the Database
Management System (DBMS) to be the software that manages and controls
access to the database. We also use the term application program to be a com-
puter program that interacts with the database in some way and we use the
more inclusive term database system to be the collection of application pro-
grams that interact with the database along with the DBMS and the database
itself. We provide more accurate definitions in Section 1.2. Later in the chapter,
we'll look at the typical functions of a modern DBMS and briefly review the
main advantages and disadvantages of DBMSs.

4 M Background

1.1 Examples of the use of database systems

Purchases from the supermarket

When you purchase goods from your local supermarket, it’s likely that a data-
base is accessed. The checkout assistant uses a bar code reader to scan each of
your purchases. This is linked to an application program that uses the bar code
to find the price of the item from a product database. The program then
reduces the number of such items in stock and displays the price on the cash
register. If the reorder level falls below a specified threshold, the database
system may automatically place an order to obtain more stocks of that item.

Purchases using your credit card

When you purchase goods using your credit card, the assistant normally checks
that you have sufficient credit left to make the purchase. This check may be car-
ried out by telephone or it may be done automatically by a card reader linked
to a computer system. In either case, there is a database somewhere that con-
tains information about the purchases that you've made using your credit card.
To check your credit, there is a database application program that uses your
credit card number to check that the price of the goods you wish to buy,
together with the sum of the purchases you've already made this month, is
within your credit limit. When the purchase is confirmed, the details of your
purchase are added to this database. The application program also accesses the
database to check that the credit card is not on the list of stolen or lost cards
before authorizing the purchase. There are other database application programs
to send out monthly statements to each cardholder and to credit accounts
when payment is received.

Booking a holiday at the travel agents

When you make inquiries about a holiday, the travel agent may access several
databases containing holiday and flight details. When you book your holiday,
the database system has to make all the necessary booking arrangements. In
this case, the system has to ensure that two different agents don’t book the
same holiday or overbook the seats on the flight. For example, if there is only
one seat left on the flight from London to New York and two agents try to
reserve the last seat at the same time, the system has to recognize this situation,
allow one booking to proceed, and inform the other agent that there are now
no seats available. The travel agent may have another, usually separate, data-
base for invoicing.

Using the local library

Whenever you visit your local library, there is probably a database containing
details of the books in the library, details of the readers, reservations, and so on.
There will be a computerized index that allows readers to find a book based on
its title, or its authors, or its subject area, or its ISBN. The database system han-
dles reservations to allow a reader to reserve a book and to be informed by post
when the book is available. The system also sends out reminders to borrowers
who have failed to return books on the due date. Typically, the system will have
a bar code reader, similar to that used by the supermarket described earlier,
which is used to keep track of books coming in and going out of the library.

Renting a video

When you wish to rent a video from a video rental company, you will probably
find that the company maintains a database consisting of the video titles that it
stocks, details on the copies it has for each title, whether the copy is available
for rent or whether it is currently on loan, details of its members (the renters)
and which videos they are currently renting and date they are returned. The
database may even store more detailed information on each video, such as its
director and its actors. The company can use this information to monitor stock
usage and predict future buying trends based on historic rental data. For exam-
ple, Figure 1.1 shows some sample data for such a company.

Using the Internet

Many of the sites on the Internet are driven by database applications. For exam-
ple, you may visit an online bookstore that allows you to browse and buy
books, such as Amazon.com. The bookstore allows you to browse books in dif-
ferent categories, such as computing or management, or it may allow you to
browse books by author name. In either case, there is a database on the organi-
zation’s Web server that consists of book details, availability, shipping
information, stock levels, and on-order information. Book details include book
titles, ISBNs, authors, prices, sales histories, publishers, reviews, and in-depth
descriptions. The database allows books to be cross-referenced: for example, a
book may be listed under several categories, such as computing, programming
languages, bestsellers, and recommended titles. The cross-referencing also
allows Amazon to give you information on other books that are typically
ordered along with the title you are interested in.

QUIET
PLEASE

Introduction l 5

6 M Background

Figure 1.1 Video
Sample data for a catalogNo | title category dailyRental | price directorNo
video rental
company. 207132 Die Another Day Action 5.00 21.99 | D1001
902355 Harry Potter Children | 4.50 14.50 | D7834
330553 Lord of the Rings Fantasy 5.00 31.99 | D4576
781132 Shrek Children | 4.00 18.50 | D0078
445624 Men in Black II Action 4.00 29.99 | D5743
634817 Independence Day Sci-Fi 4.50 32.99 | D3765
Role
Director Actor actorNo | catalogNo | character
directorNo | directorName actorNo | actorName A1002 207132 James Bond
D1001 Lee Tamahori A1002 | Pierce Brosnan A3006 330553 Frodo Baggins
D7834 Chris Columbus A3006 | Elijah Wood A3006 | 902355 | Harry Potter
D4576 Peter Jackson A2019 Will Smith A2019 330553 Captain Steve Hiller
DO0078 Andrew Adamson A7525 Tommy Lee Jones A2019 445624 Agent]
D5743 Barry Sonnenfeld A4343 Mike Myers A7525 634817 Agent K
D3765 Roland Emmerick A8401 | Daniel Radcliffe A4343 781132 Shrek

These are only a few of the applications for database systems, and you'll no
doubt be aware of plenty of others. Although we take many of these applica-
tions for granted, behind them lies some highly complex technology. At the
center of this technology is the database itself. For the system to support the
applications that the end-users want, in as efficient a manner as possible,
requires a suitably structured database. Producing this structure is known as
database design, and it’s this important activity that we’re going to concentrate
on in this book. Whether the database you wish to build is small, or large like
the ones above, database design is a fundamental issue, and the methodology
presented in this book will help you build your database correctly with relative
ease. Having a well-designed database will allow you to produce a system that
satisfies the requirements of the users and, at the same time, provides accept-
able performance.

1.2 Database approach

In this section, we provide a more formal definition of the terms database,
Database Management System (DBMS), and application program than we used in
the last section.

1.2.1 The database

Database

A shared collection of logically related data (and a description of this data), designed
to meet the information needs of an organization.

Let’s examine the definition of a database in detail to understand this concept
fully. The database is a single, possibly large repository of data, which can be
used simultaneously by many departments and users. All data that is required
by these users is integrated with a minimum amount of duplication. And
importantly, the database is normally not owned by any one department or
user but is a shared corporate resource.

As well as holding the organization’s operational data, the database also
holds a description of this data. For this reason, a database is also defined as a
self-describing collection of integrated records. The description of the data, that is
the meta-data — the ‘data about data’ — is known as the system catalog or data
dictionary. It is the self-describing nature of a database that provides what'’s
known as data independence. This means that if new data structures are added
to the database or existing structures in the database are modified then the
application programs that use the database are unaffected, provided they don't
directly depend upon what has been modified. For example, if we add a new
column to a record or create a new table, existing applications are unaffected.
However, if we remove a column from a table that an application program uses,
then that application program is affected by this change and must be modified
accordingly.

The final term in the definition of a database that we should explain is ‘logi-
cally related’. When we analyze the organization’s information needs, we
attempt to identify the important objects that need to be represented in the
database and the logical relationships between these objects. The methodology
we’ll present for database design will give you guidelines for identifying these
important objects and their logical relationships.

Introduction W 7

Methodology
covered in
Chapters 9 to 16

8 M Background

SQL covered in
Chapter 3

1.2.2 The Database Management System (DBMS)

DBMS

A software system that enables users to define, create, and maintain the database and
also provides controlled access to this database.

The DBMS is the software that interacts with the users, application programs,
and the database. Among other things, the DBMS allows users to insert, update,
delete, and retrieve data from the database. Having a central repository for all
data and data descriptions allows the DBMS to provide a general inquiry facility
to this data, called a query language. The provision of a query language (such as
SQL) alleviates the problems with earlier systems where the user has to work
with a fixed set of queries or where there is a proliferation of programs, giving
major software management problems. We'll discuss the typical functions and
services of a DBMS in the next section.

The Structured Query Language (SQL — pronounced ‘S-Q-L’ or sometimes ‘See-
Quel’) is the main query language for relational DBMSs, like Microsoft Access,
Microsoft SQL Server, and Oracle.

1.2.3 (Database) application programs

Application program

A computer program that interacts with the database by issuing an appropriate request
(typically an SQL statement) to the DBMS.

Users interact with the database through a number of application programs
that are used to create and maintain the database and to generate information.
These programs can be conventional batch applications or, more typically
nowadays, they will be online applications. The application programs may be
written in some programming language or in some higher-level fourth-genera-
tion language. Figure 1.2 illustrates the database approach. It shows the Sales
and Stock Control Departments using their application programs to access the
database through the DBMS. Each set of departmental application programs
handles data entry, data maintenance, and the generation of reports. The physical
structure and storage of the data are managed by the DBMS.

1.2.4 Views

With the functionality described above, the DBMS is an extremely powerful
tool. However, as end-users are not too interested in how complex or easy a task

Sales Dept

Q Stock Control
] Dept

patabase

Tables of data

]

Meta-data

is for the system, it could be argued that the DBMS has made things more com-
plex because users may now see more data than they actually need, or want, to
do their job. In recognition of this problem, a DBMS provides another facility
known as a view mechanism, which allows each user to have his or her own cus-
tomized view of the database, where a view is some subset of the database.

View

A virtual table that does not necessarily exist in the database but is generated by the
DBMS from the underlying base tables whenever it’s accessed.

A view is usually defined as a query that operates on the base tables to pro-
duce another virtual table. As well as reducing complexity by letting users see
the data in the way they want to see it, views have several other benefits:

Views provide a level of security. Views can be set up to exclude data that some
users should not see. For example, we could create a view that allows a
branch manager and the Payroll Department to see all staff data, including
salary details. However, we could create a second view that excludes salary
details, which other staff use.

Introduction M9

Figure 1.2

The database
approach showing
Sales and Stock
Control
Departments
accessing the
database through
application
programs and the
DBMS.

10 M Background

Views provide a mechanism to customize the appearance of the database. For
example, the Stock Control Department may wish to call the Daily Rental Rate
column for videos by the simpler name, Daily Rental.

A view can present a consistent, unchanging picture of the structure of the
database, even if the underlying database is changed (for example, columns
added or removed, relationships changed, data files split, restructured, or
renamed). If columns are added or removed from a data file, and these
columns are not required by the view, the view is not affected by this
change. Thus, a view helps provide additional data independence to that
provided by the system catalog, as we described in Section 1.2.1.

1.2.5 Components of the DBMS environment

We can identify five major components in the DBMS environment: hardware,
software, data, procedures, and people:

(1) Hardware The computer system(s) that the DBMS and the application pro-
grams run on. This can range from a single PC, to a single mainframe, to a
network of computers.

(2) Software The DBMS software and the application programs, together with
the operating system, including network software if the DBMS is being used
over a network.

(3) Data The data acts as a bridge between the hardware and software compo-

nents and the human components. As we’ve already said, the database
contains both the operational data and the meta-data (the ‘data about data’).

(4) Procedures The instructions and rules that govern the design and use of
the database. This may include instructions on how to log on to the DBMS,
make backup copies of the database, and how to handle hardware or soft-
ware failures.

(5) People This includes the database designers, database administrators
(DBAs), application programmers, and the end-users.

1.2.6 DBMS architectures
Before the advent of the Web, generally a DBMS would be divided into two parts:

a client program that handles the main business and data processing logic
and interfaces with the user;

a server program (sometimes called the DBMS engine) that manages and
controls access to the database.

This is known as a (two-tier) client-server architecture. Figure 1.3 illustrates a
simplified client-server architecture for a video rental company called StayHome

Introduction l 11

that has offices throughout the US. It shows a centralized database and server StayHome is used
located at the company’s headquarters in Seattle and a number of clients throughout this book and
located at some of the branches around the US. described in detail in

In the mid-1990s, as applications became more complex and potentially Chapter 6
could be deployed to hundreds or thousands of end-users, the client side of this
architecture gave rise to two problems:

A ‘fat’ client, requiring considerable resources on the client’s computer to run
effectively (resources include disk space, RAM, and CPU power).

A significant client-side administration overhead.

By 1995, a new variation of the traditional two-tier client-server model
appeared to solve these problems, called the three-tier client-server architecture.

Figure 1.3

Simplified two-tier client-server configuration for StayHome.

Portland New York

]

Business and
data processing
logic + user
interface

Business and
data processing
logic + user
interface

O

L]

Denver Washington

Data access
logic

Database

Seattle

Tier 1 Tier 2 Tier 1
Clients Database server Clients

12 M Background

This new architecture proposed three layers, each potentially running on a
different platform:

(1) The user interface layer, which runs on the end-user’s computer (the client).

(2) The business logic and data processing layer. This middle tier runs on a server
and is often called the application server. One application server is
designed to serve multiple clients.

(3) A DBMS, which stores the data required by the middle tier. This tier may run
on a separate server called the database server.

The three-tier design has many advantages over the traditional two-tier design,
such as:

A ‘thin’ client, which requires less expensive hardware.

Simplified application maintenance, as a result of centralizing the business
logic for many end-users into a single application server. This eliminates the
concerns of software distribution that are problematic in the traditional two-
tier client-server architecture.

Added modularity, which makes it easier to modify or replace one tier with-
out affecting the other tiers.

Easier load balancing, again as a result of separating the core business logic
from the database functions. For example, a Transaction Processing
Monitor (TPM) can be used to reduce the number of connections to the
database server. (A TPM is a program that controls data transfer between
clients and servers in order to provide a consistent environment for Online
Transaction Processing (OLTP).)

An additional advantage is that the three-tier architecture maps quite naturally
to the Web environment, with a Web browser acting as the ‘thin’ client, and a
Web server acting as the application server. The three-tier client-server architec-
ture is illustrated in Figure 1.4.

1.3 Functions of a DBMS

In this section, we briefly look at the functions and services we would expect a
full-scale DBMS to provide nowadays.

Data storage, retrieval, and update

This is the fundamental function of a DBMS. From our earlier discussion,
clearly in providing this functionality the DBMS should hide the internal physi-
cal implementation details (such as file organization and storage structures)
from the user.

Introduction Il 13

Figure 1.4

Simplified three-tier client-server configuration for StayHome.

- Portland New York -

Internet

u
u

User
interface

User
interface

[

Data access
logic

Business and
data processing
logic

Seattle
Tier 1 Tier 3 Tier 2 Tier 1
Clients Application Database Clients
server (with TPM) server

A user-accessible catalog

A key feature of a DBMS is the provision of an integrated system catalog to hold
data about the structure of the database, users, applications, and so on. The cat-
alog is expected to be accessible to users as well as to the DBMS. The amount of
information and the way the information is used vary with the DBMS.
Typically, the system catalog stores:

names, types, and sizes of data items;
integrity constraints on the data;

names of authorized users who have access to the data.

14 M Background

Figure 1.5

The lost update
problem.

Transaction support

Transaction

An action, or series of actions, carried out by a single user or application program,
which accesses or changes the contents of the database.

For example, some simple transactions for the StayHome video rental company
might be to add a new member of staff to the database, to update the salary of a
particular member of staff, or to delete a member from the register. A more
complicated example might be to delete a manager from the database and to
reassign the branch that he or she managed to another member of staff. In this
case, there is more than one change to be made to the database. If the transac-
tion fails during execution, perhaps because of a computer crash, the database
will be in an inconsistent state: some changes will have been made and others
not. For example, a branch is not allocated a new manager. Consequently, the
changes that have been made will have to be undone to return the database to
a consistent state again.

To overcome this, a DBMS should provide a mechanism that will ensure
either that all the updates corresponding to a given transaction are made or
that none of them are made.

Concurrency control services

One major objective in using a DBMS is to enable many users to access shared
data concurrently; this is known as concurrency control. Concurrent access is
relatively easy if all users are only reading data, as there is no way that they can
interfere with one another. However, when two or more users are accessing the
database simultaneously and at least one of them is updating data, there may be
interference that can result in inconsistencies. For example, consider two trans-
actions T, and T, that are executing concurrently as illustrated in Figure 1.5.

T, is withdrawing $20 from a StayHome member’s account (with a balance,
bal,, currently $50) and T, is crediting $5 to the same account. If these transac-
tions were executed one after the other with no interleaving of operations, the
final balance would be $35 regardless of which was performed first. Transactions

Time T, T, bal,
t read(bal,) 50
t, read(bal,) bal, = bal, - 20 50
ty bal, =bal, + 5 write(bal,) 30
t, write(bal,) 55

t

%

T, and T, start at nearly the same time and both read the balance as $50. T,
decreases bal, by $20 to $30 and stores the update in the database. Meanwhile,
transaction T, increases its copy of bal, by $5 to $55 and stores this value in the
database, overwriting the previous update and thereby ‘losing’ $20.

When multiple users are accessing the database, the DBMS must ensure that
interference like this cannot occur.

Recovery services

When discussing transaction support, we mentioned that if the transaction fails
the database has to be returned to a consistent state; this is known as recovery
control. This may be the result of a system crash, media failure, a hardware or
software error causing the DBMS to stop, or it may be the result of the user
detecting an error during the transaction and aborting the transaction before it
completes. In all these cases, the DBMS must provide a mechanism to recover
the database to a consistent state.

Authorization services

It’s not difficult to envisage instances where we would want to protect some of
the data stored in the database from being seen by all users. For example, we
may want only branch managers and the Payroll Department to see salary-
related information for staff and prevent all other users from seeing this data.
Additionally, we may want to protect the database from unauthorized access.
The term security refers to the protection of the database against unauthorized
access, either intentional or accidental. We expect the DBMS to provide mecha-
nisms to ensure the data is secure.

Support for data communication

Most users access the database from terminals. Sometimes, these terminals are
connected directly to the computer hosting the DBMS. In other cases, the ter-
minals are at remote locations and communicate with the computer hosting
the DBMS over a network. In either case, the DBMS must be capable of integrat-
ing with networking/communication software. Even DBMSs for PCs should be
capable of being run on a local area network (LAN) so that one centralized data-
base can be established for users to share, rather than having a series of
disparate databases, one for each user.

Integrity services

Database integrity refers to the correctness and consistency of stored data. It
can be considered as another type of database protection. While it’s related to

Introduction l 15

Security covered in
Chapter 5 and Step 6 in
Chapters 14 & 18

16 M Background

security, it has wider implications; integrity is concerned with the quality of
data itself. Integrity is usually expressed in terms of constraints, which are con-
sistency rules that the database is not permitted to violate. For example, we
may specify a constraint that no member of StayHome can rent more than 10
videos at the one time. Here, we want the DBMS to check when we assign a
video to a member that this limit is not being exceeded and to prevent the
rental from occurring if the limit has been reached.

Services to promote data independence

Data independence is normally achieved through a view mechanism, as we dis-
cussed in Section 1.2.4. There are usually several types of changes that can be
made to the physical characteristics of the database without affecting the views,
such as using different file organizations or modifying indexes. This is called
physical data independence. However, complete logical data independence is more
difficult to achieve. The addition of a new table or column can usually be
accommodated, but not their removal. In some systems, any type of change to
a table’s structure is prohibited.

Utility services

Utility programs help the DBA to manage the database effectively. Some exam-
ples of utilities are:

import facilities, to load the database from flat files, and export facilities, to
unload the database to flat files;

monitoring facilities, to monitor database usage and operation.

The above discussion is general. The actual level of functionality offered by a
DBMS differs from product to product. For example, a DBMS for a PC may not
support concurrent shared access, and it may only provide limited security,
integrity, and recovery control. However, modern, large multi-user DBMS
products offer all the above functions and much more. Modern systems are
extremely complex pieces of software consisting of millions of lines of code,
with documentation comprising many volumes.

The above discussion is intentionally brief but should be sufficient to provide
a general overview of DBMS functionality. For more information, the interested
reader is referred to Connolly and Begg (2002).

1.4 Database design

Until now, we’ve taken it for granted that there is a structure to the data in the
database. But how do we get this structure? The answer is quite simple: the
structure of the database is determined during database design. However, car-
rying out database design can be extremely complex. To produce a system that
will satisfy the organization’s information needs requires a data-driven
approach, which means we think of the data first and the applications second.
For the system to be acceptable to the end-users, database design is crucial. A
poorly designed database will generate errors that may lead to bad decisions
being made, with potentially serious repercussions for the organization. On the
other hand, a well-designed database produces a system that provides the cor-
rect information for the decision-making process to succeed, in an efficient way.

We devote several chapters to the presentation of a complete methodology
for database design (see Chapters 9-16). We present it as a series of simple-to-
follow steps, with guidelines provided throughout. In these chapters, we use a
case study based on a video rental company called StayHome. To help reinforce
the methodology, in Chapters 17 and 18 we go through a second case study,
this time a veterinary clinic called PerfectPets. In addition, in Appendix E we
provide a number of common business data models that you are likely to
encounter in one form or another.

Unfortunately, database design methodologies are not very popular, which
may be a major cause of failure in the development of database systems. Owing
to the lack of structured approaches to database design, the time and resources
required for a database project are typically underestimated, the databases
developed are inadequate or inefficient in meeting the demands of users, docu-
mentation is limited, and maintenance is difficult.

We hope the methodology presented in this book will help change this attitude.

1.5 Advantages and disadvantages of DBMSs

The fact that you are reading this book probably means that you already know
many of the advantages of DBMSs, such as:

Control of data redundancy The database approach eliminates redundancy
where possible. However, it does not eliminate redundancy entirely, but con-
trols the amount of redundancy inherent in the database. For example, it’s
normally necessary to duplicate key data items to model relationships
between data, and sometimes it’s desirable to duplicate some data items to
improve performance. The reasons for controlled duplication will become
clearer when you read the chapters on database design.

Introduction W 17

18 M Background

Data consistency By eliminating or controlling redundancy, we're reducing
the risk of inconsistencies occurring. If data is stored only once in the data-
base, any update to its value has to be performed only once and the new
value is immediately available to all users. If data is stored more than once
and the system is aware of this, the system can ensure that all copies of the
data are kept consistent. Unfortunately, many of today’s DBMSs don’t auto-
matically ensure this type of consistency.

Sharing of data In a file-based approach (the predecessor to the DBMS
approach), typically files are owned by the people or departments that use
them. On the other hand, the database belongs to the entire organization
and can be shared by all authorized users. In this way, more users share more
of the data. Furthermore, new applications can build on the existing data in
the database and add only data that is not currently stored, rather than
having to define all data requirements again. The new applications can also
rely on the functions provided by the DBMS, such as data definition and
manipulation, and concurrency and recovery control, rather than having to
provide these functions themselves.

Improved data integrity As we've already stated, database integrity is usually
expressed in terms of constraints, which are consistency rules that the data-
base is not permitted to violate. Constraints may apply to data within a single
record or they may apply to relationships between records. Again, data integra-
tion allows users to define, and the DBMS to enforce, integrity constraints.

Improved maintenance through data independence Since a DBMS separates the
data descriptions from the applications, it helps make applications immune
to changes in the data descriptions. This is known as data independence and
its provision simplifies database application maintenance.

Other advantages include: improved security, improved data accessibility and
responsiveness, increased productivity, increased concurrency, and improved
backup and recovery services. There are, however, some disadvantages of the
database approach, such as:

Complexity As we've already mentioned, a DBMS is an extremely complex
piece of software, and all users (database designers and developers, DBAs,
and end-users) must understand the DBMS’s functionality to take full advan-
tage of it.

Cost of DBMS The cost of DBMSs varies significantly, depending on the
environment and functionality provided. For example, a single-user DBMS
for a PC may cost only $100. However, a large mainframe multi-user DBMS
servicing hundreds of users can be extremely expensive, perhaps $100,000 to
$1,000,000. There is also the recurrent annual maintenance cost, which is
typically a percentage of the list price.

Introduction M 19

Cost of conversion In some situations, the cost of the DBMS and any extra
hardware may be insignificant compared with the cost of converting existing
applications to run on the new DBMS and hardware. This cost also includes
the cost of training staff to use these new systems, and possibly the employ-
ment of specialist staff to help with the conversion and running of the
system. This cost is one of the main reasons why some companies feel tied to
their current systems and cannot switch to more modern database technol-
ogy. The term legacy system is sometimes used to refer to an older, and
usually inferior, system (such as file-based, hierarchical, or network systems).

Performance Typically, a file-based system is written for a specific applica-
tion, such as invoicing. As a result, performance is generally very good.
However, a DBMS is written to be more general, to cater for many applica-
tions rather than just one. The effect is that some applications may not run
as fast using a DBMS as they did before.

Higher impact of a failure The centralization of resources increases the vul-
nerability of the system. Since all users and applications rely on the
availability of the DBMS, the failure of any component can bring operations
to a complete halt until the failure is repaired.

‘/ A database is a shared collection of logically related data (and a
description of this data), designed to meet the information needs of an
organization. A DBMS is a software system that enables users to define,
create, and maintain the database, and also provides controlled access
to this database. An application program is a computer program that
interacts with the database by issuing an appropriate request (typically
an SQL statement) to the DBMS. The more inclusive term database
system is used to define a collection of application programs that inter-
act with the database, along with the DBMS and the database itself.

J All access to the database is through the DBMS. The DBMS provides
facilities that allow users to define the database, and to insert, update,
delete, and retrieve data from the database.

J The DBMS environment consists of hardware (the computer), software
(the DBMS, operating system, and applications programs), data, proce-
dures, and people. The people include database administrators (DBAs),
database designers, application programmers, and end-users.

J In the Web environment, the traditional two-tier client-server model
has been replaced by a three-tier model, consisting of a user interface

20 M Background

v

v

layer (the client), a business logic and data processing layer (the appli-
cation server), and a DBMS (the database server), distributed over
different machines.

The DBMS provides controlled access to the database. It provides secu-
rity, integrity, concurrency and recovery control, and a user-accessible
catalog. It also provides a view mechanism to simplify the data that
users have to deal with.

Some advantages of the database approach include control of data
redundancy, data consistency, sharing of data, and improved security
and integrity. Some disadvantages include complexity, cost, reduced per-
formance, and higher impact of a failure.

1.1

1.2

1.3
1.4

1.5

1.6

1.7

1.8

List four examples of database systems other than those listed in Section
1.1.

Discuss the meaning of each of the following terms:

(a) data;

(b) database;

(c) database management system;

(d) application program;

(e) data independence;

(f) views.

Describe the main characteristics of the database approach.

Describe the five components of the DBMS environment and discuss how
they relate to each other.

Describe the problems with the traditional two-tier client-server architec-
ture and discuss how these problems were overcome with the three-tier
client-server architecture.

Describe the functions that should be provided by a modern full-scale
multi-user DBMS.

Of the functions described in your answer to Question 1.6, which ones do
you think would not be needed in a standalone PC DBMS? Provide justifi-
cation for your answer.

Discuss the advantages and disadvantages of DBMSs.

The relational model

In this chapter you will learn:

What a data model is and its uses.

The terminology of the relational model.

How tables are used to represent data.

Properties of database relations.

How to identify candidate, primary, alternate, and foreign keys.
The meaning of entity integrity and referential integrity.

That SQL and QBE are the two most widely used relational languages.

A A A A AAA

The Relational Database Management System (often called RDBMS for short)
has become the dominant DBMS in use today, with estimated sales of approxi-
mately $15-$20 billion per year ($50 billion with tools sales included), and
growing at a rate of about 25 percent per year. The RDBMS represents the
second generation of DBMS and is based on the relational data model proposed
by Dr E.E. Codd in his seminal paper ‘A Relational Model of Data for Large
Shared Data Banks’ in 1970. In the relational model, all data is logically struc-
tured within relations (tables). A great strength of the relational model is this
simple logical structure. Yet, behind this simple structure is a sound theoretical
foundation that is lacking in the first generation of DBMSs (the network and
hierarchical DBMSs typified by systems such as IDMS/R from Computer
Associates and IMS from IBM).

The design methodology we present in this book is based on the relational
data model, as this is the one most of you will be using. In this chapter, we dis-
cuss the basic principles of the relational data model. Let’s start by first looking
at what a data model is.

22 M Background

2.1 What is a data model?

Data model

An integrated collection of concepts for describing data, relationships between data,
and constraints on the data used by an organization.

A model is a representation of ‘real world’ objects and events, and their associa-
tions. It concentrates on the essential, inherent aspects of an organization and
ignores the accidental properties. A data model attempts to represent the data
requirements of the organization, or the part of the organization, that you wish
to model. It should provide the basic concepts and notations that will allow
database designers and end-users to communicate their understanding of the
organizational data unambiguously and accurately. A data model can be
thought of as comprising three components:

(1) a structural part, consisting of a set of rules that define how the database is
to be constructed;

(2) a manipulative part, defining the types of operations (transactions) that are
allowed on the data (this includes the operations that are used for updating
or retrieving data and for changing the structure of the database);

(3) possibly a set of integrity rules, which ensures that the data is accurate.
The purpose of a data model is to represent data and to make the data under-
standable. If it does this, then it can be easily used to design a database. In

the remainder of this chapter, we examine one such data model: the relational
data model.

2.2 Terminology

The relational model is based on the mathematical concept of a relation, which
is physically represented as a table. Codd, a trained mathematician, used termi-
nology taken from mathematics, principally set theory and predicate logic. In
this section, we explain the terminology and structural concepts of the rela-
tional model. In Section 2.3, we’ll discuss the integrity rules for the model and
in Section 2.4 we'll examine the manipulative part of the model.

2.2.1 Relational data structure

Relation

A table with columns and rows.

A relational DBMS requires only that the database be perceived by the user as
tables.

Note that this perception applies only to the way we view the database; it does
not apply to the physical structure of the database on disk, which we can imple-
ment using a variety of storage structures (such as a heap file or hash file).

Attribute

A named column of a relation.

In the relational model, we use relations to hold information about the objects
that we want to represent in the database. We represent a relation as a table in
which the rows of the table correspond to individual records and the table
columns correspond to attributes. Attributes can appear in any order and the
relation will still be the same relation, and therefore convey the same meaning.

For example, in the StayHome video rental company, the information on
branches is represented by the Branch relation, with columns for attributes
branchNo (the branch number), street, city, state, zipCode, and mgrStaffNo (the staff
number corresponding to the manager of the branch). Similarly, the information
on staff is represented by the Staff relation, with columns for attributes staffNo
(the staff number), name, position, salary, and branchNo (the number of the branch
the staff member works at). Figure 2.1 shows instances of the Branch and Staff
relations. As you can see from this figure, a column contains values for a single
attribute; for example, the branchNo columns contain only numbers of branches.

Domain

The set of allowable values for one or more attributes.

Domains are an important feature of the relational model. Every attribute in
a relational database is associated with a domain. Domains may be distinct for
each attribute, or two or more attributes may be associated with the same
domain. Figure 2.2 shows the domains for some of the attributes of the Branch
and Staff relations.

Note that, at any given time, typically there will be values in a domain that
don’t currently appear as values in the corresponding attribute. In other
words, a domain describes possible values for an attribute.

The relational model Il 23

Storage structures
discussed in
Appendix D

StayHome is used
throughout this book
and discussed more fully
in Chapter 6

24 M Background

Figure 2.1

An example of the Branch and Staff relations.

Tuples
(records)

Primary keys

Tuples
(records)

Attributes (columns)

branchNo | street city state | zipCode | mgrStaffNo
B0O1 8 Jefferson Way Portland | OR 97201 $1500
B002 City Center Plaza | Seattle WA | 98122 S0010
B003 14 - 8th Avenue New York | NY 10012 S0415
B004 16 — 14th Avenue | Seattle WA | 98128 $2250 \
A
Related columns
Y
staffNo | name position salary branchNo
($1500 | Tom Daniels Manager 46000 B0O1
S0003 | Sally Adams Assistant 30000 B0OO1
{ S0010 | Mary Martinez Manager 50000 B002
$3250 | Robert Chin Supervisor 32000 B002
$2250 | Sally Stern Manager 48000 B004
\ S0415 | Art Peters Manager 41000 B003

Branch
relation

Foreign keys

Staff
relation

Figure 2.2

The relational model l 25

Domains for some attributes of the Branch and Staff relations.

Attribute Domain name Meaning Domain definition

branchNo Branch_Numbers Set of all possible branch numbers. Alphanumeric: size 4, range BO01-B999

street Street_Names Set of all possible street names. Alphanumeric: size 60

staffNo Staff Numbers Set of all possible staff numbers. Alphanumeric: size 5, range SO001-59999

position Staff_Positions Set of all possible staff positions. One of Director, Manager, Supervisor,
Assistant, Buyer

salary Staff_Salaries Possible values of staff salaries. Monetary: 8 digits, range

$10,000.00-$100,000.00

The domain concept is important because it allows us to define the meaning
and source of values that attributes can hold. As a result, more information is
available to the system and it can (theoretically) reject operations that don't
make sense. For example, it would not be sensible for us to compare a staff
number with a branch number, even though the domain definitions for both
these attributes are character strings. Unfortunately, you'll find that most
RDBMSs don’t currently support domains.

Tuple

A record of a relation.

The fundamental elements of a relation are the tuples or records in the
table. In the Staff relation, each record contains five values, one for each
attribute. As with attributes, tuples can appear in any order and the relation will
still be the same relation, and therefore convey the same meaning.

Finally, we have the definition:

Relational database

A collection of normalized tables.

A relational database consists of tables that are appropriately structured.
The appropriateness is obtained through the process of normalization, which
we’ll discuss in Chapter 8.

26 M Background

Alternative terminology

The terminology for the relational model can be quite confusing. In this chap-
ter, we've introduced two sets of terms: (relation, attribute, tuple) and (table,
column, record). Other terms that you may encounter are file for table, row for
record, and field for column. You may also find various combinations of these
terms, such as table, field, and row.

From now on, we will tend to drop the formal terms of relation, tuple,
and attribute, and instead use the more frequently used terms table, column,
and record.

2.2.2 Properties of relational tables
A relational table has the following properties:

The table has a name that is distinct from all other tables in the database.

Each cell of the table contains exactly one value. (For example, it would be
wrong to store several telephone numbers for a single branch in a single cell.
In other words, tables don’t contain repeating groups of data. A relational table
that satisfies this property is said to be normalized or in first normal form.)

Each column has a distinct name.

The values of a column are all from the same domain.

The order of columns has no significance. In other words, provided a column
name is moved along with the column values, we can interchange columns.
Each record is distinct; there are no duplicate records.

The order of records has no significance, theoretically. (However, in practice,
the order may affect the efficiency of accessing records, as we’ll see in
Chapter 13.)

2.2.3 Relational keys

As we've just stated, each record in a table must be unique. This means that we
need to be able to identify a column or combination of columns (called rela-
tional keys) that provides uniqueness. In this section, we explain the terminology
used for relational keys.

Superkey

A column, or set of columns, that uniquely identifies a record within a table.

Since a superkey may contain additional columns that are not necessary for
unique identification, we're interested in identifying superkeys that contain
only the minimum number of columns necessary for unique identification.

Candidate key

A superkey that contains only the minimum number of columns necessary for unique
identification.

A candidate key for a table has two properties:

Uniqueness In each record, the values of the candidate key uniquely iden-
tify that record.

Irreducibility No proper subset of the candidate key has the uniqueness
property.

Consider the Branch table shown in Figure 2.1. For a given value of city, we
would expect to be able to determine several branches (for example, Seattle has
two branches). This column, therefore, cannot be selected as a candidate key.
On the other hand, since StayHome allocates each branch a unique branch
number, then for a given value of the branch number, branchNo, we can deter-
mine at most one record, so that branchNo is a candidate key. Similarly, as no
two branches can be located in the same zip code, zipCode is also a candidate key
for the Branch table.

There may be several candidate keys for a table. Consider, for example, a
table called Role, which represents the characters played by actors in videos. The
table comprises an actor number (actorNo), a catalog number (catalogNo), and the
name of the character played (character), as shown in Figure 2.3. For a given
actor number, actorNo, there may be several different videos the actor has
starred in. Similarly, for a given catalog number, catalogNo, there may be several
actors who have starred in this video. Therefore, actorNo by itself or catalogNo by

Role

actorNo catalogNo character

A1002 207132 James Bond

A3006 330553 Frodo Baggins
A8401 902355 Harry Potter

A2019 634817 Captain Steve Hiller
A2019 445624 Agent]

A7525 445624 Agent K

A4343 781132 Shrek

The relational model Il 27

Figure 2.3

An example of the
Role table.

28 M Background

itself cannot be selected as a candidate key. However, the combination of
actorNo and catalogNo identifies at most one record. When a key consists of more
than one column, we call it a composite key.

TIP

Be careful not to look at sample data and try to deduce the candidate e
key(s), unless you are certain the sample is representative of the data that will
be stored in the table. Generally, an instance of a table cannot be used to
prove that a column or combination of columns is a candidate key. The fact
that there are no duplicates for the values that appear at a particular moment
in time does not guarantee that duplicates are not possible. However, the pres-
ence of duplicates in an instance can be used to show that some column
combination is not a candidate key. Identifying a candidate key requires that
we know the ‘real world’ meaning of the column(s) involved so that we can
decide whether duplicates are possible. Only by using this semantic informa-
tion can we be certain that a column combination is a candidate key.

For example, from the data presented in Figure 2.1, we may think that a
suitable candidate key for the Staff table would be name, the employee’s name.
However, although there is only a single value of Tom Daniels in this table just
now, a new member of staff with the same name could join the company,
which would therefore prevent the choice of name as a candidate key.

Primary key

The candidate key that is selected to identify records uniquely within the table.

Since a table has no duplicate records, it’s always possible to uniquely iden-
tify each record. This means that a table always has a primary key. In the worst
case, the entire set of columns could serve as the primary key, but usually some
smaller subset is sufficient to distinguish the records. The candidate keys that
are not selected to be the primary key are called alternate keys. For the Branch
table, if we choose branchNo as the primary key, zipCode would then be an alter-
nate key. For the Role table, there is only one candidate key, comprising actorNo
and catalogNo, so these columns would automatically form the primary key.

Foreign key

A column, or set of columns, within one table that matches the candidate key of some
(possibly the same) table.

When a column appears in more than one table, its appearance usually rep-
resents a relationship between records of the two tables. For example, in Figure
2.1 the inclusion of branchNo in both the Branch and Staff tables is quite deliber-
ate and links branches to the details of staff working there. In the Branch table,
branchNo is the primary key. However, in the Staff table the branchNo column
exists to match staff to the branch they work in. In the Staff table, branchNo is a
foreign key. We say that the column branchNo in the Staff table targets or refer-
ences the primary key column branchNo in the home table, Branch. In this
situation, the Staff table is also known as the child table and the Branch table as
the parent table.

You may recall from Chapter 1 that one of the advantages of the DBMS
approach was control of data redundancy. This is an example of ‘controlled
redundancy’ — these common columns play an important role in modeling
relationships, as we'll see in later chapters.

2.2.4 Representing relational databases

A relational database consists of one or more tables. The common convention
for representing a description of a relational database is to give the name of
each table, followed by the column names in parentheses. Normally, the pri-
mary key is underlined. The description of the relational database for the
StayHome video rental company is:

Branch (branchNo, street, city, state, zipCode, mgrStaffNo)
Staff (staffNo, name, position, salary, branchNo)

Video (catalogNo, title, category, dailyRental, price, directorNo)
Director (directorNo, directorName)

Actor (actorNo, actorName)

Role (actorNo, catalogNo, character)

Member (memberNo, fName, IName, address)

Registration (branchNo, memberNo, staffNo, dateJoined)

RentalAgreement (rentalNo, dateOut, dateReturn, memberNo, videoNo)

VideoForRent (videoNo, available, catalogNo, branchNo)

Figure 2.4 shows an instance of the StayHome database.

The relational model Il 29

30 M Background

Figure 2.4 Branch
An example of the branchNo | street city state zipCode mgrStaffNo
StayHome video BOO1 8 Jefferson Way Portland | OR 97201 $1500
rental database.
B002 City Center Plaza Seattle WA 98122 S0010
B003 14 - 8th Avenue New York | NY 10012 S0415
B004 16 — 14th Avenue Seattle WA 98128 $2250
Staff
staffNo name position salary branchNo
$1500 Tom Daniels Manager 46000 B0O1
S0003 Sally Adams Assistant 30000 B0O1
S0010 Mary Martinez Manager 50000 B002
$3250 Robert Chin Supervisor 32000 B0OO2
$2250 Sally Stern Manager 48000 B004
S0415 Art Peters Manager 41000 B003
Video
catalogNo | title category | dailyRental | price | directorNo
207132 Die Another Day Action 5.00 21.99 | D1001
902355 Harry Potter Children | 4.50 14.50 | D7834
330553 Lord of the Rings Fantasy 5.00 31.99 | D4576
781132 Shrek Children | 4.00 18.50 | DO0O078
445624 Men in Black II Action 4.00 29.99 | DS743
634817 Independence Day Sci-Fi 4.50 32.99 | D3765
Role
Director Actor actorNo | catalogNo | character
directorNo | directorName actorNo | actorName A1002 207132 James Bond
D1001 Lee Tamahori A1002 | Pierce Brosnan A3006 | 330553 Frodo Baggins
D7834 Chris Columbus A3006 | Elijah Wood A3006 | 902355 | Harry Potter
D4576 Peter Jackson A2019 Will Smith A2019 634817 Captain Steve Hiller
D0078 Andrew Adamson A7525 | Tommy Lee Jones A2019 445624 Agent J
D5743 Barry Sonnenfeld A4343 Mike Myers A7525 445624 Agent K
D3765 Roland Emmerick A8401 Daniel Radcliffe A4343 781132 Shrek

Member

memberNo fName IName address

M250178 Bob Adams 57 — 11th Avenue, Seattle, WA 98105
M166884 Art Peters 89 Redmond Rd, Portland, OR 97117
M115656 Serena Parker 22 W. Capital Way, Portland, OR 97201
M284354 Don Nelson 123 Suffolk Lane, Seattle, WA 98117
Registration

branchNo | memberNo staffNo dateJoined

B002 M250178 $3250 1-Jul-01

B0O1 M166884 S0003 4-Sep-02

B0O1 M115656 S0003 12-May-00

B002 M284354 $3250 9-Oct-01

RentalAgreement

rentalNo dateOut dateReturn memberNo | videoNo

R753461 4-Feb-03 | 6-Feb-03 M284354 245456

R753462 | 4-Feb-03 | 6-Feb-03 M284354 243431

R668256 | 5-Feb-03 | 7-Feb-03 M115656 199004

R668189 2-Feb-03 M115656 178643

VideoForRent

videoNo available catalogNo branchNo

199004 207132 B0O1

245456 Y 207132 B002

178643 N 634817 B0O1

243431 Y 634817 B002

The relational model Il 31

Figure 2.4

Continued

32 M Background

Domains defined
in Section 2.2.1

2.3 Relational integrity

In the previous section, we discussed the structural part of the relational data
model. As we mentioned in Section 2.1, a data model has two other parts: a
manipulative part, defining the types of operations that are allowed on the
data, and a set of integrity rules, which ensure that the data is accurate. In this
section, we discuss the relational integrity rules and in the following section,
we discuss the main relational manipulation languages.

Since every column has an associated domain, there are constraints (called
domain constraints) in the form of restrictions on the set of values allowed for
the columns of tables. In addition, there are two important integrity rules,
which are constraints or restrictions that apply to all instances of the database.
The two principal rules for the relational model are known as entity integrity and
referential integrity. Before we define these terms, we need first to understand the
concept of nulls.

2.3.1 Nulls

Null

Represents a value for a column that is currently unknown or is not applicable for this
record.

A null can be taken to mean ‘unknown’. It can also mean that a value is not
applicable to a particular record, or it could just mean that no value has yet
been supplied. Nulls are a way to deal with incomplete or exceptional data.
However, a null is not the same as a zero numeric value or a text string filled
with spaces; zeros and spaces are values, but a null represents the absence of a
value. Therefore, nulls should be treated differently from other values.

For example, suppose it was possible for a branch to be temporarily without
a manager, perhaps because the manager has recently left and a new manager
has not yet been appointed. In this case, the value for the corresponding
mgrStaffNo column would be undefined. Without nulls, it becomes necessary to
introduce false data to represent this state or to add additional columns that
may not be meaningful to the user. In this example, we may try to represent
the absence of a manager with the value ‘None at present’. Alternatively, we
may add a new column ‘currentManager?’ to the Branch table, which contains a
value Y (Yes), if there is a manager, and N (No), otherwise. Both these
approaches can be confusing to anyone using the database.

Having defined nulls, we're now in a position to define the two relational
integrity rules.

2.3.2 Entity integrity

The first integrity rule applies to the primary keys of base tables.

Entity integrity

In a base table, no column of a primary key can be null.

A base table is a named table whose records are physically stored in the data-
base. This is in contrast to a view, which we mentioned in Section 1.2.4. A
view is a ‘virtual table’ that does not actually exist in the database but is gener-
ated by the DBMS from the underlying base tables whenever it’s accessed.

From an earlier definition, we know that a primary key is a minimal identi-
fier that is used to identify records uniquely. This means that no subset of the
primary key is sufficient to provide unique identification of records. If we allow
a null for any part of a primary key, we’re implying that not all the columns are
needed to distinguish between records, which contradicts the definition of the
primary key. For example, as branchNo is the primary key of the Branch table, we
should not be able to insert a record into the Branch table with a null for the
branchNo column.

2.3.3 Referential integrity

The second integrity rule applies to foreign keys.

Referential integrity

If a foreign key exists in a table, either the foreign key value must match a candidate
key value of some record in its home table or the foreign key value must be wholly null.

In Figure 2.1, branchNo in the Staff table is a foreign key targeting the branchNo
column in the home (parent) table, Branch. It should not be possible to create a
staff record with branch number B300, for example, unless there is already a
record for branch number B300 in the Branch table. However, we should be able
to create a new staff record with a null in the branchNo column to allow for the
situation where a new member of staff has joined the company but has not yet
been assigned to a particular branch.

The relational model Il 33

34 M Background

Multiplicity will
be discussed in
Section 7.5

2.3.4 Other business rules

Business rules

Rules that define or constrain some aspect of the organization.

Examples of business rules include domains, which constrain the values that a
particular column can have, and the relational integrity rules that we have just
discussed. Another example is multiplicity, which defines the number of occur-
rences of one entity (such as a branch) that may relate to a single occurrence of
an associated entity (such as a member of staff). It’s also possible for users to
specify additional constraints that the data must satisfy. For example, if
StayHome has a rule that a member can only rent a maximum of 10 videos at
any one time, then the user must be able to specify this rule and expect the
DBMS to enforce it. In this case, it should not be possible for a member to rent
a video if the number of videos the member currently has rented is 10.
Unfortunately, the level of support for business rules varies from system to
system. We'll discuss the implementation of business rules in Chapters 12 and 18.

2.4 Relational languages

In Section 2.1, we stated that one part of a data model is the manipulative part,
which defines the types of operations that are allowed on the data. This
includes the operations that are used for updating or retrieving data from the
database, and for changing the structure of the database. The two main lan-
guages that have emerged for relational DBMSs are:

SQL (Structured Query Language) and
QBE (Query-by-Example).

SQL has been standardized by the International Organization for
Standardization (ISO), making it both the formal and de facto standard language
for defining and manipulating relational databases.

QBE is an alternative, graphical-based, ‘point-and-click’ way of querying the
database, which is particularly suited for queries that are not too complex, and
can be expressed in terms of a few tables. QBE has acquired the reputation of
being one of the easiest ways for non-technical users to obtain information
from the database. Unfortunately, unlike SQL, there is no official standard for
QBE. However, the functionality provided by vendors is generally very similar
and QBE is usually more intuitive to use than SQL. We'll provide a tutorial on
SQL and QBE in the next chapter.

The RDBMS has become the dominant DBMS in use today. This software
represents the second generation of DBMS and is based on the rela-
tional data model proposed by Dr E.F. Codd.

Relations are physically represented as tables, with the records corre-
sponding to individual tuples and the columns to attributes.

Properties of relational tables are: each cell contains exactly one value,
column names are distinct, column values come from the same domain,
column order is immaterial, record order is immaterial, and there are no
duplicate records.

A superkey is a set of columns that identifies records of a table uniquely,
while a candidate key is a minimal superkey. A primary key is the candi-
date key chosen for use in identification of records. A table must always
have a primary key. A foreign key is a column, or set of columns, within
one table that is the candidate key of another (possibly the same) table.

A null represents a value for a column that is unknown at the present
time or is not defined for this record.

Entity integrity is a constraint that states that in a base table no
column of a primary key can be null. Referential integrity states that
foreign key values must match a candidate key value of some record in
the home (parent) table or be wholly null.

The two main languages for accessing relational databases are SQL
(Structured Query Language) and QBE (Query-by-Example).

2.1

2.2
2.3

Discuss each of the following concepts in the context of the relational
data model:

(a) relation;

(b) attribute;

(c) domain;

(d) tuple;

(e) relational database.

Discuss the properties of a relational table.

Discuss the differences between the candidate keys and the primary key of
a table. Explain what is meant by a foreign key. How do foreign keys of
tables relate to candidate keys? Give examples to illustrate your answer.

The relational model ll 35

36 M Background

2.4 What does a null represent?

2.5 Define the two principal integrity rules for the relational model. Discuss
why it is desirable to enforce these rules.

SQL and QBE

In this chapter you will learn:

The purpose and importance of SQL (Structured Query Language),
the main language for querying relational databases.

How to retrieve data from the database using the SELECT statement.

How to insert data into the database using the INSERT statement.

How to update data in the database using the UPDATE statement.

How to delete data from the database using the DELETE statement.

How to create a new table in the database using the CREATE TABLE statement.

About another language for querying relational databases called QBE
(Query-by-Example).

A A A A AA

\

In the previous chapter, we introduced the relational data model and noted
that the two main languages that have emerged for relational DBMSs are:

SQL (Structured Query Language)
QBE (Query-by-Example).

QBE is essentially a graphical front-end to SQL that provides a potentially sim-
pler method of querying relational databases than SQL. However, QBE will
convert the query expressed graphically into a corresponding SQL statement
that is then run on the database. In this chapter, we examine both these lan-
guages, although we concentrate primarily on SQL because of its importance.
For a more complete discussion of SQL and QBE, the interested reader is
referred to Connolly and Begg (2002).

38 M Background

3.1 Structured Query Language (SQL)

SQL is the most widely used commercial relational database language, designed
to be used by professionals and non-professionals alike. It was originally devel-
oped in the SEQUEL and System-R projects at IBM’s research laboratory in San
Jose between 1974 and 1977. Today, many people still pronounce SQL as ‘See-
Quel’, although the official pronunciation is ‘S-Q-L'. Starting with Oracle in the
late 1970s, there have been many commercial RDBMSs based on SQL, and with
an ANSI (American National Standards Institute) and ISO (International
Organization for Standardization) standard, it’s now the formal and de facto lan-
guage for defining and manipulating relational databases.
The main characteristics of SQL are:

It’s relatively easy to learn.

It's a non-procedural language: you specify what information you require,
rather than how to get it. In other words, SQL does not require you to specify
the access methods to the data.

Like most modern languages, SQL is essentially free-format, which means that
parts of statements don’t have to be typed at particular locations on the screen.

The command structure consists of standard English words such as SELECT,
INSERT, UPDATE, and DELETE.

It can be used by a range of users, including Database Administrators (DBAs),
management personnel, application programmers, and many other types of
end-users.

SQL is an important language for a number of reasons:

SQL is the first and, so far, only standard database language to gain wide
acceptance. Nearly every major current vendor provides database products
based on SQL or with an SQL interface, and most are represented on at least
one of the standard-making bodies.

There is a huge investment in the SQL language both by vendors and by users. It
has become part of application architectures such as IBM’s Systems Application
Architecture (SAA), and is the strategic choice of many large and influential
organizations, for example the X/OPEN consortium for UNIX standards.

SQL has also become a Federal Information Processing Standard (FIPS), to
which conformance is required for all sales of DBMSs to the US government.

SQL is used in other standards, and even influences the development of
other standards as a definitional tool (for example, the ISO Remote Data
Access (RDA) standard).

Before we go through some examples of SQL, let’s first examine the objectives
of SQL.

SQL and QBE W 39

3.1.1 Objectives of SQL
Ideally, a database language should allow a user to:

create the database and table structures;

perform basic data management tasks, such as the insertion, modification,
and deletion of data from the tables;

perform both simple and complex queries.

In addition, a database language must perform these tasks with minimal user
effort, and its command structure and syntax must be relatively easy to learn.
Finally, it must be portable: that is, it must conform to some recognized stan-
dard so that we can use the same command structure and syntax when we
move from one DBMS to another. SQL is intended to satisfy these requirements.

SQL is an example of a transform-oriented language, or a language designed to
transform input tables into required output tables. The ISO SQL standard has
two major components:

a Data Definition Language (DDL) for defining the database structure and
controlling access to the data;

a Data Manipulation Language (DML) for retrieving and updating data.

Until the most recent version of the ISO SQL standard released in 1999 (collo-
quially known as SQL3), SQL contained only these definitional and
manipulative commands; it did not contain flow of control commands, such as
IF .. .THEN ... ELSE, GO TO, or DO . . . WHILE. These had to be implemented
using a programming or job-control language, or interactively by the end-users.
Due to this initial lack of computational completeness, SQL was used in two ways.
The first is to use SQL interactively by entering the statements at a terminal. The
second is to embed SQL statements in a procedural language. In this book, we
only consider interactive SQL; for details on embedded SQL the interested
reader is referred to Connolly and Begg (2002).

SQL conformance: SQL3 has a set of features called Core SQL that a vendor
must implement to claim conformance with the SQL3 standard. Many of the
remaining features are divided into packages; for example, there are packages
for object features and OLAP (OnLine Analytical Processing). Vendors tend to
implement additional features, although this does affect portability.

3.1.2 Terminology

The ISO SQL standard does not use the formal terms of relations, attributes, and
tuples, instead using the terms tables, columns, and rows. In our presentation
of SQL we mostly use the ISO terminology. It should also be noted that SQL

40 M Background

does not adhere strictly to the definition of the relational model described in
Chapter 2. For example, SQL allows the table produced as the result of the
SELECT operation to contain duplicate rows; it imposes an ordering on the
columns; and it allows the user to order the rows of a table.

3.1.3 Writing SQL commands

In this section, we briefly describe the structure of an SQL statement and the
notation we use to define the format of the various SQL constructs. An SQL
statement consists of reserved words and user-defined words. Reserved words
are a fixed part of the SQL language and have a fixed meaning. They must be
spelled exactly as required and cannot be split across lines. User-defined words
are made up by the user (according to certain syntax rules), and represent the
names of various database objects such as tables, columns, views, indexes, and
so on. Throughout this chapter, we use uppercase letters to represent reserved
words and lowercase letters to represent user-defined words.

Most components of an SQL statement are case insensitive, which means
that letters can be typed in either upper- or lowercase. The one important
exception to this rule is that literal character data must be typed exactly as it
appears in the database. For example, if we store a person’s surname as ‘SMITH’
and then search for it using the string ‘Smith’, the row will not be found. The
words in a statement are also built according to a set of syntax rules. Although
the standard does not require it, many dialects of SQL require the use of a state-
ment terminator to mark the end of each SQL statement (usually the semicolon
;" is used).

Throughout this chapter, we use the following extended form of the Backus
Naur Form (BNF) notation to define SQL statements:

a vertical bar (|) indicates a choice among alternatives; for example, a | b | ¢;
curly brackets indicate a required element; for example, {a};
square brackets indicate an optional element; for example, [a];

an ellipsis (. ..) is used to indicate optional repetition of an item zero or
more times.

For example:
falbj(c...)

means either a or b followed by zero or more repetitions of ¢ separated by
commas.

In practice, the DDL statements are used to create the database structure (that
is, the tables) and the access mechanisms (that is, what each user can legally
access), and then the DML statements are used to populate and query the
tables. However, in this book we concentrate on the DML statements to reflect
their relative importance to the general user.

SQL and QBE M 41

3.2 Data manipulation

In this section, we look at the SQL DML statements, namely:

SELECT to query data in the database;
INSERT to insert data into a table;
UPDATE to update data in a table;
DELETE to delete data from a table.

Due to the complexity of the SELECT statement and the relative simplicity of the
other DML statements, we devote most of this section to the SELECT statement
and its various formats. We begin by considering simple queries, and succes-
sively add more complexity to show how more complicated queries that use
sorting, grouping, aggregates, and also queries on multiple tables can be gener-
ated. Thereafter, we consider the INSERT, UPDATE, and DELETE statements.

We illustrate the SQL statements using part of the instance of the StayHome
case study shown in Figure 2.4 consisting of the following tables:

Staff (staffNo, name, position, salary, branchNo)
Video (catalogNo, title, category, dailyRental, price, directorNo)
Director (directorNo, directorName)
Actor (actorNo, actorName)
Role (actorNo, catalogNo, character)
RentalAgreement (rentalNo, dateOut, dateReturn, memberNo, videoNo)
VideoForRent (videoNo, available, catalogNo, branchNo)
Literals

Before we discuss the SQL DML statements, it is necessary to understand the
concept of literals. Literals are constants that are used in SQL statements.
There are different forms of literals for every data type supported by SQL.
However, for simplicity, we can distinguish between literals that are enclosed in
single quotes and those that are not. All non-numeric data values must be
enclosed in single quotes; all numeric data values must not be enclosed in single
quotes. For example, we could use literals to insert data into a table:

INSERT INTO Video (catalogNo, title, category, dailyRental, price,
directorNo)
VALUES (207132, 'Die Another Day’, ‘Action’, 5.00, 21.99, 'D1001");

The value in columns dailyRental and price are decimal literals; they are not
enclosed in single quotes. All other columns are character strings and are
enclosed in single quotes.

42 M Background

3.2.1 Simple queries

The purpose of the SELECT statement is to retrieve and display data from one or
more database tables. It’s an extremely powerful command and it’s also the most fre-
quently used SQL command. The SELECT statement has the following general form:

SELECT [DISTINCT | ALL] {* | [columnExpression [AS newNamell[, . . . I}
FROM TableName [alias] [, . . .]

[WHERE condition]

[GROUP BY columnlList] [HAVING condition]

[ORDER BY columnlist]

columnExpression represents a column name or an expression;
newName is a name you can give the column as a display heading;

TableName is the name of an existing database table or view that you have
access to;

alias is an optional abbreviation for TableName.

The sequence of processing in a SELECT statement is:

FROM specifies the table or tables to be used;

WHERE filters the rows subject to some condition;

GROUP BY forms groups of rows with the same column value;
HAVING filters the groups subject to some condition;
SELECT specifies which columns are to appear in the output;

ORDER BY specifies the order of the output.

The order of the clauses in the SELECT statement cannot be changed. The only
two mandatory clauses are the first two: SELECT and FROM,; the remainder are
optional. Every SELECT statement produces a query result table consisting of
one or more columns and zero or more TOws.

Query 3.1 Retrieve all columns, all rows

List the full details of all videos.

Since there are no restrictions specified in the query (that is, we want to list all rows
in the Video table), no WHERE clause is required. We can express this query as:

SELECT catalogNo, title, category, dailyRental, price, directorNo
FROM Video;

SQL and QBE W 43

When you want to list all columns of a table, you can use an asterisk (*) in
place of the column names. Therefore, the above query can also be expressed
more succinctly as:

SELECT *
FROM Video;

The result table in either case is shown in Table 3.1.

Table 3.1 Result table for Query 3.1.

catalogNo title category dailyRental price directorNo
207132 Die Another Day Action 5.00 21.99 D1001
902355 Harry Potter Children 4.50 14.50 D7834
330553 Lord of the Rings Fantasy 5.00 31.99 D4576
781132 Shrek Children 4.00 18.50 D0078
445624 Men in Black II Action 4.00 29.99 D5743
634817 Independence Day Sci-Fi 4.50 32.99 D3765

Query 3.2 Retrieve specific columns, all rows

List the catalog number, title, and daily rental rate of all videos.

Once again, there are no restrictions specified in the query and so no WHERE
clause is required. However, we only wish to list a subset of the columns, which
we express as:

SELECT catalogNo, title, dailyRental
FROM Video;

The result table is shown in Table 3.2. Note that, unless specified, the rows in
the result table may not be sorted. We describe how to sort the rows of a result
table in the next section.

Table 3.2 Result table for Query 3.2.

catalogNo title dailyRental
207132 Die Another Day 5.00
902355 Harry Potter 4.50
330553 Lord of the Rings 5.00
781132 Shrek 4.00
445624 Men in Black II 4.00

634817 Independence Day 4.50

44 M Background

Query 3.3 Use of DISTINCT

List all video categories.

SELECT category
FROM Video;

The result table is shown in Table 3.3(a). Note that there are several duplicate
values (by default, SELECT does not eliminate duplicate values). To eliminate
duplicates, we use the DISTINCT keyword and by rewriting the above query as:

SELECT DISTINCT category
FROM Video;

we obtain the result table shown in Table 3.3(b).

Table 3.3(a) Result table for Table 3.3(b) Result table for Query 3.3

Query 3.3 with duplicates. with duplicates eliminated.
category category
Action Action
Children Children
Fantasy Fantasy
Children Sci-Fi
Action
Sci-Fi

Query 3.4 Calculated fields

List the rate for renting videos for three days.

SELECT catalogNo, title, dailyRental * 3
FROM Video;

This query is very similar to Query 3.2 with the exception that we're looking for
the rental rate for three days rather than for just one day. In this case, we can
obtain the three-day rate by multiplying the daily rate by 3, giving the result
table shown in Table 3.4.

This is an example of the use of a calculated field (sometimes called a com-
puted or derived field). In general, to use a calculated field, you specify an SQL
expression in the SELECT list. An SQL expression can involve addition,

subtraction, multiplication, and division, and you can use parentheses to build
complex expressions. You can use more than one table column in a calculated
column; however, the columns referenced in an arithmetic expression must be
of a numeric type.

The third column of this result table has been displayed as col3. Normally, a
column in the result table takes its name from the corresponding column of the
database table from which it has been retrieved. However, in this case SQL does
not know how to label the column. Some systems give the column a name cor-
responding to its position in the table (for example, col3); some may leave the
column name blank or use the expression entered in the SELECT list. The SQL
standard allows the column to be named using an AS clause. In the previous
example, we could have written:

SELECT catalogNo, title, dailyRental * 3 AS threeDayRate
FROM Video;

In this case, the column heading in the result table would be threeDayRate rather
than col3.

Table 3.4 Result table of Query 3.4.

catalogNo title col3

207132 Die Another Day 15.00
902355 Harry Potter 13.50
330553 Lord of the Rings 15.00
781132 Shrek 12.00
445624 Men in Black II 12.00
634817 Independence Day 13.50

3.2.2 Row selection (WHERE clause)

The above examples show the use of the SELECT statement to retrieve all rows
from a table. However, we often need to restrict the rows that are retrieved. This
can be achieved with the WHERE clause, which consists of the keyword WHERE
followed by a search condition that specifies the rows to be retrieved. The five
basic search conditions (or predicates using the ISO terminology) are as follows:

Comparison: compare the value of one expression to the value of another
expression;

Range: test whether the value of an expression falls within a specified range
of values;

SQL and QBE W 45

46 M Background

Nulls defined in
Section 2.3.1

Set membership: test whether the value of an expression equals one of a set
of values;

Pattern match: test whether a string matches a specified pattern;

Null: test whether a column has a null (unknown) value.

We now present examples of some of these types of search conditions.

Query 3.5 Comparison search condition

List all staff with a salary greater than $40,000.

SELECT staffNo, name, position, salary
FROM Starff
WHERE salary > 40000;

In this query, we have to restrict the rows in the Staff table to those where
the value in the salary column is greater than $40,000. To do this, we specify a
WHERE clause with the condition (predicate) ‘salary > 40000’. The result table is
shown in Table 3.5.

Table 3.5 Result table for Query 3.5.

staffNo name position salary
S$1500 Tom Daniels Manager 46000
S0010 Mary Martinez Manager 50000
52250 Sally Stern Manager 48000
S0415 Art Peters Manager 41000

In SQL, the following simple comparison operators are available:

= equals <> isnot equal to
< isless than <= isless than or equal to
> is greater than >= is greater than or equal to

More complex predicates can be generated using the logical operators AND,
OR, and NOT, with parentheses (if needed or desired) to show the order of
evaluation. The rules for evaluating a conditional expression are:

an expression is evaluated left to right;
subexpressions in parentheses are evaluated first;
NOTs are evaluated before ANDs and ORs;
AND:s are evaluated before ORs.

The use of parentheses is always recommended to remove any possible
ambiguities.

Query 3.6 Range search condition (BETWEEN/NOT BETWEEN)

List all staff with a salary between $45,000 and $50,000.

SELECT staffNo, name, position, salary
FROM Staff
WHERE salary >= 45000 AND salcary <= 50000;

In this query, we use the logical operator AND in the WHERE clause to find
the rows in the Staff table where the value in the salary column is between
$45,000 and $50,000. The result table is shown in Table 3.6. SQL also provides
the range test BETWEEN to test whether a data value lies between a pair of spec-
ified values. We could rewrite the previous query as:

SELECT staffNo, name, position, salary
FROM Staff
WHERE salcry BETWEEN 45000 AND 50000;

The BETWEEN test includes the endpoints of the range, so any members of
staff with a salary of $45,000 or $50,000 would be included in the result. There
is also a negated version of the range test (NOT BETWEEN) that checks for
values outside the range. The BETWEEN test does not add much to the expres-
sive power of SQL because, as we have seen, it can be expressed equally well
using two comparison tests.

Table 3.6 Result table for Query 3.6.

staffNo name position salary
S$1500 Tom Daniels Manager 46000
S0010 Mary Martinez Manager 50000

$2250 Sally Stern Manager 48000

SQL and QBE W 47

48 M Background

Query 3.7 Set membership search condition (IN/NOT IN)

List all videos in the Action or Children categories.

SELECT catalogNo, title, category
FROM Video
WHERE category = ‘Action’ OR category = ‘Children’;

As in the previous example, we can express this query using a compound search
condition in the WHERE clause. The result table is shown in Table 3.7. However,
SQL also provides the set membership keyword IN to test whether a value matches
one of a list of values. We can rewrite this query using the IN test as:

SELECT catalogNo, title, category
FROM Video
WHERE category IN (Action’, ‘Children’);

There is a negated version (NOT IN) that can be used to check for data values
that do not lie in a specific list of values. Like BETWEEN, the IN test does not
add much to the expressive power of SQL. However, the IN test provides a more
efficient way of expressing the search condition, particularly if the set contains
many values.

Table 3.7 Result table for Query 3.7.

catalogNo title category
207132 Die Another Day Action
902355 Harry Potter Children
781132 Shrek Children
445624 Men In Black II Action

Query 3.8 Pattern match search condition (LIKE/NOT LIKE)

List all staff whose first name is ‘Sally’.

SQL has two special pattern-matching symbols:

% percent character represents any sequence of zero or more characters
(wildcard);
underscore character represents any single character.

SQL and QBE W 49

All other characters in the pattern represent themselves. For example:

name LIKE ‘S%’ means the first character must be S, but the rest of the string
can be anything.
name LIKE‘S_ _ _ _
string, the first of which must be an S.

name LIKE ‘%S’ means any sequence of characters, of length at least 1, with
the last character an S.

" means that there must be exactly four characters in the

name LIKE ‘%Sally%’ means a sequence of characters of any length contain-
ing Sally.
name NOT LIKE ‘S%’ means the first character cannot be an S.

If the search string can include the pattern-matching character itself, we can
use an escape character to represent the pattern-matching character. For
example, to check for the string ‘15%’, we can use the predicate:

LIKE '15#% ESCAPE ‘#

Using the pattern-matching search condition of SQL, we can find all staff
whose first name is ‘Sally’ using the following query:

SELECT staffNo, name, position, salary
FROM Starff
WHERE name LIKE ‘Sclly %’;

The result table is shown in Table 3.8.

Table 3.8 Result table of Query 3.8.

staffNo name position salary
S0003 Sally Adams Assistant 30000
$2250 Sally Stern Manager 48000

Note that some RDBMSs, such as Microsoft Access, use the wildcard characters
*and ? instead of % and _.

50 M Background

Nulls defined in
Section 2.3.1

Query 3.9 NULL search condition (1S NULL/IS NOT NULL)

List the video rentals that have not yet been returned.

The RentalAgreement table has a column dateReturn representing the date the
video rental is returned. You may think that we can find such videos using the
following search condition:

WHERE (dateReturn = ' ' OR dateReturn = 0)

However, neither of these conditions would work. A null dateReturn is consid-
ered to have an unknown value, so we cannot test whether it is equal or not
equal to another value. If we tried to execute the SELECT statement using either
of these compound conditions, we would get an empty result table. Instead, we
have to test for null explicitly using the special keyword IS NULL:

SELECT dateOut, memberNo, videoNo
FROM RentalAgreement
WHERE dateReturn IS NULL;

The result table is shown in Table 3.9. The negated version (IS NOT NULL)
can be used to test for values that are not null.
Table 3.9 Result table for Query 3.9.

dateOut memberNo videoNo

2-Feb-03 M115656 178643

3.2.3 Sorting results (ORDER BY clause)

In general, the rows of an SQL query result table are not arranged in any partic-
ular order (although some DBMSs may use a default ordering, for example,
based on a primary key). However, we can ensure that the results of a query are
sorted using the ORDER BY clause in the SELECT statement. The ORDER BY
clause consists of a list of column names that the result is to be sorted on, sepa-
rated by commas. The ORDER BY clause allows the retrieved rows to be ordered
in ascending (ASC) or descending (DESC) order on any column or combination
of columns, regardless of whether that column appears in the result. However,
some dialects of SQL insist that the ORDER BY elements appear in the SELECT
list. In either case, the ORDER BY clause must always be the last clause of the
SELECT statement.

Query 3.10 Sorting results

List all videos sorted in descending order of price.

SELECT *

FROM Video
ORDER BY price DESC;

This is similar to Query 3.1 with the added requirement that the result table
is to be sorted on the values in the price column. This is achieved by adding the
ORDER BY clause to the end of the SELECT statement, specifying price as the
column to be sorted, and DESC to indicate that the order is to be descending. In
this case, we get the result table shown in Table 3.10.

If we had a number of values in the price column that were the same, we
might then want to order the result first by price (the major sort key) and sec-
ondly in ascending order of title (the minor sort key). In this case, the ORDER
BY clause would be:

ORDER BY price DESC, title ASC;

Table 3.10 Result table for Query 3.10.

catalogNo title category dailyRental price directorNo
634817 Independence Day Sci-Fi 4.50 32.99 D3765
330553 Lord of the Rings Fantasy 5.00 31.99 D4576
445624 Men In Black II Action 4.00 29.99 D5743
207132 Die Another Day Action 5.00 21.99 D1001
781132 Shrek Children 4.00 18.50 D0078
902355 Harry Potter Children 4.50 14.50 D7834

3.2.4 Using the SQL aggregate functions

The ISO standard defines five aggregate functions:

COUNT
SUM
AVG
MIN

Returns the number of values in a specified column.

Returns the sum of the values in a specified column.

Returns the average of the values in a specified column.

Returns the minimum value in a specified column.

Returns the maximum value in a specified column.

SQL and QBE M 51

52 M Background

HAVING and
GROUP BY
clauses discussed
in Section 3.2.5

These functions operate on a single column of a table and return a single
value. COUNT, MIN, and MAX apply to both numeric and non-numeric fields,
but SUM and AVG may be used on numeric fields only. Apart from COUNT("),
each function eliminates nulls first and operates only on the remaining non-
null values. COUNT(") is a special use of COUNT, which counts all the rows of a
table, regardless of whether nulls or duplicate values occur.

If we want to eliminate duplicates before the function is applied, we use the
keyword DISTINCT before the column name in the function. DISTINCT has no
effect with the MIN and MAX functions. However, it may have an effect on the
result of SUM or AVG, so consideration must be given to whether duplicates
should be included or excluded in the computation. In addition, DISTINCT can
be specified only once in a query.

It is important to note that an aggregate function can be used only in the
SELECT list and in the HAVING clause. It is incorrect to use it elsewhere. If the
SELECT list includes an aggregate function and no GROUP BY clause is being
used to group data together, then no item in the SELECT list can include any
reference to a column unless that column is the argument to an aggregate
function. For example, the following query is illegal:

SELECT staffNo, COUNT(salary)
FROM Staff;

because the query does not have a GROUP BY clause and the column staffNo
in the SELECT list is used outside an aggregate function.

Query 3.11 Use of COUNT and suM

List the total number of staff with a salary greater than $40,000 and the sum of their
salaries.

SELECT COUNT(staffNo) AS totalStaff, SUM(salary) AS totalSalary
FROM Staff
WHERE salary > 40000;

The WHERE clause is the same as in Query 3.5. However, in this case, we
apply the COUNT function to count the number of rows satisfying the WHERE
clause and we apply the SUM function to add together the salaries in these
rows. The result table is shown in Table 3.11.

Table 3.11 Result table of Query 3.11.

totalStaff totalSalary

4 185000

Query 3.12 Use of MIN, MAX, and AVG

List the minimum, maximum, and average staff salary.

SELECT MIN(salary) AS minSalary, MAX(salary) AS maoxSalary,
AVG(salary) AS avgSalary
FROM Staff;

In this query, we wish to consider all staff rows and therefore do not require
a WHERE clause. The required values can be calculated using the MIN, MAX,
and AVG functions. The result table is shown in Table 3.12.

Table 3.12 Result table of Query 3.12.

minSalary maxSalary avgSalary

30000 50000 41166.67

3.2.5 Grouping results (GROUP BY clause)

The above summary queries are similar to the totals at the bottom of a report.
They condense all the detailed data in the report into a single summary row of
data. However, it is often useful to have subtotals in reports. We can use the
GROUP BY clause of the SELECT statement to do this. A query that includes the
GROUP BY clause is called a grouped query, because it groups the data from
the SELECT table(s) and produces a single summary row for each group. The
columns named in the GROUP BY clause are called the grouping columns. The
ISO standard requires the SELECT clause and the GROUP BY clause to be closely
integrated. When GROUP BY is used, each item in the SELECT list must be
single-valued per group. Further, the SELECT clause may contain only:

column names,
aggregate functions,
constants,

an expression involving combinations of the above.

SQL and QBE M 53

54 M Background

All column names in the SELECT list must appear in the GROUP BY clause
unless the name is used only in an aggregate function. The contrary is not true:
there may be column names in the GROUP BY clause that do not appear in the
SELECT list. When the WHERE clause is used with GROUP BY, the WHERE
clause is applied first, then groups are formed from the remaining rows that sat-
isfy the search condition.

The ISO standard considers two nulls to be equal for purposes of the GROUP BY
clause. If two rows have nulls in the same grouping columns and identical values
in all the non-null grouping columns, they are combined into the same group.

Query 3.13 Use of GROUP BY

Find the number of staff working in each branch and the sum of their salaries.

SELECT branchNo, COUNT(staffNo) AS totalStaff,
SUM(salary) AS totalSalary

FROM Staff

GROUP BY branchNo

ORDER BY branchNo;

It is not necessary to include the column names staffNo and salary in the
GROUP BY list because they appear only in the SELECT list within aggregate
functions. On the other hand, branchNo is not associated with an aggregate func-
tion and so must appear in the GROUP BY list. The result table is shown in
Table 3.13.

Conceptually, SQL performs the query as follows:

Table 3.13 Result table for Query 3.13. 1)
branchNo totalStaff totalSalary SQt
B0OO1 2 76000
B002 2 82000
B0OO3 1 41000
B004 1 48000

divides the staff into groups according to their respective branch numbers.
Within each group, all staff have the same branch number. In this example,
we get four groups:

branchNo | staffNo salary COUNT(staffNo) | SUM(salary)
BOO1 S1500 46000
_—> 2 76000
BOO1 S0003 30000
B002 S0010 50000
—_—> 2 82000
B002 S3250 32000
@) B003 S0415 | 41000 | ——>1 41000
B00O4 S$2250 48000) —>» 1 48000

For each group, SQL computes the

number of staff members and calculates the sum of the values in the salary
column to get the total of their salaries. SQL generates a single summary
row in the query result for each group.

(3) Finally, the result is sorted in ascending order of branch number, branchNo.

Restricting groupings (HAVING clause)

The HAVING clause is designed for use with the GROUP BY clause to restrict the
groups that appear in the final result table. Although similar in syntax, HAVING
and WHERE serve different purposes. The WHERE clause filters individual rows
going into the final result table, whereas HAVING filters groups going into the
final result table. The ISO standard requires that column names used in the
HAVING clause must also appear in the GROUP BY list or be contained within an
aggregate function. In practice, the search condition in the HAVING clause
always includes at least one aggregate function, otherwise the search condition
could be moved to the WHERE clause and applied to individual rows. (Remember
that aggregate functions cannot be used in the WHERE clause.)

The HAVING clause is not a necessary part of SQL — any query expressed
using a HAVING clause can always be rewritten without the HAVING clause.

Query 3.14 Use of HAVING

For each branch office with more than one member of staff, find the number of staff
working in each branch and the sum of their salaries.

SELECT branchNo, COUNT(staffNo) AS totalStaff,
SUM(salary) AS totalSalary
FROM Staff

GROUP BY branchNo
HAVING COUNT(staffNo) > 1
ORDER BY branchNo;

SQL and QBE M 55

56 M Background

INSERT,
UPDATE, and
DELETE discussed
in Section 3.2.8

This is similar to the previous example with the additional restriction that
we want to consider only those groups (that is, branches) with more than one
member of staff. This restriction applies to the groups and so the HAVING
clause is used. The result table is shown in Table 3.14.

Table 3.14 Result table of Query 3.14.
branchNo totalStaff totalSalary

B0O1 2 76000
B002 2 82000

3.2.6 Subqueries

In this section, we examine the use of a complete SELECT statement embedded
within another SELECT statement. The results of this inner SELECT statement
(or subselect) are used in the outer statement to help determine the contents of
the final result. A subselect can be used in the WHERE and HAVING clauses of
an outer SELECT statement, where it is called a subquery or nested query.
Subselects may also appear in INSERT, UPDATE, and DELETE statements.

Query 3.15 Using a subquery

Find the staff who work in the branch at ‘8 Jefferson Way’.

SELECT staffNo, name, position
FROM Staff
WHERE brcnchNo = (SELECT bronchNo
FROM Branch
WHERE street = '8 Jefferson Way");

The inner SELECT statement (SELECT bronchNo FROM Branch . . .) finds the
branch number that corresponds to the branch with street name ‘8 Jefferson Way’
(there will be only one such branch number. Having obtained this branch
number, the outer SELECT statement then retrieves the details of all staff who
work at this branch. In other words, the inner SELECT returns a result table con-
taining a single value ‘BO01’, corresponding to the branch at ‘8 Jefferson Way’,
and the outer SELECT becomes:

SELECT staffNo, name, position
FROM Staff
WHERE branchNo = 'BO01";

The result table is shown in Table 3.15.

Table 3.15 Result table of Query 3.15.

staffNo name position
$1500 Tom Daniels Manager
S0003 Sally Adams Assistant

We can think of the subquery as producing a temporary table with results that
can be accessed and used by the outer statement. A subquery can be used imme-
diately following a relational operator (that is, =, <, >, <=, >=, <>) in a WHERE
clause or a HAVING clause. The subquery itself is always enclosed in parentheses.

Note, if the result of the inner query can result in more than one row, then
you must use the set membership test IN rather than the equality test (‘=’). For
example, if we wish to find staff who worked at a branch in Washington (WA),

the WHERE clause would become:

WHERE branchNo IN (SELECT brcnchNo FROM Branch
WHERE state = "'WA”);

Query 3.16 Using a subquery with an aggregate function

List all staff whose salary is greater than the average salary.

SELECT staffNo, name, position
FROM Staff

WHERE salary > (SELECT AVG(salary)

FROM Startf);

Recall from Section 3.2.4 that an aggregate function can be used only in the
SELECT list and in the HAVING clause. It would be incorrect to write “WHERE
salary > AVG(salary)’. Instead, we use a subquery to find the average salary,
and then use the outer SELECT statement to find those staff with a salary
greater than this average. In other words, the subquery returns the average
salary as $41,166.67. The outer query is reduced then to:

SELECT staffNo, name, position
FROM Staff
WHERE salary > 41166.67;

SQL and QBE W 57

58 M Background

The result table is shown in Table 3.16.

Table 3.16 Result table of Query 3.16.

staffNo name position

$1500 Tom Daniels Manager
S0010 Mary Martinez Manager
$2250 Sally Stern Manager

Note that the following rules apply to subqueries:

O

@)

3)

(4)

3.2.7

All the examples we have considered so far have a major limitation: the
columns that are to appear in the result table must all come from a single table.
In many cases, this is not sufficient. To combine columns from several tables
result table, we need to use a join operation. The SQL join operation
combines information from two tables by forming pairs of related rows from
the two tables. The row pairs that make up the joined table are those where the

into a

The ORDER BY clause may not be used in a subquery (although it may be
used in the outermost SELECT statement).

The subquery SELECT list must consist of a single column name or expres-
sion (except for subqueries that use the keyword EXISTS - see Connolly
and Begg (2002)).

By default, column names in a subquery refer to the table name in the
FROM clause of the subquery. It is possible to refer to a table in a FROM
clause of an outer query by qualifying the column name.

When a subquery is one of the two operands involved in a comparison,
the subquery must appear on the right-hand side of the comparison. For
example, it would be incorrect to express the last example as:

SELECT stcffNo, name, position
FROM Starff
WHERE (SELECT AVG(salory) FROM Staff) < salary;

because the subquery appears on the left-hand side of the comparison
with salary.

Multi-table queries

matching columns in each of the two tables have the same value.

If you need to obtain information from more than one table, the choice is
between using a subquery and using a join. If the final result table is to contain
columns from different tables, then you must use a join. To perform a join, you
simply include more than one table name in the FROM clause, using a comma as
a separator, and typically include a WHERE clause to specify the join column(s). It
is also possible to use an alias for a table named in the FROM clause. In this case,
the alias is separated from the table name with a space. An alias can be used to
qualify a column name whenever there is ambiguity regarding the source of the
column name. It can also be used as a shorthand notation for the table name. If
an alias is provided it can be used anywhere in place of the table name.

Query 3.17 Simple join

List all videos along with the name of the director.

SELECT catalogNo, title, category, v.directorNo, directorName
FROM Video v, Director d
WHERE v .directorNo = d.directorNo;

We want to display details from both the Video table and the Director table,
and so we have to use a join. The SELECT clause lists the columns to be dis-
played. To obtain the required rows, we include those rows from both tables
that have identical values in the directorNo columns, using the search condition
(v.directorNo = d.directorNo). We call these two columns the matching columns
for the two tables. The result table is shown in Table 3.17.

Note that it is necessary to qualify the director numbet, directorNo, in the SELECT
list: directorNo could come from either table, and we have to indicate which one.
(We could equally well have chosen the directorNo column from the Director table.)
The qualification is achieved by prefixing the column name with the appropriate
table name (or its alias). In this case, we have used v as the alias for the Video table.

Table 3.17 Result table of Query 3.17.

catalogNo title category v.directorNo directorName
207132 Die Another Day Action D1001 Lee Tamahori
902355 Harry Potter Children D7834 Chris Columbus
330553 Lord of the Rings Fantasy D4576 Peter Jackson
781132 Shrek Children DO0078 Andrew Adamson
445624 Men In Black II Action D5743 Barry Sonnenfeld

634817 Independence Day Sci-Fi D3765 Roland Emmerick

SQL and QBE M 59

60 M Background

1:* relationships
discussed in
Section 7.5.2

The most common multi-table queries involve two tables that have a one-to-
many (1:*) relationship. The previous query involving videos and directors is an
example of such a query. Each director can direct one or more videos. In
Section 2.2.5, we described how candidate keys and foreign keys model rela-
tionships in a relational database. To use a relationship in an SQL query, we
specify a search condition that compares one of the candidate keys (normally
the primary key) and the corresponding foreign key. In Query 3.16, we com-
pared the foreign key in the Video table, v.directorNo, with the primary key in the
Director table, d.directorNo.
The SQL standard provides the following alternative ways to specify this join:

FROM Video v JOIN Director d ON v.directorNo = d.directorNo;
FROM Video JOIN Director USING directorNo;
FROM Video NATURAL JOIN Director;

In each case, the FROM clause replaces the original FROM and WHERE clauses.
However, the first alternative produces a table with two identical directorNo
columns; the remaining two produce a table with a single directorNo column.

Query 3.18 Four-table join

List all videos along with the name of the director, the names of the actors, and their
associated roles.

SELECT v.catalogNo, title, category, directorName, actorName, character
FROM Video v, Director d, Actor a, Role r
WHERE d.directorNo = v.directorNo AND

v.catalogNo = r.catalogNo AND

r.actorNo = a.actorNo;

In this example, we want to display details from the Video, Director, Actor, and
Role tables, and so we have to use a join. The SELECT clause lists the columns to
be displayed. To obtain the required rows, we need to join the tables based on
the various matching columns (that is, the primary keys/foreign keys), as
shown below:

Director (direlctorNo, directorName)

Video (catalogNo, title, category, dailyRental, price, directorNo)
Role (actorNo, catalogNo, character)

Actor (actorNo, actorName)

The result table is shown in Table 3.18.

Table 3.18 Result table of Query 3.18.

SQL and QBE M 61

catalogNo title category directorName actorName character

207132 Die Another Day Action Lee Tamahori Pierce Brosnan James Bond

902355 Harry Potter Children Chris Columbus Daniel Radcliffe Harry Potter
330553 Lord of the Rings Fantasy Peter Jackson Elijah Wood Frodo Baggins
781132 Shrek Children Andrew Adamson Mike Myers Shrek

445624 Men In Black II Action Barry Sonnenfeld Will Smith Agent]

445624 Men In Black II Action Barry Sonnenfeld Tommy Lee Jones Agent K

634817 Independence Day Sci-Fi Roland Emmerick Will Smith Captain Steve Hiller

3.2.8 INSERT, UPDATE, and DELETE statements

SQL is a complete data manipulation language that can be used for modifying
the data in the database as well as querying the database. The commands for
modifying the database are not as complex as the SELECT statement. In this sec-
tion, we describe the three SQL statements that are available to modify the
contents of the tables in the database:

INSERT adds new rows of data to a table;
UPDATE modifies existing data in a table;

DELETE removes rows of data from a table.

INSERT statement

The general format of the INSERT statement is:

INSERT INTO TableName [(columnlList)]
VALUES (dataValuelList)

TableName is the name of a base table and columnList represents a list of one or
more column names separated by commas. The columnlList is optional; if omit-
ted, SQL assumes a list of all columns in their original CREATE TABLE order. If
specified, then any columns that are omitted from the list must have been
declared as NULL columns when the table was created, unless the DEFAULT
option was used when creating the column (see Section 3.3.1). The
dataValueList must match the columnList as follows:

62 M Background

CREATE
TABLE covered
in Section 3.3.1

the number of items in each list must be the same;

there must be a direct correspondence in the position of items in the two
lists, so that the first item in dataValueList applies to the first item in
columnlList, the second item in dataValueList applies to the second item in
columnlList, and so on;

the data type of each item in dataValueList must be compatible with the data
type of the corresponding column.

Query 3.19 Insert a row into a table

Insert a row into the Video table.

INSERT INTO Video
VALUES (207132, 'Die Another Day’, ‘Action’ 5.00, 21.99, 'D1001);

In this particular example, we have supplied values for all columns in the
order the columns were specified when the table was created (so we can omit
the list of column names).

UPDATE statement
The format of the UPDATE statement is:

UPDATE TableName
SET columnNamel = dataValuel [, columnNome?2 = dataValue?2

so0]]
[WHERE searchCondition]

The SET clause specifies the names of one or more columns that are to be
updated. The WHERE clause is optional; if omitted, the named columns are
updated for all rows in the table. If a WHERE clause is specified, only those rows
that satisfy the specified searchCondition are updated.

Query 3.20 Update rows in a table

Modify the daily rental rate of videos in the “Thriller’ category by 10 percent.

UPDATE Video
SET dailyRental = dailyRental * 1.1
WHERE action = ‘Thriller’;

DELETE statement

The format of the DELETE statement is:

DELETE FROM TableName
[WHERE searchCondition]

As with the UPDATE statement, the WHERE clause is optional; if omitted, all
rows are deleted from the table. If a WHERE clause is specified, only those rows
that satisfy the specified searchCondition are deleted.

Query 3.21 Delete rows in a table

Delete rental videos for catalog number 634817.

DELETE FROM VideoForRent
WHERE catalogNo = '634817’;

3.3 Data definition

In this section, we briefly look at two of the SQL DDL statements, namely:

CREATE TABLE to create a new table in the database;
CREATE VIEW to create a new view from a base table.

3.3.1 CREATE TABLE

CREATE TABLE TableName

{(columnName dataType [NOT NULL] [UNIQUE]

[DEFAULT defaultOption] [, . . . 1}

[PRIMARY KEY (listOfColumns),]

{[UNIQUE (listOfColumns),1[, . . . I}

{[FOREIGN KEY (listOfForeignKeyColumns)

REFERENCES ParentTableName [(listOfCandidateKeyColumns)],
[[ON UPDATE referential Action]
[ON DELETE referentialAction]][, . . . 1})

The full version of the CREATE TABLE statement is rather complex and in
this section we provide a simplified version of the statement to illustrate some
of its main components. Figure 3.1 shows the CREATE TABLE statements to

SQL and QBE W 63

64 M Background

Figure 3.1
CREATE TABLE statements for the Branch, Director, and Video tables
CREATE TABLE Branch (branchNo CHAR(4) NOT NULL,
street VARCHAR(30) NOT NULL,
city VARCHAR(20) NOT NULL,
state CHAR(2) NOT NULL,
zipCode CHAR(5) NOT NULL UNIQUE,
mgrStaffNo CHAR(5) NOT NULL,
CONSTRAINT pk1 PRIMARY KEY (branchNo),
CONSTRAINT fk1 FOREIGN KEY (mgrStaffNo) REFERENCES Staff
ON UPDATE CASCADE ON DELETE NO ACTION);
CREATE TABLE Director (directorNo CHAR(S) NOT NULL,
directorName VARCHAR(30) NOT NULL,
CONSTRAINT pk2 PRIMARY KEY (directorNo));
CREATE TABLE Video (catalogNo CHAR(6) NOT NULL,
title VARCHAR(40) NOT NULL,
category VARCHAR(10) NOT NULL,
dailyRental DECIMAL(4, 2) NOT NULL DEFAULT 5.00,
price DECIMAL(4, 2),
directorNo CHAR(5) NOT NULL,

CONSTRAINT pk3 PRIMARY KEY (catalogNo),
CONSTRAINT fk2 FOREIGN KEY (directorNo) REFERENCES Director
ON UPDATE CASCADE ON DELETE NO ACTION);

create the Branch, Director, and Video tables. Each statement first defines each
column of the table and then has one or two other clauses: one to define the
primary key and one to define any foreign keys.

Defining a column
The basic format for defining a column of a table is as follows:
columnName dataType [NOT NULL] [UNIQUE] [DEFAULT defcultOption]

where columnName is the name of the column and dataType defines the type of
the column. The ISO standard supports the data types shown in Table 3.19. The
most widely used data types are:

CHARACTER(L): (usually abbreviated to CHAR) defines a string of fixed
length L. If you enter a string with fewer characters than this length, the
string is padded with blanks on the right to make up the required size.

CHARACTER VARYING(L): (usually abbreviated to VARCHAR) defines a
string of varying length L. If you enter a string with fewer characters than
this length, only those characters entered are stored, thereby using less space.

DECIMAL(precision, [scale]) or NUMERIC(precision, [scale]): defines a
number with an exact representation. precision specifies the number of sig-
nificant digits and scale specifies the number of digits after the decimal point.
The difference between the types is that for NUMERIC the implementation
must provide the precision requested but for DECIMAL the implementation
may provide a precision that is greater than or equal to that requested. For
example, DECIMAL(4) can represent numbers between —-9999 and +9999;
DECIMAL(4, 2) can represent numbers between —99.99 and +99.99.

INTEGER and SMALLINT: define numbers where the representation of frac-
tions is not required. Typically SMALLINT would be used to store numbers
with a maximum absolute value of 32767.

DATE: stores date values in Julian date format as a combination of YEAR (4
digits), MONTH (2 digits), and DAY (2 digits).

In addition, you can define:

whether the column cannot accept nulls (NOT NULL),

whether each value within the column will be unique; that is, the column is
a candidate key (UNIQUE),

a default value for the column; this is a value that would be used if the value
of the column is not specified (DEFAULT).

The full version of the ISO standard also allows other conditions to be specified
but we refer the interested reader to Connolly and Begg (2002) for further
details.

Table 3.19 ISO SQL data types.

SQL and QBE M 65

Data type Declarations

boolean BOOLEAN

character CHAR, VARCHAR

bit BIT, BIT VARYING

exact numeric NUMERIC, DECIMAL, INTEGER, SMALLINT
approximate numeric FLOAT, REAL, DOUBLE PRECISION

datetime DATE, TIME, TIMESTAMP

interval INTERVAL

large objects CHARACTER LARGE OBJECT BINARY LARGE OBJECT

66 M Background

Entity integrity
discussed in
Section 2.3.2

Referential
integrity discussed
in Section 2.3.3

PRIMARY KEY clause and entity integrity

The primary key of a table must contain a unique, non-null value for each row.
The ISO standard supports entity integrity with the PRIMARY KEY clause in the
CREATE TABLE statement. For example, we can define the primary keys for the
Video table and the Role table (which has a composite primary key) as follows:

CONSTRAINT pk PRIMARY KEY (catalogNo)
CONSTRAINT pk1 PRIMARY KEY (catalogNo, actorNo)

Note that the keyword CONSTRAINT followed by a name for the constraint
is optional but allows the constraint to be dropped using the SQL statement
ALTER TABLE.

FOREIGN KEY clause and referential integrity

The ISO standard supports the definition of foreign keys with the FOREIGN
KEY clause in the CREATE TABLE statement. The ISO standard supports referen-
tial integrity by rejecting any INSERT or UPDATE operation that attempts to
create a foreign key value in a child table without a matching candidate key
value in the parent table. The action SQL takes for any UPDATE or DELETE oper-
ation that attempts to update or delete a candidate key value in the parent table
that has some matching rows in the child table is dependent on the referential
action specified using the ON UPDATE and ON DELETE subclauses of the FOR-
EIGN KEY clause:

CASCADE: Update/delete the row from the parent table and automatically
update/delete the matching rows in the child table. Since these
updated/deleted rows may themselves have a candidate key that is used as a
foreign key in another table, the foreign key rules for these tables are trig-
gered, and so on in a cascading manner.

SET NULL: Update/delete the row from the parent table and set the foreign
key value(s) in the child table to NULL. This is valid only if the foreign key
columns do not have the NOT NULL qualifier specified.

SET DEFAULT: Update/delete the row from the parent table and set each
component of the foreign key in the child table to the specified default
value. This is valid only if the foreign key columns have a DEFAULT value
specified.

NO ACTION: Reject the update/delete operation from the parent table. This
is the default setting if the ON UPDATE/ON DELETE rule is omitted.

SQL and QBE W 67

3.3.2 CREATE VIEW
The (simplified) format of the CREATE VIEW statement is:

CREATE VIEW ViewName [(hewColumnName [, . . . D]
AS subselect

A view is defined by specifying an SQL SELECT statement (known as the
defining query). A name may optionally be assigned to each column in the
view. If a list of column names is specified, it must have the same number of
items as the number of columns produced by the subselect. If the list of column
names is omitted, each column in the view takes the name of the correspond-
ing column in the subselect statement. The list of column names must be
specified if there is any ambiguity in the name for a column. This may occur if
the subselect includes calculated columns and the AS subclause has not been
used to name such columns, or it produces two columns with identical names
as the result of a join.

For example, we could create a view of staff at branch BOO1 that excludes
salary information as follows:

CREATE VIEW StaffBranchl

AS SELECT staffNo, name, position
FROM Starff
WHERE branchNo = '‘BO01";

3.4 Query-by-Example (QBE)

QBE is an alternative, graphical-based, ‘point-and-click’ way of querying the
database. QBE has acquired the reputation of being one of the easiest ways for
non-technical users to obtain information from a database. QBE provides a
visual means for querying the data through the use of templates. Querying the
database is achieved by illustrating the query to be answered. The screen dis-
play is used instead of typing the SQL statement; however, you must indicate
the columns (called fields in Microsoft Access) that you want to see and specify
data values that you want to use to restrict the query. Languages like QBE can
be a highly productive way to query or update the database interactively.

Like SQL, QBE was developed at IBM (in fact, QBE is an IBM trademark), but
a number of other vendors, including Microsoft, sell QBE-like interfaces. Often
vendors provide both SQL and QBE facilities, with QBE serving as a more intu-
itive interface for simple queries and the full power of SQL available for more
complex queries.

68 M Background

Figure 3.2

(a) QBE
corresponding to
Query 3.1 - List the
full details of all
videos; (b)
equivalent SQL
statement.

Once you have read this section, you will see that the QBE version of the
queries is usually more straightforward. For illustrative purposes, we use
Microsoft Access 2002 and for each example we show the equivalent SQL state-
ment for comparison.

Query 3.1 (Revisited) Retrieve all columns, all rows

List the full details of all videos.

The QBE grid for this query is shown in Figure 3.2(a). In the top part of the QBE
grid, we display the table(s) that we wish to query. For each table displayed,
Microsoft Access shows the list of fields in that particular table. We can then
drag the fields we wish to see in the result table to the Field row in the bottom
part of the QBE grid. In this particular example, we wish to display all rows of
the Video table, so we drag the ‘*’ field from the top part of the grid to the Field
row. By default, Microsoft Access will tick the corresponding cell of the Show
row to indicate that these fields are to be displayed in the result table.

=t Queryl : Select Query. i =10l =]

Video table iI
field list
< of
Fields y
required ———3 Figld: [Videa.* o
forquery T4 [19
Show! [[H] [H]
Criteria; ‘k
. _,,Ll SELECT *
FROM Video

Tick to display field
in the result table

(a) (b)

Query 3.6 (Revisited) Range search condition
(BETWEEN/NOT BETWEEN)

List all staff with a salary between $45,000 and $50,000.

The QBE grid for this query is shown in Figure 3.3(a). In this example, we show
the Staff table in the top part of the QBE grid and then drag the relevant fields

to the Field row in the bottom part of the grid. In this particular case, we also
have to specify the criteria to restrict the rows that will appear in the result
table. The criteria are ‘salary >=45000 AND salary <= 50000, so under the
salary column we enter the criteria “>=45000 AND <= 50000’ in the Criteria cell.

Note, if the criteria involved an OR condition, each part of the criteria would
be entered on different rows, as illustrated in Figure 3.3(c) for the criteria
(category = ‘Action’ OR category = ‘Children’).

=8 Queryl : Select Query 1 _I- _ID ll

i

Field: |staffln niame piosition salar =
Table: |staff Staff Skaff Skaff
Sort:
Show: X X
Criteria: = 45000 AND <=50000 Search criteria
i 4 »
(@
SELECT staffNo, name, position, salary
FROM Staff
WHERE salary >= 45000 AND salary <= 50000;
(b)

Wideo

Equivalent to:
"Action” category = ‘Action’ OR
category = ‘Children’

"Children"

Query 3.10 (Revisited) Sorting results

List all videos sorted in descending order of price.

The QBE grid for this query is shown in Figure 3.4(a). In this particular exam-
ple, we wish to sort the result table in descending order of price, which we
achieve by selecting Descending from the drop down list in the Sort cell for the

SQL and OBE M 69

Figure 3.3

(a) QBE
corresponding to
Query 3.6 — List all
staff with a salary
between $45,000
and $50,000;

(b) equivalent SQL
statement;

(c) example of how
a criterion
involving an OR
condition would
be entered.

70 M Background

Figure 3.4

(a) QBE
corresponding to
Query 3.10 — List all
videos sorted in
descending order of
price; (b) equivalent
SQL statement.

Figure 3.5

QBE corresponding
to Query 3.11 - List
the total number of
staff with a salary
greater than
$40,000 and the
sum of their
salaries;

(b) equivalent SQL
statement.

=101 =]

g=¢ Queryl : Select Query |

= | price

Wideo
Sart: Descending ™%
Shaow:
Criteria:

o j

(a)

Query 3.11 (Revisited) Use of COUNT and suM

Result table is
to be sorted

in descending

order of price

price field. Note in this case that the price field has not been ticked to be shown
because the field has already been included in the result table via the use of “*’
in the first Field cell.

SELECT *
FROM Video
ORDER BY price DESC;

(b)

List the total number of staff with a salary greater than $40,000 and the sum of their

salaries.

The QBE grid for this query is shown in Figure 3.5(a). In this example, we wish
to calculate the total number of staff and the sum of their salaries for a subset of
staff (those with a salary greater than $40,000). To do this, we use the aggregate

gl Query1 : Select Query

Field headings changed to

=101]

totalStaff and totalSalary | ETI]
Aggregate functions can be TZ‘E:S
specified when query type — Tsotatlf
is changed to Totals show

Criteria
or:

tokalSkaff: staffio

totalSalary: salar salar:

Skaf

Staff

Count

=40000

(a)

SELECT COUNT(staffNo) AS totalStaff, SUM(salary) AS totalSalary

FROM Starff
WHERE salary > 40000;

(b)

functions COUNT and SUM, which are accessed by changing the query type to
Totals. This results in the display of an additional row called Total in the QBE
grid with all fields that have been selected automatically set to GROUP BY.
However, using the drop down list we can change the Total row for the staffNo
field to COUNT and for the salary field to SUM. To make the output more mean-
ingful, we change the name of the field headings in the resulting output to
totalStaff and totalSalary, respectively. The condition > 40000’ is entered into the
Criteria cell for the salary field.

Query 3.14 (Revisited) Use of HAVING

For each branch office with more than one member of staff, find the number of staff
working in each branch and the sum of their salaries.

The QBE grid for this query is shown in Figure 3.6(a). As with the previous
query, we change the query type to Totals and use the COUNT and SUM func-
tions to calculate the required totals. However, in this particular example, we
need to group the information based on the branch number (we’re looking for
totals for each branch), so the Total cell for the branchNo field has to be set to

=8 Queryl : Select Query i

=101 %]

_ILI
4
-

Grouplng and aggregate Figld: |branchio totalStaff: stafffo totalSalary: salar:
functions specified when TTa?T Staff Skaff Staff
. ——> Total: |Group B Count Sum
query type is changed Sork: Asceﬁding
to Totals Show:
Criteria: =1
ar: ol
“ * _'I—I

Restriction of groups specified using the
Criteria on the aggregate function, COUNT(staffNo)

(@

SELECT branchNo, COUNT(staffNo) AS totalStaff, SUM(salary) AS totalSalary
FROM Stcrff

GROUP BY branchNo

HAVING COUNT(staffNo) > 1

ORDER BY branchNo;

(b)

SQL and QBE W 71

Figure 3.6

(a) QBE
corresponding to
Query 3.14 - For
each branch office
with more than one
member of staff,
find the number of
staff working in
each branch and
the sum of their
salaries;

(b) equivalent SQL
statement.

72 M Background

Figure 3.7

(a) QBE
corresponding to
Query 3.17 — List all
videos along with
the name of their
director;

(b) equivalent SQL
statement.

GROUP BY. Again, to make the output more meaningful, we change the name
of the field headings to totalStaff and totalSalary, respectively. As we only wish to
output this information for those branches with more than one member of
staff, we enter the criteria ‘>1" for the COUNT(staffNo) field.

Query 3.17 (Revisited) Simple join

List all videos along with the name of their director.

The QBE grid for this query is shown in Figure 3.7(a). In the top part of the QBE
grid, we display the tables that we wish to query, in this case the Video and
Director tables. As before, we drag the columns we wish to be included in the
output to the bottom part of the grid.

Note that in the SQL query we have to specify how to join the Director and
Video tables. However, QBE does this automatically for us, making QBE signifi-
cantly easier to use than SQL in this respect.

Join line representing
1:* relationship (shown as 1 to)

=101]

=8 Queryl : Select Query

directoriame

Figld: |cataloghlo title categor directorng directorilame
Table: [video Videa Video Video Cireckor
Sart:
Show;

Criteria:

or: A%
4 F

(a)

SELECT catalogNo, title, category, v.directorNo, directorName
FROM Video v, Director d
WHERE v .directorNo = d.directorNo;

(b)

Query 3.18 (Revisited) Four-table join

List all videos along with the name of their director, the names of their actors, and
associated roles.

The QBE grid for this query is shown in Figure 3.8(a). In the top part of the QBE
grid, we display the four tables that we wish to query. As before, we drag the
columns we wish to be included in the output to the bottom part of the grid. If
the appropriate relationships have been established, QBE will automatically
join the four tables on the join columns indicated in the top part of the grid.

direckartame

=8 Queryl : Select Query

Direct
*
directorio

Three joins — each representing a
1:* relationship (shown as 1 to)

characker

SQL and QBE W 73

Figure 3.8

Field:
Table:
Sort:
Shiow:
Criteria:
or

catalaghla

tile

cakegor

directariame

ackorMame

character

Video

Video

Video

Director

Actar

Role

(a)

SELECT v.catalogNo, title, category, directorName, actorName, character

FROM Video v, Director d, Actor a, Role r
WHERE d.directorNo = v.directorNo AND

(b)

v.catalogNo = r.catalogNo AND
r.actorNo = a.actorNo;

J SQL is a non-procedural language, consisting of standard English words
such as SELECT, INSERT, DELETE, that can be used by professionals and
non-professionals alike. It is both the formal and de facto standard lan-

guage for defining and manipulating relational databases.

(a) QBE
corresponding to
Query 3.18 - List all
videos along with
the name of their
director, the names
of their actors, and
associated roles;

(b) equivalent SQL
statement.

74 M Background

J The SELECT statement is the most important statement in the language

and is used to express a query. Every SELECT statement produces a query
result table consisting of one or more columns and zero or more rows.

J The SELECT clause identifies the columns and/or calculated data to

appear in the result table. All column names that appear in the SELECT
clause must have their corresponding tables or views listed in the FROM
clause.

J The WHERE clause selects rows to be included in the result table by

applying a search condition to the rows of the named table(s). The
ORDER BY clause allows the result table to be sorted on the values in
one or more columns. Each column can be sorted in ascending or
descending order. If specified, the ORDER BY clause must be the last
clause in the SELECT statement.

SQL supports five aggregate functions (COUNT, SUM, AVG, MIN, and
MAX) that take an entire column as an argument and compute a single
value as the result. It is illegal to mix aggregate functions with column
names in a SELECT clause, unless the GROUP BY clause is used.

The GROUP BY clause allows summary information to be included in the
result table. Rows that have the same value for one or more columns
can be grouped together and treated as a unit for using the aggregate
functions. In this case, the aggregate functions take each group as an
argument and compute a single value for each group as the result. The
HAVING clause acts as a WHERE clause for groups, restricting the
groups that appear in the final result table. However, unlike the WHERE
clause, the HAVING clause can include aggregate functions.

A subselect is a complete SELECT statement embedded in another query.
A subselect may appear within the WHERE or HAVING clauses of an
outer SELECT statement, where it is called a subquery or nested query.
Conceptually, a subquery produces a temporary table whose contents
can be accessed by the outer query. A subquery can be embedded in
another subquery.

If the columns of the result table come from more than one table, a join
must be used by specifying more than one table in the FROM clause and
typically including a WHERE clause to specify the join column(s).

As well as SELECT, the SQL DML includes the INSERT statement to insert a
single row of data into a named table or to insert an arbitrary number of
rows from another table using a subselect; the UPDATE statement to update

one or more values in a specified column or columns of a named table; the
DELETE statement to delete one or more rows from a named table.

The ISO standard provides eight base data types: boolean, character, bit,
exact numeric, approximate numeric, datetime, interval, and character/
binary large objects.

The SQL DDL statements allow database objects to be defined. The two
DDL statements covered in this chapter were CREATE TABLE and
CREATE VIEW.

QBE is an alternative, graphical-based, ‘point-and-click’ way of querying

the database. QBE has acquired the reputation of being one of the easi-
est ways for non-technical users to obtain information from a database.

3.1

3.2

3.3

3.4

3.5

3.6

What are the two major components of SQL and what function do they
serve?

Explain the function of each of the clauses in the SELECT statement. What
restrictions are imposed on these clauses?

What restrictions apply to the use of the aggregate functions within the
SELECT statement? How do nulls affect the aggregate functions?

Explain how the GROUP BY clause works. What is the difference between
the WHERE and HAVING clauses?

What is the difference between a subquery and a join? Under what cir-
cumstances would you not be able to use a subquery?

What is QBE and what is the relationship between QBE and SQL?

Exercises

The following tables form part of a database held in a relational DBMS:

Hotel (hotelNo, hotelName, city)

Room (roomNo, hotelNo, type, price)

Booking (hotelNo, guestNo, dateFrom, dateTo, roomNo)
Guest (questNo, guestName, guestAddress)

where Hotel contains hotel details and hotelNo is the primary key;

Room contains room details for each hotel and (roomNo, hoteINo) forms
the primary key;

Booking contains details of bookings and (guestNo, hotelNo, dateFrom) forms
the primary key;

Guest contains guest details and guestNo is the primary key.

SQL and QBE W 75

76 M Background

Create tables

3.7 Create each of the above tables using SQL (create primary keys and foreign
keys, where appropriate).

Populating tables

3.8 Insert rows into each of these tables.

3.9 Update the price of all rooms by 5 percent.

Simple queries
3.10 List full details of all hotels.
3.11 List full details of all hotels in Washington.

3.12 List the names and addresses of all guests living in Washington, alphabeti-
cally ordered by name.

3.13 List all double or family rooms with a price below $40.00 per night, in
ascending order of price.

3.14 List the bookings for which no dateTo has been specified.

Aggregate functions

3.15 How many hotels are there?
3.16 What is the average price of a room?
3.17 What is the total revenue per night from all double rooms?

3.18 How many different guests have made bookings for August?

Subqueries and joins

3.19 List the price and type of all rooms at the Hilton Hotel.
3.20 List all guests currently staying at the Hilton Hotel.

3.21 List the details of all rooms at the Hilton Hotel, including the name of the
guest staying in the room if the room is occupied.

3.22 What is the total income from bookings for the Hilton Hotel today?
3.23 List the rooms that are currently unoccupied at the Hilton Hotel.

3.24 What is the lost income from unoccupied rooms at the Hilton Hotel?

SQL and QBE W 77

Grouping

3.25 List the number of rooms in each hotel.

3.26 List the number of rooms in each hotel in Washington.

3.27 What is the average number of bookings for each hotel in August?

3.28 What is the most commonly booked room type for each hotel in
Washington?

3.29 What is the lost income from unoccupied rooms at each hotel today?

\

\

\

\

The database system
development lifecycle

In this chapter you will learn:

How problems associated with software development led to the software crisis.

How the software crisis led to a structured approach to software
development called the information systems lifecycle.

About the relationship between the information systems lifecycle and the
database system development lifecycle.

The stages of the database system development lifecycle.

The activities associated with each stage of the database system
development lifecycle.

This chapter begins by first explaining why there is a need for a structured
approach to developing software applications. We introduce an example of
such an approach called the information systems lifecycle and discuss the rela-
tionship between an information system and the database that supports it. We
then focus on the database and introduce an example of a structured approach
to developing database systems called the database system development lifecy-
cle. Finally, we take you through the stages that make up the database system
development lifecycle (DSDLC).

4.1 The software crisis

You are probably already aware that over the past few decades there has been a dra-
matic rise in the number of software applications being developed, ranging from

The database system development lifecycle B 79

small, relatively simple applications consisting of a few lines of code, to large,
complex applications consisting of millions of lines of code. Once developed,
many of these applications proved to be demanding, requiring constant mainte-
nance. This maintenance involved correcting faults, implementing new user
requirements, and modifying the software to run on new or upgraded platforms.
With so much software around to support, the effort spent on maintenance began
to absorb resources at an alarming rate. As a result, many major software projects
were late, over budget, and the software produced was unreliable, difficult to main-
tain, and performed poorly. This led to what has become known as the ‘software
crisis’. Although this term was first used in the late 1960s, more than 30 years later
the crisis is still with us. As a result, some people now refer to the software crisis as
the ‘software depression’. As an indication of the software crisis, a study carried out
in the UK by OASIG, a Special Interest Group concerned with the Organizational
Aspects of IT, reached the following conclusions (OASIG, 1996):

80-90 percent of systems do not meet their performance goals.

About 80 percent are delivered late and over budget.

Around 40 percent of developments fail or are abandoned.

Under 40 percent fully address training and skills requirements.

Less than 25 percent properly integrate business and technology objectives.

Just 10-20 percent meet all their success criteria.
There are several major reasons for the failure of software projects, including:

lack of a complete requirements specification;

lack of an appropriate development methodology;

poor decomposition of design into manageable components.

As a solution to these problems, a structured approach to the development of

software was proposed and is commonly known as the information systems (IS)
lifecycle or the software development lifecycle (SDLC).

4.2 The information systems lifecycle

Information system

The resources that enable the collection, management, control, and dissemination of
data/information throughout an organization.

An information system not only collects, manages, and controls data used and
generated by an organization but enables the transformation of the data into
information. An information system also provides the infrastructure to facili-
tate the dissemination of information to those who make the decisions critical

80 M Background

Relational model
discussed in
Chapter 2

to the success of an organization. The essential component at the heart of an
information system is the database that supports it.

Typically, the stages of the information systems lifecycle include: planning,
requirements collection and analysis, design (including database design), proto-
typing, implementation, testing, conversion, and operational maintenance. Of
course, in this book we’re interested in the development of the database com-
ponent of an information system. As a database is a fundamental component of
the larger organization-wide information system, the database system develop-
ment lifecycle is inherently linked with the information systems lifecycle.

4.3 The database system development lifecycle

In this chapter, we describe the database system development lifecycle for rela-
tional DBMSs. An overview of the stages of the database system development
lifecycle (DSDLC) is shown in Figure 4.1. Below the name of each stage is the
section in this chapter that describes that stage. It’s important to note that the
stages of the database system development lifecycle are not strictly sequential,
but involve some amount of repetition of previous stages through feedback loops.
For example, problems encountered during database design may necessitate
additional requirements collection and analysis. As there are feedback loops
between most stages, we show only some of the more obvious ones in Figure 4.1.

For small database systems with a small number of users, the lifecycle need
not be very complex. However, when designing a medium to large database
system with tens to thousands of users, using hundreds of queries and applica-
tion programs, the lifecycle can become extremely complex.

4.4 Database planning

Database planning

The management activities that allow the stages of the database system development
lifecycle to be realized as efficiently and effectively as possible.

A starting point for establishing a database project is the creation of a mission state-
ment and mission objectives for the database system. The mission statement defines
the major aims of the database system, while each mission objective identifies a par-
ticular task that the database must support. Of course, as with any project, part of
the database planning process should also involve some estimation of the work to
be done, the resources with which to do it, and the money to pay for it all.

As we've already noted, a database often forms part of a larger organization-
wide information system and therefore any database project should be
integrated with the organization’s overall IS strategy.

Database planning

Y

(Section 4.4)

!

System definition
(Section 4.5)

!

Requirements collection

Y

and analysis
(Section 4.6)

The database system development lifecycle Il 81

Database
design
(Section 4.7)

\

DBMS selection
(optional) <
(Section 4.8)

Logical design

\

Physical design

Y

Application
= design
(Section 4.9)

Y

Prototyping (optional)
(Section 4.10)

Y

Figure 4.1

Implementation
(Section 4.11)

/

Data conversion and
loading
(Section 4.12)

!

Testing
(Section 4.13)

!

Operational maintenance
(Section 4.14)

Stages of the
database system
development
lifecycle.

82 M Background

StayHome video
rental case study
described in
Section 6.4

Figure 4.2

Boundary of the
database system for
the StayHome video
rental company.

Database planning may also include the development of standards that govern
how data will be collected, how the format should be specified, what necessary

documentation will be needed, and how design and implementation should

proceed. Standards can be very time-consuming to develop and maintain,
requiring resources to set them up initially and to continue maintaining them.
However, a well-designed set of standards provides a basis for training staff and
measuring quality, and ensures that work conforms to a pattern, irrespective of

staff skills and experience. Any legal or organizational requirements concern-

ing the data should be documented, such as the stipulation that some types of

data must be treated confidentially or kept for a specific period of time.

4.5 System definition

System definition

Identification of the scope and boundary of the database system, including its major

user views.

Before attempting to design a database system, it’s essential that we first iden-
tify the scope and boundary of the system that we're investigating and how it
interfaces with other parts of the organization’s information system. Figure 4.2
shows one example of how to represent the system boundary of a database
system for the StayHome video rental company. When defining the system
boundary for a database system we include not only the current user views but
also any known future user views.

—»': Marketing]

[Payroll]

A

\ A

A

[Video sales]

[Video rentals]

e

A

A

A

»| Stock control

Customer
services

Database systems boundary

The database system development lifecycle l 83

Note that this type of diagram can be drawn at any level of detail. A second
example of this type of diagram (at a lower level) is shown in Figure 6.9.

4.5.1 User views

User view

Defines what is required of a database system from the perspective of a particular job
(such as Manager or Supervisor) or business application area (such as marketing, per-
sonnel, or stock control).

A database system may have one or more user views. Identifying user views is
an important aspect of developing a database system because it helps to ensure
that no major users of the database are forgotten when developing the require-
ments for the new application. User views are also particularly helpful in the
development of a relatively complex database system by allowing the require-
ments to be broken down into manageable pieces.

A user view defines what is required of a database system in terms of the data
to be held and the transactions to be performed on the data (in other words,
what the users will do with the data). The requirements of a user view may be
distinct to that view or overlap with other views. Figure 4.3 is a diagrammatic
representation of a database system with multiple user views (denoted user view
1 to 6). Note that while user views (1, 2, and 3) and (5 and 6) have overlapping
requirements (shown as darker areas), user view 4 has distinct requirements.

4.6 Requirements collection and analysis

Requirements collection and analysis

The process of collecting and analyzing information about the organization to be
supported by the database system, and using this information to identify the require-
ments for the new database system.

In this stage, we collect and analyze information about the organization, or the
part of the organization, to be served by the database. There are many tech-
niques for gathering this information, called fact-finding techniques, which
we’ll discuss in detail in Chapter 6.

We gather information for each major user view (that is, job role or business
application area), including:

a description of the data used or generated,
the details of how data is to be used or generated,

any additional requirements for the new database system.

84 M Background

Figure 4.3

A diagram
representing a
database system
with multiple user
views: user view 4 is
distinct; the others
have some element
of overlap.

Database

Database system

We then analyze this information to identify the requirements (or features)
to be included in the new database system. These requirements are described in
documents collectively referred to as requirements specifications for the new data-
base system.

TIP

Requirements collection and analysis is a preliminary stage to data- e
base design. The amount of data gathered depends on the nature of the
problem and the policies of the organization. Identifying the required func-
tionality for a database system is a critical activity, as systems with inadequate
or incomplete functionality will annoy the users, and may lead to rejection or
underutilization of the system. However, excessive functionality can also be
problematic as it can overcomplicate a system, making it difficult to imple-
ment, maintain, use, and learn.

Another important activity associated with this stage is deciding how to deal
with the situation where there is more than one user view. There are three
approaches to dealing with multiple user views:

The database system development lifecycle B 85

the centralized approach,
the view integration approach, and

a combination of both approaches.

Centralized approach

Centralized approach

Requirements for each user view are merged into a single list of requirements for the
new database system. A data model representing all user views is created during the
database design stage.

The centralized approach involves collating the requirements for different
user views into a single list of requirements. A data model representing all
user views is created in the database design stage. A diagram representing the
management of user views 1 to 3 using the centralized approach is shown in
Figure 4.4. Generally, this approach is preferred when there is a significant
overlap in requirements for each user view and the database system is not
overly complex.

(— Figure 4.4
The centralized
| approach to
— \ managing multiple
User view 1 user views 1 to 3.
requirements \
ER model
— | —_ | — 4+
User view 2 All user view Database
requirements requirements lj system
| / Tables, data
/ dictionary,
> and other
User view 3 documentation
requirements N ——

Logical data model

86 M Background

View integration approach

View integration approach

Requirements for each user view remain as separate lists. Data models representing
each user view are created and then merged later during the database design stage.

The view integration approach involves leaving the requirements for each
user view as separate lists of requirements. We create data models representing
each user view. A data model that represents a single user view is called a local
logical data model. We then merge the local data models to create a global
logical data model representing all user views of the organization.

A diagram representing the management of user views 1 to 3 using the view
integration approach is shown in Figure 4.5. Generally, this approach is pre-
ferred when there are significant differences between user views and the
database system is sufficiently complex to justify dividing the work into more
manageable parts.

For some complex database systems it may be appropriate to use a
combination of both the centralized and view integration approaches to man-
aging multiple user views. For example, the requirements for two or more user
views may be first merged using the centralized approach and then used to
create a local logical data model. (Therefore in this situation the local data
model represents not just a single user view but the number of user views
merged using the centralized approach.) The local data models representing
one or more user views are then merged using the view integration approach
to form the global logical data model representing all user views.

We'll discuss how to manage multiple user views in more detail in Section 6.4.4
and throughout this book we’ll demonstrate how to build a database for the
StayHome video rental case study using a combination of both the centralized
and view integration approaches.

4.7 Database design

Database design

The process of creating a design that will support the organization’s mission statement
and mission objectives for the required database system.

The database system development lifecycle l 87

Figure 4.5
The view
integration
approach to

managing multiple

user views 1 to 3.
- +

User view 1
requirements U Global table
diagram is

User view 1 described in
local logical Appendix C
data model

-

i Global table

|_,_|_, diagram

User view 2
requirements Database
system

User view 2 Tables, data
local logical dictionary,
data model and other
documentation
Global logical

data model

.>|_

User view 3
requirements U

User view 3
local logical
data model
-

88 M Background

Integrity

constraints
discussed in
Section 1.3

Database design is made up of two main phases called logical and physical
design. During logical database design, we try to identify the important objects
that need to be represented in the database and the relationships between these
objects. During physical database design, we decide how the logical design is to
be physically implemented in the target DBMS. In Chapter 9, we'll discuss the
two phases of database design in more detail and present an overview of a step-
by-step methodology for logical and physical database design. The steps of the
logical database design methodology will be described in detail in Chapters 9
and 10 and for physical database design in Chapters 12 to 16.

4.8 DBMS selection

DBMS selection

The selection of an appropriate DBMS to support the database system.

If no relational DBMS currently exists in the organization, an appropriate part
of the lifecycle in which to make a selection is between the logical and physical
database design phases. However, selection can be done at any time prior to
logical design provided sufficient information is available regarding system
requirements such as networking, performance, ease of restructuring, security,
and integrity constraints.

Although DBMS selection may be infrequent, as business needs expand or
existing systems are replaced, it may become necessary at times to evaluate new
DBMS products. In such cases, the aim is to select a product that meets the cur-
rent and future requirements of the organization, balanced against costs which
include the purchase of the DBMS, any additional software/hardware required
to support the database system, and the costs associated with changeover and
staff training.

A simple approach to selection is to check off DBMS features against require-
ments. In selecting a new DBMS product, there is an opportunity to ensure that
the selection process is well planned, and the system delivers real benefits to
the organization.

TIP

Nowadays, the World Wide Web (WWW) is a great source of informa- — Hes
tion and can be used to identify potential candidate DBMSs. Vendors’ websites
can provide valuable information on DBMS products. As a starting point, have
a look at DBMS magazine’s website called DBMS ONLINE (available at
www.intelligententerprise.com) for a comprehensive index of DBMS products.

The database system development lifecycle l 89

4.9 Application design

Application design

The design of the user interface and the application programs that use and process the
database.

In Figure 4.1 shown earlier in this chapter, we observed that database and appli-
cation design are parallel activities of the database system development
lifecycle. In most cases, we cannot complete the application design until the
design of the database itself has taken place. On the other hand, the database
exists to support the applications, and so there must be a flow of information
between application design and database design.

We must ensure that all the functionality stated in the requirements specifi-
cations is present in the application design for the database system. This
involves designing the interaction between the user and the data, which we
call transaction design. In addition to designing how the required functionality
is to be achieved, we have to design an appropriate user interface to the data-
base system.

4.9.1 Transaction design

Transaction

An action, or series of actions, carried out by a single user or application program that
accesses or changes the content of the database.

Transactions represent ‘real world’ events such as the registering of a new
member at a video rental company, the creation of a rental agreement for a
member to rent a video, and the addition of a new member of staff. These
transactions have to be applied to the database to ensure that the database
remains current with the ‘real world’ and to support the information needs of
the users.

The purpose of transaction design is to define and document the high-level
characteristics of the transactions required on the database, including:

data to be used by the transaction;

functional characteristics of the transaction (what the transaction will do);
output of the transaction;

importance to the users;

expected rate of usage.

90 M Background

There are three main types of transactions:

retrieval transactions;
update transactions;

mixed transactions.

Retrieval transactions are used to retrieve data for display on the screen (or as a
report) or as input into another transaction. For example, the operation to
search for and display the details of a video (given the video number) is a
retrieval transaction. Update transactions are used to insert new records, delete
old records, or modify existing records in the database. For example, the opera-
tion to insert the details of a new video into the database is an update
transaction. Mixed transactions involve both the retrieval and updating of data.
For example, the operation to search for and display the details of a video
(given the video number) and then update the value of the daily rental rate is a
mixed transaction.

4.9.2 User interface design

In addition to designing how the required functionality is to be achieved, we
have to design an appropriate user interface for the database system. This inter-
face should present the required information in a user-friendly way. The
importance of user interface design is sometimes ignored or left until late in the
design stages. However, it should be recognized that the interface might be one
of the most important components of the system. If it’s easy to learn, simple to
use, straightforward, and forgiving, the users will be inclined to make good use
of what information is presented. On the other hand, if the interface has none
of these characteristics, the system will undoubtedly cause problems. For exam-
ple, before implementing a form or report, it's essential that we first design the
layout. Useful guidelines to follow when designing forms or reports are listed in
Table 4.1 (Shneiderman, 1992).

4.10 Prototyping

At various points throughout the design process, we have the option either to
fully implement the database system or to build a prototype.

Prototyping

Building a working model of a database system.

A prototype is a working model that does not normally have all the required
features or provide all the functionality of the final system. The purpose of
developing a prototype database system is to allow users to use the prototype to

The database system development lifecycle l 91

Table 4.1 Guidelines for form/report design.

Meaningful title

Comprehensible instructions

Logical grouping and sequencing of fields
Visually appealing layout of the form/report
Familiar field labels

Consistent terminology and abbreviations
Consistent use of color

Visible space and boundaries for data-entry fields
Convenient cursor movement

Error correction for individual characters and entire fields
Error messages for unacceptable values

Optional fields marked clearly

Explanatory messages for fields

Completion signal

identify the features of the system that work well, or are inadequate, and if pos-
sible to suggest improvements or even new features for the database system. In
this way, we can greatly clarify the requirements and evaluate the feasibility of
a particular system design. Prototypes should have the major advantage of
being relatively inexpensive and quick to build.

There are two prototyping strategies in common use today: requirements
prototyping and evolutionary prototyping. Requirements prototyping uses a pro-
totype to determine the requirements of a proposed database system and once
the requirements are complete the prototype is discarded. While evolutionary
prototyping is used for the same purposes, the important difference is that the
prototype is not discarded but with further development becomes the working
database system.

4.11 Implementation

Implementation

The physical realization of the database and application designs.

On completion of the design stages (which may or may not have involved proto-
typing), we're now in a position to implement the database and the application

92 M Background

DDL defined in
Section 2.4

DML defined in
Section 2.4

SQL covered in
Chapter 3

programs. The database implementation is achieved using the Data Definition
Language (DDL) of the selected DBMS or a graphical user interface (GUI), which
provides the same functionality while hiding the low-level DDL statements. The
DDL statements are used to create the database structures and empty database
files. Any specified user views are also implemented at this stage.

The application programs are implemented using the preferred third or fourth
generation language (3GL or 4GL). Parts of these application programs are the
database transactions, which we implement using the Data Manipulation Language
(DML) of the target DBMS, possibly embedded within a host programming lan-
guage, such as Visual Basic (VB), VB.net, Python, Delphi, C, C++, C#, Java,
COBOL, Fortran, Ada, or Pascal. We also implement the other components of the
application design such as menu screens, data entry forms, and reports. Again,
the target DBMS may have its own fourth generation tools that allow rapid devel-
opment of applications through the provision of non-procedural query
languages, reports generators, forms generators, and application generators.

Security and integrity controls for the application are also implemented.
Some of these controls are implemented using the DDL, but others may need to
be defined outside the DDL using, for example, the supplied DBMS utilities or
operating system controls.

SQL (Structured Query Language) is both a DDL and a DML.

4.12 Data conversion and loading

Data conversion and loading

Transferring any existing data into the new database and converting any existing
applications to run on the new database.

This stage is required only when a new database system is replacing an old
system. Nowadays, it’s common for a DBMS to have a utility that loads existing
files into the new database. The utility usually requires the specification of the
source file and the target database, and then automatically converts the data to
the required format of the new database files. Where applicable, it may be pos-
sible for the developer to convert and use application programs from the old
system for use by the new system. Whenever conversion and loading are
required, the process should be properly planned to ensure a smooth transition
to full operation.

The database system development lifecycle ll 93

4.13 Testing

Testing

The process of running the database system with the intent of finding programming
e1Tors.

Before going live, the newly developed database system should be thoroughly
tested. This is achieved using carefully planned test strategies and realistic data
so that the entire testing process is methodically and rigorously carried out.
Note that in our definition of testing we have not used the commonly held
view that testing is the process of demonstrating that faults are not present. In
fact, testing cannot show the absence of faults; it can show only that software
faults are present. If testing is conducted successfully, it will uncover errors in
the application programs and possibly the database structure. As a secondary
benefit, testing demonstrates that the database and the application programs
appear to be working according to their specification and that performance
requirements appear to be satisfied. In addition, metrics collected from the test-
ing stage provide a measure of software reliability and software quality.

As with database design, the users of the new system should be involved in
the testing process. The ideal situation for system testing is to have a test data-
base on a separate hardware system, but often this is not available. If real data is
to be used, it is essential to have backups taken in case of error.

Testing should also cover usability of the database system. Ideally, an evalua-
tion should be conducted against a usability specification. Examples of criteria
that can be used to conduct the evaluation include (Sommerville, 2000):

Learnability — How long does it take a new user to become productive with
the system?

Performance — How well does the system response match the user’s work
practice?

Robustness — How tolerant is the system of user error?

Recoverability - How good is the system at recovering from user errors?

Adaptability — How closely is the system tied to a single model of work?
Some of these criteria may be evaluated in other stages of the lifecycle. After

testing is complete, the database system is ready to be ‘signed oftf’ and handed
over to the users.

94 M Background

4.14 Operational maintenance

Operational maintenance

The process of monitoring and maintaining the database system following installation.

In this stage, the database system now moves into a maintenance stage, which
involves the following activities:

Monitoring the performance of the database system. If the performance falls
below an acceptable level, the database may need to be tuned or reorganized.

Maintaining and upgrading the database system (when required). New
requirements are incorporated into the database system through the preced-
ing stages of the lifecycle.

We'll examine this stage in more detail in Chapter 16.

J An information system is the resources that enable the collection, man-
agement, control, and dissemination of data/information throughout an
organization.

J The database is a fundamental component of an information system.
The lifecycle of an information system is inherently linked to the lifecy-
cle of the database that supports it.

J The stages of the database system development lifecycle include: data-
base planning, system definition, requirements collection and analysis,
database design, DBMS selection (optional), application design, proto-
typing (optional), implementation, data conversion and loading, testing,
and operational maintenance.

J Database planning is the management activities that allow the stages
of the database system development lifecycle to be realized as effi-
ciently and effectively as possible.

J System definition involves identifying the scope and boundaries of the
database system, including its major user views. A user view can repre-
sent a job role or business application area.

J Requirements collection and analysis is the process of collecting and
analyzing information about the organization that is to be supported by

S S S s s

The database system development lifecycle B 95

the database system, and using this information to identify the require-
ments for the new system.

There are three approaches to dealing with multiple user views, namely
the centralized approach, the view integration approach, and a combi-
nation of both. The centralized approach involves collating the users’
requirements for different user views into a single list of requirements. A
data model representing all the user views is created during the data-
base design stage. The view integration approach involves leaving the
users' requirements for each user view as separate lists of requirements.
Data models representing each user view are created and then merged
at a later stage of database design.

Database design is the process of creating a design that will support the
organization's mission statement and mission objectives for the required
database system. This stage includes the logical and physical design of
the database.

The aim of DBMS selection is to select a system that meets the current
and future requirements of the organization, balanced against costs that
include the purchase of the DBMS product and any additional soft-
ware/hardware, and the costs associated with changeover and training.

Application design involves designing the user interface and the appli-
cation programs that use and process the database. This stage involves
two main activities: transaction design and user interface design.

Prototyping involves building a working model of the database system,
which allows the designers or users to visualize and evaluate the system.

Implementation is the physical realization of the database and applica-
tion designs.

Data conversion and loading involves transferring any existing data
into the new database and converting any existing applications to run
on the new database.

Testing is the process of running the database system with the intent of
finding programming errors.

Operational maintenance is the process of monitoring and maintaining
the system following installation.

96 M Background

4.1
4.2

4.3
4.4

4.5
4.6

4.7

4.8
4.9
4.10
4.11
4.12
4.13

Describe what is meant by the term ‘software crisis’.

Discuss the relationship between the information systems lifecycle and
the database system development lifecycle.

Briefly describe the stages of the database system development lifecycle.

Describe the purpose of creating a mission statement and mission objec-
tives for the required database during the database planning stage.

Discuss what a user view represents when designing a database system.

Compare and contrast the centralized approach and view integration
approach to managing the design of a database system with multiple user
views.

Explain why it is necessary to select the target DBMS before beginning the
physical database design phase.

Discuss the two main activities associated with application design.
Describe the potential benefits of developing a prototype database system.
Discuss the main activities associated with the implementation stage.
Describe the purpose of the data conversion and loading stage.

Explain the purpose of testing the database system.

What are the main activities associated with the operational maintenance
stage?

Database administration
and security

In this chapter you will learn:

The distinction between data administration and database administration.

The purpose and tasks associated with data administration and
database administration.

The scope of database security.
Why database security is a serious concern for an organization.
The type of threats that can affect a database system.

How to protect a database system using computer-based controls.

A A A A A

In Chapter 4, we learned about the stages of the database system development
lifecycle. In this chapter we discuss the roles played by the Data Administrator
(DA) and Database Administrator (DBA) and the relationship between these
roles and the stages of the database system development lifecycle. An important
function of a DA and DBA is ensuring the security of the database. We discuss
the potential threats to a database system and the types of computer-based
countermeasures that can be applied to minimize such threats.

98 M Background

5.1 Data administration and database
administration

The Data Administrator (DA) and Database Administrator (DBA) are responsible
for managing and controlling the activities associated with the corporate data
and the corporate database, respectively. The DA is more concerned with the
early stages of the lifecycle, from planning through to logical database design. In
contrast, the DBA is more concerned with the later stages, from application/
physical database design to operational maintenance. Depending on the size and
complexity of the organization and/or database system, the DA and DBA can be
the responsibility of one or more people. We begin by discussing the purpose
and tasks associated with the DA and DBA roles within an organization.

5.1.1 Data administration

Data administration

The management and control of the corporate data, including database planning,
development and maintenance of standards, policies and procedures, and logical data-
base design.

The DA is responsible for the corporate data, which includes non-computerized
data, and in practice is often concerned with managing the shared data of users
or business application areas of an organization. The DA has the primary
responsibility of consulting with and advising senior managers, and ensuring
that the application of database technologies continues to support corporate
objectives. In some organizations, data administration is a distinct business
area, in others it may be combined with database administration. The tasks
associated with data administration are described in Table 5.1.

Table 5.1 Data administration tasks.

Selecting appropriate productivity tools

Assisting in the development of the corporate IT/IS and business strategies
Undertaking feasibility studies and planning for database development
Developing a corporate data model

Determining the organization’s data requirements

Setting data collection standards and establishing data formats

Estimating volumes of data and likely growth

Determining patterns and frequencies of data usage

Database administration and security ll 99

Table 5.1 Continued

Determining data access requirements and safeguards for both legal and corporate

requirements
Undertaking logical database design

Liaising with database administration staff and application developers to ensure

applications meet all stated requirements
Educating users on data standards and legal responsibilities
Keeping up to date with IT/IS and business developments

Ensuring documentation is complete, including the corporate data model, standards,

policies, procedures, and controls on end-users
Managing the data dictionary

Liaising with end-users and database administration staff to determine new

requirements and to resolve data access or performance problems

Developing a security policy

5.1.2 Database administration

Database administration

The management and control of the physical realization of the corporate database
system, including physical database design and implementation, setting security
and integrity controls, monitoring system performance, and reorganizing the data-
base as necessary.

The DBA is more technically oriented than the DA, requiring knowledge of specific
DBMSs and the operating system environment. The primary responsibilities of
the DBA are centered on developing and maintaining systems using the DBMS
software to its fullest extent. The tasks of database administration are described
in Table 5.2.

5.1.3 Comparison of data and database administration

The preceding sections examined the purpose and tasks associated with data
administration and database administration. A summary of the main task dif-
ferences between data administration and database administration is shown in
Table 5.3. Perhaps the most obvious difference lies in the nature of the work
carried out. The work of DA staff tends to be much more managerial, whereas
the work of DBA staff tends to be more technical.

100 M Background

Table 5.2 Database administration tasks.

Evaluating and selecting DBMS products

Undertaking physical database design

Implementing a physical database design using a target DBMS

Defining security and integrity constraints
Liaising with database system developers
Developing test strategies

Training users

Responsible for ‘signing off’ the implemented database system

Monitoring system performance and tuning the database, as appropriate

Performing backups routinely

Ensuring recovery mechanisms and procedures are in place

Ensuring documentation is complete, including in-house produced material

Keeping up to date with software and hardware developments and costs, and installing

updates as necessary

Table 5.3 Data/Database administration — main task differences.

Data administration

Database administration

Involved in strategic IS planning
Determines long-term goals

Determines standards, policies, and

procedures

Determines data requirements

Develops logical database design

Develops and maintains corporate data model
Coordinates database development
Managerial orientation

DBMS independent

Evaluates new DBMSs
Executes plans to achieve goals

Enforces standards, policies, and

procedures

Implements data requirements
Develops physical database design
Implements physical database design
Monitors and controls database use
Technical orientation

DBMS dependent

5.2 Database security

In this section, we describe the scope of database security and discuss why orga-
nizations must take potential threats to their database systems seriously. We
also identify the range of threats and their consequences on database systems.

Database administration and security l 101

Database security

The mechanisms that protect the database against intentional or accidental threats.

Security considerations do not only apply to the data held in a database.
Breaches of security may affect other parts of the system, which may in turn
affect the database. Consequently, database security encompasses hardware,
software, people, and data. To implement security effectively requires appropri-
ate controls, which are defined in specific mission objectives for the system.
This need for security, while often having been neglected or overlooked in the
past, is now increasingly recognized by organizations. The reason for this turn-
around is due to the increasing amounts of crucial corporate data being stored
on computer and the acceptance that any loss or unavailability of this data
could be potentially disastrous.

A database represents an essential corporate resource that should be properly
secured using appropriate controls. We consider database security in relation to
the following outcomes:

theft and fraud;

loss of confidentiality (secrecy);
loss of privacy;

loss of integrity;

loss of availability.

These outcomes represent the areas where an organization should seek to
reduce risk; that is, the possibility of incurring loss or damage. In some situa-
tions, these outcomes are closely related such that an activity that leads to loss
in one situation may also lead to loss in another. In addition, outcomes such as
fraud or loss of privacy may arise because of either intentional or unintentional
acts, and do not necessarily result in any detectable changes to the database or
the computer system.

Theft and fraud affect not only the database environment but also the entire
organization. As it’s people who perpetrate such activities, attention should
focus on reducing the opportunities for this occurring. Theft and fraud do not
necessarily alter data, which is also true for activities that result in either loss of
confidentiality or loss of privacy.

Confidentiality refers to the need to maintain secrecy over data, usually only
that which is critical to the organization, whereas privacy refers to the need to
protect data about individuals. Breaches of security resulting in loss of confi-
dentiality could, for instance, lead to loss of competitiveness, and loss of
privacy could lead to legal action being taken against the organization.

Loss of data integrity results in invalid or corrupted data, which may seri-
ously affect the operation of an organization. Many organizations are now

102 M Background

seeking virtually continuous operation, the so-called 24 x 7 availability (that is,
24 hours a day, seven days a week). Loss of availability means that the data, or
the system, or both, cannot be accessed, which can seriously impact on an
organization’s financial performance. In some cases, events that cause a system
to be unavailable may also cause data corruption.

In recent times, computer-based criminal activities have significantly
increased and are forecast to continue to rise over the next few years. Database
security aims to minimize losses caused by anticipated events in a cost-effective
manner without unduly constraining the users.

5.2.1 Threats

Threat

Any situation or event, whether intentional or unintentional, that may adversely
affect a system and consequently the organization.

A threat may be caused by a situation or event involving a person, action, or cir-
cumstance that is likely to be detrimental to an organization. The loss to the
organization may be tangible, such as loss of hardware, software, or data, or
intangible, such as loss of credibility or client confidence. The problem facing any
organization is to identify all possible threats. Therefore as a minimum, an orga-
nization should invest time and effort in identifying the most serious threats.

In the previous section, we identified outcomes that may result from inten-
tional or unintentional activities. While some types of threat can be either
intentional or unintentional, the impact remains the same. Intentional threats
involve people, and may be carried out by both authorized users and unautho-
rized users, some of whom may be external to the organization.

Any threat must be viewed as a potential breach of security which, if success-
ful, will have a certain impact. Table 5.4 presents examples of various types of
threats and the possible outcomes for an organization. For example, ‘Using
another person’s means of access’ as a threat may result in theft and fraud, loss
of confidentiality, and loss of privacy for an organization.

The extent that an organization suffers as a result of a threat succeeding
depends upon a number of factors, such as the existence of countermeasures
and contingency plans. For example, if a hardware failure occurs corrupting sec-
ondary storage, all processing activity must cease until the problem is resolved.
The recovery will depend upon a number of factors, which include when the
last backups were taken and the time needed to restore the system.

An organization needs to identify the types of threats it may be subjected to
and initiate appropriate plans and countermeasures, bearing in mind the costs
of implementing them. Obviously, it may not be cost-effective to spend consid-
erable time, effort, and money on potential threats that may result only in

Database administration and security ll 103

Table 5.4 Examples of threats and the possible outcomes.

Threat Theft and Loss of Loss of Loss of Loss of
fraud confidentiality privacy integrity availability

Using another person’s means of access \/ v J
Unauthorized amendment or copying of data \/
Program alteration \/ y \/

Inadequate policies and procedures

that allow a mix of confidential and normal output
Wire tapping

Illegal entry by hacker

Blackmail

Creating ‘trapdoor’ into system

< 2 2 2 2 =2
A A
2 2 2 2 2 2

Theft of data, programs, and equipment

Failure of security mechanisms,

giving greater access than normal \/ \/ J

Staff shortage or strikes

Inadequate staff training y J y V
Viewing and disclosing unauthorized data v

Electronic interference and radiation

2
2

Data corruption due to power loss or surge

Fire (electrical fault, lightning strike, arson),
flood, bomb

Physical damage to equipment

Breaking cables or disconnection of cables

<. 2 2 2
< 2 2 2

Introduction of viruses

minor inconveniences. The organization'’s business may also influence the types
of threat that should be considered, some of which may be rare. However, rare
events should be taken into account, particularly if their impact would be sig-
nificant. A summary of the potential threats to computer systems is represented
in Figure 5.1.

5.2.2 Countermeasures - computer-based controls

The types of countermeasures to threats on database systems range from physi-
cal controls to administrative procedures. Despite the range of computer-based

104 M Background

Figure 5.1

Summary of potential threats to computer systems.

Hardware

Fire/flood/bombs

Data corruption due to power
loss or surge

Failure of security mechanisms DBMS and Application Software
giving greater access Failure of security mechanism

Theft of equipment giving greater access

Physical damage to equipment Program alteration

Electronic interference and radiation = Theft of programs

A
Y

Communication networks Database

Wire tapping Unauthorized amendment or
Breaking or disconnection of cables copying of data

Electronic interference and radiation Theft of data

Data corruption due to power
loss or surge

Users Programers/Operators Data/Database Administrator
Using another person’s means of Creating trapdoors Inadequate security policies
access Program alteration (such as creating and procedures

Viewing and disclosing
unauthorized data
Inadequate staff training
Illegal entry by hacker
Blackmail

Introduction of viruses

software that is insecure)
Inadequate staff training
Inadequate security policies and
procedures

Staff shortages or strikes

controls that are available, it is worth noting that, generally, the security of a
DBMS is only as good as that of the operating system, owing to their close asso-
ciation. Representation of a typical multi-user computer environment is shown
in Figure 5.2. In this section, we focus on the following computer-based secu-
rity controls for a multi-user environment (some of which may not be available
in the PC environment):

authorization;
views;

backup and recovery;

Database administration and security ll 105

integrity;
encryption;

Redundant Array of Independent Disks (RAID). RAID discussed

in Chapter 16

Authorization

Authorization

The granting of a right or privilege that enables a subject to have legitimate access to a
database system or a database system’s object.

Authorization controls can be built into the software, and govern not only
what database system or object a specified user can access, but also what the
user may do with it. For this reason, authorization controls are sometimes

referred to as access controls. The process of authorization involves authentica- Access controls
tion of a subject requesting access to an object, where ‘subject’ represents a user discussed in Step 6
or program and ‘object’ represents a database table, view, procedure, trigger, or of Chapter 14

any other object that can be created within the database system.

.................. o Figure 5.2

Representation of a
typical multi-user
computer
environment.

Insecure external
network
(e.g., Internet)

Encryption [<—

Remote client ¢

A

DBMS server

Authorization
and
access control

' Secure '
\ . ’
. internal

AN network — 7
.. (intranet) E L

106 M Background

Privileges discussed
in Step 6 of
Chapter 14

Authentication

A mechanism that determines whether a user is who he or she claims to be.

A system administrator is usually responsible for permitting users to have access
to a computer system by creating individual user accounts. Each user is given a
unique identifier, which is used by the operating system to determine who they
are. Associated with each identifier is a password, chosen by the user and
known to the operating system, which must be supplied to enable the operat-
ing system to authenticate (or verify) who the user claims to be.

This procedure allows authorized use of a computer system, but does not
necessarily authorize access to the DBMS or any associated application pro-
grams. A separate, similar procedure may have to be undertaken to give a user
the right to use the DBMS. The responsibility to authorize use of the DBMS usu-
ally rests with the DBA, who must also set up individual user accounts and
passwords using the DBMS.

Some DBMSs maintain a list of valid user identifiers and associated pass-
words, which can be distinct from the operating system'’s list. However, other
DBMSs maintain a list whose entries are validated against the operating
system’s list based on the current user’s login identifier. This prevents a user
from logging onto the DBMS with one name, having already logged onto the
operating system using a different name.

Privileges

Once a user is given permission to use a DBMS, various other privileges may
also be automatically associated with it. For example, privileges may include
the right to access or create certain database objects such as tables, views, and
indexes, or to run various DBMS utilities. Privileges are granted to users to
accomplish the tasks required for their jobs. As excessive granting of unneces-
sary privileges can compromise security, a privilege should only be granted to a
user who absolutely requires the privilege to accomplish his or her work.

Some DBMSs operate as closed systems so that while users may be authorized
to access the DBMS, they require authorization to access specific objects. Either
the DBA or owners of particular objects provide this authorization. On the
other hand, an open system allows users to have complete access to all objects
within the database. In this case, privileges have to be explicitly removed from
users to control access.

Ownership and privileges

Some objects in the DBMS are owned by the DBMS itself, usually in the form of
a specific superuser, such as the DBA. Accordingly, ownership of objects gives

Database administration and security ll 107

the owner all appropriate privileges on the objects owned. The same situation
applies to other authorized users if they own objects. The creator of an object
owns the object and can assign appropriate privileges for the object. For exam-
ple, although a user owns a view, he or she may only be authorized to query the
view. This may happen when the user is only authorized to query the underly-
ing base table. These privileges can be passed on to other authorized users. For
example, an owner of several tables may authorize other users to query the
tables, but not to carry out any updates.

Where a DBMS supports several different types of authorization identifier,
there may be different priorities associated with each type. For example, a
DBMS may permit both individual user identifiers and group identifiers to be
created, with the user identifier having a higher priority than the group identi-
fier. For such a DBMS, user and group identifiers may be defined as shown in
Tables 5.5(a) and (b).

Table 5.5(a) User identifiers. Table 5.5(b) Group identifiers.
User Identifier Type Group Member ldentifier
S0099 User Sales S0099
S2345 User Sales $2345
S$1500 User
Sales Group

In Table 5.5(a) the columns with headings User Identifier and Type list each
user on the system together with the user type, which distinguishes individuals
from groups. In Table 5.5(b) the columns with headings Group and Member
Identifier list each group and the user members of that group. Certain privileges
may be associated with specific identifiers, which indicate what kind of privi-
lege (such as Select, Update, Insert, Delete, or All) is allowed with certain
database objects.

On some DBMSs, a user has to tell the system under which identifier he or
she is operating, especially if the user is a member of more than one group. It is
essential to become familiar with the available authorization and other control
mechanisms provided by the DBMS, particularly where priorities may be
applied to different authorization identifiers and where privileges can be passed
on. This will enable the correct types of privileges to be granted to users based
on their requirements and those of the application programs that many of
them will use.

108 M Background

Views discussed
in Section 1.2.4

Views

View

A virtual table that does not necessarily exist in the database but can be produced upon
request by a particular user, at the time of request.

The view mechanism provides a powerful and flexible security mechanism by
hiding parts of the database from certain users. The user is not aware of the
existence of any columns or rows that are missing from the view. A view can be
defined over several tables with a user being granted the appropriate privilege
to use it, but not to use the base tables. In this way, using a view is more restric-
tive than simply having certain privileges granted to a user on the base table(s).

Backup and recovery

Backup

The process of periodically taking a copy of the database and log file (and possibly pro-
grams) onto offline storage media.

A DBMS should provide backup facilities to assist with the recovery of a data-
base following failure. To keep track of database transactions, the DBMS
maintains a special file called a log file (or journal) that contains information
about all updates to the database. It is always advisable to make backup copies
of the database and log file at regular intervals and to ensure that the copies are
in a secure location. In the event of a failure that renders the database unusable,
the backup copy and the details captured in the log file are used to restore the
database to the latest possible consistent state.

Journaling

The process of keeping and maintaining a log file (or journal) of all changes made to
the database to enable recovery to be undertaken effectively in the event of a failure.

A DBMS should provide logging facilities, sometimes referred to as journal-
ing, which keep track of the current state of transactions and database changes,
to provide support for recovery procedures. The advantage of journaling is that,
in the event of a failure, the database can be recovered to its last known consis-
tent state using a backup copy of the database and the information contained
in the log file. If no journaling is enabled on a failed system, the only means of
recovery is to restore the database using the latest backup version of the data-
base. However, without a log file, any changes made after the last backup to the
database will be lost.

Database administration and security ll 109

Integrity

Integrity constraints also contribute to maintaining a secure database system by
preventing data from becoming invalid, and hence giving misleading or incor-
rect results. Integrity constraints were introduced in Section 1.3 and will be
discussed in detail in Step 2.4 of Chapter 10.

Encryption

Encryption

The encoding of the data by a special algorithm that renders the data unreadable by
any program without the decryption key.

If a database system holds particularly sensitive data, it may be deemed necessary
to encode it as a precaution against possible external threats or attempts to access
it. Some DBMSs provide an encryption facility for this purpose. The DBMS can
access the data (after decoding it), although there is degradation in performance
because of the time taken to decode it. Encryption also protects data transmitted
over communication lines. There are a number of techniques for encoding data
to conceal the information; some are termed irreversible and others reversible.
Irreversible techniques, as the name implies, do not permit the original data to be
known. However, the data can be used to obtain valid statistical information.
Reversible techniques are more commonly used. To transmit data securely over
insecure networks requires the use of a cryptosystem, which includes:

an encryption key to encrypt the data (plaintext);

an encryption algorithm that, with the encryption key, transforms the plain-
text into ciphertext;

a decryption key to decrypt the ciphertext;

a decryption algorithm that, with the decryption key, transforms the cipher-
text back into plaintext.

One technique, called symmetric encryption, uses the same key for both encryp-
tion and decryption and relies on safe communication lines for exchanging the
key. However, most users do not have access to a secure communication line
and, to be really secure, the keys need to be as long as the message. However,
most working systems are based on using keys shorter than the message. One
scheme used for encryption is the Data Encryption Standard (DES), which is a
standard encryption algorithm developed by IBM. This scheme uses one key for
both encryption and decryption, which must be kept secret, although the algo-
rithm need not be. The algorithm transforms each 64-bit block of plaintext
using a 56-bit key. The DES is not universally regarded as being very secure, and
some authors maintain that a larger key is required. For example, a scheme

110 M Background

RAID discussed
in Chapter 16

called PGP (Pretty Good Privacy) uses a 128-bit symmetric algorithm for
encryption of the data it sends.

Keys with 64 bits are now probably breakable with special hardware, albeit at
substantial costs. However, this technology will be within the reach of orga-
nized criminals, major organizations, and smaller governments in a few years.
While it is envisaged that keys with 80 bits will also become breakable in the
future, it is probable that keys with 128 bits will remain unbreakable for the
foreseeable future. The terms ‘strong authentication’ and ‘weak authentication’
are sometimes used to distinguish algorithms that, to all intents and purposes,
cannot be broken with existing technologies and knowledge, from those that
can be.

Another type of cryptosystem uses different keys for encryption and decryp-
tion, and is referred to as asymmetric encryption. One example is public key
cryptosystems, which use two keys, one of which is public and the other private.
The encryption algorithm may also be public, so that anyone wishing to send a
user a message can use the user’s publicly known key in conjunction with the
algorithm to encrypt it. Only the owner of the private key can then decipher
the message. Public key cryptosystems can also be used to send a ‘digital signa-
ture’ with a message and prove that the message came from the person who
claimed to have sent it. The most well-known asymmetric encryption is RSA
(the name is derived from the initials of the three designers of the algorithm).

Generally, symmetric algorithms are much faster to execute on a computer
than those that are asymmetric. However, in practice, they are often used
together, so that a public key algorithm is used to encrypt a randomly gener-
ated encryption key, and the random key is used to encrypt the actual message
using a symmetric algorithm.

Redundant Array of Independent Disks (RAID)

The hardware that the DBMS is running on must be fault-tolerant, meaning that
the DBMS should continue to operate even if one of the hardware components
fails. This suggests having redundant components that can be seamlessly inte-
grated into the working system whenever there is one or more component
failures. The main hardware components that should be fault-tolerant include
disk drives, disk controllers, CPU, power supplies, and cooling fans. Disk drives
are the most vulnerable components, with the shortest times between failures
of any of the hardware components.

One solution is the use of Redundant Array of Independent Disks (RAID)
technology. RAID works by having a large disk array comprising an arrange-
ment of several independent disks that are organized to improve reliability and
at the same time increase performance.

Database administration and security l 111

J Data administration is the management and control of the corporate
data, including database planning, development and maintenance of
standards, policies, and procedures, and logical database design.

J Database administration is the management and control of the physical
realization of the corporate database system, including physical data-
base design and implementation, setting security and integrity controls,
monitoring system performance, and reorganizing the corporate data-
base as necessary.

Database security is concerned with the mechanisms that protect the
database against intentional or accidental threats.

A threat is any situation or event, whether intentional or unintentional,
that may adversely affect a system and consequently an organization.

Computer-based security controls for the multi-user environment
include: authorization, views, backup and recovery, integrity, encryption,
and RAID.

Authorization is the granting of a right or privilege that enables a sub-
ject to have legitimate access to a system or a system's object.

Authentication is a mechanism that determines whether a user is who
he or she claims to be.

A view is a virtual table that does not necessarily exist in the database
but can be produced upon request by a particular user, at the time of
request.

Backup is the process of periodically taking a copy of the database and
log file (and possibly programs) onto offline storage media.

Journaling is the process of keeping and maintaining a log file (or jour-
nal) of all changes made to the database to enable recovery to be
undertaken effectively in the event of a failure.

Integrity constraints also contribute to maintaining a secure database
system by preventing data from becoming invalid, and hence giving mis-
leading or incorrect results.

N T N e N T N S N

Encryption is the encoding of the data by a special algorithm that ren-
ders the data unreadable by any program without the decryption key.

112 M Background

v

Redundant Array of Independent Disks (RAID) works by having a large
disk array comprising an arrangement of several independent disks that
are organized to improve reliability and at the same time increase
performance.

5.1

5.2
5.3
5.4

5.5

Define the purpose and tasks associated with data administration and
database administration.

Compare and contrast the main tasks carried out by the DA and DBA.
Explain the purpose and scope of database security.

List the main types of threat that could affect a database system, and for
each, describe the possible outcomes for an organization.

Explain the following in terms of providing security for a database:

(a) authorization;

(b) views;

(c) backup and recovery;
(d) integrity;

(e) encryption;

(f) RAID.

Database analysis and
design techniques

6 Fact-finding 115
7 Entity-Relationship modeling 146

8 Normalization 171

Fact-finding

In this chapter you will learn:

When fact-finding techniques are used in the database system
development lifecycle.

The types of facts collected throughout the database system
development lifecycle.

The types of documentation produced throughout the database system
development lifecycle.

The most commonly used fact-finding techniques.

How to use each fact-finding technique and the advantages and
disadvantages of each.

About a video rental company called StayHome.

How to use fact-finding techniques in the early stages of the database
system development lifecycle.

\

\

\

\

In Chapter 4, we learned about the stages of the database system development
lifecycle. There are many occasions during these stages when it’s critical that
the database developer captures the necessary facts to build the required data-
base system. The necessary facts cover the business and the users of the
database system, including the terminology, problems, opportunities, con-
straints, requirements, and priorities. These facts are captured using
fact-finding techniques.

Fact-finding

The formal process of using techniques such as interviews and questionnaires to
collect facts about systems, requirements, and preferences.

116 M Database analysis and design techniques

In this chapter, we discuss when a database developer might use fact-finding
techniques and what types of facts should be captured. We present an overview of
how these facts are used to generate the main types of documentation used
throughout the database system development lifecycle. We briefly describe the
most commonly used fact-finding techniques and identify the advantages and dis-
advantages of each. We finally demonstrate how some of these techniques may be
used during the earlier stages of the database system development lifecycle using a
video rental company called StayHome. In Chapters 9 and 10, and 12 to 16, we'll
use the StayHome case study to demonstrate the methodology for database design.

Throughout this chapter we use the term ‘database developer’ to refer to a
person or group of people responsible for the analysis, design, and implementa-
tion of a database system.

6.1 When are fact-finding techniques used?

There are many occasions for fact-finding during the database system develop-
ment lifecycle. However, fact-finding is particularly crucial to the early stages of
the lifecycle, including the database planning, system definition, and require-
ments collection and analysis stages. It’s during these early stages that the
database developer learns about the terminology, problems, opportunities, con-
straints, requirements, and priorities of the business and the users of the system.
Fact-finding is also used during database design and the later stages of the lifecy-
cle, but to a lesser extent. For example, during physical database design,
fact-finding becomes technical as the developer attempts to learn more about the
DBMS selected for the database system. Also, during the final stage, operational
maintenance, fact-finding is used to determine whether a system requires tuning
to improve performance or further development to include new requirements.

It’s important to have a rough estimate of how much time and effort
is to be spent on fact-finding for a database project. Too much study too soon
leads to paralysis by analysis. However, too little thought can result in an
unnecessary waste of both time and money due to working on the wrong solu-
tion to the wrong problem.

6.2 What facts are collected?

Throughout the database system development lifecycle, the database developer
needs to capture facts about the current or future system. Table 6.1 provides
examples of the sorts of data captured and the documentation produced for
each stage of the lifecycle. As we mentioned in Chapter 4, the stages of the

database system development lifecycle are not strictly sequential, but involve
some amount of repetition of previous stages through feedback loops. This is
also true for the data captured and the documentation produced at each stage.
For example, problems encountered during database design may necessitate
additional data capture on the requirements for the new system.

Table 6.1 Examples of the data captured and the documentation produced for each stage of
the database system development lifecycle.

Stage of database
system development
lifecycle

Examples of data
captured

Examples of
documentation

produced

Database planning

System definition

Requirements collection
and analysis

Database design

Application design

DBMS selection

Prototyping

Implementation

Data conversion
and loading

Testing

Operational
maintenance

Aims and objectives of database
project

Description of major user views
(includes job roles and/or
business application areas)

Requirements for user views;
systems specifications, including
performance and security
requirements

Users’ responses to checking the
logical database design;
functionality provided by target
DBMS

Users’ responses to checking
interface design

Functionality provided by target
DBMS

Users’ responses to prototype

Functionality provided by target
DBMS

Format of current data; data import
capabilities of target DBMS

Test results

Performance testing results; new or
changing user and system
requirements

Mission statement and objectives
of database system

Definition of scope and boundary
of database system; definition of
user views to be supported

Users’ requirements specifications
and system specifications

Logical database design (includes ER
diagram(s), data dictionary, and
tables); physical database design

Application design (includes
description of programs and user
interface)

DBMS evaluation and
recommendations

Modified users’ requirements
specifications and systems
specification

Testing strategies used; analysis of
test results

User manual; analysis of
performance results; modified users’
requirements and systems
specification

Fact-finding l 117

118 M Database analysis and design techniques

In Section 6.4, we'll return to examine the first three stages of the database
system development lifecycle, namely database planning, system definition, and
requirements collection and analysis. For each stage, we demonstrate the process
of collecting data using fact-finding techniques and the production of documen-
tation for the StayHome video rental company. However, before this section, we
first present a review of the most commonly used fact-finding techniques.

6.3 Fact-finding techniques

A database developer normally uses several fact-finding techniques during a
single database project. There are five common fact-finding techniques:

Examining documentation
Interviewing

Observing the business in operation
Research

Questionnaires.

6.3.1 Examining documentation

Examining documentation can be useful when you're trying to gain some
insight as to how the need for a database arose. You also may find that docu-
mentation can be helpful to provide information on the business (or part of the
business) associated with the problem. If the problem relates to the current
system there should be documentation associated with that system. Examining
documents, forms, reports, and files associated with the current system is a
good way to gain some understanding of the system quickly. Examples of the
types of documentation that you should examine are listed in Table 6.2.

6.3.2 Interviewing

Interviewing is the most commonly used, and normally most useful, fact-find-
ing technique. You can interview to collect information from individuals
face-to-face. There can be several objectives to using interviewing such as find-
ing out facts, checking facts, generating user interest and feelings of
involvement, identifying requirements, and gathering ideas and opinions.
However, using the interviewing technique requires good communication skills
for dealing effectively with people who have different values, priorities, opin-
ions, motivations, and personalities. As with other fact-finding techniques,
interviewing isn't always the best method for all situations. The advantages and
disadvantages of using interviewing as a fact-finding technique are listed in
Table 6.3.

Table 6.2 Examples of types of documentation that should be examined.

Purpose of documentation

Examples of useful sources

Describes problem and need
for database

Describes business
(or part of business) affected

by problem

Describes current system

Internal memos, e-mails, and minutes of meetings
Employee/customer complaints, and documents
that describe the problem

Performance reviews/reports

Organizational chart, mission statement, and
strategic plan of the business

Objectives for the business being studied
Task/job descriptions

Samples of manual forms and reports
Samples of computerized forms and reports

Completed forms/reports

Various types of flowcharts and diagrams
Data dictionary

Database system design

Program documentation

User/training manuals

Table 6.3 Advantages and disadvantages of using interviewing as a fact-finding

technique.

Advantages

Disadvantages

Allows interviewer to follow up on

Very time-consuming and costly, and

interesting comments made by interviewee therefore may be impractical

Allows interviewer to adapt or re-word Success is dependent on

questions during interview

communication skills of interviewer

Allows interviewer to observe interviewee’s

body language

Allows interviewee to respond freely and

openly to questions

Allows interviewee to feel part of project

There are two types of interviews, unstructured and structured. Unstructured
interviews are conducted with only a general objective in mind and with few, if
any, specific questions. The interviewer counts on the interviewee to provide a
framework and direction to the interview. This type of interview frequently

Fact-finding M 119

120 M Database analysis and design techniques

loses focus and, for this reason, you may find that it doesn't usually work well
for database projects.

In structured interviews, the interviewer has a specific set of questions to ask
the interviewee. Depending on the interviewee's responses, the interviewer will
direct additional questions to obtain clarification or expansion. Open-ended
questions allow the interviewee to respond in any way that seems appropriate.
An example of an open-ended question is: ‘Why are you dissatisfied with the
report on member registration?’ Closed-ended questions restrict answers to either
specific choices or short, direct responses. An example of such a question might
be: ‘Are you receiving the report on member registration on time?’ or ‘Does the
report on member registration contain accurate information?’ Both questions
require only a ‘Yes’ or ‘No’ response.

TIP

To ensure a successful interview you should select appropriate individ- K
uals to interview, prepare extensively for the interview, and conduct the
interview in an efficient and effective manner.

6.3.3 Observing the business in operation

Observation is one of the most effective fact-finding techniques you can use to
understand a system. With this technique, you can either participate in, or
watch a person perform, activities to learn about the system. This technique is
particularly useful when the validity of data collected through other methods is
in question or when the complexity of certain aspects of the system prevents a
clear explanation by the end-users.

As with the other fact-finding techniques, successful observation requires
much preparation. To ensure that the observation is successful, you need to
know as much about the individuals and the activity to be observed as possible.
For example, when are the low, normal, and peak periods for the activity being
observed and will the individuals be upset by having someone watch and
record their actions? The advantages and disadvantages of using observation as
a fact-finding technique are listed in Table 6.4.

6.3.4 Research

A useful fact-finding technique is to research the application and problem.
Computer trade journals, reference books, and the Internet are good sources of
information. They can provide you with information on how others have
solved similar problems, plus you can learn whether or not software packages
exist to solve your problem. The advantages and disadvantages of using
research as a fact-finding technique are listed in Table 6.5.

Table 6.4 Advantages and disadvantages of using observation as a fact-finding

technique.

Advantages

Disadvantages

Allows the validity of facts and data to
be checked

Observer can see exactly what is being done

Observer can also obtain data describing

the physical environment of the task

Relatively inexpensive

Observer can do work measurements

People may knowingly or unknowingly

perform differently when being observed

May miss observing tasks involving
different levels of difficulty or volume
normally experienced during that time

period

Some tasks may not always be performed
in the manner in which they are

observed

May be impractical

Table 6.5 Advantages and disadvantages of using research as a fact-finding

technique.

Advantages

Disadvantages

Can save time if solution already exists

Researcher can see how others have
solved similar problems or met similar

requirements

Keeps researcher up to date with
current developments

Can be time-consuming

Requires access to appropriate sources of
information

May ultimately not help in solving
problem because problem is not

documented elsewhere

6.3.5 Questionnaires

Another fact-finding technique is to conduct surveys through questionnaires.
Questionnaires are special-purpose documents that allow you to gather facts
from a large number of people while maintaining some control over their
responses. When dealing with a large audience, no other fact-finding technique
can tabulate the same facts as efficiently. The advantages and disadvantages of

using questionnaires as a fact-finding technique are listed in Table 6.6.

Fact-finding l 121

122 M Database analysis and design techniques

Table 6.6 Advantages and disadvantages of using questionnaires as a fact-

finding technique.

Advantages

Disadvantages

People can complete and return

questionnaires at their convenience

Relatively inexpensive way to gather

data from a large number of people

People more likely to provide the real facts

as responses can be kept confidential

Responses can be tabulated and

analyzed quickly

Can be delivered using various modes,

including person-to-person, postal

Number of respondents can be low,
possibly only 5-10 percent (particularly
if the postal service or e-mail is used to
deliver the questionnaires)
Questionnaires may be returned

incomplete

No opportunity to adapt or re-word
questions that may have been

misinterpreted

Can’t observe and analyze the

respondent’s body language

Can be time-consuming to prepare

questionnaire

service, and e-mail

There are two formats for questionnaires, free-format and fixed-format. Free-
format questionnaires offer the respondent greater freedom in providing answers.
A question is asked and the respondent records the answer in the space pro-
vided after the question. Examples of free-format questions are: ‘What reports
do you currently receive and how are they used?’ and ‘Are there any problems
with these reports? If so, please explain.” The problems with free-format ques-
tions are that the respondent’s answers may prove difficult to tabulate and, in
some cases, may not match the questions asked.

Fixed-format questionnaires contain questions that require specific responses
from individuals. Given any question, the respondent must choose from the
available answers. This makes the results much easier to tabulate. On the other
hand, the respondent cannot provide additional information that might prove
valuable. An example of a fixed-format question is: ‘The current format of the
report on video rentals is ideal and should not be changed.” The respondent
may be given the option to answer ‘Yes’ or ‘No’ to this question, or be given the
option to answer from a range of responses, including ‘Strongly Agree’, ‘Agree’,
‘No opinion’, ‘Disagree’, and ‘Strongly Disagree’.

6.4 The StayHome case study

In this section, we first describe the StayHome case study. We then use the StayHome
case study to illustrate how you would establish a database project in the early
stages of the database system development lifecycle by going through database
planning, system definition, and requirements collection and analysis stages.

6.4.1 The StayHome case study — an overview

This case study describes a company called StayHome, which rents out videos to
its members. The first branch of StayHome was established in 1982 in Seattle but
the company has now grown and has many branches throughout the United
States. The company’s success is due to the first-class service it provides to its
members and the wide and varied stock of videos available for rent.

StayHome currently has about 2000 staff working in 100 branches. When a
member of staff joins the company, the StayHome staft registration form is used.
The staff registration form for Mary Martinez is shown in Figure 6.1.

Each branch has a Manager and several Supervisors. The Manager is respons-
ible for the day-to-day running of a given branch and each Supervisor is
responsible for supervising a group of staff. An example of the first page of a
report listing the members of staff working at the branch in Seattle is shown in
Figure 6.2.

StayHome
Staff Registration Form

Staff Number S0010 Branch Number B0O02
Full Name Branch Address
Mary Martinez City Center Plaza,
Position Seattle, WA 98122
Manager
Salary Telephone Number(s)
50000 205-555-6756/206-555-8836

Fact-finding l 123

Figure 6.1

The StayHome staff
registration form
for Mary Martinez.

124 M Database analysis and design techniques

Figure 6.2

Example of the first
page of a report
listing the members
of staff working at a
StayHome branch in
Seattle.

StayHome
Staff Listing
Branch Number B002 Branch Address
TR City Center Plaza, Seattle,
206-555-6756/206-555-8836 WA 98122
Staff Number Name Position
S0010 Mary Martinez Manager
$3250 Robert Chin Supervisor
S$3190 Anne Hocine Supervisor
55889 Annet Longhorn Assistant
S5980 Chris Lawrence Assistant
S6112 Sofie Walters Assistant

Page 1

Each branch of StayHome has a stock of videos for hire. Each video is
uniquely identified using a catalog number. However, in most cases, there are
several copies of each video at a branch, and the individual copies are identified
using the video number. An example of the first page of a report listing the
videos available at the branch in Seattle is shown in Figure 6.3.

Before renting a video, a customer must first join as a member of StayHome.
When a customer joins, he or she is requested to complete the StayHome
member registration form. The member registration form for Don Nelson is
shown in Figure 6.4. StayHome currently has about 100000 members. A cus-
tomer may choose to register at more than one branch; however, a new
member registration form must be filled out on each occasion. An example of
the first page of a Manager’s report listing the members registered at the branch
in Seattle is shown in Figure 6.5.

Once registered, a member is free to rent videos, up to a maximum of 10 at
any one time. When a member chooses to rent one or more videos, the
StayHome video rental form is completed. An example of a completed form for
Claire Sinclair renting Harry Potter and Shrek is shown in Figure 6.6.

StayHome
Videos for Rent Listing

Fact-finding M 125

Figure 6.3

Branch Number B002 Branch Address
et o N) City Center Plaza, Seattle,
206-555-6756/206-555-8836 WA 98122
Catalog Video Video Title Category Daily
Number Number Rental
207132 199004 Die Another Day Action 5.00
207132 245456 Die Another Day Action 5.00
634817 178643 Independence Day Sci-Fi 4.50
634817 243431 Independence Day Sci-Fi 4.50
989001 456778 Spider-man Sci-Fi 5.00
989001 456880 Spider-man Sci-Fi 5.00
989001 456887 Spider-man Sci-Fi 5.00
Page 1

StayHome
Member Registration Form

Member Number M284354 Branch Number B0O02
(Enter if known)
Full Name Branch Address

Don Nelson City Center Plaza,
Member Address Seattle, WA 98122

123 Suffolk Lane, Registered By

Seattle, WA 98117 Robert Chin

Date Registered 09-Oct-01

Example of the first
page of a report
listing the videos
available at the
StayHome branch in
Seattle.

Figure 6.4

The StayHome
member
registration form
for Don Nelson.

126 M Database analysis and design techniques

Figure 6.5

Example of the first
page of a report
listing the members
registered at the
StayHome branch in
Seattle.

StayHome
Members Listing

Branch Number B002 Branch Address
City Center P1
Telephone Number(s) L enGr S
206-555-6756/206-555-8836 Seattle, WA 98122
Member Name Address Date
Number Joined
M129906 Karen Homer 634-12th Avenue, Seattle, 10-Jan-97
WA 98123
M189976 John Hood 4/4 Rosie Lane, Seattle 21-May-98
M220045 Jamie Peters 5A-22nd Street, Seattle, 20-May-99
WA 98451
M228877 Claire Sinclair 44B-16th Street, Seattle, 28-Aug-99
WA 98123
M265432 Janet McDonald 1 Lincoln Way, Seattle, 19-Aug-00
WA 98234
M284354 Don Nelson 123 Suffolk Lane, Seattle, 09-Oct-01
WA 98117
M284666 William Carring 1 Sparrowhill Way, Seattle, 10-Oct-02
WA 98111

Page 1

As StayHome has grown, so have the difficulties in managing the increasing
amount of data used and generated by the company. To ensure the continued suc-
cess of the company, the Director of StayHome has urgently requested that a
database system be built to help solve the increasing problems of data management.

6.4.2 The StayHome case study - database planning

The first step in developing a database system is to define clearly the mission
statement for the database project. The mission statement defines the major
aims of the database system. Those driving the database project within the busi-
ness (such as the Director and/or owner) normally define the mission

StayHome
Video Rental

Member Number M228877 Branch Number B002
Member Name Branch Address
Claire Sinclair City Center Plaza,

Seattle, WA 98122

Video Video Title Daily Date Date Total
Number Rental Out In Rental
565611 Harry Potter 4.50 12-Dec-03 14-Dec-03 4.50
476667 Shrek 4.00 13-Dec-03

statement. A mission statement helps to clarify the purpose of the database pro-
ject and provides a clearer path towards the efficient and effective creation of
the required database system.

Once the mission statement is defined, the next activity involves identifying
the mission objectives. Each mission objective should identify a particular task
that the database must support. The assumption is that if the database supports
the mission objectives then the mission statement should be met. The mission
statement and objectives may be accompanied by additional information that
specifies, in general terms, the work to be done, the resources with which to do
it, and the money to pay for it all.

Creating the mission statement for the StayHome database system

You should begin the process of creating a mission statement for the StayHome
database system by conducting interviews with the Director of the company
and any other appropriate staff, as indicated by the Director. Open-ended ques-
tions are normally the most useful at this stage of the process. For example, you
(the database developer) may start the interview by asking the Director of
StayHome the following questions:

Fact-finding M 127

Figure 6.6

Example of a
StayHome video
rental form for
Claire Sinclair.

128 M Database analysis and design techniques

Database developer ‘What is the purpose of your company?’

Director “We provide a wide range of videos for rent to members registered at
our branches throughout the US.

Database developer ‘“Why do you feel that you need a database?’

Director ‘To be honest we can’t cope with our own success. Over the past few
years, we've opened several new branches, and at each branch we now offer
a larger selection of videos to a growing number of members. However, this
success has been accompanied by increasing data management problems,
which means that the level of service we provide is falling. Also, there’s a
lack of cooperation and sharing of information between branches, which is a
very worrying development.’

Database developer ‘How do you know that a database will solve your problems?’

Director ‘All I know is that we are drowning in paperwork. We need something
that will speed up the way we work, that is, something to automate a lot of
the day-to-day tasks that seem to take forever these days. Also, I want the
branches to start working together. Databases do this, don’t they?’

Responses to these types of questions should help you formulate the mission
statement. For example, the mission statement for the StayHome database is
shown in Figure 6.7. When you feel that you have a clear and unambiguous
mission statement that the staff of StayHome agree with, you can move on to
define the mission objectives.

Creating the mission objectives for the StayHome database system

The process of creating mission objectives involves conducting interviews with
appropriate members of staff. Again, open-ended questions are normally the
most useful at this stage of the process. To obtain the complete range of mission
objectives, you should interview various members of staff with different roles in
StayHome. Examples of typical questions you might ask are as follows:

‘What is your job description?’

‘What kinds of tasks do you perform in a typical day?’

‘What kinds of data do you work with?’

‘What types of reports do you use?’

‘What types of things do you need to keep track of?’

‘What service does your company provide to your members?’

These questions (or similar) are put to the Director and members of staff in
the role of Manager, Supervisor, Assistant, and Buyer of StayHome. Of course, it
may be necessary to adapt the questions as required depending on whom you
are interviewing.

‘The purpose of the StayHome database system is to collect, store, manage,

and control access to the data that supports the video rentals business for

our members, and to facilitate the cooperation and sharing of information
between branches.’

Director

Database developer “What role do you play for the company?’

Director ‘1 oversee the running of the company to ensure that we continue to
provide the best possible video rental service to our members.’

Database developer ‘“What kinds of tasks do you perform in a typical day?’

Director ‘I monitor the running of each branch by our Managers. I try to ensure
that the branches work well together and share important information about
videos and members. I oversee the work carried out by the Buyer for our
company; that’s the person responsible for buying videos for all our
branches. I normally try to keep a high profile with our branch Managers by
calling into each branch once or twice a month.’

Database developer “What kinds of data do you work with?’

Director ‘I need to be able to get my hands on everything used or generated by
our company. That includes data about staff, videos, rentals, members, video
suppliers, and video orders. I mean everything!’

Database developer ‘“What types of reports do you use?’

Director ‘I need to know what’s going on at all the branches. I get my informa-
tion from various reports on staff, videos in stock, video rentals, members,
video suppliers, and orders.’

Database developer ‘“What types of things do you need to keep track of?’

Director ‘As I said before, I need to track everything, I need to see the whole pic-
ture, OK?’

Database developer “What service does your company provide to your members?’

Director “We try to provide the best and most competitively priced video rental
service in the US.’

Manager

Database developer ‘“What is your job description?’

Manager ‘My job title is Manager. I oversee the day-to-day running of my
branch to provide the best service to our members.’

Fact-finding l 129

Figure 6.7

Mission statement
for the StayHome
database system.

130 M Database analysis and design techniques

Database developer ‘“What kinds of tasks do you perform in a typical day?’

Manager ‘I ensure that the branch has the appropriate type and number of staff
on duty at any time of the day. I monitor the hiring of videos to ensure that
we have an appropriate selection of videos for our membership, although I
don’t actually do the buying of videos myself — that’s done by the company
Buyer. I monitor the registering of new members and the hiring activity of
our current members.’

Database developer “What kinds of data do you work with?’

Manager ‘I need data about staff, videos, rentals, and members.’

Database developer ‘“What types of reports do you use?’

Manager ‘Various reports on staff, videos in stock, video rentals, and members.’

Database developer “What types of things do you need to keep track of?’

Manager ‘Staff, videos in stock, video rentals, and members.’

Database developer ‘“What service does your company provide to your members?’

Manager ‘“We try to provide the best video rentals service in the area.’

Supervisor

Database developer ‘What is your job description?’

Supervisor ‘My job title is Supervisor. I supervise a small group of staff and deal
directly with our members in providing a video rental service.’

Database developer ‘“What kinds of tasks do you perform in a typical day?’

Supervisor ‘I allocate staff to particular duties, such as dealing with members,
restocking shelves, and the filing of paperwork. I answer queries from mem-
bers about videos for rent. I process the renting out and return of videos. I
keep members’ details up to date and register customers when they want to
join the company as one of our members.’

Database developer “What kinds of data do you work with?’

Supervisor ‘1 work with data about staff, videos, rentals, and members.’

Database developer ‘“What types of reports do you use?’

Supervisor ‘Reports on staff and videos in stock.’

Database developer “What types of things do you need to keep track of?’

Supervisor ‘Whether certain videos are available for hire and whether the details
on our members are up to date.’

Assistant

Database developer ‘What is your job description?’

Assistant My job title is Assistant. I deal directly with our members in providing
a video rental service.’

Database developer ‘“What kinds of tasks do you perform in a typical day?’

Assistant ‘1 answer queries from members about videos for rent. You know what
I mean: “Do you have such and such a video?” I process the renting out and
return of videos. I restock the shelves with returned videos and when we are
not too busy I try to file paperwork.’

Database developer ‘“What kinds of data do you work with?’

Assistant ‘Data about videos, rentals, and members.’

Database developer “What types of reports do you use?’

Assistant ‘None.’

Database developer ‘“What types of things do you need to keep track of?’

Assistant “Whether certain videos are available for hire.’

Database developer “What service does your company provide to your members?’

Assistant ‘We try to answer questions about videos in stock such as: “Do you
have videos starring Ewan MacGregor?” and “Who starred in or directed
2001 A Space Odyssey?” You wouldn’t believe what our members expect us to
know, but luckily most of us work here because we're really into films, so if I
don’t know the answer, one of the others will.’

Buyer

Database developer ‘“What is your job description?’

Buyer ‘My job title is Buyer. I'm responsible for buying videos for rent for all
branches of the company.’

Database developer “What kinds of tasks do you perform in a typical day?’

Buyer ‘1 work directly with branch Managers and video suppliers. I respond to
requests from Managers to supply them with certain videos. It’s my job to
ensure that I get the best possible deal for the company when dealing with
video suppliers. Of course, I depend on Managers doing their homework — I
don’t want to order videos that a branch doesn’t need or find that a branch
doesn’t stock sufficient copies of a popular video. When I have time, I do my
own checking by monitoring the renting of videos at each branch to check
that they have an appropriate selection of videos.’

Database developer “What kinds of data do you work with?’

Buyer ‘I need access to data on branches, videos, video rentals, members, video
orders, and suppliers.’

Fact-finding l 131

132 M Database analysis and design techniques

Figure 6.8

Mission objectives
for the StayHome
database system.

Database developer ‘“What types of reports do you use?’

Buyer ‘I need reports on orders I have placed for videos. I need various reports
that show me videos in stock, video rentals, and members at each branch
and across all branches.’

Database developer ‘“What types of things do you need to keep track of?’

Buyer ‘I need to have up-to-date information about my orders for videos; it’s
important to deal only with suppliers who won't let us down. I also need to
know what’s going on at each branch in terms of their stock of videos and
video rentals. As I said before, I don’t want to order videos that a branch
doesn’t need.’

Database developer “What service does your company provide to your members?’
Buyer “We try to provide the best selection of videos at the cheapest possible

rental rate.’

Responses to these types of questions should help you formulate the mission
objectives. For example, the mission objectives for the StayHome database are
shown in Figure 6.8.

To maintain (enter, update, and delete) data on branches.

To maintain (enter, update, and delete) data on staff.

To maintain (enter, update, and delete) data on videos.

To maintain (enter, update, and delete) data on members.

To maintain (enter, update, and delete) data on video rentals.
To maintain (enter, update, and delete) data on video suppliers.
To maintain (enter, update, and delete) data on orders to suppliers for videos.
To perform searches on branches.

To perform searches on videos.

To perform searches on staff.

To perform searches on video rentals.

To perform searches on members.

To perform searches on video suppliers.

To perform searches on video orders.

To track the status of videos in stock.

To track the status of video rentals.

To track the status of video orders.

To report on branches.

To report on staff.

To report on videos.

To report on members.

To report on video rentals.

To report on video suppliers.

To report on video orders.

6.4.3 The StayHome case study — system definition

The purpose of the system definition stage is to define the scope and boundary
of the database system and its major user views. A user view represents the
requirements that should be supported by a database system as defined by a
particular job role (such as Manager or Assistant) or business application area
(such as video rentals or stock control).

Defining the systems boundary for the StayHome database system

During this stage of the database system development lifecycle, you should use
interviews to clarify or expand on data captured in the previous stage. However,
you may also use additional fact-finding techniques, including examining the
sample documentation shown in Section 6.4.1. You should now analyze the
data collected so far to define the boundary of the database system. The bound-
ary for the StayHome database system is shown in Figure 6.9. Contained within
the boundary is a representation of the main types of data mentioned in the
interviews and a rough guide as to how this data is related.

Identifying the major user views for the StayHome database system

You should now analyze the data collected so far to define the user views of the
database system. The majority of data about the user views was collected during
interviews with the Director and members of staff in the role of Manager,
Supervisor, Assistant, and Buyer. The user views for the StayHome database
system are shown in Figure 6.10.

Training
Course
For
Supplier Video Order
Attends
Suppliers Places
Stocks Has
Video Branch Staff
Provides Registers
Is PartOf Requests
Rental Member
Systems boundary
VideoForSale

Fact-finding l 133

Figure 6.9

Boundary for the
StayHome database
system.

134 M Database analysis and design techniques

Figure 6.10

User views for the StayHome database system.

User view

Requirements

Director

Manager

Supervisor

Assistant

Buyer

To report on all branches.

To report on staff at all branches.

To report on videos at all branches.

To report on members at all branches.

To report on video rentals at all branches.
To report on video suppliers.

To report on video orders.

To maintain (enter, update, and delete) data on a given branch.

To maintain (enter, update, and delete) data on staff at a given branch.
To perform searches on branches.

To perform searches on staff at all branches.

To report on staff at a given branch.

To report on videos at all branches.

To report on members at all branches.

To report on video rentals at all branches.

To maintain (enter, update, and delete) data on videos at a given branch.

To maintain (enter, update, and delete) data on members at a given branch.

To maintain (enter, update, and delete) data on video rentals at a given branch.
To perform searches on videos at all branches.

To perform searches on video rentals at a given branch.

To perform searches on members at a given branch.

To track the status of videos in stock at a given branch.

To track the status of video rentals at a given branch.

To report on staff at a given branch.

To maintain (enter, update, and delete) data on video rentals at a given branch.
To maintain (enter, update, and delete) data on members at a given branch.

To perform searches on videos at all branches.

To perform searches on video rentals at a given branch.

To perform searches on members at a given branch.

To track the status of videos in stock at a given branch.

To track the status of video rentals at a given branch.

To maintain (enter, update, and delete) data on videos.

To maintain (enter, update, and delete) data on video suppliers.
To maintain (enter, update, and delete) data on video orders.
To perform searches on branches.

To perform searches on videos at all branches.

To perform searches on video suppliers.

To perform searches on video orders.

To track the status of video orders.

To report on videos at all branches.

To report on video rentals at all branches.

To report on members at all branches.

To report on video suppliers.

To report on video orders.

6.4.4 The StayHome case study - requirements collection and analysis

During this stage, you should continue to gather more details on the user views
identified in the previous stage, to create a users’ requirements specification that
describes in detail the data to be held in the database and how the data is to be
used. While gathering more information on the user views, you should also try to
collect any general requirements for the system. The purpose of gathering this
information is to create a systems specification, which describes any features to be
included in the new database system such as networking and shared access
requirements, performance requirements, and the levels of security required.

While you are collecting the data on the requirements for the user views and
the system in general, you will learn about how the current system works. Of
course, you are building a new database system and should try to retain the
good things about the old system while introducing the benefits that will be
part of using the new system.

An important activity associated with this stage is deciding how you want to
deal with the situation where you have more than one user view. As we discussed
in Section 4.6, there are three approaches to dealing with multiple user views,
namely the centralized approach, the view integration approach, and a combination
of both approaches. We’ll show how you can use these approaches shortly.

Gathering more information on the user views of the StayHome database system

To find out more about the requirements for each user view, you may again use
a selection of fact-finding techniques, including interviews and observing the
business in operation. Examples of the types of questions that you may ask
about the data (represented as X) required by a user view includes:

‘What type of data do you need to hold on X?’
‘What sorts of things do you do with the data on X?’

For example, you may ask a branch Manager the following questions:

Database developer “What type of data do you need to hold on staft?’

Manager ‘The type of data held on a member of staff is his or her name, posi-
tion, and salary. Each member of staff is given a staff number, which is
unique throughout the company.’

Database developer “What sorts of things do you do with the data on staff?’

Manager ‘I need to be able to enter the details of new members of staff and
delete their details when they leave. I need to keep the details of staff up to
date and print reports that list the name, position, and salary of each
member of staff at my branch. I need to be able to allocate Supervisors to
look after staff. Sometimes when I need to communicate with other
branches, I need to find out the names of Managers.’

Fact-finding M 135

136 M Database analysis and design techniques

You need to ask similar questions about all the important data to be stored in
the database. Responses to these questions should help you identify the neces-
sary details for the users’ requirements specification.

Gathering information on the system requirements of the StayHome database system

While conducting interviews about user views, you should also collect more
general information on the system requirements. Examples of the types of
questions that you may ask about the system include:

‘What transactions run frequently on the database?’

‘What transactions are critical to the operation of the business?’

‘When do the critical transactions run?’

‘When are the low, normal, and high workload periods for the critical trans-
actions?’

‘What type of security do you want for the database system?’

‘Is there any highly sensitive data that should only be accessed by certain
members of staff?’

‘What historical data do you want to hold?’

‘What are the networking and shared access requirements for the database
system?’

‘What type of protection from failures or data loss do you want for your
database system?’

For example, you may ask a Manager the following questions:

Database developer ‘“What transactions run frequently on the database?’

Manager ‘We frequently get requests either by phone or by members who call
into our branch to search for a particular video and see if it’s available for
rent. Of course, we also do a lot of renting out and returning of videos.’

Database developer ‘“What transactions are critical to the operation of the business?’

Manager ‘Again, critical operations include being able to search for particular
videos and the renting out and returning of videos. Members would go else-
where if we couldn’t provide these basic services.’

Database developer ‘“When do the critical transactions run?’

Manager ‘Every day.’

Database developer ‘“When are the low, normal, and high workload periods for
the critical transactions?’

Manager “We tend to be quiet in the mornings and get busier as the day pro-
gresses. The busiest time each day for dealing with members is between 6
and 9pm. We even have to double the staff on duty during this period on
Fridays and Saturdays.’

You may ask the Director the following questions:

Database developer “What type of security do you want for the database system?’

Director ‘I don’t suppose a database holding information for a video rental com-
pany holds very sensitive data, but I wouldn’t want any of our competitors
to see our data on members and their video rentals. Staff should see only the
data necessary to do their job in a form that suits what they’re doing. For
example, although it's necessary for Supervisors and Assistants to see
member details, member records should only be displayed one at a time and
not as a report.’

Database developer ‘Is there any highly sensitive data that should only be
accessed by certain members of staff?’

Director ‘As I said before, staff should see only the data necessary to do their
jobs. For example, although Supervisors need to see staff details, I should be
the only one to see salary details.’

Database developer “What historical data do you want to hold?’

Director ‘1 want to be able to keep members’ details for a couple of years after
their last video rental, so that we can mailshot them, tell them about our
latest promotional offers, and generally try to attract them back. I also want
to be able to keep rental information for a couple of years so that we can
analyze it to find out which types of videos are the most popular, which age
groups hire videos most frequently, and so on.’

Database developer ‘What are the networking and shared access requirements
for the database system?’

Director ‘I want all the branches networked to our Headquarters here in Seattle,
so that staff can access the system from wherever and whenever they need
to. At most branches, I would expect about two or three staff to be accessing
the system at any one time, but remember we have about 100 branches.
Most of the time the staff should be just accessing local branch data.
However, I don't really want there to be any restrictions about how or when
the system can be accessed, unless it’s got real financial implications.’

Database developer ‘What type of protection from failures or data loss do you
want for your database system?’

Director ‘The best, of course. All our business is going to be conducted using the
database, so if it goes down, we're sunk. To be serious for a minute, I think
we probably have to back up our data every evening when the branch closes,
what do you think?’

You need to ask similar questions about all the important aspects of the
system. Responses to these questions should help you identify the necessary
details for the systems specification.

Fact-finding M 137

138 M Database analysis and design techniques

Managing the user views of the StayHome database system

How do you decide whether to use the centralized or view integration approach
to manage multiple user views? One way to help you make a decision is to
examine the overlap in terms of the data used between the user views identified
during the system definition stage. Table 6.7 cross-references the Director,
Manager, Supervisor, Assistant, and Buyer user views with the main types of
data used by the StayHome database system (namely, Supplier, Video Order,
Video, Branch, Staff, Rental, and Member).

Table 6.7 Cross-reference of user views with the main types of data used by the
StayHome database system.

Supplier Video Order Video Branch Staff Rental Member

Director X X X X X X X
Manager X X X X X
Supervisor X X X X X
Assistant X X X X
Buyer X X X X X X

You can see from this table that there is an overlap in the data used by all the
user views. However, the Director and Buyer user views are distinct in requiring
additional data (namely, Supplier and Video Order) to that used by the other
user views. Based on this analysis, you could use the centralized approach first
to merge the requirements for the Director and Buyer user views (given the col-
lective name of Business user views) and the requirements for the Manager,
Supervisor, and Assistant user views (given the collective name of Branch user
views). You could then develop data models representing the Business and
Branch user views and then use the view integration approach to merge the two
data models. Of course, for a simple case study like StayHome, we could easily
use the centralized approach for all user views. However, to allow us to demon-
strate both the centralized and view integration approaches working in practice
we’ll stay with our decision to identify two collective user views for StayHome.

It’s difficult to give precise rules as to when it’s appropriate to use the central-
ized or view integration approaches. As the database developer, you should base
your decision on an assessment of the complexity of the database system and
the degree of overlap between the various user views. However, whether you
use the centralized or view integration approach or a mixture of both to build
the underlying database, ultimately you need to create the original user views
for the working database system. We’ll discuss the establishment of the user
views for the database in Chapter 14. In the remainder of this chapter, we pre-

sent the users’ requirements specification for the Branch user views of StayHome
and the systems specification for the database system.

Creating the users’ requirements specification for the Branch user views of the
StayHome database system

The users’ requirements specification for the Branch user views is listed in two
sections: the first describes the data used by the Branch user views and the
second provides examples of how the data is used by the Branch user views
(that is, the transactions performed on the data).

Data requirements

The data held on a branch of StayHome is the branch address made up of street,
city, state, and zip code, and the telephone numbers (maximum of 3 lines). Each
branch is given a branch number, which is unique throughout the company.

Each branch of StayHome has staff, which includes a Manager, one or more
Supervisors, and a number of other staff. The Manager is responsible for the
day-to-day running of a given branch. Each branch has several Supervisors and
each Supervisor is responsible for supervising a group of staff. The data held on
a member of staff is his or her name, position, and salary. Each member of staff
is given a staff number, which is unique throughout the company.

Each branch of StayHome is allocated a stock of videos. The data held on a
video is the catalog number, video number, title, category, daily rental rate, pur-
chase price, status, and the names of the main actors (and the characters
played), and the director. The catalog number uniquely identifies each video. In
most cases, there are several copies of each video at a branch, and the individ-
ual copies are identified using the video number. A video is given a category
such as Action, Adult, Children, Fantasy, Horror, Sci-Fi, or Thriller. The status
indicates whether a specific copy of a video is available for rent.

Before renting a video from the company, a customer must first register as a
member of a local branch of StayHome. The data held on a member is the first
and last name, address, and the date that the member registered at the branch.
Each member is given a member number, which is unique across all branches
and is used even when a member chooses to register at more than one branch.
The name of the member of staff responsible for processing the registration of a
member at a branch is also noted.

Once registered, a member is free to rent videos, up to a maximum of 10 at
any one time. The data held on each video rented is the rental number, the
member’s full name and member number, the video number, title, and daily
rental cost, and the dates the video is rented out and returned. The rental
number is unique throughout the company.

Fact-finding l 139

140 M Database analysis and design techniques

Transaction requirements

Data entry

(@)
(b)

©

(d)

(e)

(®)

Enter the details of a new branch.

Enter the details of a new member of staff at a branch (such as an employee
Tom Daniels at branch B0OO1).

Enter the details for a newly released video (such as details of a video called
Return of the King).

Enter the details of copies of a new video at a given branch (such as three
copies of Return of the King at branch BOO1).

Enter the details of a new member registering at a given branch (such as a
member Bob Adams registering at branch B002).

Enter the details of a rental agreement for a member renting a video (such
as member Don Nelson renting Return of the King on 4-May-2004).

Data update/deletion

(®
(h)
@)
()
(k)
M

Update/delete the details of a branch.

Update/delete the details of a member of staff at a branch.
Update/delete the details of a given video.

Update/delete the details of a copy of a video.
Update/delete the details of a given member.

Update/delete the details of a given rental agreement for a member renting
a video.

Data queries
The database should be capable of supporting the following sample queries:

(m) List the details of branches in a given city.

(n)

(0)
(p)

@

(1)

(s)
®)

List the name, position, and salary of staff at a given branch, ordered by
staff name.

List the name of each Manager at each branch, ordered by branch number.

List the title, category, and availability of all videos at a specified branch,
ordered by category.

List the title, category, and availability of all videos for a given actor at a
specified branch, ordered by title.

List the title, category, and availability of all videos for a given director at a
specified branch, ordered by title.

List the details of all videos a specified member currently has on rent.

List the details of copies of a given video at a specified branch.

Fact-finding l 141

(u) List the titles of all videos in a specified category, ordered by title.

(v) List the total number of videos in each video category at each branch,
ordered by branch number.

(w) List the total cost of the videos at all branches.
(x) List the total number of videos featuring each actor, ordered by actor name.

(y) List the total number of members at each branch who joined in 1999,
ordered by branch number.

(z) List the total possible daily rental for videos at each branch, ordered by
branch number.

Creating the systems specification for the StayHome database system

The systems specification should list all the important features for the StayHome
database system. Examples of the types of features that should be described in
the systems specification include:

Initial database size

Database rate of growth

The types and average number of record searches

Networking and shared access requirements

Performance

Security

Backup and recovery

User interface

Legal issues.

Initial database size

(a) There are approximately 20 000 video titles and 400 000 videos for rent dis-
tributed over 100 branches. There are an average of 4000 and a maximum
of 10000 videos for rent at each branch.

(b) There are approximately 2000 staff working across all branches. There are an
average of 15 and a maximum of 25 members of staff working at each branch.

(c) There are approximately 100 000 members registered across all branches.
There are an average of 1000 and a maximum of 1500 members registered
at each branch.

(d) There are approximately 400 000 video rentals across all branches. There are
an average of 4000 and a maximum of 10000 video rentals at each branch.

(e) There are approximately 1000 directors and 30 000 main actors in 60 000
starring roles.

(f) There are approximately 50 video suppliers and 1000 video orders.

142 M Database analysis and design techniques

Database rate of growth

(@)

(b)

(©

(d)

(e)

(®)

Approximately 100 new video titles and 20 copies of each video are added
to the database each month.

Once a copy of a video is no longer suitable for renting out (this includes
those of poor visual quality, lost, or stolen), the corresponding record is
deleted from the database. Approximately 100 records of videos for rent are
deleted each month.

Approximately 20 members of staff join and leave the company each
month. The records of staff who have left the company are deleted after
one year. Approximately 20 staff records are deleted each month.

Approximately 1000 new members register at branches each month. If a
member does not rent out a video at any time within a period of two years,
his or her record is deleted. Approximately 100 member records are deleted
each month.

Approximately 5000 new video rentals are recorded across 100 branches
each day. The details of video rentals are deleted two years after the cre-
ation of the record.

Approximately 50 new video orders are placed each week. The details of
video orders are destroyed two years after the creation of the record.

The types and average number of record searches

(@)
(b)

©

(d)

(e)
(®)

Searching for the details of a branch — approximately 10 per day.

Searching for the details of a member of staff at a branch — approximately
20 per day.

Searching for the details of a given video — approximately 5000 per day
(Sunday to Thursday), approximately 10000 per day (Friday and Saturday).
Peak workload 6-9pm daily.

Searching for the details of a copy of a video - approximately 10000 per
day (Sunday to Thursday), approximately 20 000 per day (Friday and
Saturday). Peak workload 6-9pm daily.

Searching for the details of a specified member — approximately 100 per day.

Searching for the details of a rental agreement for a member renting a video
— approximately 10 000 per day (Sunday to Thursday), approximately
20000 per day (Friday and Saturday). Peak workload 6-9pm daily.

Networking and shared access requirements

(@)

(b)

All branches should be securely networked to a centralized database located
at the company’s HQ in Seattle.
The system should allow for at least three people concurrently accessing the

system from each branch. Consideration needs to be given to the licensing
requirements for this number of concurrent accesses.

Performance

(a) During opening hours but not during peak periods expect less than 1
second response for all single record searches. During peak periods (6-9pm
daily) expect less than 5 second response for all single record searches.

(b) During opening hours but not during peak periods expect less than 5 second
response for all multiple record searches. During peak periods (6-9pm daily)
expect less than 10 second response for all multiple record searches.

(¢) During opening hours but not during peak periods expect less than 1
second response for all updates/saves. During peak periods (6-9pm daily)
expect less than 5 second response for all updates/saves.

Security
(a) The database should be password protected.

(b) Each member of staff should be assigned database access privileges appro-
priate to a particular user view, namely Director, Manager, Supervisor,
Assistant, or Buyer.

(c) Staff should see only the data necessary to do their job in a form that suits
what they’re doing.

Backup and recovery
The database should be backed up each day at 12 midnight.

User interface
The user interface should be menu-driven. Online help should be easy to locate
and access.

Legal issues

Each country has laws that govern the way that the computerized storage of
personal data is handled. As the StayHome database holds data on staff and
members, any legal issues that must be complied with should be investigated
and implemented.

6.4.5 The StayHome case study - database design

In this chapter, we demonstrated the creation of the users’ requirements specifi-
cation for the Branch user views and the systems specification for the StayHome
database system. These documents are the source of information for the next
stage of the lifecycle called database design. In Chapters 9, 10, and 12 to 16,
we’ll provide a step-by-step methodology for database design, and we’ll use the
documents created in this chapter to demonstrate the methodology in practice.
For those of you interested in developing more complex multi-user-view
database systems, we’ll demonstrate how the view integration approach works in
practice in Appendix C using the branch and business user views of StayHome.

Fact-finding l 143

144 M Database analysis and design techniques

v

v

v

v

S S s

Fact-finding is the formal process of using techniques such as inter-
views and questionnaires to collect facts about systems, requirements,
and preferences.

Fact-finding is particularly crucial to the early stages of the database
system development lifecycle, including the database planning, system
definition, and requirements collection and analysis stages.

The five most common fact-finding techniques are examining documen-
tation, interviewing, observing the business in operation, research, and
questionnaires.

The first step in the database planning stage is to define clearly the
mission statement and mission objectives for the database project. The
mission statement defines the major aims of the database system. Each
mission objective should identify a particular task that the database
must support.

The purpose of the system definition stage is to define the boundaries
and user views of the database system.

There are two main documents created during the requirements collec-
tion and analysis stage, namely the users' requirements specification
and the systems specification.

The users' requirements specification describes in detail the data to be
held in the database and how the data is to be used.

The systems specification describes any features to be included in the data-
base system such as the required performance and the levels of security.

6.2

6.3

6.4

Briefly describe what the process of fact-finding attempts to achieve for a
database developer.

Describe how fact-finding is used throughout the stages of the database
system development lifecycle.

For each stage of the database system development lifecycle identify
examples of the facts captured and the documentation produced.

A database developer normally uses several fact-finding techniques during
a single database project. The five most commonly used techniques are exam-
ining documentation, interviewing, observing the business in operation,

6.5

6.6
6.7

6.8

conducting research, and using questionnaires. Describe each fact-finding
technique and identify the advantages and disadvantages of each.

Describe the purpose of defining a mission statement and mission objec-
tives for a database system.

What is the purpose of the systems definition stage?

How do the contents of a users’ requirements specification differ from a
systems specification?

Describe one approach to deciding whether to use centralized, view inte-
gration, or a combination of both when developing a database system for
multiple user views.

Fact-finding M 145

\

\

\

\

Entity—Relationship
modeling

In this chapter you will learn:

How to use ER modeling in database design.

The basic concepts of an ER model called entities, relationships, and
attributes.

A diagrammatic technique for displaying an ER model.

How to identify and solve connection traps in an ER model.

Database system
development
lifecycle discussed
in Chapter 4

In Chapter 6, you learned about techniques for gathering and capturing infor-
mation about what the users require of the database system. Once the
requirements collection and analysis stage of the database system development
lifecycle is complete and you have documented the requirements for the data-
base system, you are now ready to begin database design.

One of the most difficult aspects of database design is the fact that designers,
programmers, and end-users tend to view data and its use in different ways.
Unfortunately, unless we can gain a common understanding that reflects how the
organization operates, the design we produce will fail to meet the users’ require-
ments. To ensure that we get a precise understanding of the nature of the data
and how the organization uses it, we need to have a model for communication
that is non-technical and free of ambiguities. The Entity—Relationship (ER) model
is one such example. Since the introduction of ER modeling in 1976, the model
has been extended to include additional enhanced modeling concepts. We cover
the basic ER concepts in this chapter and introduce some of the more popular
enhanced ER concepts in Chapter 11.

Entity-Relationship modeling Bl 147

Entity-Relationship modeling is a top-down approach to database design.
We begin ER modeling by identifying the important data (called entities) and
relationships between the data that must be represented in the model. We then
add more details such as the information we want to hold about the entities
and relationships (called attributes) and any constraints on the entities, rela-
tionships, and attributes.

Throughout this chapter, you are introduced to the basic concepts that make
up an ER model. Although there is general agreement about what each concept
means, there are a number of different ways that you can represent each con-
cept in a diagram. We have chosen a diagrammatic notation that uses an
increasingly popular object-oriented modeling language called UML (Unified
Modeling Language). However, examples of alternative popular notations for
ER models are shown in Appendix A.

UML is the successor to a number of object-oriented analysis and design methods
introduced in the 1980s and 1990s and is the standard modeling language.

As the ER model forms the basis of the methodology we’ll present in
Chapters 9, 10, and 12 to 16, this chapter may prove to be one of the most
important in this book. If you don’t understand the concepts immediately,
don't worry. Try reading the chapter again, and then look at the examples we
give in the methodology for additional help. We start by introducing the basic
concepts of the ER model, namely entities, relationships, and attributes.

7.1 Entities

Entity

A set of objects with the same properties, which are identified by a user or organiza-
tion as having an independent existence.

The basic concept of the ER model is an entity, which represents a set of
objects in the ‘real world’ that share the same properties. Each object, which
should be uniquely identifiable within the set, is called an entity occurrence.
An entity has an independent existence and can represent objects with a physi-
cal (or ‘real’) existence or objects with a conceptual (or ‘abstract’) existence, as
shown in Figure 7.1.

We identify each entity by a unique name and a list of properties, called attrib-
utes. Although an entity has a distinct set of attributes, each entity has its own
values for each attribute. A database normally contains many different entities.

148 M Database analysis and design techniques

Figure 7.1

Examples of entities
with physical

and conceptual
existence.

Attributes are
discussed in
Section 7.3

Figure 7.2

Diagrammatic
representation of
the Video, Role, and
Actor entities.

Physical existence Conceptual existence
Member Role

Video Rental

Branch Registration

Diagrammatic representation of entities

Each entity is shown as a rectangle labeled with the name of the entity, which is
normally a singular noun. In UML, the first letter of each word in the entity
name is uppercase (for example, Video, Role, Actor, VideoForRent). Figure 7.2 demon-
strates the diagrammatic representation of the Video, Role, and Actor entities.

7.2 Relationships

Relationship

A set of meaningful associations among entities.

A relationship is a set of associations between participating entities. As with
entities, each association should be uniquely identifiable within the set. A
uniquely identifiable association is called a relationship occurrence.

Each relationship is given a name that describes its function. For example,
the Actor entity is associated with the Role entity through a relationship called
Plays, and the Role entity is associated with the Video entity through a relation-
ship called Features.

Diagrammatic representation of relationships

Each relationship is shown as a line connecting the associated entities, labeled
with the name of the relationship. Normally, a relationship is named using a
verb (for example, Plays or Features) or a short phrase including a verb (for exam-

Entity name

Video Role Actor

Entity-Relationship modeling Il 149

ple, IsPartOf or WorksAt). Again, the first letter of each word in the relationship
name is shown in uppercase. Whenever possible, a relationship name should be
unique for a given ER model.

A relationship is only labeled in one direction, which usually means that the
name of the relationship only makes sense in one direction (for example, Actor
Plays Role makes sense but not Role Plays Actor). So once the relationship name is
chosen, an arrow symbol is placed beside the name indicating the correct direc-
tion for a reader to interpret the relationship name (for example, Actor Plays p
Role). Figure 7.3 demonstrates the diagrammatic representation of the relation-
ships Video Features Role and Actor Plays Role.

7.2.1 Degree of a relationship

Degree of a relationship

The number of participating entities in the relationship.

The entities involved in a particular relationship are referred to as participants.
The number of participants in a relationship is called the degree and indicates
the number of entities involved in a relationship. A relationship of degree one
is called unary, which is commonly referred to as a recursive relationship. We
discuss this type of relationship in more detail in the following section. A rela-
tionship of degree two is called binary. The two relationships shown in Figure
7.3 are binary relationships. A relationship of a degree higher than binary is
called a complex relationship.

A relationship of degree three is called ternary. An example of a ternary rela-
tionship is Registers with three participating entities, namely Branch, Staff, and
Member, as shown in Figure 7.4. The purpose of this relationship is to represent
the situation where a member of staff registers a member at a particular branch,
allowing for members to register at more than one branch, and members of
staff to move between branches.

‘Video features role’ ‘Actor plays role’ Figure 7.3
Diagrammatic
Features P <« Plays representation of
Video Role Actor the Video Features

Role and Actor Plays
Role relationships.

Relationship
name

150 M Database analysis and design techniques

Figure 7.4

Example of a
ternary relationship
called Registers.

Figure 7.5

Example of a
recursive
relationship called
Supervises.

Branch Registers Staff

‘Staff registers a
Member member at a branch’

A relationship of degree four is called quaternary, and a relationship of a
higher degree is called n-ary. The most popular type of relationship you’ll come
across is binary, but occasionally you'll come across unary or ternary, and less
frequently quaternary.

7.2.2 Recursive relationships

Recursive relationship

A relationship where the same entity participates more than once in different roles.

Let’s consider a recursive relationship called Supervises, which represents an asso-
ciation of staff with a supervisor where the supervisor is also a member of staff.
In other words, the Staff entity participates twice in the Supervises relationship:
the first participation as a supervisor, and the second participation as a member
of staff who is supervised (supervisee), as shown in Figure 7.5.

Relationships may be given role names to indicate the purpose that each
participating entity plays in a relationship. Role names are important for recur-
sive relationships to determine the function of each participating entity. Figure
7.5 shows the use of role names to describe the Supervises recursive relationship.
The first participation of the Staff entity in the Supervises relationship is given
the role name Supervisor and the second participation is given the role
name Supervisee.

Supervisee
A
Supervises
Staff Staff (supervisor) supervises

Supervisor staff (supervisee)’

Entity-Relationship modeling B 151

7.3 Attributes

Attribute

A property of an entity or a relationship.

The particular properties of entities are called attributes. Attributes represent
what we want to know about entities. For example, a Video entity may be
described by the catalogNo, title, category, dailyRental, and price attributes. These
attributes hold values that describe each video occurrence, and represent the
main source of data stored in the database.

A relationship between entities can also have attributes similar to those of an
entity, but we'll defer the discussion of relationships that have attributes until
Section 7.6.

As we now discuss, we can classify attributes as being: simple or composite;
single-valued or multi-valued; or derived.

7.3.1 Simple and composite attributes

Simple attribute

An attribute composed of a single component.

Simple attributes cannot be further subdivided. Examples of simple attributes
include the category and price attributes for a video. Simple attributes are some-
times called atomic attributes.

Composite attribute

An attribute composed of multiple components.

Composite attributes can be further divided to yield smaller components with an
independent existence. For example, the name attribute of the Member entity with
the value ‘Don Nelson’ can be subdivided into fName (‘Don’) and IName (‘Nelson’).

The decision to model the name attribute as a simple attribute or to subdivide the
attribute into fName and IName is dependent on whether the users’ transactions
access the name attribute as a single component or as individual components.

152 M Database analysis and design techniques

7.3.2 Single-valued and multi-valued attributes

Single-valued attribute

An attribute that holds a single value for an entity occurrence.

The majority of attributes are single-valued for a particular entity. For example,
each occurrence of the Video entity has a single value for the catalogNo attribute
(for example, 207132), and therefore the catalogNo attribute is referred to as
being single-valued.

Multi-valued attribute

An attribute that holds multiple values for an entity occurrence.

Some attributes have multiple values for a particular entity. For example,
each occurrence of the Video entity may have multiple values for the category
attribute (for example, ‘Children’ and ‘Comedy’), and therefore the category
attribute in this case would be multi-valued. A multi-valued attribute may have
a set of values with specified lower and upper limits. For example, the category
attribute may have between one and three values.

The classification of simple and composite, and the classification of single-
valued and multi-valued, are not mutually exclusive. In other words, you can
have simple single-valued, composite single-valued, simple multi-valued, and
composite multi-valued attributes.

7.3.3 Derived attributes

Derived attribute

An attribute that represents a value that is derivable from the value of a related
attribute, or set of attributes, not necessarily in the same entity.

Some attributes may be related for a particular entity. For example, the age of a
member of staff (age) is derivable from the date of birth (DOB) attribute, and
therefore the age and DOB attributes are related. We refer to the age attribute as a
derived attribute, the value of which is derived from the DOB attribute.

TIP

Age is not normally stored in a database because it would have to be K
updated regularly. On the other hand, as date of birth never changes and age
can be derived from date of birth, date of birth is stored instead, and age is
derived from the DOB attribute, when needed.

Entity-Relationship modeling B 153

In some cases, the value of an attribute is derived from the values in a single
entity, like age. But in other cases, the value of an attribute may be derived from
the values in more than one entity.

7.3.4 Keys

In Section 2.2.3, we introduced the concept of keys associated with tables.
These concepts also apply to entities.

Superkey

An attribute, or set of attributes, that uniquely identifies each entity occurrence.

Candidate key

A superkey that contains only the minimum number of attributes necessary for unique
identification of each entity occurrence.

Primary key

The candidate key that is selected to identify each entity occurrence.

Alternate keys

The candidate keys that are not selected as the primary key of the entity.

For example, branchNo (the branch number) and zipCode (the branch’s zip
code) are candidate keys for the Branch entity, as each has a distinct value for
every branch occurrence. If we choose branchNo as the primary key for the Branch
entity, then zipCode becomes an alternate key.

Diagrammatic representation of attributes

If an entity is to be displayed with its attributes, we display the rectangle repre-
senting the entity in two parts. The upper part of the rectangle displays the
name of the entity and the lower part lists the names of the attributes. For
example, Figure 7.6 shows the ER model for the Video, Role, and Actor entities
and their associated attributes.

The first attribute(s) to be listed is the primary key for the entity, if known.
The name(s) of the primary key attribute(s) can be labeled with the tag {PK}. In
UML, the name of an attribute is displayed with the first letter in lowercase and,
if the name has more than one word, with the first letter of each subsequent
word in uppercase (for example, character, actorNo, catalogNo). Additional tags
that can be used include partial primary key {PPK}, when an attribute forms
only part of a composite primary key, and alternate key {AK}.

For simple, single-valued attributes, there is no need to use tags and so we
simply display the attribute names in a list below the entity name.

154 M Database analysis and design techniques

Figure 7.6

Diagrammatic
representation of
the attributes for
the Video, Role, and
Actor entities.

Entity name

Video Role Actor
catalogNo {PK} A character | _»-actorNo {PK}
title name

category [1..3] fName
dailyRental IName
price DOB

/age

Multi-valued
attribute

Area to list
attribute(s)
of entity

Derived
attribute

Composite
attribute

For composite attributes, we list the name of the composite attribute fol-
lowed below and indented to the right by the names of its simple component
parts. For example, in Figure 7.6 the composite attribute name is shown fol-
lowed below by the names of its component attributes, fName and IName.

For multi-valued attributes, we label the attribute name with an indication of
the range of values available for the attribute. For example, if we label the cate-
gory attribute with the range [1..*], this means that there are one or more values
for the category attribute. If we know the precise maximum number of values,
we can label the attribute with an exact range. For example, if the category
attribute can hold one to a maximum of three values, we would label the
attribute with [1..3].

For derived attributes, we prefix the attribute name with a ‘/’. For example,
the derived attribute age is shown in Figure 7.6 as /age.

No primary key has been identified for the Role entity. The presence or absence
of a primary key allows us to identify whether an entity is strong or weak. We
discuss the concept of strong and weak entities next.

For a simple database, it’s possible to show all the attributes for each entity
on the data model. However, for a more complex database, you normally dis-
play just the attribute, or attributes, that form the primary key of each entity.
When only the primary key attributes are shown in the ER model, you can omit
the {PK]} tag.

Entity-Relationship modeling B 155

7.4 Strong and weak entities

We can classify entities as being either strong or weak.

Strong entity

Entity that is not dependent on the existence of another entity for its primary key.

Weak entity

Entity that is partially or wholly dependent on the existence of another entity, or enti-
ties, for its primary key.

For example, as we can distinguish one actor from all other actors and one video
from all other videos without the existence of any other entity, Actor and Video are
referred to as being strong entities. In other words, the Actor and Video entities are
strong because they have their own primary keys, as shown in Figure 7.6.

Figure 7.6 also has an example of a weak entity called Role, which represents
characters played by actors in videos. If we are unable to uniquely identify one
Role entity occurrence from another without the existence of the Actor and Video
entities, then Role is referred to as being a weak entity. In other words, the Role
entity is weak because it has no primary key of its own.

Strong entities are sometimes referred to as parent, owner, or dominant entities
and weak entities as child, dependent, or subordinate entities.

7.5 Multiplicity constraints on relationships

We now examine the constraints that may be placed on entities that participate
in a relationship. Examples of such constraints include the requirements that a
branch must have members and each branch must have staff. The main type of
constraint on relationships is called multiplicity.

Multiplicity

The number of occurrences of one entity that may relate to a single occurrence of an
associated entity.

Multiplicity constrains the number of entity occurrences that relate to other
entity occurrences through a particular relationship. Multiplicity is a represen-
tation of the policies established by the user or organization, and is referred to
as a business rule. Ensuring that all appropriate business rules are identified
and represented is an important part of modeling an organization.

156 M Database analysis and design techniques

As we mentioned earlier, the most common degree for relationships is
binary. The multiplicity for a binary relationship is generally referred to as one-
to-one (1:1), one-to-many (1:*), or many-to-many (*:*). We examine these three
types of relationships using the following business rules:

A member of staff manages a branch.
A branch has members of staff.

Actors play in videos.

For each business rule, we demonstrate how to work out the multiplicity if,
as is sometimes the case, it’s not clearly specified in the rule, and show how to
represent it in an ER model. In Section 7.5.4, we'll examine multiplicity for rela-
tionships of degrees higher than binary.

Not all business rules are easily and clearly represented in an ER model. For
example, the requirement that a member of staff receives an additional day’s
holiday for every year of employment with the organization may be difficult
to represent clearly in an ER model.

7.5.1 One-to-one (1:1) relationships

Let’s consider the relationship called Manages, which relates the Staff and Branch
entities. Figure 7.7(a) displays individual examples of the Manages relationship
using values for the primary key attributes of the Staff and Branch entities.

Working out the multiplicity

Working out the multiplicity normally requires examining the precise relation-
ships between the data given in a business rule using sample data. The sample
data may be obtained by examining filled-in forms or reports or, if possible,
from further discussions with the users. However, to reach the right conclusions
about a business rule, it's essential that the sample data examined or discussed
is a true representation of all the data.

In Figure 7.7(a), we see that staffNo S1500 manages branchNo BOO1 and staffNo
S0010 manages branchNo B002, but staffNo SO003 does not manage any branch.
In other words, a member of staff can manage zero or one branch and each
branch is managed by a single member of staff. As there is a maximum of one
branch for each member of staff and a maximum of one member of staff for
each branch involved in the relationship, we refer to this relationship as one-to-
one, which we usually abbreviate as (1:1).

Entity-Relationship modeling B 157

branchNo

Manages P
P B0O1
Manages P>
‘Each branch ‘A member of
is managed by one staff can manage
member of staff’ zero or one branch’
Staff Manages P Branch
staffNo 1.1 0.1 branchNo

. <>

Diagrammatic representation of 1:1 relationships

An ER model of the Staff Manages Branch relationship is shown in Figure 7.7(b).
To represent that a member of staff can manage zero or one branch, we place a
‘0..1" beside the Branch entity. To represent that a branch always has one man-
ager, we place a ‘1..1" beside the Staff entity. (Note that for a 1:1 relationship, we
may choose a relationship name that makes sense in either direction.)

7.5.2 One-to-many (1:*) relationships

Let’s consider the relationship called Has, which also relates the Branch and Staff
entities. Figure 7.8(a) displays individual examples of the Branch Has Staff relation-
ship using values for the primary key attributes of the Branch and Staff entities.

Figure 7.7

Staff Manages Branch
(1:1) relationship:
(a) individual
examples;

(b) multiplicity.

158 M Database analysis and design techniques

Figure 7.8

Branch Has Staff (1:*) PnChNG staffNo
relationship:

(a) individual S0003
examples;

(b) multiplicity.

(@
‘Each member of staff ‘Each branch has
works at one branch’ one or more staff’
Branch Has P Staff
branchNo 1.1 L> staffNo
(b)

Working out the multiplicity

In Figure 7.8(a), we see that branchNo BOO1 has staffNo SO003 and S1500, and
branchNo B002 has staffNo SO010 and S3250. Therefore, each branch has one or
more members of staff and each member of staff works at a single branch. As
one branch can have many staff, we refer to this type of relationship as one-to-
many, which we usually abbreviate as (1:*).

Diagrammatic representation of 1:* relationships

An ER model of the Branch Has Staff relationship is shown in Figure 7.8(b). To
represent that each branch can have one or more staff, we place a ‘1..*’ beside
the Staff entity. To represent that each member of staff works at a single branch,
we place a ‘1..1" beside the Branch entity. (Note that with 1:* relationships, we
choose a relationship name that makes sense in the 1:* direction.)

Entity-Relationship modeling Il 159

TIP

If you know the actual minimum and maximum values for the multi- K
plicity, you can display these instead. For example, if a branch has between
two and ten staff, we can replace the ‘1..* with ‘2..10".

7.5.3 Many-to-many (*:*) relationships

Let’s consider the relationship called Playsin, which relates the Actor and Video enti-
ties. Figure 7.9(a) displays individual examples of the Actor Playsin Video relationship
using values for the primary key attributes of the Actor and Video entities.

Working out the multiplicity

In Figure 7.9(a), we see that actorNo A2019 plays in video catalogNo 634817 and
445624, and actorNo A7525 plays in video catalogNo 445624. In other words, a
single actor can play in one or more videos. We also see that video catalogNo
445624 has two starring actors but catalogNo 781132 does not have any actors in
it, and so we conclude that a single video can star zero or more actors.

In summary, the Playsin relationship is 1:* from the viewpoint of both the
Actor and Video entities. We represent this relationship as two 1:* relationships in
both directions, which are collectively referred to as a many-to-many relation-
ship, which we usually abbreviate as (*:*).

Diagrammatic representation of *:* relationships

An ER model of the Actor Playsin Video relationship is shown in Figure 7.9(b). To
represent that each actor can star in one or more videos, we place a ‘1..*” beside
the Video entity. To represent that each video can star zero or more actors, we
place a ‘0..*" beside the Actor entity. (Note that for a *:* relationship, we may
choose a relationship name that makes sense in either direction.)

7.5.4 Multiplicity for complex relationships

Multiplicity for relationships beyond degree two is slightly more complex. For
example, the multiplicity for a ternary relationship represents the potential
number of entity occurrences in the relationship when the other two values are
fixed. Let’s consider the ternary Registers relationship between Branch, Staff, and
Member shown in Figure 7.4. Figure 7.10(a) displays individual examples of the
Registers relationship when the values for the Staff and Member entities are fixed.

160 M Database analysis and design techniques

Figure 7.9

Actor Playsin Video actorNo catalogNo
relationship (*:*):

(a) individual 634817
examples;

(b) multiplicity.

445624

781132

(a)

‘Each video stars ‘Each actor plays in
zero or more actors’ one or more videos’
Actor Playsin P Video

actorNo 0. L.x catalogNo
(b)

Working out the multiplicity

In Figure 7.10(a), we see that for every combination of staffNo/memberNo values
there is always at least one corresponding branchNo value. In particular, staffNo
S0003 registers memberNo M166884 at branchNo BOO1 and B0OO02. This represents
the situation where member M166884 has been registered at branch BOO1 by
staff SO003, and has subsequently been registered at BOO2 by the same member
of staff, who has transferred to branch BO02 in the intervening period. In other
words, from the Branch perspective the multiplicity is 1..*.

If we repeat this test from the Staff perspective, we find that the multiplicity
for this relationship is 1..1, and if we examine it from the Member perspective,
we find it is 0..*. An ER model of the ternary Registers relationship showing mul-
tiplicity is shown in Figure 7.10(b).

In general, the multiplicity for n-ary relationships represents the potential
number of entity occurrences in the relationship when the other (n—1) values
are fixed.

Entity-Relationship modeling l 161

Figure 7.10

The ternary Registers
relationship from
the Branch
perspective with
the values for Staff
and Member fixed:
(a) individual

staffNo/ branchNo

memberNo

Registers [

S0003 M115656

S0003 M166884 ~—]

Regist examples;
s b (b) multiplicity of
relationship.

S3250 M250178 K
Registers '

(a)

Branch Staff

‘Staff registers a
member at a branch’

Member

(b)

A summary of the possible ways that you may represent multiplicity con-
straints along with a description of the meaning for each is shown in Table 7.1.

Table 7.1 A summary of ways to represent multiplicity constraints.

Alternative ways to represent Meaning
multiplicity constraints

0..1 Zero or one entity occurrence

1..1 (or just 1) Exactly one entity occurrence

0..* (or just *) Zero or many entity occurrences

1.* One or many entity occurrences

5..10 Minimum of 5 up to a maximum of 10 entity
occurrences

0, 3, 6-8 Zero or three or six, seven, or eight entity

occurrences

162 M Database analysis and design techniques

7.5.5 Cardinality and participation constraints

Multiplicity actually consists of two separate constraints known as cardinality
and participation.

Cardinality

Describes the number of possible relationships for each participating entity.

Participation

Determines whether all or only some entity occurrences participate in a relationship.

The cardinality of a binary relationship is what we have been referring to as
one-to-one, one-to-many, and many-to-many. A participation constraint rep-
resents whether all entity occurrences are involved in a particular relationship
(mandatory participation) or only some (optional participation). In Figure 7.11, we
illustrate the cardinality and participation constraints for the Staff Manages
Branch relationship shown in Figure 7.7(b). We'll use the participation con-
straint during the logical database design methodology to determine:

Foreign key
defined in (a) how to create tables for one-to-one relationships (covered in Step 2.1);
Section 2.2.3 (b) whether a foreign key can have nulls (covered in Step 2.4).
7.6 Attributes on relationships
As we briefly mentioned in Section 7.3, attributes can also be assigned to rela-
tionships. For example, let’s consider the relationship Playsin, which associates
Figure 7.11 ‘A single branch is ‘A single member
Multiplicity shown managed by a single Cardinality of s‘taff manages a
as cardinality and member of staff (1:1) single branch
participation
constraints for the
Staff Manages Branch
(1:1) relationship Staff Manages P> Branch
shown in Figure 11 01
7.7(b). staffNo - - branchNo
‘All branches are managed’ ‘Not all staff manage branches’

(mandatory participation) (optional participation)

Entity-Relationship modeling B 163

the Actor and Video entities. We may wish to record the character played by an
actor in a given video. This information is associated with the Playsin relation-
ship rather than the Actor or Video entities. We create an attribute called character
to store this information and assign it to the Playsin relationship, as illustrated
in Figure 7.12. Note that in this figure the character attribute is shown using the
symbol for an entity; however, to distinguish between a relationship with an
attribute and an entity, the rectangle representing the attribute is associated
with the relationship using a dashed line.

The presence of one or more attributes assigned to a relationship may indi-
cate that the relationship conceals an unidentified entity. For example, the
character attribute associated with an entity called Role was shown earlier in
Figure 7.6.

7.7 Design problems with ER models

In this section, we examine two types of problems that may arise when designing
an ER model. These problems are collectively referred to as connection traps, and
normally occur due to a misinterpretation of the meaning of certain relationships.
We examine the two main types of connection traps, called fan traps and chasm
traps, and illustrate how to identify and resolve such problems in ER models.

In general, to identify connection traps we must ensure that the meaning of
a relationship (and the business rule that it represents) is fully understood and
clearly defined. If we don’t understand the relationships we may create a model
that is not a true representation of the ‘real world’.

7.7.1 Fan traps

Fan trap

Two entities have a 1:* relationship that fan out from a third entity, but the two entities
should have a direct relationship between them to provide the necessary information.

‘Actor plays Figure 7.12
character in video’ A relationship
<« Dlaysin called Playsin with
Video . Actor an attribute called
character.

character

164 M Database analysis and design techniques

Figure 7.13(a)

Example of a fan
trap.

Figure 7.13(b)

Examples of the
Branch Has Staff and
the Branch IsAssigned
Car relationships.
Cannot tell which
member of staff
uses car SH34.

A fan trap may exist where two or more one-to-many (1:*) relationships fan
out from the same entity. A potential fan trap is illustrated in Figure 7.13(a),
which shows two 1:* relationships (Has and IsAssigned) emanating from the same
entity called Branch. This model tells us that a single branch has many staff and
is assigned many cars. However, a problem arises if we want to know which
member of staff uses a particular car. To appreciate the problem, let’s examine
some examples of the Has and IsAssigned relationships, using values for the pri-
mary Kkey attributes of the Staff, Branch, and Car entities, as shown in Figure
7.13(b).

If we attempt to answer the question: ‘Which member of staff uses car
SH347?', it’s impossible to give a specific answer with the current structure. We
can determine that car SH34 is assigned to branch BOO1 but we cannot tell
whether staff SO003 or S1500 uses this car. The inability to answer this question
specifically is the result of a fan trap.

We resolve this fan trap by adding a new relationship called Staff Uses Car to
the original ER model, as shown in Figure. 7.13(c). If we now examine the
examples of the Has, IsAssigned, and Uses relationships shown in Figure 7.13(d),
we can see that staff S1500 uses car SH34.

Staff « Has Branch IsAssigned p» Car

staffNo L.x 1.1 branchNo 1.1 L.*1" vehLicenseNo

staffNo branchNo vehLicenseNo

S0003 «¢ B0O1

Entity-Relationship modeling B 165

Figure. 7.13(c)
Staff Branch i Car
<« Has IsAssigned B> Resolving the fan
staffNo L L1 branchNo 1.1 L™ VehLicenseNo trap.
1..1 Uses > 0..1

A

Adding the Uses
relationship resolves
the fan trap

Figure 7.13(d)

Examples of the
Branch Has Staff,
Branch IsAssigned Car,
and Staff Uses Car
relationships. Can
now tell which car
staff use.

branchNo

staffNo vehLicenseNo

S0003

7.7.2 Chasm traps

Chasm trap

A model suggests the existence of a relationship between entities, but the pathway
does not exist between certain entity occurrences.

A chasm trap may occur where there is a relationship with optional participa-
tion that forms part of the pathway between entities that are related. A
potential chasm trap is illustrated in Figure 7.14(a), which shows the relation-

166 M Database analysis and design techniques

Figure 7.14(a)

Example of a chasm
trap.

Figure 7.14(b)

Examples of the
Branch IsAssigned Car
and Staff Uses Car
relationships.
Cannot tell which
branch staff SO003
works at.

ships between the Branch, Car, and Staff entities. This model tells us that a single
branch is assigned many cars and a member of staff may use one car. In particu-
lar, note that not all staff use a car. A problem arises when we want to know at
which branch a member of staff works. To appreciate the problem, let’s exam-
ine some examples of the /sAssigned and Uses relationships, using values for the
primary key attributes of the Branch, Car, and Staff entities, as shown in Figure
7.14(b).

If we attempt to answer the question: ‘At which branch does staff SO003
work?’, we can’t tell with the current structure as not all staff use cars. The inabil-
ity to answer this question is considered to be a loss of information (as we know a
member of staff must work at a branch), and is the result of a chasm trap. The
optional participation of Staff in the Staff Uses Car relationship means that some
members of staff are not associated with a branch through the use of cars.

Therefore, to solve this problem and remove the chasm trap, we add a relation-
ship called Has between the Branch and Staff entities, as shown in Figure 7.14(c). If
we now examine the examples of the Has, IsAssigned, and Uses relationships shown
in Figure 7.14(d), we can see that staff SO003 works at branch BOO1.

The ER concepts described in this chapter sometimes prove inadequate for
modeling complex databases. In Chapter 11, we’ll introduce some of the more
popular enhanced concepts associated with ER models that you may find useful
when modeling more complex data.

Branch IsAssjgned > Car < Uses Staff

*
L1 . vehLicenseNo 0..1 L1 staffNo

branchNo

staffNo

branchNo vehLicenseNo

<« Uses

Entity-Relationship modeling Bl 167

Figure 7.14(c)

Branch IsAssigned > Car 4 Uses Staff
branchNo 1.1 L.> vehLicenseNo 0.1 1.1 staffNo
1..1 Has P 1.*

Adding the Has
relationship resolves
the chasm trap

branchNo vehLicenseNo

Is A“ocated '

IsAllocateq S

staffNo

Resolving the
chasm trap.

Figure 7.14(d)

Examples of the
Branch Has Staff,
Branch IsAssigned Car,
and Staff Uses Car
relationships. Can
now tell which
branch each
member of staff
works at.

168 M Database analysis and design techniques

v

S S S O SSSSS8Ss88s8S SS8ss

v
v

An entity is a set of objects with the same properties that are identified
by a user or organization as having an independent existence. A
uniquely identifiable object is called an entity occurrence.

A relationship is a set of meaningful associations among entities.
A uniquely identifiable association is called a relationship occurrence.

The degree of a relationship is the number of participating entities in
a relationship.

A recursive relationship is a relationship where the same entity partici-
pates more than once in different roles.

An attribute is a property of an entity or a relationship.

A simple attribute is composed of a single component.

A composite attribute is composed of multiple components.

A single-valued attribute holds a single value for an entity occurrence.
A multi-valued attribute holds multiple values for an entity occurrence.

A derived attribute represents a value that is derivable from the value
of a related attribute, or a set of attributes, not necessarily in the same
entity.

A strong entity is not dependent on the existence of another entity for
its primary key. A weak entity is partially or wholly dependent on the
existence of another entity, or entities, for its primary key.

Multiplicity defines the number of occurrences of one entity that may
relate to a single occurrence of an associated entity.

Multiplicity consists of two separate constraints; namely cardinality,
which describes the number of possible relationships for each partici-
pating entity, and participation, which determines whether all or only
some entity occurrences participate in a relationship.

A fan trap occurs when two entities have 1:* relationships that fan out
from a third entity, but the two entities should have a direct relationship
between them to provide the necessary information.

A chasm trap suggests the existence of a relationship between entities,
but the pathway does not exist between certain entity occurrences.

Entity-Relationship modeling B 169

7.1 Describe what entities represent in an ER model and provide examples of
entities with a physical or conceptual existence.

7.2 Describe what relationships represent in an ER model and provide exam-
ples of unary, binary, and ternary relationships.

7.3 Describe what attributes represent in an ER model and provide examples
of simple, composite, single-value, multi-value, and derived attributes.

7.4 Describe what multiplicity represents for a relationship.

7.5 What are business rules and how does multiplicity model these constraints?

7.6 How does multiplicity represent both the cardinality and the participation
constraints on a relationship?

7.7 Provide an example of a relationship with attributes.

7.8 Describe how strong and weak entities differ and provide an example of each.

7.9 Describe how fan and chasm traps can occur in an ER model and how
they can be resolved.

Exercises

7.10 Create an ER diagram for each of the following descriptions:

(a) Each company operates four departments, and each department
belongs to one company.

(b) Each department in part (a) employs one or more employees, and
each employee works for one department.

(c) Each of the employees in part (b) may or may not have one or more
dependants, and each dependant belongs to one employee.

(d) Each employee in part (c) may or may not have an employment
history.

(e) Represent all the ER diagrams described in (a), (b), (c), and (d) as a
single ER diagram.

7.11 Create an ER diagram to represent the data requirements for a company
that specializes in IT training. The company has 30 instructors and can
handle up to 100 trainees per training session. The company offers five
advanced technology courses, each of which is taught by a teaching team
of two or more instructors. Each instructor is assigned to a maximum of
two teaching teams or may be assigned to do research. Each trainee
undertakes one advanced technology course per training session.

(a) Identify the main entities for the company.

(b) Identify the main relationships and specify the multiplicity for each
relationship. State any assumptions you make about the data.

(c) Using your answers for (a) and (b), draw a single ER diagram to repre-
sent the data requirements for the company.

170 M Database analysis and design techniques

7.12 Read the following case study which describes the data requirements for
the EasyDrive School of Motoring.

The EasyDrive School of Motoring was established in Glasgow in 1992.
Since then, the School has grown steadily and now has several offices in
most of the main cities of Scotland. Each office has a Manager (who tends
also to be a Senior Instructor), several Senior Instructors, Instructors, and
administrative staff. The Manager is responsible for the day-to-day run-
ning of the office. Clients must first register at an office and this requires
that they complete an application form, which records their personal
details. A client may request individual lessons or book a block of lessons.
An individual lesson is for one hour, which begins and ends at the office.
A lesson is with a particular Instructor in a particular car at a given time.
Lessons can start as early as 8am and as late as 8pm. After each lesson, the
Instructor records the progress made by the client and notes the mileage
used during the lesson. The School has a pool of cars, which are adapted
for the purposes of teaching. Each Instructor is allocated to a particular
car. Once ready, a client applies for a driving test date. To obtain a full dri-
ving license the client must pass both the practical and theoretical parts
of the test. If a client fails to pass, the Instructor must record the reasons
for the failure.

(a) Identify the main entities of the EasyDrive School of Motoring.

(b) Identify the main relationships between the entities described in (a)
and represent each relationship as an ER diagram.

(c¢) Determine the multiplicity constraints for each relationship described
in (b). Represent the multiplicity for each relationship in the ER dia-
grams created in (b).

(d) Identify attributes and associate them with an entity or relationship.
Represent each attribute in the ER diagrams created in (c).

(e) Determine candidate and primary key attributes for each (strong)
entity.

(f) Using your answers (a) to (e), attempt to represent the data require-
ments of the EasyDrive School of Motoring as a single ER diagram. State
any assumptions necessary to support your design.

Normalization

In this chapter you will learn:

How tables that contain redundant data can suffer from update
anomalies, which can introduce inconsistencies into a database.

The rules associated with the most commonly used normal forms,
namely first (INF), second (2NF), and third (3NF) normal forms.

How tables that break the rules of 1NF, 2NF, or 3NF are likely to contain
redundant data and suffer from update anomalies.

How to restructure tables that break the rules of 1NF, 2NF, or 3NF.

\

\

In the previous chapter, we learned about Entity—Relationship (ER) modeling, a
commonly used top-down approach to database design. In this chapter, we
consider another commonly used approach to database design called normal-
ization. Normalization can be used in database design in two ways: the first is
to use normalization as a bottom-up approach to database design; the second is
to use normalization in conjunction with ER modeling.

Using normalization as a bottom-up approach involves analyzing the asso-
ciations between attributes and, based on this analysis, grouping the attributes
together to form tables that represent entities and relationships. However, this
approach becomes difficult with a large number of attributes, where it’s difficult
to establish all the important associations between the attributes. For this
reason, in this book we present a methodology that recommends that you
should first attempt to understand the data using a top-down approach to
database design. In this approach, we use ER modeling to create a data model
that represents the main entities and relationships. We then translate the ER
model into a set of tables that represents the data. It’s at this point that we use
normalization to check whether the tables are well designed.

Normalization
used in Step 2.2

172 M Database analysis and design techniques

Relational model
discussed in
Chapter 2

Base tables
defined in
Section 2.3.2

DBDL discussed
in Chapter 10

Primary and
foreign keys
defined in

Section 2.2.3

The purpose of this chapter is to examine why normalization is a useful tech-
nique in database design and, in particular, how normalization can be used to
check the structure of tables created from an ER model.

8.1 Introduction

Normalization

A technique for producing a set of tables with desirable properties that support the
requirements of a user or company.

In 1972, Dr E.F. Codd developed the technique of normalization to support
the design of databases based on the relational model. Normalization is often
performed as a series of tests on a table to determine whether it satisfies or vio-
lates the rules for a given normal form. There are several normal forms,
although the most commonly used ones are called first normal form (1NF),
second normal form (2NF), and third normal form (3NF). All these normal
forms are based on rules about relationships among the columns of a table.

In the following sections, we first demonstrate how badly structured tables
that contain redundant data can potentially suffer from problems called update
anomalies. Badly structured tables may occur due to errors in the original ER
model or in the process of translating the ER model into tables. We then pre-
sent a definition for first normal form (1NF), second normal form (2NF), and
third normal form (3NF), and demonstrate how each normal form can be used
to identify and correct different types of problems in our tables.

8.2 Data redundancy and update anomalies

A major aim of relational database design is to group columns into tables to
minimize data redundancy and reduce the file storage space required by the
implemented base tables. To illustrate the problems associated with data redun-
dancy, let’s compare the Staff and Branch tables shown in Figure 8.1 with the
StaffBranch table shown in Figure 8.2.

The StaffBranch table is an alternative form of the Staff and Branch tables. The
structure of these tables is described using a Database Definition Language (DBDL):

Staff (staffNo, name, position, salary, branchNo)
Primary Key staffNo
Foreign Key branchNo references Branch(branchNo)

Branch (branchNo, branchAddress, telNo)
Primary Key branchNo

StaffBranch (staffNo, name, position, salary, branchNo, branchAddress, telNo)
Primary Key staffNo

Normalization l 173

Staff Figure 8.1
staffNo name position salary branchNo The Staff and Branch
tables.
$1500 Tom Daniels Manager 46000 B0OO1
S0003 Sally Adams Assistant 30000 B0O1
S0010 Mary Martinez Manager 50000 B002
$3250 Robert Chin Supervisor 32000 B002
$2250 Sally Stern Manager 48000 B004
S0415 Art Peters Manager 41000 B003
Branch
branchNo | branchAddress telNo
BOO1 8 Jefferson Way, Portland, OR 97201 503-555-3618
B002 City Center Plaza, Seattle, WA 98122 206-555-6756
B0OO3 14 - 8th Avenue, New York, NY 10012 212-371-3000
B004 16 — 14th Avenue, Seattle, WA 98128 206-555-3131
Figure 8.2
The StaffBranch table.
staffNo | name position salary | branchNo | branchAddress telNo
S$1500 | Tom Daniels Manager 46000 | BOO1 8 Jefferson Way, Portland, OR 97201 503-555-3618
S0003 | Sally Adams Assistant 30000 | BOO1 8 Jefferson Way, Portland, OR 97201 503-555-3618
S0010 | Mary Martinez | Manager | S0000 | B0O2 City Center Plaza, Seattle, WA 98122 206-555-6756
$3250 | Robert Chin Supervisor | 32000 | BO02 City Center Plaza, Seattle, WA 98122 206-555-6756
$2250 | Sally Stern Manager | 48000 | BOO4 16 - 14th Avenue, Seattle, WA 98128 206-555-3131
S0415 | Art Peters Manager 41000 | B0OO3 14 - 8th Avenue, New York, NY 10012 | 212-371-3000

In the StaffBranch table there is redundant data: the details of a branch are
repeated for every member of staff located at that branch. In contrast, the details
of each branch appear only once in the Branch table and only the branch number
(branchNo) is repeated in the Staff table, to represent where each member of staff is
located. Tables that have redundant data may have problems called update
anomalies, which are classified as insertion, deletion, or modification anomalies.

174 M Database analysis and design techniques

Entity integrity
defined in
Section 2.3.2

8.2.1 Insertion anomalies

There are two main types of insertion anomalies, which we illustrate using the
StaffBranch table shown in Figure 8.2.

(1) To insert the details of a new member of staff located at a given branch into
the StaffBranch table, we must also enter the correct details for that branch. For
example, to insert the details of a new member of staff at branch B002, we
must enter the correct details of branch BO02 so that the branch details are
consistent with values for branch B002 in other records of the StaffBranch
table. The tables shown in Figure 8.1 do not suffer from this potential incon-
sistency, because for each statf member we only enter the appropriate branch
number into the Staff table. In addition, the details of branch B0O0O2 are
recorded only once in the database as a single record in the Branch table.

(2) To insert details of a new branch that currently has no members of staff
into the StaffBranch table, it’s necessary to enter nulls into the staff-related
columns, such as staffNo. However, as staffNo is the primary key for the
StaffBranch table, attempting to enter nulls for staffNo violates entity
integrity, and is not allowed. The design of the tables shown in Figure 8.1
avoids this problem because new branch details are entered into the Branch
table separately from the staff details. The details of staff ultimately located
at a new branch can be entered into the Staff table at a later date.

8.2.2 Deletion anomalies

If we delete a record from the StaffBranch table that represents the last member
of staff located at a branch, the details about that branch are also lost from the
database. For example, if we delete the record for staff Art Peters (S0415) from
the StaffBranch table, the details relating to branch B0OO3 are lost from the data-
base. The design of the tables in Figure 8.1 avoids this problem because branch
records are stored separately from staff records and only the column branchNo
relates the two tables. If we delete the record for staff Art Peters (S0415) from
the Staff table, the details on branch BOO3 in the Branch table remain unaffected.

8.2.3 Modification anomalies

If we want to change the value of one of the columns of a particular branch in
the StaffBranch table, for example the telephone number for branch B001, we
must update the records of all staff located at that branch. If this modification
is not carried out on all the appropriate records of the StaffBranch table, the data-
base will become inconsistent. In this example, branch BO0O1 would have
different telephone numbers in different staff records.

The above examples illustrate that the Staff and Branch tables of Figure 8.1
have more desirable properties than the StaffBranch table of Figure 8.2. In the

following sections, we examine how normal forms can be used to formalize the
identification of tables that have desirable properties from those that may
potentially suffer from update anomalies.

8.3 First normal form (1NF)

Only first normal form (1NF) is critical in creating appropriate tables for rela-
tional databases. All the subsequent normal forms are optional. However, to
avoid the update anomalies discussed in Section 8.2, it’s normally recom-
mended that you proceed to third normal form (3NF).

First normal form (1NF)

A table in which the intersection of every column and record contains only one value.

Let’s examine the Branch table shown in Figure 8.3, with primary key branchNo.
We can see that all the columns of this version of the Branch table comply with
our definition of 1NF with the exception of the column telNos. There are multi-
ple values at the intersection of the telNos column with every record. For
example, branchNo BOO1 has three telephone numbers, 503-555-3618, 503-555-
2727, and 503-555-6534. As a result, the Branch table is not in 1NFE

Note that although the branchAddress column may appear to hold multiple values,
this representation of address does not break 1NEF. In this example, we have simply
chosen the option to hold all the details of an address as a single value.

Normalization B 175

Figure 8.3
This version of the Branch table is not in 1NFE.
branchNo branchAddress telNos
BOO1 8 Jefferson Way, Portland, OR 97201 503-555-3618, 503-555-2727, 503-555-6534
B0O02 City Center Plaza, Seattle, WA 98122 206-555-6756, 206-555-8836
B0OO3 14 - 8th Avenue, New York, NY 10012 212-371-3000
B0O0O4 16 — 14th Avenue, Seattle, WA 98128 P 206-555-3131, 206-555-4112
Primary key More than

one value, so
not in 1NF

176 M Database analysis and design techniques

Figure 8.4

Converting to 1NF

To convert this version of the Branch table to 1NF, we create a separate table
called BranchTelephone to hold the telephone numbers of branches, by removing
the telNos column from the Branch table along with a copy of the primary key of
the Branch table (branchNo). The primary key for the new BranchTelephone table is
the new telNo column. The structures for the altered Branch table and the new
BranchTelephone table are shown in Figure 8.4. The Branch and BranchTelephone
tables are in 1NF as there is a single value at the intersection of every column
with every record for each table.

Altered Branch table is in 1NF due to the removal of the telNos column and the creation of a new table
called BranchTelephone.

Branch (Not 1NF)

branchNo branchAddress telNos
B0O1 8 Jefferson Way, Portland, OR 97201 503-555-3618, 503-555-2727, 503-555-6534
B002 City Center Plaza, Seattle, WA 98122 206-555-6756, 206-555-8836
B0O03 14 - 8th Avenue, New York, NY 10012 212-371-3000
B004 16 - 14th Avenue, Seattle, WA 98128 206-555-3131, 206-555-4112
Take copy of branchNo Remove telNos column and create new
column to new table column called telNo in the new table
to become foreign key I
Branch (1NF) BranchTelephone (1NF) ‘
branchNo branchAddress branchNo telNo
BOO1 8 Jefferson Way, Portland, OR 97201 BOO1 503-555-3618
B002 City Center Plaza, Seattle, WA 98122 B0O1 503-555-2727
B003 14 - 8th Avenue, New York, NY 10012 BOO1 503-555-6534
B004 16 — 14th Avenue, Seattle, WA 98128 B002 206-555-6756
* B002 206-555-8836
Primary key B003 212-371-3000
B004 206-555-3131
B004 206-555-4112
! 1
Becomes Becomes

foreign key primary key

Normalization B 177

8.4 Second normal form (2NF)

Second normal form applies only to tables with composite primary keys, that is
tables with a primary key composed of two or more columns. A 1NF table with
a single column primary key is automatically in at least 2NF. A table that is not
in 2NF may suffer from the update anomalies discussed in Section 8.2.

Second normal form (2NF)

A table that is already in INF and in which the values in each non-primary-key
column can be worked out from the values in all the columns that make up the pri-
mary key.

Let’s examine the TempStaffAllocation table shown in Figure 8.5. This table rep-
resents the hours worked per week for temporary staff at each branch. The
primary key for the TempStaffAllocation table is made up of both the staffNo and
branchNo columns. Note that we use the term ‘non-primary-key’ columns to
refer to those columns that are not part of the primary key. For example, the
non-primary-key columns for the TempStaffAllocation table are branchAddress, name,
position, and hoursPerWeek. The arrows shown below the TempStaffAllocation table
indicate particular relationships between the primary key columns and the
non-primary-key columns.

The particular relationships that we show between the columns of the
TempStaffAllocation table in Figure 8.5 are more formally referred to as func-
tional dependencies. Functional dependency is a property of the meaning of
the columns in a table and indicates how columns relate to one another.

For example, consider a table with columns A and B, where column B is
functionally dependent on column A (denoted A — B). If we know the value of
A, we find only one value of B in all the records that has this value for A, at any
moment in time. So, when two records have the same value of A, they also
have the same value of B. However, for a given value of B there may be several
different values of A.

We can see that the TempStaffAllocation table contains redundant data and may
suffer from the update anomalies described in Section 8.2. For example, to
change the name of ‘Ellen Layman’, we have to update two records in the
TempStaffAllocation table. If only one record is updated, the database will be
inconsistent. The reason that the TempStaffAllocation table contains redundant
data is that this table does not comply with our definition for 2NF.

178 M Database analysis and design techniques

ONYdUBIQ PUE ONJ4EIS WIOIJ INO PIAIOM] ATUO UBD UWINJOD 3IAIJSIN0OY UT SAIN[eA

JANZ UI 70U 3[R} OS ‘ONyElS A[UO WIOIF INO PIYIOM 3 UBD SUWIN[OD UOIHSOd PUE 3WeU UT SIN[BA

SS2UPPYYIUeIQ TOIJ INO PIYIOM] UD UWIN[OD ONYIUBIQ UT SINJBA

AINZ Ul 70U 3[qe} OS ‘ONYdUeIq AJUO WOIJ INO Aoy Arewnid
POYIOM 3 UBD UWINJOD SSAPPYYIUBIQ UT SINTRA ausodwo)
01 juelsissy IrepuIs aaeq 8C186 VM ‘911135 ‘Dnuaay WIFT — 91 ¥00d | <C19%S
4! juessissy IrepurIs saed TC186 VM ‘211e3S ‘eze[d 121uaD 1D 200d | <CI9%S
6 juelsissy uewe] UIg 8C186 VM ‘9[11eas ONUdAY FT - 91 ¥ood | SSS¥S
91 juelsissy uewde] u[q TT186 VM ‘918G ‘eze[d 121usD A1) 2009 | SSSPS
YoM IdJsInoY uonisod dureu SSIIPpyyYdueIlq | ONUYdUeIq | ONJJeIs

“IN'Z UI JOU ST 9[qe} U013ed0||y4eisdw]

G'g nbi4

Consider the non-primary-key column branchAddress of the TempStaffAllocation
table. The values in the branchAddress column can be worked out from the values
in the branchNo column (part of the primary key). In other words, every unique
value in the branchNo column is associated with the same value in the
branchAddress column. For example, every time the value BOO2 appears in the
branchNo column, the same address ‘City Center Plaza, Seattle, WA 98122’ appears
in the branchAddress column. In this example, the reverse is also true. Every time
the value ‘City Center Plaza, Seattle, WA 98122’ appears in the branchAddress
column, the same branch number BOO2 appears in the branchNo column.

Now consider the non-primary-key columns name and position. The values in
the name and position columns can be worked out from the values in the staffNo
column (part of the primary key). For example, every time S4555 appears in the
staffNo column, the name ‘Ellen Layman’ and position ‘Assistant’ appear in the
name and position columns.

Finally, consider the non-primary-key column hoursPerWeek. The values in the
hoursPerWeek column can only be worked out from the values in both the staffNo
and branchNo columns (the whole primary key). For example, when S4555
appears in the staffNo column at the same time that BOO2 appears in the
branchNo column, then the value ‘16" appears in the hoursPerWeek column.

The formal definition of second normal form (2NF) is a table that is in first
normal form and every non-primary-key column is fully functionally depen-
dent on the primary key. Full functional dependency indicates that if A and B
are columns of a table, B is fully functionally dependent on A, if B is not
dependent on any subset of A. If B is dependent on a subset of A, this is
referred to as a partial dependency. If a partial dependency exists on the pri-
mary key, the table is not in 2NF. The partial dependency must be removed for
a table to achieve 2NF.

Converting to 2NF

To convert the TempStaffAllocation table shown in Figure 8.5 to 2NF, we need to
remove the non-primary-key columns that can be worked out using only part
of the primary key. In other words, we need to remove the columns that can be
worked out from either the staffNo or the branchNo column but do not require
both. For the TempStaffAllocation table, this means that we must remove the
branchAddress, name, and position columns and place them in new tables.

To do this we create two new tables called Branch and TempStaff. The Branch
table will hold the columns describing the details of branches and the TempStaff
table will hold the columns describing the details of temporary staff.

Normalization l 179

180 M Database analysis and design techniques

(1) The Branch table is created by removing the branchAddress column from the
TempStaffAllocation table along with a copy of the part of the primary key that
the column is related to, which in this case is the branchNo column.

(2) In a similar way, the TempStaff table is created by removing the name and
position columns from the TempStaffAllocation table along with a copy of the
part of the primary key that the columns are related to, which in this case is
the staffNo column.

It’s not necessary to remove the hoursPerWeek column as the presence of this
column in the TempStaffAllocation table does not break the rules of 2NF.

To ensure that we maintain the relationship between a temporary member of
staff and the branches at which he or she works for a set number of hours, we
leave a copy of the staffNo and branchNo columns to act as foreign keys in the
TempStaffAllocation table.

The structure for the altered TempStaffAllocation table and the new Branch and
TempStaff tables are shown in Figure 8.6. The primary key for the new Branch
table is branchNo and the primary key for the new TempStaff table is staffNo.

The TempStaff and Branch tables must be in 2NF because the primary key for
each table is a single column. The altered TempStaffAllocation table is also in 2NF
because the non-primary-key column hoursPerWeek is related to both the staffNo
and branchNo columns.

8.5 Third normal form (3NF)

Although 2NF tables have less redundancy than tables in 1NF, they may still
suffer from update anomalies.

Third normal form (3NF)

A table that is already in 1NF and 2NF, and in which the values in all non-primary-key
columns can be worked out from only the primary key column(s) and no other columns.

Let’s examine the StaffBranch table shown in Figure 8.2, with primary key
staffNo. In Figure 8.7, we indicate the particular relationships between the
columns in this table. We can see that the StaffBranch table contains redundant
data and may suffer from the update anomalies described in Section 8.2. For
example, to change the telephone number of branch B001, we have to update
two records in the StaffBranch table. If only one record is updated, the database
will be inconsistent. The reason that the StaffBranch table contains redundant
data is that this table does not comply with our definition for 3NFE.

Normalization l 181

Figure 8.6

Altered TempStaffAllocation table is in 2NF due to the removal of the branchAddress, name, and position
columns and the creation of the new Branch and TempStaff tables.

Composite
primary key

TempStaffAllocation (Not 2NF)

primary key

staffNo | branchNo | branchAddress name position hoursPerWeek
S4555 B002 City Center Plaza, Seattle, WA 98122 Ellen Layman Assistant 16
s | S4555 B00O4 16 — 14th Avenue, Seattle, WA 98128 | Ellen Layman Assistant 9
54612 B0O02 City Center Plaza, Seattle, WA 98122 Dave Sinclair Assistant 14
S4612 B00O4 16 — 14th Avenue, Seattle, WA 98128 | Dave Sinclair Assistant 10
Take copy of Take copy of Move branchAddress Move name Move position
staffNo branchNo column to new table column to column to
column to column to new table new table
new table to new table to
become become
primary key primary key
Branch (2NF) TempStaff (2NF)
branchNo | branchAddress staffNo | name position
B002 City Center Plaza, Seattle, WA 98122 $4555 Ellen Layman | Assistant
B004 16 — 14th Avenue, Seattle, WA 98128 S4612 Dave Sinclair | Assistant
Becomes Becomes
primary key primary key
TempStaffAllocation (2NF)
staffNo | branchNo | hoursPerWeek
S4555 B002 16
S4555 B004 9
S4612 B002 14
S4612 B004 10
Becomes \ Becomes
foreign key Composite foreign key

182 M Database analysis and design techniques

Figure 8.7

The StaffBranch table is not in 3NFE.

StaffBranch (Not 3NF)

staffNo | name position salary branchNo | branchAddress telNo
S1500 Tom Daniels Manager 46000 BOO1 8 Jefferson Way, Portland, OR 97201 |503-555-3618
S0003 Sally Adams Assistant 30000 | BOO1 8 Jefferson Way, Portland, OR 97201 |503-555-3618
S0010 Mary Martinez | Manager 50000 | B0O2 City Center Plaza, Seattle, WA 98122 |206-555-6756
$3250 Robert Chin Supervisor | 32000 B002 City Center Plaza, Seattle, WA 98122 |206-555-6756
$2250 Sally Stern Manager 48000 | B0O4 16 — 14th Avenue, Seattle, WA 98128 |206-555-3131
S0415 Art Peters Manager 41000 B0O0O3 14 - 8th Avenue, New York, NY 10012 |212-371-3000
Primarly 1 . 1 1 t 1 . 1
key Values in all non-primary-key columns can be worked out from the primary key, staffNo

Values in branchAddress and telNo columns can be
worked out from branchNo, so table not in 3NF

Values in branchNo and telNo columns can be
worked out from branchAddress, so table not in 3NF

Values in branchNo and branchAddress columns can
be worked out from telNo, so table not in 3NF

The StaffBranch table is not in 3NF because of the presence of the branchNo,
branchAddress, and telNo columns. Although we can work out the branch number,
branch address, and telephone number of a member of staff from the primary
key, staffNo, we can also work out the details for a given branch, if we know the
branch number, branch address, or branch telephone number. In other words,
we can work out information using values from non-primary-key columns,
namely branchNo, branchAddress, or telNo. For example, when S1500 appears in the
staffNo column, ‘8 Jefferson Way, Portland, OR 97201’ appears in the
branchAddress column. However, when BOO1 appears in branchNo, ‘8 Jefferson
Way, Portland, OR 97201’ also appears in the branchAddress column. In other
words, the address that a member of staff works at can be worked out from
knowing the value in branchNo. This is not allowed in 3NF as the values in all
non-primary-key columns must be worked out from only the values in the pri-
mary key column(s).

The formal definition for third normal form (3NF) is a table that is in first
and second normal forms and in which no non-primary-key column is transi-
tively dependent on the primary key. Transitive dependency is a type of
functional dependency that occurs when a particular type of relationship
holds between columns of a table.

For example, consider a table with columns A, B, and C. If B is functionally
dependent on A (A — B) and C is functionally dependent on B (B — C), then C
is transitively dependent on A via B (provided that A is not functionally depen-
dent on B or C). If a transitive dependency exists on the primary key, the table
is not in 3NF. The transitive dependency must be removed for a table to
achieve 3NE.

Converting to 3NF

To convert the StaffBranch table shown in Figure 8.7 to 3NE, we need to remove
the non-primary-key columns that can be worked out using another non-pri-
mary-key column. In other words, we need to remove the columns that
describe the branch at which the member of staff works. We remove the
branchAddress and telNo columns and take a copy of the branchNo column. We
create a new table called Branch to hold these columns and nominate branchNo as
the primary key for this table. The branchAddress and telNo columns are candi-
date keys in the Branch table as these columns can be used to uniquely identify a
given branch. The relationship between a member of staff and the branch at
which he or she works is maintained as the copy of the branchNo column in the
StaffBranch table acts as a foreign key.

The structure for the altered StaffBranch table and the new Branch tables are
shown in Figure 8.8. The altered StaffBranch table is in 3NF because each non-
primary-key column can only be worked out from the primary key, staffNo.

The new Branch table is also in 3NF as all of the non-primary-key columns
can be worked out from the primary key, branchNo. Although the other two
non-primary-key columns in this table, branchAddress and telNo, can also be used
to work out the details of a given branch, this does not violate 3NF because
these columns are candidate keys for the Branch table. This example illustrates
that the definition for 3NF can be generalized to include all candidate keys of a
table, if any exist.

Therefore, for tables with more than one candidate key you can use the gen-
eralized definition for 3NF, which is a table that is in 1NF and 2NF, and in
which the values in all the non-primary-key columns can be worked out from
only candidate key column(s) and no other columns. Furthermore, this general-
ization is also true for the definition of 2NF, which is a table that is in 1NF and
in which the values in each non-primary-key column can be worked out from

Normalization l 183

184 M Database analysis and design techniques

Figure 8.8

The StaffBranch table is in 3NF due to the removal of the branchAddress and telNo columns and the

creation of a new table called Branch.

StaffBranch (Not 3NF)

staffNo | name position salary | branchNo | branchAddress telNo
S$1500 Tom Daniels Manager 46000 | BOO1 8 Jefferson Way, Portland, OR 97201 503-555-3618
S0003 Sally Adams Assistant 30000 | BOO1 8 Jefferson Way, Portland, OR 97201 503-555-3618
S0010 Mary Martinez | Manager 50000 | B0OO2 City Center Plaza, Seattle, WA 98122 | 206-555-6756
$3250 Robert Chin Supervisor | 32000 | B0O2 City Center Plaza, Seattle, WA 98122 206-555-6756
$2250 Sally Stern Manager 48000 | BOO4 16 — 14th Avenue, Seattle, WA 98128 | 206-555-3131
S0415 Art Peters Manager 41000 | BOO3 14 - 8th Avenue, New York, NY 10012 | 212-371-3000
Take copy of Move branchAddress Move telNo
branchNo column to column to new table column to new
new table to table
become primary key
Branch (3NF)
branchNo | branchAddress telNo
BOO1 8 Jefferson Way, Portland, OR 97201 503-555-3618
B002 City Center Plaza, Seattle, WA 98122 206-555-6756
B0O03 14 - 8th Avenue, New York, NY 10012 | 212-371-3000
B004 16 — 14th Avenue, Seattle, WA 98128 206-555-3131
Bectmes Bect)mes Bicomes
primary key candidate key candidate key
Y
Staff (3NF)
staffNo name position salary branchNo
S$1500 Tom Daniels Manager 46000 BOO1
S0003 Sally Adams Assistant 30000 B0OO1
S0010 Mary Martinez Manager 50000 B002
$3250 Robert Chin Supervisor 32000 B0O02
$2250 Sally Stern Manager 48000 B004
S0415 Art Peters Manager 41000 B0O03
d }
Primary key Becomes

foreign key

all the columns that make up a candidate key and no other columns. Note that
this generalization does not alter the definition for 1NF as this normal form is
independent of keys and particular relationships between columns of a table.

The trade-off is whether it is better to keep the process of normalization sim-
pler by examining the relationships between the non-primary-key columns and
those that make up the primary keys, which allows the identification of the
most problematic and obvious redundancy in tables, or to use the general defi-
nitions and increase the opportunity to identify missed redundancy. In fact, it
is often the case that whether you use the definitions based on primary keys or
the general definitions of 2NF and 3NF, the decomposition of tables is the same.

There are normal forms that go beyond 3NF such as Boyce-Codd normal
form (BCNF), fourth normal form (4NF), and fifth normal form (SNF). However,
these later normal forms are not commonly used as they attempt to identify
and solve problems in tables that occur relatively infrequently. However, if you
would like to find out more about BCNF, 4NF, and 5NF you should consult the
book Database Systems by Connolly and Begg (2002).

J Normalization is a technique for producing a set of tables with desir-
able properties that supports the requirements of a user or company.

‘/ Tables that have redundant data may have problems called update
anomalies, which are classified as insertion, deletion, or modification
anomalies.

J The definition for first normal form (1NF) is a table in which the inter-
section of every column and record contains only one value.

J The definition for second normal form (2NF) is a table that is already in
INF and in which the values in each non-primary-key column can be
worked out from the values in all the column(s) that make up the pri-
mary key.

J The definition for third normal form (3NF) is a table that is already
in TNF and 2NF, and in which the values in all non-primary-key
columns can be worked out from only the primary key column(s) and
no other columns.

Normalization l 185

186 M Database analysis and design techniques

Figure 8.9

8.1 Discuss how normalization may be used in database design.

8.2 Describe the types of update anomalies that may occur on a table that has
redundant data.

8.3 Describe the characteristics of a table that violates first normal form (1NF)
and then describe how such a table is converted to 1NF.

8.4 What is the minimal normal form that a table must satisfy? Provide a
definition for this normal form.

8.5 Describe an approach to converting a first normal form (1NF) table to
second normal form (2NF) table(s).

8.6 Describe the characteristics of a table in second normal form (2NF).

8.7 Describe what is meant by full functional dependency and describe how
this type of dependency relates to 2NF. Provide an example to illustrate
your answer.

8.8 Describe the characteristics of a table in third normal form (3NF).

8.9 Describe what is meant by transitive dependency and describe how
this type of dependency relates to 3NF. Provide an example to illustrate
your answer.

Exercises

8.10 The table shown in Figure 8.9 lists dentist/patient appointment data. A

patient is given an appointment at a specific time and date with a dentist
located at a particular surgery.

(a) The table shown in Figure 8.9 is susceptible to update anomalies.
Provide examples of insertion, deletion, and modification anomalies.

(b) Describe and illustrate the process of normalizing the table shown in
Figure 8.9 to 3NF. State any assumptions you make about the data
shown in this table.

Details of patient

dental
appointments.

staffNo | dentistName patientNo | patientName | appointment surgeryNo
date time

$1011 | Tony Smith P100 Gillian White | 12-Aug-03 10.00 | S10

$1011 | Tony Smith P105 Jill Bell 13-Aug-03 12.00 | S15

S$1024 | Helen Pearson | P108 Ian MacKay 12-Sept-03 10.00 | S10

S$1024 | Helen Pearson | P108 Ian MacKay 14-Sept-03 10.00 | S10

$1032 | Robin Plevin P105 Jill Bell 14-Oct-03 16.30 | S15

$1032 | Robin Plevin P110

John Walker 15-Oct-03 18.00| S13

8.11 An agency called InstantCover supplies part-time/temporary staff to hotels
throughout Scotland. The table shown in Figure 8.10 lists the time spent
by agency staff working at two hotels. The National Insurance Number

(NIN) is unique for every employee.

(a) The table shown in Figure 8.10 is susceptible to update anomalies.
Provide examples of insertion, deletion, and modification anomalies.

(b) Describe and illustrate the process of normalizing the table shown in
Figure 8.10 to 3NF. State any assumptions you make about the data
shown in this table.

NIN contractNo | hoursPerWeek | eName hotelNo | hotelLocation
113567WD| C1024 16 John Smith H25 Edinburgh
234111XA | C1024 24 Diane Hocine | H25 Edinburgh
712670YD | C1025 28 Sarah White H4 Glasgow
113567WD| C1025 16 John Smith H4 Glasgow

Normalization l 187

Figure 8.10

Employees of
InstantCover and
their contracts to
work at hotels.

Logical database design

9 Logical database design - Step 1 191
10 Logical database design - Step 2 219
11 Enhanced ER modeling techniques 246

Logical database
design — Step 1

In this chapter you will learn:

What a design methodology is.

Database design has two main phases: logical and physical design.
Critical success factors in database design.

About a methodology for logical and physical database design.

The tasks in Step 1 of the database design methodology, which build
an ER model.

The documentation produced during Step 1 of database design,
including Entity-Relationship (ER) diagrams and a data dictionary.

Logical database design
Step 1 Create ER model
Step 2 Map ER model to tables

Physical database design

Step 3 Translate logical design
Step 4 Choose file organizations
Step 5 Design user views

Step 6 Design security

Step 7 Controlled redundancy
Step 8 Monitor and tune

A A A AA

\

In Chapter 4, we described the stages of the database system development life-
cycle, one of which is database design. This stage starts only after a complete
analysis of the organization’s requirements has been undertaken, as discussed
in Chapter 6. Database design is made up of two main phases: logical database
design and physical database design. In this chapter and Chapter 10 we’ll present
a methodology for logical database design and in Chapters 12 to 16 we'll pre-
sent a methodology for physical database design. We begin by presenting an
overview of the database design methodology and then describe in detail the
tasks associated with Step 1 of logical database design.

192 M Logical database design

Logical design
described in this
chapter and
Chapter 10

9.1 Introduction to the database design
methodology

If the database you require is reasonably complex, you'll need a systematic
approach to design and build your database to ensure that it satisfies users’ require-
ments and achieves stated performance requirements (such as response times). This
systematic approach is called a database design methodology. Before presenting an
overview of the methodology, we first discuss what a database design methodology
is and then identify the critical success factors in database design.

9.1.1 What is a design methodology?

Design methodology

A structured approach that uses procedures, techniques, tools, and documentation aids
to support and facilitate the process of design.

A design methodology consists of phases made up of steps, which guide the
designer in the techniques appropriate at each stage of the project. The phases
also help the designer to plan, manage, control, and evaluate development pro-
jects. In addition, it is a structured approach for analyzing and modeling a set
of requirements in a standardized and organized manner.

9.1.2 Phases of database design

In this book we present a methodology, which separates database design into
two main phases: logical and physical database design.

Logical database design

The process of constructing a model of the data used in an organization based on
a specific data model, but independent of a particular DBMS and other physical
considerations.

In the logical database design phase we build the logical representation of
the database, which includes identification of the important entities and rela-
tionships, and then translate this representation to a set of tables. The logical
database design is a source of information for the physical design phase, provid-
ing the physical database designer with a vehicle for making trade-offs that are
very important to the design of an efficient database.

Logical database design - Step 1 l 193

Physical database design

The process of producing a description of the implementation of the database on sec-
ondary storage; it describes the base tables, file organizations, and indexes used to
achieve efficient access to the data, and any associated integrity constraints and secu-
rity restrictions.

In the physical database design phase we decide how the logical design is to

be physically implemented in the target relational DBMS. This phase allows the Physical design
designer to make decisions on how the database is to be implemented. discussed in
Therefore, physical design is tailored to a specific DBMS. Chapters 12-16

Strictly speaking, there is a phase before logical database design known as con-

ceptual database design. This phase begins with the creation of a conceptual Relational model
data model of the data used by the organization, which is entirely indepen- discussed in
dent of all implementation details such as the underlying data model (for Chapter 2

example, the relational data model) or any other physical considerations.
However, as we're designing databases specifically for relational DBMSs, we've
combined the conceptual and logical phases together and used the more gen-
eral term ‘logical database design’.

9.1.3 Critical success factors in database design
The following guidelines are important to the success of database design:

Work interactively with the users as much as possible.

Follow a structured methodology throughout the data modeling process.
Employ a data-driven approach.

Incorporate structural and integrity considerations into the data models.
Use normalization and transaction validation techniques in the methodology.
Use diagrams to represent as much of the data models as possible.

Use a Database Design Language (DBDL).

Build a data dictionary to supplement the data model diagrams.

Be willing to repeat steps.

All these guidelines are built into the methodology we're about to introduce
in the next section.

194 M Logical database design

Step 1 described
in this chapter

Figure 9.1

Steps in the
methodology for
logical and physical
database design.

9.2 Overview of the database design methodology

In this section, we present an overview of the database design methodology.
The steps in the methodology are shown in Figure 9.1 and the chapter in which
the step is discussed in detail is displayed in the adjacent column.

The logical database design phase of the methodology is divided into two
main steps.

In Step 1 we create an ER model and check that the model has minimal
redundancy and is capable of supporting user transactions. The output of
this step is the creation of an ER model, which is a complete and accurate
representation of the data requirements of the organization (or part of the
organization) that is to be supported by the database.

Logical database design Chapter
Step 1 Create and check ER model 9
Step 1.1 Identify entities
Step 1.2 Identify relationships
Step 1.3 Identify and associate attributes with entities
or relationships
Step 1.4 Determine attribute domains
Step 1.5 Determine candidate, primary, and alternate
key attributes
Step 1.6 Specialize/Generalize entities (optional step)
Step 1.7 Check model for redundancy
Step 1.8 Check model supports user transactions
Step 1.9 Review model with users

Step 2 Map ER model to tables 10
Step 2.1 Create tables
Step 2.2 Check table structures using normalization
Step 2.3 Check tables support user transactions
Step 2.4 Check business rules
Step 2.5 Review logical database design with users

Physical database design
Step 3 Translate logical database design for target DBMS 12

Step 3.1 Design base tables

Step 3.2 Design representation of derived data

Step 3.3 Design remaining business rules
Step 4 Choose file organizations and indexes 13

Step 4.1 Analyze transactions

Step 4.2 Choose file organizations

Step 4.3 Choose indexes
Step 5 Design user views 14
Step 6 Design security mechanisms 14
Step 7 Consider the introduction of controlled redundancy 15
Step 8 Monitor and tune the operational system 16

Logical database design - Step 1 l 195

In Step 2 we map the ER model to a set of tables. The structure of each table
is checked using normalization. Normalization is an effective means of
ensuring that the tables are structurally consistent, logical, with minimal
redundancy. The tables are also checked to ensure that they are capable of
supporting the required transactions. The required integrity constraints on
the database are also defined.

For database systems that have numerous and varied user views, it may be nec-
essary to create one or more logical data model designs that are merged at a
later stage of the database design process. We'll describe the typical tasks asso-
ciated with the merging of the data models in Appendix C.

Physical database design is divided into six main steps:

Step 3 involves the design of the base tables and integrity constraints using
the available functionality of the target DBMS.

Step 4 involves choosing the file organizations and indexes for the base
tables. Typically, DBMSs provide a number of alternative file organizations
for data, with the exception of PC DBMSs, which tend to have a fixed storage
structure.

Step 5 involves the design of the user views originally identified in the
requirements analysis and collection stage of the database system develop-
ment lifecycle.

Step 6 involves designing the security measures to protect the data from
unauthorized access.

Step 7 considers relaxing the normalization constraints imposed on the tables
to improve the overall performance of the system. This is a step that you
should undertake only if necessary, because of the inherent problems
involved in introducing redundancy while still maintaining consistency.

Step 8 is an ongoing process of monitoring and tuning the operational
system to identify and resolve any performance problems resulting from the
design and to implement new or changing requirements.

Appendix B presents a summary of the methodology for those of you who
are already familiar with database design and simply require an overview of the
main steps.

Throughout this methodology, users play a critical role in continually
reviewing and checking the data model and the supporting documentation.
Some steps may not be necessary depending on the complexity of the organiza-
tion you're analyzing and your need for performance and security.

Step 2 described
in Chapter 10

Step 3 described
in Chapter 12

Step 4 described
in Chapter 13

Step 5 described
in Chapter 14

Step 6 described
in Chapter 14

Step 7 described
in Chapter 15

Step 8 described
in Chapter 16

196 M Logical database design

Centralized
approach

discussed in
Section 4.6

TIP

Database design is an iterative process that has a starting point and an K
almost endless procession of refinements. Although we present our database
design methodology as a procedural process, it must be emphasized that this
does not imply that it should be performed in this manner. It is likely that the
knowledge you gain in one step may alter decisions you made in a previous
step. Similarly, you may find it useful to briefly look at a later step to help with
an earlier step. The methodology should act as a framework to help guide you
through the database design activity effectively.

9.3 Introduction to Step 1 of the logical database
design methodology

This section covers the first step of our logical database design methodology. In
this step, you build an ER model for one of the user views identified during the
earlier analysis stage.

During analysis, you will have identified a number of user views, and depend-
ing on the amount of overlap between these views and the complexity of your
database system, you may have combined some user views together. In the
requirements collection and analysis stage discussed in Section 6.4.4, we used
the centralized approach to create two collections of user views for StayHome
that represent the merged requirements for the following user views:

Branch user views representing the Manager, Supervisor, and Assistant user
views;
Business user views representing the Director and Buyer user views.

In this section and in the following chapter, you're going to build a logical data
model for the Branch user views of StayHome. In Chapter 4, we introduced the
term ‘local logical data model’ to describe a model that describes one or more,
but not all, user views of a database. However, throughout the chapters that
describe the database design methodology, we simply use the more general
term ‘logical data model’.

For those of you interested in building more complex databases that first require
the creation of separate local logical data models to represent different user views of
a database, we describe and demonstrate the merging of the data models using the
Branch and Business user views of StayHome in Appendix C.

Logical database design - Step 1 l 197

Step 1 Create and check ER model

Objective
To build an ER model of the data requirements of the organization (or part of
the organization) to be supported by the database.

Each ER model comprises:

entities,

relationships,

attributes and attribute domains,

primary keys and alternate keys,

integrity constraints.

The ER model is supported by documentation, including a data dictionary
and ER diagrams, which you’ll produce throughout the development of the
model. We'll detail the types of supporting documentation that you may want
to produce as we go through the various steps. The tasks involved in Step 1 are:

Step 1.1 Identify entities

Step 1.2 Identify relationships

Step 1.3 Identify and associate attributes with entities or relationships

Step 1.4 Determine attribute domains

Step 1.5 Determine candidate, primary, and alternate key attributes

Step 1.6 Specialize/Generalize entities (optional step)

Step 1.7 Check model for redundancy

Step 1.8 Check model supports user transactions

Step 1.9 Check model with users

So, let’s start to build the ER model for the Branch user views of StayHome.

Step 1.1 Identify entities

Obijective
To identify the required entities.

The first step in building an ER model is to define the main objects that the
users are interested in. These objects are the entities for the model. One method
of identifying entities is to examine the users’ requirements specification. From this

Entities defined
in Section 7.1

198 M Logical database design

Users' requirements
for Branch user
views given in
Section 6.4.4

specification, you can identify nouns or noun phrases that are mentioned (for
example, staff number, staff name, catalog number, title, daily rental rate, purchase
price). You should also look for major objects such as people, places, or concepts of
interest, excluding those nouns that are merely qualities of other objects.

For example, you could group staff number and staff name with an entity called
Staff and group catalog number, title, daily rental rate, and purchase price with an
entity called Video.

An alternative way of identifying entities is to look for objects that have an
existence in their own right. For example, Staff is an entity because staff exist
whether or not you know their names, addresses, and salaries. If possible, you
should get the user to assist with this activity.

It's sometimes difficult to identify entities because of the way they are pre-
sented in the users’ requirements specification. Users often talk in terms of
examples or analogies. Instead of talking about staff in general, users may men-
tion people’s names. In some cases, users talk in terms of job roles, particularly
where people or companies are involved. These roles may be job titles or
responsibilities, such as Manager, Supervisor, or Assistant. To further confuse
matters, users frequently use synonyms and homonyms.

Two words are synonyms when they have the same meaning, for example ‘branch’
and ‘outlet’. Homonyms occur when the same word can have different meanings
depending on the context. For example, the word ‘program’ has several alterna-
tive meanings such as a series of events, a plan of work, a piece of software, and a
course of study.

It's not always obvious whether a particular object is an entity, a relation-
ship, or an attribute. For example, how would you model marriage? In fact,
depending on the actual requirements you could model marriage as any or all
of these. You'll find that analysis is subjective, and different designers may pro-
duce different, but equally valid, interpretations. The activity therefore relies, to
a certain extent, on judgment and experience. Database designers must take a
very selective view of the world and categorize the things that they observe
within the context of the organization. Thus, there may be no unique set of
entities deducible from a given users’ requirements specification. However, suc-
cessive iterations of the analysis process should lead you to the choice of
entities that are at least adequate for the system required.

TIP

The fact that database design is subjective can initially be quite off- [Fmmm
putting. However, by following the methodology we present in this book, you'll
find that the task is achievable and that it gets easier with some practice and expe-
rience. To help, in Chapters 17 and 18 we’ll go through a second case study, and
in Appendix E we provide a number of common business data models you're
likely to encounter in one form or another.

Logical database design - Step 1 l 199

StayHome entities

For the Branch user views of StayHome, you may identify the following entities:

Branch Staff

Video VideoForRent

Member RentalAgreement

Actor Director
Document entities

As you identify entities, assign them names that are meaningful and obvious to
the users. Record the names and descriptions of entities in a data dictionary. If
possible, document the expected number of occurrences of each entity. If an
entity is known by different names, the names are referred to as synonyms or
aliases, which you should also record in the data dictionary. Figure 9.2 shows
an extract from the data dictionary that documents the entities for the Branch
user views of StayHome.

Step 1.2 Identify relationships

Obijective
To identify the important relationships that exist between the entities.

Having identified the entities, the next step is to identify all the relationships
that exist between these entities. When you identify entities, one method is to
look for nouns in the users’ requirements specification. Again, you can use the

Entity name Description Aliases Occurrence
Branch Place of work Outlet and One or more StayHome
Branch branches are located in
Outlet main cities throughout
the US.

Staff General term Employee Each member of staff
describing all works at a particular
staff employed branch.
by StayHome

D

Relationships
defined in
Section 7.2

Figure 9.2

Extract from the
data dictionary for
the Branch user
views of StayHome
showing a
description of
entities.

200 M Logical database design

Transaction check
described in Steps
1.8 and 2.3

Complex and
recursive
relationships
defined in Sections
7.2.1and 7.2.2

grammar of the requirements specification to identify relationships. Typically,
relationships are indicated by verbs or verbal expressions. For example:

Branch Has Staff
Branch IsAllocated VideoForRent
VideoForRent IsPartOf RentalAgreement

The fact that the users’ requirements specification records these relationships sug-
gests that they are important to the users, and should be included in the model.

TIP

We're interested only in required relationships between entities. In R
the previous example, you identified the Branch /sAllocated VideoForRent and
VideoForRent /sPartOf RentalAgreement relationships. You may also be inclined to
include a relationship between Branch and RentalAgreement (for example, Branch
Handles RentalAgreement). However, although this is a possible relationship,
from the requirements it’s not a relationship that we're interested in modeling.
We discuss this further in Step 1.7.

Take great care to ensure that all the relationships that are either explicit or
implicit in the users’ requirements specification are noted. In principle, it should
be possible to check each pair of entities for a potential relationship between
them, but this would be a daunting task for a large system comprising hundreds
of entities. On the other hand, it’s unwise not to perform some such check.
However, missing relationships should become apparent when you check that
the model supports the transactions that the users require. On the other hand, it
is possible that an entity can have no relationship with other entities in the data-
base but still play an important part in meeting the users’ requirements.

In most instances, the relationships you find will be binary; in other words,
the relationships exist between exactly two entities. However, you should be care-
ful to look out for complex relationships that may involve more than two entities
and recursive relationships that involve only one entity. For the Branch user
views of StayHome, you should identify the following non-binary relationships:

Registers a ternary relationship between Branch, Member, and Staff
Supervises a recursive relationship between Staff.

StayHome relationships

For the Branch user views of StayHome, you may identify the relationships
shown in Figure 9.3.

Logical database design - Step 1 l 201

Entity Relationship Entity Figure 9.3
Branch Has Staff First draft of the
relationships for the

IsAllocated VideoForRent Branch user views

Branch, Staff ' Registers Member of StayHome.

Staff Manages Branch
Supervises Staff

Video Is VideoForRent

VideoForRent IsPartOf RentalAgreement

Member Requests RentalAgreement

Actor Playsin Video

Director Directs Video

f represents a ternary relationship

Use Entity-Relationship (ER) modeling

It’s often easier to visualize a complex system rather than decipher long textual
descriptions of such a system. The use of Entity—Relationship (ER) diagrams
helps you more easily to represent entities and how they relate to one another.
You can represent the above entities and relationships in the first draft ER dia-

gram shown in Figure 9.4.

Throughout the database design phase, we recommend that ER dia-
grams are used whenever necessary, to help build up a picture of what you're

TIP

Other notations

shown in
attempting to model. Different people use different notations for ER diagrams. Appendix A
In this book, we’ve used the latest object-oriented notation called UML (Unified
Modeling Language), but other notations perform a similar function.
Determine the multiplicity constraints of relationships
Having identified the relationships you wish to model, you now want to deter-
mine the multiplicity of each relationship. If specific values for the multiplicity Multiplicity
are known, or even upper or lower limits, document these values as well. defined in
A model that includes multiplicity constraints more explicitly represents the Section 7.5

meaning of the relationship and consequently results in a better representation
of what you're trying to model. Multiplicity constraints are used to check and
maintain the quality of the data. These constraints can be applied when the
database is updated to determine whether or not the updates violate the stated

business rules.

202 M Logical database design

Figure 9.4
First draft ER diagram of the Branch user views for StayHome showing entities and relationships.
4 Directs Director
Video <« Dlaysln Actor
Is < Supervises
v Supervisee
Has P
VideoForRent <« IsAllocated Branch Staff
< Manages
Supervisor
IsPartOf
\ 4 Registers
RentalAgreement 4 Requests Member

Fan and chasm
traps discussed
in Section 7.7

StayHome multiplicity constraints

For the StayHome case study, you should identify the multiplicity constraints
shown in Figure 9.5. Figure 9.6 shows the updated ER diagram with this infor-
mation added.

Check for fan and chasm traps

Having identified the relationships, you should check that each one correctly
represents what you want it to represent, and that you've not inadvertently cre-
ated any fan traps or chasm traps.

Document relationships

As you identify relationships, assign them names that are meaningful and obvious
to the user, and also record relationship descriptions and the multiplicity con-
straints in the data dictionary. Figure 9.7 shows an extract from the data dictionary
that documents the relationships for the Business user views of StayHome.

Logical database design - Step 1 l 203

Entity Multiplicity Relationship Multiplicity Entity
Branch 1..1 Has 1.* Staff

1.1 IsAllocated 1.* VideoForRent
Branch, Stafft 1.%, 1.1 Registers 0..* Member
Staff 1..1 Manages 0..1 Branch

0..1 Supervises 0..* Staff
Video 1..1 Is 1.* VideoForRent
VideoForRent 1.1 IsPartOf 0..* RentalAgreement
Member 1.1 Requests 0..* RentalAgreement
Actor 0..* Playsin 1.* Video
Director 1..1 Directs 1.* Video

i represents a ternary relationship

Figure 9.5

Multiplicity
constraints for the
relationships
identified for the
Branch user views
of StayHome.

Figure 9.6
Adding multiplicity constraints to the ER diagram for the Branch user views of StayHome.
4 Directs Director
1..1
1.*
Video 4 Playsin Actor
1.* 0.*
s | 11 <« Supervises
Supervisee
v 1..* Has > 0"*
VideoForRent <« IsAllocated Branch 1.1 1.% Staff 0..1
1..* 1..1 <« Manages Supervisor
0.1 1..1
*
IsPartOf 1.1 L. 1..1
Regist
v O egisters
RentalAgreement 4 Requests Member

0.* 1..1

204 M Logical database design

Figure 9.7

Extract from the
data dictionary for
the Branch user
views of StayHome

showing
descriptions of
relationships.

Attributes
defined in
Section 7.3

Simple/Composite
attributes defined
in Section 7.3.1

Entity Multiplicity | Relationship Multiplicity | Entity

Branch 1.* Has 1..1 Staff

Branch 1.* IsAllocated 1..1 VideoForRent

Staff 0..1 Manages 1..1 Branch

Staff 0..* Supervises 0..1 Staff
—//_

Step 1.3 ldentify and associate attributes with entities or relationships

Obijective
To associate attributes with the appropriate entities or relationships.

The next step in the methodology is to identify the types of facts about the
entities and relationships that you've chosen to be represented in the database.
In a similar way to identifying entities, look for nouns or noun phrases in the
users’ requirements specification. The attributes can be identified where the
noun or noun phrase is a property, quality, identifier, or characteristic of one of
the entities or relationships that you’ve previously found.

TIP

By far the easiest thing to do when you’ve identified an entity or a rela- e
tionship in the users’ requirements specification is to consider ‘What information
are we required to hold on . . .?” The answer to this question should be described in
the specification. However, in some cases, you may need to ask the users to clar-
ify the requirements. Unfortunately, they may give you answers that also
contain other concepts, so users’ responses must be carefully considered.

Simple/Composite attributes

It’s important to note whether an attribute is simple or composite. Composite
attributes are made up of simple attributes. For example, an address attribute can
be simple and hold all the details of an address as a single value, such as ‘8
Jefferson Way, Portland, OR, 97201’. However, the address attribute may also
represent a composite attribute, made up of simple attributes that hold the

Logical database design - Step 1 ll 205

address details as separate values in the attributes street (‘8 Jefferson Way’), city
(‘Portland’), state (‘OR’), and zipCode (‘97201’).

The option to represent address details as a simple or composite attribute is
determined by the users’ requirements. If users do not need to access the sepa-
rate components of an address, you should represent the address attribute as a
simple attribute. On the other hand, if users do need to access the individual
components of an address, you should represent the address attribute as being
composite, made up of the required simple attributes.

Single/Multi-valued attributes

In addition to being simple or composite, an attribute can also be single- Single/ Multi-
valued or multi-valued. Most attributes you encounter will be single-valued, valued attributes
but occasionally you may encounter a multi-valued attribute; that is, an defined in
attribute that holds multiple values for a single entity occurrence. For exam- Section 7.3.2

ple, you may identify the Branch attribute telNo (telephone number) as a
multi-valued attribute.

You may have identified branch telephone numbers as a separate entity. This is
an alternative, and equally valid, way to model this. As you’ll see shortly in
Step 2.1, multi-valued attributes are mapped to tables anyway, so both
approaches produce the same end result.

Derived attributes

Attributes whose values can be found by examining the values of other attrib- Derived attributes
utes are known as derived attributes. All derived attributes must be shown in defined in
the data model to avoid a potential loss of information, which may occur if Section 7.3.3

the attribute or attributes on which the derived attribute is based are deleted
or modified.

We'll consider the representation of derived attributes during physical data-
base design. Depending on how the attribute is used, n