
2. Light and Matter

In this and the following chapter, we will discuss basic phenomena occurring
when matter is exposed to light. While here we will be concerned with various
actions of matter on light, the opposite effect will be discussed in Chap. 3.
Matter can act on electromagnetic radiation in manifold ways. In Fig. 2.1,
a typical situation is shown, where a light beam is incident on a slice of mat-
ter. In principle, three effects exist which may interfere with its undisturbed
propagation:

– reflection and refraction,
– absorption,
– scattering.

Reflection and refraction are strongly related to each other by Fresnel’s laws.
Therefore, these two effects will be addressed in the same section. In Fig. 2.1,
refraction is accounted for by a displacement of the transmitted beam. In
medical laser applications, however, refraction plays a significant role only
when irradiating transparent media like corneal tissue. In opaque media,
usually, the effect of refraction is difficult to measure due to absorption and
scattering.

Fig. 2.1. Geometry of reflection, refraction, absorption, and scattering
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Only nonreflected and nonabsorbed or forward scattered photons are
transmitted by the slice and contribute to the intensity detected behind the
slice. The ratio of transmitted and incident intensities is called transmittance.
Which of the losses – reflection, absorption, or scattering – is dominant pri-
marily depends on the type of material and the incident wavelength. As we
will encounter in the following sections, the wavelength is a very important
parameter indeed. It determines the index of refraction as well as the absorp-
tion and scattering coefficients. The index of refraction governs the overall
reflectivity of the target. This index strongly depends on wavelength in re-
gions of high absorption only. The scattering coefficient, on the other hand,
can scale inversely with the fourth power of wavelength as will be evaluated
in Sect. 2.3 when discussing Rayleigh scattering.
In laser surgery, knowledge of absorbing and scattering properties of a se-

lected tissue is essential for the purpose of predicting successful treatment.
The index of refraction might be of considerable interest when applying laser
radiation to highly reflecting surfaces such as metallic implants in dentistry or
orthopedics. In general, however, no specific kind of target or biological tissue
will be assumed unless otherwise stated in certain figures or tables. Instead,
emphasis is put on general physical relations which apply for most solids and
liquids. In reality, of course, limitations are given by the inhomogeneity of
biological tissue which are also responsible for our inability to provide other
than mean tissue parameters.

2.1 Reflection and Refraction

Reflection is defined as the returning of electromagnetic radiation by sur-
faces upon which it is incident. In general, a reflecting surface is the physical
boundary between two materials of different indices of refraction such as air
and tissue. The simple law of reflection requires the wave normals of the inci-
dent and reflected beams and the normal of the reflecting surface to lie within
one plane, called the plane of incidence. It also states that the reflection angle
θ ′ equals the angle of incidence θ as shown in Fig. 2.2 and expressed by

θ = θ ′ . (2.1)

The angles θ and θ ′ are measured between the surface normal and the in-
cident and reflected beams, respectively. The surface itself is assumed to be
smooth, with surface irregularities being small compared to the wavelength
of radiation. This results in so-called specular reflection.
In contrast, i.e. when the roughness of the reflecting surface is comparable

or even larger than the wavelength of radiation, diffuse reflection occurs.
Then, several beams are reflected which do not necessarily lie within the
plane of incidence, and (2.1) no longer applies. Diffuse reflection is a common
phenomenon of all tissues, since none of them is provided with highly polished
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Fig. 2.2. Geometry of specular reflection and refraction

surfaces such as optical mirrors. Only in special cases such as wet tissue
surfaces might specular reflection surpass diffuse reflection.
Refraction usually occurs when the reflecting surface separates two media

of different indices of refraction. It originates from a change in speed of the
light wave. The simple mathematical relation governing refraction is known
as Snell’s law . It is given by

sin θ

sin θ ′′
=
v

v ′
, (2.2)

where θ ′′ is the angle of refraction, and v and v ′ are the speeds of light
in the media before and after the reflecting surface, respectively. Since the
corresponding indices of refraction are defined by

n =
c

v
, (2.3)

n ′ =
c

v ′
,

where c denotes the speed of light in vacuum, (2.2) turns into

n sin θ = n ′ sin θ ′′ . (2.4)

Only for sin θ > n ′/n can (2.4) not be fulfilled, meaning that refraction will
not occur. This event is also referred to as total reflection.
The reflectivity of a surface is a measure of the amount of reflected radi-

ation. It is defined as the ratio of reflected and incident electric field ampli-
tudes. The reflectance is the ratio of the correponding intensities and is thus
equal to the square of the reflectivity. Reflectivity and reflectance depend
on the angle of incidence, the polarization of radiation, and the indices of
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refraction of the materials forming the boundary surface. Relations for re-
flectivity and refraction are commonly known as Fresnel’s laws. In this book,
we will merely state them and consider their principal physical impact. Exact
derivations are found elsewhere, e.g. in books dealing with electrodynamics.
Fresnel’s laws are given by

Es
′

Es
= −

sin(θ − θ ′′)

sin(θ + θ ′′)
, (2.5)

Ep
′

Ep
=
tan(θ − θ ′′)

tan(θ + θ ′′)
, (2.6)

Es
′′

Es
=
2 sin θ ′′ cos θ

sin(θ + θ ′′)
, (2.7)

Ep
′′

Ep
=

2 sin θ ′′ cos θ

sin(θ + θ ′′) cos(θ − θ ′′)
, (2.8)

where E, E ′, and E ′′ are amplitudes of the electric field vectors of the in-
cident, reflected, and refracted light, respectively. The subscripts “s” and
“p” denote the two planes of oscillation with “s” being perpendicular to the
plane of incidence – from the German senkrecht – and “p” being parallel to
the plane of incidence.
Further interaction of incident light with the slice of matter is limited

to the refracted beam. One might expect that the intensity of the refracted
beam would be complementary to the reflected one so that the addition of
both would give the incident intensity. However, this is not correct, because
intensity is defined as the power per unit area, and the cross-section of the
refracted beam is different from that of the incident and reflected beams
except at normal incidence. It is only the total energy in these beams that is
conserved. The reflectances in either plane are given by

Rs =

(
Es
′

Es

)2
, (2.9)

Rp =

(
Ep
′

Ep

)2
. (2.10)

In Fig. 2.3, the reflectances Rs and Rp are plotted as a function of the angle
of incidence. It is assumed that n = 1 and n ′ = 1.33 which are the indices of
refraction of air and water, respectively. Thus, Fig. 2.3 especially describes
the specular reflectance on wet surfaces.
The angle at which Rp = 0 is called the Brewster angle. In the case of

water, it is equal to 53◦. At normal incidence, i.e. θ = 0, the reflectances
in either plane are approximately 2%. This value is not directly evident
from (2.5) and (2.6), since insertion of θ = θ ′′ = 0 gives an indeterminate
result. It can be evaluated, however, as follows. Since both θ and θ ′′ become
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very small when approaching normal incidence, we may set the tangents
in (2.6) equal to the sines and obtain

Rp � Rs =
sin2(θ − θ ′′)

sin2(θ + θ ′′)
=

(
sin θ cos θ ′′ − cos θ sin θ ′′

sin θ cos θ ′′ + cos θ sin θ ′′

)2
. (2.11)

When dividing numerator and denominator of (2.11) by sin θ ′′ and replacing
sin θ/ sin θ ′′ by n ′, i.e. assuming n = 1, it reduces to

Rp � Rs =

(
n ′ cos θ ′′ − cos θ

n ′ cos θ ′′ + cos θ

)2
�

(
n ′ − 1

n ′ + 1

)2
. (2.12)

The approximate equality becomes exact within the limit of normal incidence.
Thus, inserting n ′ = 1.33 yields

Rp � Rs � 2% .

In several cases, this fraction of incident radiation is not negligible. Thus,
regarding laser safety, it is one of the main reasons why proper eye protection
is always required (see Chap. 5).

Fig. 2.3. Reflectances in s- and p-plane for water (n = 1.33)
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For water, the indices of refraction and the corresponding reflectances at
different wavelengths are listed in Table 2.1. Two strong absorption bands
occur at about 2.9μm and 6.0μm. They result from vibrational and rotational
oscillations of the water molecule. The major aspects of absorption will be
addressed in the next section.

Table 2.1. Indices of refraction and reflectances of water.
Data according to Hale and Querry (1973)

Wavelength Index of refraction Reflectance
λ (μm) n R

0.2 1.396 0.027
0.3 1.349 0.022
0.4 1.339 0.021
0.5 1.335 0.021
0.6 1.332 0.020
0.7 1.331 0.020
0.8 1.329 0.020
0.9 1.328 0.020
1.0 1.327 0.020
1.6 1.317 0.019
2.0 1.306 0.018
2.6 1.242 0.012
2.7 1.188 0.007
2.8 1.142 0.004
2.9 1.201 0.008
3.0 1.371 0.024
3.1 1.467 0.036
3.2 1.478 0.037
3.3 1.450 0.034
3.4 1.420 0.030
3.5 1.400 0.028
4.0 1.351 0.022
5.0 1.325 0.020
6.0 1.265 0.014
7.0 1.317 0.019
8.0 1.291 0.016
9.0 1.262 0.013
10.0 1.218 0.010

Even if the dependence of the index of refraction on wavelength is rather
weak in the visible spectrum, it should be taken into account when striving for
predictable results. In general, indices of refraction for various kinds of tissue
are difficult to measure due to absorption and scattering. Reflection from
these tissues must be obtained empirically. In most cases, the corresponding
indices of the refraction of water are rough estimates only.
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2.2 Absorption

During absorption, the intensity of an incident electromagnetic wave is atten-
uated in passing through a medium. The absorbance of a medium is defined as
the ratio of absorbed and incident intensities. Absorption is due to a partial
conversion of light energy into heat motion or certain vibrations of molecules
of the absorbing material. A perfectly transparent medium permits the pas-
sage of light without any absorption, i.e. the total radiant energy entering
into and emerging from such a medium is the same. Among biological tis-
sues, cornea and lens can be considered as being highly transparent for visible
light. In contrast, media in which incident radiation is reduced practically to
zero are called opaque.
The terms “transparent” and “opaque” are relative, since they certainly

are wavelength-dependent. Cornea and lens, for instance, mainly consist of
water which shows a strong absorption at wavelengths in the infrared spec-
trum. Hence, these tissues appear opaque in this spectral region. Actually,
no medium is known to be either transparent or opaque to all wavelengths
of the electromagnetic spectrum.
A substance is said to show general absorption if it reduces the intensity

of all wavelengths in the considered spectrum by a similar fraction. In the
case of visible light, such substances will thus appear grey to our eye. Selec-
tive absorption, on the other hand, is the absorption of certain wavelengths
in preference to others. The existence of colors actually originates from se-
lective absorption. Usually, body colors and surface colors are distinguished.
Body color is generated by light which penetrates a certain distance into the
substance. By backscattering, it is then deviated and escapes backwards from
the surface but only after being partially absorbed at selected wavelengths.
In contrast, surface color originates from reflection at the surface itself. It
mainly depends on the reflectances which are related to the wavelength of
incident radiation by (2.12).
The ability of a medium to absorb electromagnetic radiation depends

on a number of factors, mainly the electronic constitution of its atoms and
molecules, the wavelength of radiation, the thickness of the absorbing layer,
and internal parameters such as the temperature or concentration of absorb-
ing agents. Two laws are frequently applied which describe the effect of either
thickness or concentration on absorption, respectively. They are commonly
called Lambert’s law and Beer’s law , and are expressed by

I(z) = I0 exp(−αz) , (2.13)

and

I(z) = I0 exp(−k
′cz) , (2.14)

where z denotes the optical axis, I(z) is the intensity at a distance z, I0 is
the incident intensity, α is the absorption coefficient of the medium, c is the
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concentration of absorbing agents, and k ′ depends on internal parameters
other than concentration. Since both laws describe the same behavior of
absorption, they are also known as the Lambert–Beer law . From (2.13), we
obtain

z =
1

α
ln
I0
I(z)

. (2.15)

The inverse of the absorption coefficient α is also referred to as the absorption
length L, i.e.

L =
1

α
. (2.16)

The absorption length measures the distance z in which the intensity I(z)
has dropped to 1/e of its incident value I0.
In biological tissues, absorption is mainly caused by either water molecules

or macromolecules such as proteins and pigments. Whereas absorption in the
IR region of the spectrum can be primarily attributed to water molecules,
proteins as well as pigments mainly absorb in the UV and visible range of the
spectrum. Proteins, in particular, have an absorption peak at approximately
280 nm according to Boulnois (1986). The discussion of the absorption spec-
trum of water – the main constituent of most tissues – will be deferred to
Sect. 3.2 when addressing thermal interactions.
In Fig. 2.4, absorption spectra of two elementary biological absorbers

are shown. They belong to melanin and hemoglobin (HbO2), respectively.
Melanin is the basic pigment of skin and is by far the most important epider-
mal chromophore. Its absorption coefficient monotonically increases across
the visible spectrum toward the UV. Hemoglobin is predominant in vascular-
ized tissue. It has relative absorption peaks around 280 nm, 420 nm, 540 nm,
and 580 nm, and then exhibits a cut-off at approximately 600 nm. A gen-
eral feature of most biomolecules is their complex band structure between
400 nm and 600 nm. Since neither macromolecules nor water strongly absorb
in the near IR, a “therapeutic window” is delineated between roughly 600 nm
and 1200 nm. In this spectral range, radiation penetrates biological tissues at
a lower loss, thus enabling treatment of deeper tissue structures.
The absorption spectra of three typical tissues are presented in Fig. 2.5.

They are obtained from the skin, aortic wall, and cornea, respectively. Among
these, skin is the highest absorber, whereas the cornea is almost perfectly
transparent1 in the visible region of the spectrum. Because of the uniqueness
of the absorption spectra, each of them can be regarded as a fingerprint of
the corresponding tissue. Of course, slight deviations from these spectra can
occur due to the inhomogeneity of most tissues.

1 Actually, it is amazing how nature was able to create tissue with such trans-
parency. The latter is due to the extremely regular structure of collagen fibrils
inside the cornea and its high water content.
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Fig. 2.4. Absorption spectra of melanin in skin and hemoglobin (HbO2) in blood.
Relative absorption peaks of hemoglobin are at 280 nm, 420 nm, 540 nm, and
580 nm. Data according to Boulnois (1986)

Fig. 2.5. Absorption spectra of skin, aortic wall, and cornea. In the visible range,
the absorption of skin is 20–30 times higher than the absorption of corneal tissue.
The absorption spectrum of aortic wall exhibits similar peaks as hemoglobin. Data
according to Parrish and Anderson (1983), Keijzer et al. (1989), and Eichler and
Seiler (1991)
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When comparing Figs. 2.4 and 2.5, we find that the absorption spectra
of the aortic wall and hemoglobin are quite similar. This observation can be
explained by the fact that hemoglobin – as already previously stated – is
predominant in vascularized tissue. Thus, it becomes evident that the same
absorption peaks must be present in both spectra. Since the green and yel-
low wavelengths of krypton ion lasers at 531 nm and 568 nm, respectively,
almost perfectly match the absorption peaks of hemoglobin, these lasers can
be used for the coagulation of blood and blood vessels. For certain clinical
applications, dye lasers may be an alternative choice, since their tunability
can be advantageously used to match particular absorption bands of specific
proteins and pigments.
Not only the absorption of biological tissue, though, is important for med-

ical laser surgery. In certain laser applications, e.g. sclerostomies, special dyes
and inks are frequently applied prior to laser exposure. By this means, the
original absorption coefficient of the specific tissue is increased, leading to
a higher efficiency of the laser treatment. Moreover, adjacent tissue is less
damaged due to the enhanced absorption. For further details on sclerostomy,
the reader is referred to Sect. 4.1.
In Table 2.2, the effects of some selected dyes on the damage threshold

are demonstrated in the case of scleral tissue. The dyes were applied to the
sclera by means of electrophoresis, i.e. an electric current was used to direct
the dye into the tissue. Afterwards, the samples were exposed to picosecond
pulses from a Nd:YLF laser to achieve optical breakdown (see Sect. 3.4).
The absolute and relative threshold values of pulse energy are listed for each
dye. Obviously, the threshold for the occurrence of optical breakdown can
be decreased by a factor of two when choosing the correct dye. Other dyes
evoked only a slight decrease in threshold or no effect at all. In general, the
application of dyes should be handled very carefully, since some of them might
induce toxic side effects.

Table 2.2. Effect of selected dyes and inks on damage threshold of scleral
tissue. Damage was induced by a Nd:YLF laser (pulse duration: 30 ps, focal
spot size: 30μm). Unpublished data

Dye Damage threshold (μJ) Relative threshold

None 87 100%
Erythrosine 87 100%
Nigrosine 87 100%
Reactive black 82 94%
Brilliant black 81 93%
Amido black 75 86%
Methylene blue 62 71%
Tatrazine 62 71%
Bismarck brown 56 64%
India ink 48 55%
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2.3 Scattering

When elastically bound charged particles are exposed to electromagnetic
waves, the particles are set into motion by the electric field. If the frequency
of the wave equals the natural frequency of free vibrations of a particle, re-
sonance occurs being accompanied by a considerable amount of absorption.
Scattering , on the other hand, takes place at frequencies not corresponding to
those natural frequencies of particles. The resulting oscillation is determined
by forced vibration. In general, this vibration will have the same frequency
and direction as that of the electric force in the incident wave. Its amplitude,
however, is much smaller than in the case of resonance. Also, the phase of the
forced vibration differs from the incident wave, causing photons to slow down
when penetrating into a denser medium. Hence, scattering can be regarded
as the basic origin of dispersion.
Elastic and inelastic scattering are distinguished, depending on whether

part of the incident photon energy is converted during the process of scat-
tering. In the following paragraphs, we will first consider elastic scattering,
where incident and scattered photons have the same energy. A special kind
of elastic scattering is Rayleigh scattering . Its only restriction is that the
scattering particles be smaller than the wavelength of incident radiation. In
particular, we will find a relationship between scattered intensity and index
of refraction, and that scattering is inversely proportional to the fourth power
of wavelength. The latter statement is also known as Rayleigh’s law and shall
be derived in the following paragraphs.

Fig. 2.6. Geometry of Rayleigh scattering

In Fig. 2.6, a simple geometry of Rayleigh scattering is shown. A plane
electromagnetic wave is incident on a thin scattering medium with a total
thickness L. At a particular time, the electric field of the incident wave can
be expressed by

E(z) = E0 exp(ikz) ,
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where E0 is the amplitude of the incident electric field, k is the amount of the
propagation vector, and z denotes the optical axis. In a first approximation,
we assume that the wave reaching some point P on the optical axis will
essentially be the original wave, plus a small contribution due to scattering.
The loss in intensity due to scattering is described by a similar relation as
absorption, i.e.

I(z) = I0 exp(−αsz) , (2.17)

where αs is the scattering coefficient. Differentiation of (2.17) with respect to
z leads to

dI = −αsI dz .

The intensity scattered by a thin medium of a thickness L as shown in Fig. 2.6
is thus proportional to αs and L:

Is ∼ αsL . (2.18)

Let us now assume that there are NL atoms per unit area of the scatter-
ing medium. Herein, the parameter N shall denote the density of scattering
atoms. Then, the intensity scattered by one of these atoms can be described
by the relation

I1 ∼
αsL

NL
=
αs
N
.

Thus, the amplitude of the corresponding electric field is

E1 ∼

√
αs
N
.

Due to the interference of all scattered waves, the total scattered amplitude
can be expressed by

Es ∼ NL

√
αs
N
= L
√
αsN .

The complex amplitude at a distance z on the optical axis is obtained by
adding the amplitudes of all scattered spherical waves to the amplitude of
the incident plane wave, i.e.

E(z) = E0

(
eikz + L

√
αsN

∫ ∞
0

eikR

R
2πr dr

)
, (2.19)

with R2 = z2 + r2 .

At a given z, we thus obtain

r dr = R dR ,
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which reduces (2.19) to

E(z) = E0

(
eikz + L

√
αsN 2π

∫ ∞
z

eikR dR

)
. (2.20)

Since wave trains always have a finite length, scattering from R→∞ can be
neglected. Hence, (2.20) turns into

E(z) = E0

(
eikz − L

√
αsN

2π

ik
eikz
)
,

and when inserting the wavelength λ = 2π/k

E(z) = E0 e
ikz
(
1 + iλL

√
αsN
)
. (2.21)

According to our assumption, the contribution of scattering – i.e. the second
term in parentheses in (2.21) – is small compared to the first. Hence, they
can be regarded as the first two terms of an expansion of

E(z) = E0 exp
[
i
(
kz + λL

√
αsN
)]
.

Therefore, the phase of the incident wave is altered by the amount λL
√
αsN

due to scattering. This value must be equal to the well-known expression of
phase retardation given by

Δφ =
2π

λ
(n− 1)L ,

which occurs when light enters from free space into a medium with refractive
index n. Hence,

λL
√
αsN =

2π

λ
(n− 1)L ,

n− 1 =
λ2

2π

√
αsN . (2.22)

From (2.18) and (2.22), we finally obtain Rayleigh’s law of scattering when
neglecting the wavelength-dependence of n, i.e.

Is ∼
1

λ4
. (2.23)

If the scattering angle θ is taken into account, a more detailed analysis yields

Is(θ) ∼
1 + cos2(θ)

λ4
, (2.24)

where θ = 0 denotes forward scattering. Rayleigh’s law is illustrated in
Fig. 2.7. Within the visible spectrum, scattering is already significantly re-
duced when comparing blue and red light.
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Fig. 2.7. Rayleigh’s law of scattering for near UV, visible, and near IR light

Rayleigh scattering is elastic scattering, i.e. scattered light has the same
values of k and λ as incident light. One important type of inelastic scattering
is known as Brillouin scattering . It arises from acoustic waves propagating
through a medium, thereby inducing inhomogeneities of the refractive index.
Brillouin scattering of light to higher (or lower) frequencies occurs, because
scattering particles are moving toward (or away from) the light source. It
can thus be regarded as an optical Doppler effect in which the frequency of
photons is shifted up or down. In laser–tissue interactions, Brillouin scattering
becomes significant only during the generation of shock waves as will be
discussed in Sect. 3.5.
In our derivation of Rayleigh’s law, absorption has been neglected. There-

fore, (2.22) – (2.24) are valid only for wavelengths far away from any ab-
sorption bands. Simultaneous absorption and scattering will be discussed in
Sect. 2.4. Moreover, we did not take the spatial extent of scattering parti-
cles into account. If this extent becomes comparable to the wavelength of
the incident radiation such as in blood cells, Rayleigh scattering no longer
applies and another type of scattering called Mie scattering occurs. The the-
ory of Mie scattering is rather complex and shall thus not be repeated here.
However, it is emphasized that Mie scattering and Rayleigh scattering differ
in two important respects. First, Mie scattering shows a weaker dependence
on wavelength (∼ λ−x with 0.4 ≤ x ≤ 0.5) compared to Rayleigh scattering
(∼ λ−4). Second, Mie scattering preferably takes place in the forward di-
rection, whereas Rayleigh scattering is proportional to 1 + cos2(θ) according
to (2.24), i.e. forward and backward scattered intensities are the same.
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In most biological tissues, it was found by Wilson and Adam (1983),
Jacques et al. (1987b), and Parsa et al. (1989) that photons are preferably
scattered in the forward direction. This phenomenon cannot be explained by
Rayleigh scattering. On the other hand, the observed wavelength-dependence
is somewhat stronger than predicted by Mie scattering. Thus, neither Rayleigh
scattering nor Mie scattering completely describe scattering in tissues. There-
fore, it is very convenient to define a probability function p(θ) of a photon to
be scattered by an angle θ which can be fitted to experimental data. If p(θ)
does not depend on θ, we speak of isotropic scattering . Otherwise, anisotropic
scattering occurs.
A measure of the anisotropy of scattering is given by the coefficient of

anisotropy g, where g = 1 denotes purely forward scattering, g = −1 purely
backward scattering, and g = 0 isotropic scattering. In polar coordinates, the
coefficient g is defined by

g =

∫
4π
p(θ) cos θ dω∫
4π
p(θ) dω

, (2.25)

where p(θ) is a probability function and dω = sin θ dθ dφ is the elementary
solid angle. By definition, the coefficient of anisotropy g represents the average
value of the cosine of the scattering angle θ. As a good approximation, it can
be assumed that g ranges from 0.7 to 0.99 for most biological tissues. Hence,
the corresponding scattering angles are most frequently between 8◦ and 45◦.
The important term in (2.25) is the probability function p(θ). It is also called
the phase function and is usually normalized by

1

4π

∫
4π

p(θ) dω = 1 . (2.26)

Several theoretical phase functions p(θ) have been proposed and are
known as Henyey–Greenstein, Rayleigh–Gans, δ–Eddington, and Reynolds
functions2. Among these, the first is best in accordance with experimen-
tal observations. It was introduced by Henyey and Greenstein (1941) and is
given by

p(θ) =
1− g2

(1 + g2 − 2g cos θ)3/2
. (2.27)

This phase function is mathematically very convenient to handle, since it is
equivalent to the representation

p(θ) =
∞∑
i=0

(2i+ 1) gi Pi(cos θ) , (2.28)

2 Detailed information on these phase functions is provided in the reports by
Henyey and Greenstein (1941), van de Hulst (1957), Joseph et al. (1976), and
Reynolds and McCormick (1980).



24 2. Light and Matter

Fig. 2.8. Henyey–Greenstein function for different coefficients of anisotropy ranging
from g = 0.7 to g = 0.9

Fig. 2.9. Phase function for an 80μm thick sample of aortic wall. The data are
fitted to a composite function consisting of an isotropic term u and the anisotropic
Henyey–Greenstein function (fit parameters: g = 0.945, u = 0.071). Data according
to Yoon et al. (1987)
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where Pi are the Legendre polynomials. In some cases, though, a composite
function of an isotropic term u and the Henyey–Greenstein function does fit
better to experimental data. According to Yoon et al. (1987), this modified
function can be expressed by

p(θ) =
1

4π

u+ (1− u) (1− g2)

(1 + g2 − 2g cos θ)3/2
. (2.29)

In Fig. 2.8, the Henyey–Greenstein phase function is graphically shown for
different values of g. Obviously, it describes the dominant process of scattering
in the forward direction very well. In Fig. 2.9, experimental data are plotted
for an 80μm sample of aortic tissue. The data are fitted to the modified
Henyey–Greenstein function as determined by (2.29) with the parameters
g = 0.945 and u = 0.071.

2.4 Turbid Media

In the previous two sections, we have considered the occurrences of either
absorption or scattering. In most tissues, though, both of them will be present
simultaneously. Such media are called turbid media. Their total attenuation
coefficient can be expressed by

αt = α+ αs . (2.30)

In turbid media, the mean free optical path of incident photons is thus de-
termined by

Lt =
1

αt
=

1

α+ αs
. (2.31)

Only in some cases, either α or αs may be negligible with respect to each
other, but it is important to realize the existence of both processes and the
fact that usually both are operating. Also, it is very convenient to define an
additional parameter, the optical albedo a, by

a =
αs
αt
=

αs
α+ αs

. (2.32)

For a = 0, attenuation is exclusively due to absorption, whereas in the case
of a = 1 only scattering occurs. For a = 1/2, (2.32) can be turned into the
equality α = αs, i.e. the coefficients of absorption and scattering are of the
same magnitude. In general, both effects will take place but they will occur
in variable ratios.
In Fig. 2.10, the albedo is shown as a function of the scattering coefficient.

Three different absorption coefficients are assumed which are typical for bio-
logical tissue. In addition, the value a = 1/2 is indicated. For αs >> α, the
albedo asymptotically approaches unity.


