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6 Homework: Scattering kinematics

David Griffiths, Chapter 6, pp. 222-223, 6.4, 6.7, 6.8, 6.9, 6.10, 6.13, 6.14, 6.15

6.1 Classical cross section (seminar)

6.4. A nonrelativistic particle of mass m and (kinetic) energy E scatters from a fixed
repulsive potential, V (r) = k/r2, where k is a constant.

(a) Find the scattering angle, θ, as a function of the impact parameter, b.
0.2 points

(b) Determine the differential cross section dσ/dΩ, as a function of θ (not b).
0.2 points

(c) Find the total cross section. 0.2 points

6.2 Kinematics for cross sections

6.7. (a) Derive eq.(6.41),
√

(p1.p2)2 − (m1m2)2 = (E1 + E2)| p⃗1| (6.41)

for scattering of particles 1 and 2 in the CM frame. 0.2 points

(b) Obtain the corresponding formula for the Lab frame (particle 2 at rest).
0.2 points

6.8. Consider elastic scattering, a + b → a + b, in the Lab frame (b initially at rest),
assuming the target is so heavy (mb ≫ Ea) that its recoil is negligible. Determine
the differential scattering cross section. [Hint : In this limit the Lab frame and the
CM frame are the same.] 0.2 points

6.9. Consider the collision, 1 + 2 → 3 + 4, in the Lab frame (2 at rest), with particles 3
and 4 massless. Obtain the formula for the differential cross section. 0.2 points

6.10. (a) Analyze the problem of elastic scattering, (1 + 2 → 3 + 4, with m1 = m3,
m2 = m4) in the Lab frame (particle 2 at rest). Derive the formula for the
differential cross section. 0.2 points

(b) If the incident particle is massless (m1 = 0), show that the result in part (a)
simplifies. 0.2 points

6.3 Matrix elements of the ABC theory

6.13. Calculate dσ/dΩ for A + A → B + B in the CM frame, assuming mB = mC = 0.
Find the total cross section, σ. 0.2 points

6.14. Find dσ/dΩ and σ for A + A → B + B in the Lab frame. (Let E be the energy
and p⃗ the momentum of the incident A. Assume mB = mC = 0.) Determine the
nonrelativistic and the ultrarelativistic limit of your formula. 0.2 points
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6.4 Full problem in the ABC theory

6.15. (a) Determine the lowest order amplitude for A + B → A + B. (There are two
diagrams.) 0.4 points

(b) Find the differential cross section for this process in the CM frame, assuming
mA = mB = m and mC = 0. Express your answer in terms of the incident
energy (of A), E, and the scattering angle (for particle A), θ. 1.2 points

(c) Find dσ/dΩ for this process in the Lab frame, assuming B is much heavier than
A and remains stationary. A is incident with energy E. [Hint : See Problem
(6.8). Assume mB ≫ mA,mC , and E.] 1.2 points

(d) In case (c), find the total cross section, σ. 1.2 points

Reading assignment: David Griffiths, Chapter 7; for more interested students:
also P. B. Pal, Dirac, Majorana and Weyl fermions, arXiv:1006.1718 [hep-ph].

7 Spinors and photons; amplitudes and cross sections

David Griffiths, Chapter 7, pp. 268-273, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 7.11, 7.12,
7.13, 7.14, 7.15, 7.16, 7.17, 7.18, 7.19, 7.20, 7.21, 7.22, 7.23, 7.24, 7.25, 7.26, 7.27, 7.28,
7.29, 7.30, 7.31, 7.32, 7.33, 7.34, 7.35, 7.36, 7.37, 7.38, 7.39, 7.40, 7.41, 7.42, 7.44, 7.46,
7.47, 7.51,

7.1 Dirac spinors

7.3. Derive Equation 7.45, using Equations 7.43, 7.46, and 7.47, i.e.: Derive the normal-
ization N (and show that it is the same) for the spinors

u(1) = N


1
0
pz

E+m
px+ipy
E+m

 =

(
uA

uB

)
u(2) = N


0
1

px−ipy
E+m
−pz
E+m

 =

(
uA

uB

)
(7.46)

v(1) = u(4)(−E,−p) = N


px−ipy
E+m
−pz
E+m

0
1

 v(2) = −u(3)(−E,−p) = −N


pz

E+m
px+ipy
E+m

1
0

 (7.47)

using the normalization condition

u(i)†u(i) = v(i)†v(i) = 2E . (7.43)

0.1 points

7.4. Show that u(1) and u(2) are orthogonal, in the sense that u(1)†u(2) = 0. Likewise, show
that v(1) and v(2) are orthogonal. Are u(1) and v(1) orthogonal? 0.1 points

7.5. Show that for u(1) and u(2) (Equation 7.46) the lower components (uB) are smaller
than the upper ones (uA), in the nonrelativistic limit, by a factor v/c. [This simplifies
matters, when we are doing nonrelativistic approximations; we think of uA as the
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’big’ components and uB as the ’1ittle’ components. (For v(1) and v(2) the roles are
reversed.) In the relativistic limit, by contrast, uA and uB are comparable in size.]

0.1 points

7.6. If the z-axis (= 3-axis) points along the direction of motion, calculate the spinors
u(1), u(2), v(1) and v(2). Confirm that these are eigenspinors of Sz = h̄

2
γ0γ3γ5, and

find their eigenvalues. 0.1 points

7.7. Construct the normalized spinors u(+) and u(−) representing an electron of momentum
p⃗ with helicity ±1. That is, find the u’s that satisfy Equation 7.49

(/p−m)u = (γµpµ −m)u = 0 (7.49)

and are eigenspinors of the helicity operator (p̂ · Σ⃗) with eigenvalues ±1. 0.1 points

7.8. The purpose of this problem is to demonstrate that particles described by the Dirac
equation carry ’intrinsic’ angular momentum (S⃗) in addition to their orbital angular

momentum (L⃗), neither of which seperately conserved, although their sum is. It
should be attempted only if you are reasonably familiar with quantum mechanics.

(a) Construct the Hamiltonian, H for the Dirac equation. [Hint : Solve eq. 7.19 for

p0. Solution: H = γ0(γ⃗ · p⃗+m), where p⃗ = (h̄/i)∇⃗ is the momentum operator.]
0.2 points

(b) Find the commutator of H with the orbital angular momentum L⃗ = r⃗ × p⃗.

[Solution: [H, L⃗] = −ih̄γ0(γ⃗ × p⃗). ] Since [H, L⃗] is non zero, L⃗ by itself is not
conserved. Evidently there is some other form of angular momentum lurking
here. Introduce the ’spin angular momentum’, S⃗, defined by eq. 7.51.

S⃗ =
h̄

2
Σ⃗ , with Σ⃗ =

(
σ⃗ 0
0 σ⃗

)
(7.51)

0.2 points

(c) Find the commutator of H with the spin angular momentum, S⃗ = (h̄/2)Σ⃗.

[Solution: [H, S⃗] = ih̄γ0(γ⃗ × p⃗). ] It follows that the total angular momentum,

J⃗ = L⃗+ S⃗, is conserved. 0.2 points

(d) Show that every bispinor is an eigenstate of S⃗2, with eigenvalue h̄2s(s+1), and
find s. What, then, is the spin of a particle described by the Dirac equation?

0.2 points

7.9. The charge conjugation operator (C) takes a Dirac spinor ψ into the ’charge-conjugate’
spinor ψc, given by ψc = iγ2ψ∗, where γ2 is the third Dirac gamma matrix. [See
Halzen and Martin, Sect. 5.4.] Find the charge-conjugates of u(1) and u(2), and
compare them with v(1) and v(2). 0.1 points

7.11. Confirm the transformation rule for spinors, equation (7.52),

ψ → ψ′ = Sψ , (7.52)

with eqs. (7.53) and (7.54), given below. [Hint : we want it to carry solutions to the
Dirac equation in the original frame to solutions in the primed frame:

ih̄γµ∂µψ −mcψ = 0 ⇔ ih̄γµ∂′µψ
′ −mcψ′ = 0 . (1)
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where ψ′ = Sψ and

∂′µ =
∂

∂xµ ′ =
∂xν

∂xµ ′
∂

∂xν
=

∂xν

∂xµ ′∂ν . (2)

It follows that

(S−1γµS)
∂xν

∂xµ ′ = γν . (3)

The (inverse) Lorentz transformations tell us ∂xν

∂xµ ′ . Take it from there.] 0.1 points

7.12. Derive the transformation rule for parity, eq. (7.61),

ψ → ψ′ = γ0ψ , (7.61)

using the method in Problem 7.11. 0.1 points

7.13. (a) Starting with eq. (7.53),

S(Λ) = a+ + a−γ
0γ1 , (7.53)

with eq. (7.54),

a± = ±
√

1

2
(γ ± 1) , (7.54)

and Λ being a Lorentz transformation only along the 1-axis, calculate S†S, and
confirm that it is not the unity matrix.

0.1 points

(b) Show that S†γ0S = γ0. 0.1 points

(*) Show that S̄(Λ) := γ0S†(Λ)γ0 = S−1(Λ) 0.1 points

7.14. Show that ψ̄γ5ψ is invariant under ψ → ψ′ = Sψ with S from Problem 7.11.
0.1 points

7.15. Show that the adjoint spinors ū(1,2) and v̄(1,2) satisfy the equations

ū(γµpµ −m) = 0 and v̄(γµpµ +m) = 0 . (4)

0.1 points

7.16. Show that the normalisation condition from Problem 7.3., expressed with the adjoint
spinors, becomes

ūu = −v̄v = 2mc . (5)

0.1 points

7.17. Show that V µ = ψ̄γµψ is a four-vector, by confirming that its components transform
according to the Lorentztransformation V ′µ = Λµ

νV
ν by transforming the spinors.

Check that it transforms as a (polar) vector under parity (i.e., the ’time’ component
is invariant, whereas the ’spatial’ components switch sign). 0.2 points
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7.18. Show that the spinor representing an electron at rest, eq. (7.30),

ψ(1) = e−i(m/h̄)t


1
0
0
0

 , ψ(2) = e−i(m/h̄)t


0
1
0
0



ψ(3) = e+i(m/h̄)t


0
0
1
0

 , ψ(4) = e+i(m/h̄)t


0
0
0
1


(7.30)

is an eigenstate of the parity operator P . What is its intrinsic parity? How about
the positron? What if you changed the sign convention in eq. (7.61)? Notice that
whereas the absolute parity of a spin-1

2
particle is in a sense arbitrary, the fact that

particles and antiparticles carry opposite parity is not arbitrary. 0.1 points

7.24. Using u(1), u(2), eq. (7.46), and v(1), v(2), eq. (7.47), prove the completeness relations
for spinors, eq. (7.99):∑

s=1,2

u(s)ū(s) = (γµpµ +m) and
∑
s=1,2

v(s)v̄(s) = (γµpµ −m) . (7.99)

0.1 points

7.2 Electrodynamics

7.20. (a) Derive Maxwell’s equations, eq. (7.70){
(i) ∇⃗ · E⃗ = 4πρ (iii) ∇⃗ · B⃗ = 0

(ii) ∇⃗ × E⃗ + 1
c
∂B⃗
∂t

= 0 (iv) ∇⃗ × B⃗ − 1
c
∂E⃗
∂t

= 4π
c
J⃗

}
, (7.70)

from eq. (7.73)

∂µF
µν =

4π

c
Jν . (7.73)

0.2 points

(b) Prove eq. (7.74),

∂µJ
µ = 0 , (7.74)

from eq. (7.73) 0.2 points

7.21. Show that the continuity equation, eq. (7.74), enforces conservation of charge. [If
you don’t see how to do this, look in any electrodynamics textbook.] 0.6 points

7.22. Show that we are always free to pick A0 = 0, in free space. That is, given a potential
Aµ which does not satisfy this constraint, find a gauge function λ, consistent with
eq. (7.85),

2λ = 0 , (7.85)

such that A′
0 in eq. (7.81) is zero.

A′
µ = Aµ + ∂µλ , (7.81)

0.1 points
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7.23. Suppose we apply a gauge transformation, eq. (7.81), to the plane wave potential,
eq. (7.89),

Aµ(x) = ae−(i/h̄)p.xϵµ(p) , (7.89)

using as a gauge function

λ = ih̄κae−(i/h̄)p.x , (6)

where κ is an arbitrary constant and p is the photon four-momentum

(a) Show that this λ satisfies eq. (7.85). 0.1 points

(b) Show that this gauge transformation has the effect of modifying ϵµ: ϵµ →
ϵµ + κpµ. (In particular, if we choose κ = −ϵ0/p0 we obtain the Coulomb gauge
polarization vector, Equation 7.92)

ϵ0 = 0 , so ϵ⃗ · p⃗ = 0 . (7.92)

This observation leads to a beautifully simple test for the gauge invariance of
QED results: the answer must be unchanged if you replace ϵµ by ϵµ + κpµ.

0.1 points

7.25. Using ϵ(1) and ϵ(2), eq. (7.93), confirm the completeness relations for photons, eq. (7.105):∑
s=1,2

ϵ
(s)
i ϵ

(s)∗
j = δij − p̂ip̂j . (7.105)

0.1 points

7.3 γ-matrices (Clifford algebra)

7.2. Show that eq. (7.17)

γ0 =

(
12 0
0 −12

)
, γi =

(
0 σi

−σi 0

)
, (7.17)

satisfies eq. (7.15)

{γµ, γν} = 2gµν , (7.15)

0.1 points

7.19. (a) Express γµγν as a linear combination of 1, γ5, γµ, γµγ5, and σµν . 0.1 points

(b) Construct the matrices σ12, σ13, and σ23, eq. (7.69),

σµν =
i

2
(γµγν − γνγµ) , (7.69)

and relate them to Σ1, Σ2, and Σ3, eq. (7.51). 0.1 points

7.29. (a) Show that γ0γν†γ0 = γν , for ν = 0, 1, 2, or 3. 0.1 points

(b) If Γ is any product of γ-matrices (Γ = γaγb · · · γc) show that

Γ̄ = γ0Γ†γ0 , (7.119)

is the same product in reverse order, Γ̄ = γc · · · γbγa. 0.1 points
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7.31. (a) Prove the trace theorem 1, 2, and 3, in Section 7.7.

1. Tr(A+B) = Tr(A) + Tr(B) (1.)

2. Tr(αA) = αTr(A) (2.)

3. Tr(AB) = Tr(BA) . (3.)

0.1 points

(b) Prove Equation 4

4. gµνg
µν = 4 . (4.)

0.1 points

(c) Using the anticommutation relation 5, prove 5′

5. γµγν + γνγµ = 2gµν 5′. /a/b + /b/a = 2(a.b) . (5.)

0.1 points

7.32. (a) Use the anticommutation relation 5 to prove the contraction theorems 6, 7, 8,
and 9.

6. γµγ
µ = 4 (6.)

7. γµγ
νγµ =− 2γν 7′. γµ/aγ

µ =− 2/a (7.)

8. γµγ
νγλγµ = 4gνλ 8′. γµ/a/bγ

µ = 4(a.b) (8.)

9. γµγ
νγλγσγµ =− 2γσγλγν 9′. γµ/a/b/cγ

µ =− 2/c/b/a (9.)

0.1 points

(b) From 7 prove 7′, from 8 prove 8′, from 9 prove 9′. 0.1 points

7.33. (a) Confirm the trace theorems 10, 11, 12, and 13.

10. The trace of the product of an odd number of gamma matrices is zero

11. Tr[1] = 4 (11.)

12. Tr[γµγν ] = 4gµν 12′. Tr[/a/b] = 4(a.b) (12.)

13. Tr[γµγνγλγσ] = 4(gµνgλσ − gµλgνσ + gµσgνλ) (13.)

13′. Tr[/a/b/c/d] = 4[(a.b)(c.d)− (a.c)(b.d) + (a.d)(b.c)] (13′.)

0.1 points

(b) From 12 prove 12′, from 13 prove 13′. 0.1 points

7.34. (a) Proof theorems 14, 15, and 16.

14. Tr[γ5] = 0 (14.)

15. Tr[γ5γµγν ] = 0 15′. Tr[γ5/a/b] = 0 (15.)

16. Tr[γ5γµγνγλγσ] = 4iϵµνλσ (16.)

16′. Tr[γ5/a/b/c/d] = 4iϵµνλσaµbνcλdσ = 4iϵabcd (16′.)

0.1 points

(b) From 15 prove 15′, from 16 prove 16′. 0.1 points
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7.35. (a) Show that ϵµνλσϵµνλτ = −6δστ . (Summation over µ, ν, λ implied) 0.1 points

(b) Show that ϵµνλσϵµνθτ = −2(δλθ δ
σ
τ − δλτ δ

σ
θ ). 0.1 points

(c) Find the analogous formula for ϵµνλσϵµϕθτ . 0.1 points

(d) Find the analogous formula for ϵµνλσϵωϕθτ . 0.1 points

7.36. Evaluate the following traces:

(a) Tr[γµγν(1− γ5)γλ(1 + γ5)γλ] 0.1 points

(b) Tr[(/p +m)(/q +M)(/p +m)(/q +M)], where p is the four momentum of a (real)
particle of mass m and q is the four momentum of a (real) particle of mass M .
Express your answer in terms of m, M , and (p.q). 0.1 points

7.4 QED matrix elements

7.26. Evaluate the amplitude for electron-muon scattering, eq. (7.106),

M = − g2e
(p1 − p3)2

[ū(s3)(p3)γ
µu(s1)(p1)][ū

(s4)(p4)γµu
(s2)(p2)] . (7.106)

in the CM system, assuming the e and µ approach one another along the ẑ-axis,
repel, and return back along the ẑ-axis. Assume the initial and final particles all
have helicity +1. [Answer : M = −2g2e ] 0.4 points

7.27. Derive the amplitudes, eq. (7.133) and (7.134),

M1 =
g2e

(p1 − p3)2 −m2
v̄(2)/ϵ4(/p1 − /p3 +m)/ϵ3u(1) (7.133)

M2 =
g2e

(p1 − p4)2 −m2
v̄(2)/ϵ3(/p1 − /p4 +m)/ϵ4u(1) (7.134)

for pair annihilation e+ + e− → γ + γ. 0.1 points

7.42. Derive Equation 7.176 for the loop diagram on p.262

M =
−ig4e
q4

[ū(3)γµu(1)]

{∫
d4k

(2π)4
Tr[γµ(/k +m)γν(/k − /q +m)]

(k2 −m2)[(k − q)2 −m2]

}
[ū(4)γνu(2)]

(7.176)

You’ll need one last Feynman rule: for a closed fermion loop include a factor −1 and
take the trace. 0.8 points

7.46. Why can’t the photon ’decay’, by the process γ → γ + γ, Fig. (7.12)? Calculate the
amplitude for this diagram. [This is an example of Furry’s theorem, which says that
any diagram containing a closed electron loop with an odd number of vertices has
an amplitude of zero.]

(Fig. 7.12)

.

.

Fig. 7.12: Decay of the photon: γ → γ + γ
– a process forbidden by Furry’s theorem (Problem 7.46). 0.4 points
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7.5 Casimir’s trick

7.28. Work out the analog to Casimir’s trick, eq. (7.125),∑
all spins

[ū(a)Γ1u(b)] [ū(a)Γ2u(b)]
∗ = Tr[Γ1(/pb +mb)Γ̄2(/pa +ma)] , (7.125)

for antiparticles ∑
all spins

[v̄(a)Γ1v(b)] [v̄(a)Γ2v(b)]
∗ (7)

and for ’mixed’ cases∑
all spins

[ū(a)Γ1v(b)] [ū(a)Γ2v(b)]
∗ and

∑
all spins

[v̄(a)Γ1u(b)] [v̄(a)Γ2u(b)]
∗ . (8)

0.1 points

7.30. Use Casimir’s trick, eq. (7.125), to obtain an expression analogous to eq. (7.126)

|M|2 = g4e
4(p1 − p3)4

Tr[γµ(/p1 +m)γν(/p3 +m)]× Tr[γµ(/p2 +M)γν(/p4 +M)] .

(7.126)

for Compton scattering. Note that there are four terms here:

|M|2 = |M1|2 + |M2|2 +M1M∗
2 +M∗

1M2 . (9)

0.8 points

7.37. Starting with Equation 7.107,

M = − g2e
(p1 − p3)2

[ū(3)γµu(1)][ū(4)γµu(2)] +
g2e

(p1 − p4)2
[ū(4)γµu(1)][ū(3)γµu(2)]

(7.107)

determine the spin-averaged amplitude, analogous to eq. (7.129),

⟨|M|2⟩ = 4g4e
(p1 − p3)4

{
pµ1p

ν
3 + pµ3p

ν
1 + gµν [m2 − (p1.p3)]

}
×
{
p2µp4ν + p4µp2ν + gµν [M

2 − (p2.p4)]
}

=
8g4e

(p1 − p3)4
[(p1.p2)(p3.p4) + (p1.p4)(p2.p3)

− (p1.p3)M
2 − (p1.p3)m

2 + 2(mM)2] (7.129)

for elastic electron-electron scattering. Assume we’re working at high energies, so
that the mass of the electron an be ignored (i.e., set m = 0). [Hint : You can read
(|M1|2) and (|M2|2) from Equation 7.129. For (M1M∗

2) use the same strategy as
Casimir’s trick to get

(M1M∗
2) =

−g4e
4(p1 − p3)2(p1 − p4)2

Tr[γµ/p1γ
ν
/p4γµ/p2γν/p3] (10)

Then exploit the contraction theorems to evaluate the trace. Notice, that formassless
particles the conservation of momentum (p1 + p2 = p3 + p4) implies, that (p1.p2) =
(p3.p4), (p1.p3) = (p2.p4), and (p1.p4) = (p2.p3).] 1.0 points
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7.38. (a) Starting with Equation 7.129, find the spin averaged amplitude for electron-
muon scattering in the CM frame, in the high energy regime (m,M → 0).

0.2 points

(b) Find the CM differential cross section for electron-muon scattering at high en-
ergy. Let E be the electron energy and θ the scattering angle. 0.2 points

7.39. (a) Using the result of Problem 7.37, determine the spin-averaged amplitude for
electron-electron scattering in the CM in the high-energy regime (m,→ 0).

0.2 points

(b) Find the CM differential cross section for electron-electron scattering at high
energy. 0.2 points

7.40. Starting with Equation 7.158,

Msinglet = −2
√
2ig2e (⃗ϵ3 × ϵ⃗4)z (7.158)

calculate |M|2, and use eq. (7.105) to sum over photon polarizations. Check that
the answer is consistent with eq. (7.163),

Msinglet = −4g2e (7.163)

and explain why this method gives the correct answer (note that we are now summing
over all photon polarizations, whereas in fact the photons must be in the singlet
configuration). 0.2 points

7.41. Starting with Equation 7.149,

M =
g2e
m
v̄(2)[(⃗ϵ3 · ϵ⃗4)γ0 + i(⃗ϵ3 × ϵ⃗4) · Σ⃗γ3]u(1) (7.149)

calculate |M|2 for e+ + e− → γ + γ, and use it to get the differential cross section
for pair annihilation. Compare eq. (7.167) (see footnote before example 7.8).

dσ

dΩ
=

1

v

(
h̄α

m

)2

(7.167)

0.8 points

7.6 Historical interest

7.44. Derive Equation 7.187

q2 = −4|⃗p|2 sin2 θ

2
(7.187)

0.1 points

7.45. Evaluate the correction term in eq. (7.192)

α(q2) = α(0)

{
1 +

α(0)

3π
f

(
−q2

m2

)}
, (7.192)
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where

f(x) = 6

∫ 1

0

z(1− z) ln[1 + xz(1− z)]dz

=− 5

3
+

4

x
+

2(x− 2)

x

√
x+ 4

x
tanh−1

√
x

x+ 4
, (7.184)

for the case of a head-on collision in the CM; assume the electron is traveling at 1
10
c.

In the experiment [9], the beam energies were 57.8 GeV; what should the measured
fine structure ’constant’ have been? Look up the actual result, and compare it with
your prediction. 0.2 points

7.47. Starting with your answer to Problem 7.30, derive the Klein-Nishina formula for
Compton scattering (in the rest frame of the target):

dσ

dΩ
=
πα2

m2

(
ω′

ω

)2 [
ω′

ω
+
ω

ω′ − sin2 θ

]
, (11)

where ω and ω′ are the frequencies of the incident and scattered photon (Problem
3.27). 0.2 points

7.7 Full problem

7.51. Spin-1
2
particles that are electrically neutral could conceivably be their own antipar-

ticles (if so, they are called ”Majorana” fermions – in the Standard Model the only
possible candidates are the neutrinos)

(a) According to Problem 7.9, the charge conjugate spinor is ψc = iγ2ψ∗. Evidently,
if a particle is the same as its antiparticle, then ψ = ψc. Show that this condition
is Lorentz invariant (if true in one inertial frame, it is true in any inertial frame).
[Hint : Use eqs. (7.52) and (7.53).] 1.0 points

(b) Show that if ψ = ψc, the ”lower” two elements of ψ are related to the ”upper”
two by ψB = −iσyψ∗

A. For Majorana particles, then, we only need a two-
component spinor χ ≡ ψA. This makes sense: A Dirac spinor takes four elements
to represent the two spin states (each) of the particle and the antiparticle, but
in this case the latter two are redundant. Show that the Dine equation for a
Majorana particle can be written in 2-component form as

ih̄[∂0χ+ i(σ⃗ · ∇⃗)σyχ
∗]−mχ = 0 , (12)

Check that the equation you get for the ”lower” elements is consistent with this.
1.0 points

(c) Construct spinors χ representing plane wave Majorana states. [Hint : Form the
general linear combination ψ = a1ψ

(1)+a2ψ
(2)+a3ψ

(3)+a4ψ
(4), eqs. (7.46) and

(7.47), impose the constraint in part (b), and solve for a3 and a4 (in terms of
a1 and a2); then pick (say) a1 = 1, a2 = 0 for χ(1), and a1 = 0, a2 = 1 for χ(2).]

1.0 points

8 quarks and gluons; amplitudes and cross sections

David Griffiths, Chapter 8, pp. 303-306, 8.4, 8.5, 8.7, 8.8, 8.9, 8.10, 8.11, 8.12, 8.13, 8.14,
8.15, 8.17, 8.19, 8.20, 8.21, 8.23, 8.24, 8.25, 8.26, 8.27, 8.28,
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8.1 Quark scattering

8.4. Prove Equation 8.16

qµK
µν = 0 . (8.16)

[Hint : First show that qµL
µν = 0. Then argue that we may as well take Kµν such

that qµK
µν = O, in the sense that any term in Kµν that does not obey qµK

µν = O
will contribute nothing to LµνKµν . ] Comment : Equation 8.16 actually follows more
simply and generally from charge conservation at the proton vertex. but I have not
developed the formalism here to make this argument (see Halzen and Martin [2],
Sections 8.2 and 8.3). [One way to proceed is as follows. Take qµ = (0, 0, 0, q); then
qµL

µν = 0 ⇒ Lµ3 = L3µ = 0. So LµνKµν = LjkKjk + Lj3Kj3 + L3kK3k + L33K33 =
LjkKjk with j, k = 0, 1, 2, and then Kj3 and K3k might as well be zero.] 0.2 points

8.5. Prove eq. (8.17)

K4 =
M2

q2
K1 +

1

4
K2 and K5 =

1

2
K2 (8.17)

from eq. (8.16) [Hint : First contract Kµν with qµ, then with pν .] 0.2 points

8.7. Derive eq. (8.19)

⟨|M|2⟩ =
(
2g2e
q2

)2{
K1[(p1.p3)− 2m2] +K2

[
(p1.p)(p3.p)

M2
+
q2

4

]}
. (8.19)

0.2 points

8.8. Derive eq. (8.20)

⟨|M|2⟩ = g4e
4EE ′ sin4(θ/2)

(
2K1 sin

2 θ

2
+K2 cos

2 θ

2

)
. (8.20)

0.2 points

8.9. Derive eq. (8.21)

E ′ =
E

1 + (2E/M) sin2(θ/2)
. (8.21)

0.2 points

8.10. Check that the Rosenbluth formula, eq. (8.23),

dσ

dΩ
=

(
αh̄

4ME sin2(θ/2)

)2
E ′

E
[2K1 sin

2 θ

2
+K2 cos

2 θ

2
] , (8.23)

agrees with the Mott formula, eq. (7.131),

dσ

dΩ
=

(
αh̄

2| p⃗ |2 sin2(θ/2)

)2

[m2 + | p⃗ |2 cos2(θ/2)] , (7.131)

in the intermediate energy regime (m ≪ E ≪ M). Use the expressions for K1 and
K2 appropriate to a ’Dirac’ proton (Problem 8.6). 0.2 points
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8.2 Color

8.11. Why can’t the ’ninth gluon’ be the photon? (For reading and thinking about it . . . )
0.2 points

8.12. Color SU(3) transformations relable ’red’, ’blue’, and ’green’ according to the trans-
formation rule

c→ c′ = Uc , (13)

where U is any unitary (UU † = 1) 3 × 3-matrix of determinant 1 and c is a three-
element column vector. For example

U =

 0 1 0
0 0 1
1 0 0

 (14)

would take r → g, g → b, b → r. The ninth gluon, |9⟩, is obviously invariant under
U , but the octet gluons are not. Show that |3⟩ and |8⟩ go into linear combinations
of one another:

|3′⟩ = α|3⟩+ β|8⟩ , |8′⟩ = γ|3⟩+ δ|8⟩ . (15)

Find the numbers α, β, γ, and δ. 0.1 points

8.13. Show that Tr[λaλb] = 2δab. (Notice that all λ matrices are traceless.) 0.1 points

8.14. What are the structure constants for SU(2)? That is, what are the numbers f ijk in
[σi, σj] = 2if ijkσk. 0.1 points

8.15. (a) Given that fαβγ is completely antisymmetric (so that f 112 = 0 automatically,
and having calculated f 123 we don’t need to bother with f 213, f 231, etc.) how
many distinct nontrivial structure constants remain? 0.1 points

( Of these, it turns out that only nine are nonzero (those listed in eq. (8.36)), and

among these there are only three different numbers.)

(b) Work out [λ1, λ2], and confirm that f 12γ = 0 for all γ except 3, while f 123 = 1.
0.1 points

(c) Similarly, compute [λ1, λ3], and [λ4, λ5], and determine the resulting structure
constants. 0.1 points

8.17. Find the amplitude M for diagram

.

.

✲

✡
✡✡✣

❏
❏❏❫ ✡

✡✡✣

❏
❏❏❫

q

p1

p2

p3

p4

c1

c2

c3

c4
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What is the color factor, analogous to eq. (8.47),

f =
1

4
(c†3λ

αc1)(c
†
2λ

αc4) , (8.47)

in this case? Evaluate f in the color singlet configuration. Can you explain this
result? 0.2 points

8.19. Color factors always involve expressions of the form λαijλ
α
kℓ (summed over α). There

is a simple formula for this quantity, which shortens the arithmetic:

λαijλ
α
kℓ = 2δiℓδjk −

2

3
δijδkℓ , (16)

(see Kane [4]). Check this theorem for

(a) i = j = k = ℓ = 1, see eq. (8.61) 0.1 points

(b) i = j = 1, k = ℓ = 2, see eq. (8.49) 0.1 points

(c) i = ℓ = 1, j = k = 2, see eq. (8.62) 0.1 points

(d) Use it to confirm eq. (8.52) 0.1 points

8.20. Derive eq. (8.70),

M3 = i
g2s
4

1

(p3.p4)
v̄(2)[(ϵ3.ϵ4)(/p4 − /p3) + 2(p3.ϵ4)/ϵ3 − 2(p4.ϵ3)/ϵ4]u(1)

× fαβγaα3a
β
4 (c

†
2λ

γc1) , (8.70)

starting from eq. (8.69)

M3 = iv̄(2)c†2

[
−igs

2
λδγσ

]
u(1)c1

[
−ig

σλδδγ

q2

]
× (8.69)

{−gsfαβγ[gµν(−p3 + p4)λ + gνλ(−p4 − q)µ + gλµ(q + p3)ν ]}[ϵµ3aα3 ][ϵν4a
β
4 ] .

0.6 points

8.21. There is a simple test for the gauge invariance of an amplitude (M) in QCD (or
QED): Replace any gluon (or photon) polarization vector by its momentum (ϵ3 → p3,
say), and you must get zero (see Problem 7.23). Show using this criterion that
M = M1 + M2 + M3 = eq. (8.65) + eq. (8.68) + eq. (8.70), (remember, as in the

book p. 295, no ∗ on polarization vectors)

M1 = iv̄(2)c†2

[
−igs

2
λβγν

]
[ϵ4νa

β
4 ]

[
i(/q +m)

q2 −m2

]
×
[
−igs

2
λαγµ

]
[ϵ3µa

α
3 ]u(1)c1 , (8.65)

M2 =
−g2s
8

1

(p1.p4)
v̄(2)[/ϵ3(/p1 − /p4 +m)/ϵ4]u(1)a

α
3a

β
4 (c

†
2λ

αλβc1) , (8.68)

is gauge invariant, butM1+M2 alone is not. [Thus the three gluon vertex is essential
in QCD to preserve gauge invariance. Notice, by contrast, that M1 +M2 alone is
gauge invariant in QED (Example 7.8). The fact that λ matrices do not commute
makes the difference.] 1.5 points
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8.3 combining quarks and color

8.23. Determine the branching ratio Γ(ηc → 2g)/Γ(ηc → 2γ). [Hint : Use eq. (8.90)

Γ(ηc → 2g) =
8π

3

(
h̄αs

m

)2

|ψ(0)|2 , (8.90)

for the numerator, and a suitable modification of eqs. (7.168) and (7.171)

σ =
4π

v

(
h̄α

m

)2

, (7.168)

Γ = vσ|ψ(0)|2 = 4π

(
h̄α

m

)2

|ψ(0)|2 , (7.171)

for the numerator. There are two modifications: (i) the quark charge is 2
3
e and (ii)

there is a color factor of 3, for quarks in the singlet state, eq. (8.30),

|9⟩ = (rr̄ + bb̄+ gḡ)/
√
3 . (8.30)

0.2 points

8.4 Running coupling

8.24. (a) Calculate the energy (
√
|q2|) at which the QED coupling constant, eq. (8.92),

α(|q2|) = α(0)

1− [α(0)/3π] ln[|q2|/m2]
(|q2| ≫ m2) . (8.92)

blows up. (Remember, α(0) = 1/137, the finestructure constant.) 0.1 points

(b) At what energy do we get a 1% departure from α(0)? Is this an accessible
energy? 0.1 points

8.25. Prove that the value of µ in eq. (8.93):

αs(|q2|) =
αs(µ

2)

1 + [αs(µ2)/12π](11n− 2f) ln[|q2|/µ2]
(|q2| ≫ µ2) (8.93)

is arbitrary. [That is, suppose physicist A uses the value µa and physicist B uses a
different value, µb, Assume A’s version of eq. (8.93) is correct, and prove that B’s
version is also correct.] 0.1 points

8.26. Derive eq. (8.95)

αs(|q2|) =
12π

(11n− 2f) ln[|q2|/Λ2]
(|q2| ≫ Λ2) (8.95)

from eqs. (8.93) and (8.94)

lnΛ2 = lnµ2 − 12π/[(11n− 2f)αs(µ
2)] . (8.94)

0.1 points

8.27. Calculate αs at 10 and 100 GeV. Assume Λ = 0.3GeV. What if Λ = 1GeV? How
about Λ = 0.1GeV? 0.1 points
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8.5 Full problem

8.28. (Gluon-gluon scattering)

(a) Draw the lowest order diagrams (there are four of them) representing the inter-
action of two gluons. 0.6 points

(b) Write down the corresponding amplitudes. 1.2 points

(c) Put the incoming gluons into the color singlet state; do the same for the outgoing
gluons. Compute the resulting amplitudes. 0.9 points

(d) Go to the CM frame, in which each incoming gluon has energy E; express all the
kinematic factors in terms of E and the scattering angle θ. Add the amplitudes
to get the total M. 1.2 points

(e) Find the differential scattering cross section. 1.2 points

(f) Determine whether the force is attractive or repulsive (if it is the former, this
may be a likely glueball configuration). 0.6 points

9 Weak interactions: amplitudes and cross sections;

chiral spinors

David Griffiths, Chapter 9, pp. 348-352, 9.1, 9.2, 9.3, 9.4, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11,
9.12, 9.15, 9.18, 9.19, 9.21, 9.22, 9.23, 9.24, 9.25, 9.26, 9.31, 9.32, 9.34,

9.1. Derive the completeness relation for a massive particle of spin 1 (see Problem 9.27
for the massless analog). [Hint : Let the ẑ-axis point along p. First construct three

mutually orthogonal polarization vectors (ϵ
(1)
µ , ϵ

(2)
µ , ϵ

(3)
µ ) that satisfy pµϵ

(i)
µ = 0 and

ϵ
(k)
µ ϵ(k)µ = −1.] 0.1 points

9.2. Calculate the trace Tr[γµ(cV − cAγ
5)(/p1 +m1)γ

ν(cV − cAγ
5)(/p2 +m2)] for arbitrary

(real) numbers cV and cA. 0.1 points

9.4. Show that eq. (9.30) is equivalent to eq. (9.29).

u− < mµ − | p⃗2| − | p⃗4| < u+ , (9.29)
| p⃗2| < 1

2
mµ

| p⃗4| < 1
2
mµ

| p⃗2|+ | p⃗4| > 1
2
mµ

 . (9.30)

0.1 points

9.7. What is the average value of the electron energy in muon decay? 0.1 points

9.8. Using the coupling γµ(1 + ϵγ5) for n→ p+W , but γµ(1− γ5) for leptons, calculate
the spin averaged amplitude for neutron beta decay. Show that your result reduces
to eq. (9.41) when ϵ→ −1.

⟨|M|2⟩ = 2

(
gw
MW

)4

(p1.p2)(p3.p4) . (9.41)

0.2 points
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9.9. (a) Derive eq. (9.52)

p± =
1
2
(m2

n −m2
p +m2

e)−mn

√
| p⃗4|2 +m2

e

mn −
√

| p⃗4|2 +m2
e ∓ | p⃗4|

. (9.52)

0.2 points

(b) Derive eq. (9.58)

J ≈ 4m4
nηϕ(ϵ− η)2 = 4E

√
E2 −m2

e[mn −mp − E]2 . (9.58)

0.2 points

9.10. In the text, I said that electron energies in neutron decay range up to about (mn −
mp). This is not exact, since it ignores the kinetic energy of the proton and the
neutrino. What kinematic configuration gives the maximum electron energy? Apply
conservation of energy and momentum to determine the exact maximum electron
energy. [Remember the EPP1 course.]
How far off is the approximate answer (give the percent error)? 0.1 points

9.11. (a) Integrate eq. (9.59)

dΓ

dE
=

1

π3h̄

(
gw

2MW

)4

E
√
E2 −m2

e[mn −mp − E]2 , (9.59)

to get eq. (9.60)

Γ =
1

4π3h̄

(
gw

2MW

)4

m5
e

[
1

15
(2a4 − 9a2 − 8)

√
a2 − 1 + a ln[a+

√
a2 − 1]

]
,

(9.60)

where a = ∆m
me

= mn−mp

me
. 0.1 points

(b) Approximate as suitable for me ≪ ∆m = (mn −mp). Note that me now drops
out. 0.1 points

9.12. Obtain eq. (9.62)

τ =
1

Γ
= 1318 s . (9.62)

0.1 points

9.15. Show that if m≪ E

γ5u ≈
(
σ⃗ · p̂ 0
0 σ⃗ · p̂

)
u , (17)

where u is a particle spinor satisfying the Dirac equation. Combining eqs. (7.35) and
(7.41):

u =

(
uA

p⃗·σ⃗
E+m

uA

)
. (18)
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Show therefore that the projection matrix

P± =
1

2
(1± γ5) (19)

picks out the helicity ±1 component of u:

Σ⃗ · p̂ (P±u) = ±(P±u) . (20)

0.1 points

9.18. (a) Show that as long as the CKM matrix is unitary (V −1 = V †), the GIM mech-
anism for eliminating K0 → µ+µ− works for three (or any number of) genera-
tions. [Note: u → d +W+ carries a CKM factor Vud; d → u +W− carries a
factor V ∗

ud.] 0.1 points

(b) How many independent real parameters are there in the general 3 × 3 unitary
matrix? How about n × n? [Hint : It helps to know that any unitary matrix
(U) can be written in the form U = eiH , where H is a hermitian matrix. So an
equivalent question is, how many independent real parameters are there in the
general hermitian matrix?]

We are free to change the phase of each quark wave function (normalization
of u really only determines |N |2; see Problem 7.3), so 2n of these parameters
are arbitrary – or rather, (2n− 1), since changing the phase of all quark wave
functions by the same amount has no effect on V . Question: Can we thus
reduce the CKM matrix to a real matrix (if it is real and unitary, then it is
orthogonal : V −1 = V ⊤). 0.1 points

(c) How many independent real parameters are there in the general 3 × 3 (real)
orthogonal matrix? How about n× n? 0.1 points

(d) So what is the asnwer? Can you reduce the CKM matrix to real form? How
about for only two generations (n = 2)? 0.1 points

9.19. Show that the CKM matrix, eq. (9.87)

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 , (9.87)

where cjk = cos θjk and sjk = sin θjk, is unitary for any (real) numbers θ12, θ23, θ13,
and δ. 0.1 points

9.21. In Example 9.4 I used muon neutrinos, rather than electron neutrinos. As a matter
of fact, νµ and ν̄µ beams are easier to produce than νe and ν̄e, but there is also
a theoretical reason why νµ + e− → νµ + e− is simpler than νe + e− → νe + e−

ν̄e + e− → ν̄e + e−. Explain. 0.1 points

9.22. (a) Calculate the differential and total cross section for ν̄µ + e− → ν̄µ + e− in the
GWS model. 0.2 points

(b) Find the ratio σ(ν̄µ + e− → ν̄µ + e−)/σ(νµ + e− → νµ + e−). Assume the energy
is high enough that you can set me → 0. 0.2 points
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9.24. Estimate R (the total ratio of quark pair production to muon pair production in
e+e− scattering), when the process is mediated by Z0. For the sake of the argument,
pretend the top quark is light enough so that eq. (9.109)

σ =
1

3π

(
h̄g2zE

4[(2E)2 −M2
Z ]

)2

[(cfV )
2 + (cfA)

2][(ceV )
2 + (ceA)

2] (9.109)

can be used. Don’t forget color. 0.2 points

9.25. Graph the ratio in eq. (9.113)

σ(e+e− → Z0 → µ+µ−)

σ(e+e− → γ → µ+µ−)
=

[1
2
− 2 sin2 θw + 4 sin4 θw]

2

(sin θw cos θw)4
× E4

[(2E)2 −M2
Z ]

2 + (h̄ΓZMZ)2

(9.109)

as function of x = 2E/MZ . Use ΓZ = 7.3(g2z/48π)(MZ/h̄) (Problem 9.23) 0.1 points

9.26. (a) If u(p) satisfies the (momentum space) Dirac equation, eq. (7.49), show that

uL = PLu = 1
2
(1− γ5)u and uR = PRu = 1

2
(1 + γ5)u (Table 9.2)

do not (unless m = 0). 0.1 points

(b) Find the eigenvalues and eigenspinors of the matrices PR,L = P± = 1
2
(1± γ5).
0.2 points

(c) Can there exist spinors that are simultaneously eigenstates of P+ (say) and of
the Dirac operator (/p−m)? 0.4 points

9.31. Calculate the lifetime of the top quark. Note that because mt > mb +mW , the top
can decay into a real W (t → b + W+), whereas all other quarks must go via a
virtual W . As a consequence, its lifetime is much shorter, and that’s why it does not
form bound states (’truthful’ mesons and baryons). Take the b quark to be massless
(compared to t and W ). 0.2 points

9.34. Find the threshold νµ energy for inverse muon decay (Example 9.1), assuming the
target electron is at rest. Why is the answer so huge, when all we’re doing is producing
a muon? 0.2 points

9.1 Full problems

9.3. (a) Calculate ⟨|M|2⟩ for νµ + e− → µ− + νe using the more general coupling
γµ(1 + ϵγ5). Check that your answer reduces to eq. (9.11) in the case ϵ = −1.

0.2 points

(b) Let me = mµ = 0, and calculate the CM differential cross section. Also find the
total cross section. 0.2 points

(c) If you had accurate experimental data on this reaction, how could you determine
ϵ? 0.2 points

9.6. Suppose the weak interaction were pure vector : no γ5 in eq. (9.5),

−igw
2
√
2
γµ(1− γ5) weak vertecx factor . (9.5)

Would you still get the same shape for the graph in Figure 9.1 (Experimental spec-
trum of positron in µ+ → e+ + νe + νµ)? 1.5 points
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9.23. (a) Calculate the decay rate for Z0 → f+f̄ , where f is any quark or lepton. Assume
f is so light (compared to the Z0) that its mass can be neglected. (You’ll need
the completeness relation for the Z0 – see Problem 9.1) 1.5 points

(b) Assuming these are the dominant decay modes. find the branching ratio for each
species of quark and lepton (remember that the quarks come in three colors).
Should you include the top quark among the allowed decays? 1.0 points

(c) Calculate the lifetime, of the Z0. Quantitatively, how would it change if there
were a fourth generation (quarks and leptons)? (Notice that an accurate mea-
surment of the Z0 lifetime tells us how many quarks and leptons there can be
with masses less than 45 GeV.) 1.0 points

9.32. The radical new [your name] theory of weak interactions asserts that the W actually
has spin 0 (not 1), and the coupling is ’scalar/pseudo-scalar’, instead of ’vector/axial-
vector’. Specifically, in your theory the W propagator is

−i
q2 −M2

W

≈ i

M2
W

(21)

replacing eq. (9.4) and the vertex factor is

−igw
2
√
2
(1− γ5) (22)

replacing eq. (9.5). Consider inverse muon decay (νµ+e
− → µ−+νe), in this theory:

(a) Draw the Feynman diagram and construct the amplitude M. 0.6 points

(b) Determine the spin-averaged quantity ⟨|M|2⟩. 1.5 points

(c) Find the differential scattering cross section in the CM frame in terms of the
electron energy E and the scattering angle θ. Assume E ≫ mµ ≫ me, so you
can safely neglect the masses of both the electron and the muon (and of course
the neutrinos) 1.5 points

(d) Calculate the total cross section under the same conditions. 1.5 points

(e) By comparing the orthodox predictions for this process, instruct the experi-
mentalist how best to confirm your theory (and demolish the Standard Model).
[Note: There is no reason to suppose that the weak coupling constant (gw) in
your theory has the same value as it does in the Standard Model, so a test that
depends on this number is not going to be very persuasive.] 2.0 points


