#### General features of Supersymmetry

- connects bosons and fermions
- provides an extension to the Poincaré algebra
- unbroken global Supersymmetry
  - bosons and fermions of the same superfield have the same mass
  - the energy of the vacuum is always positive
  - loop corrections involving superfields vanish
    - $\Rightarrow$  there is no renormalisation of couplings or masses
- broken global Supersymmetry
  - bosonic and fermionic loop corrections nearly cancel each other
    - $\Rightarrow\,$  solves the hierarchy problem of the Standardmodel
  - better unification of couplings: Grand unified Theories (GUTs)
- local Supersymmetry
  - includes Gravity  $\Rightarrow$  Supergravity (SUGRA)
- needed for consistent 10 dimensional Stringtheory  $\Rightarrow$  Superstrings

Supersymmetry as an extension of the Poincaré algebra

- the Poincaré algebra describes space-time transformations of particles
- due to statistics bosons and fermions transform separately
- so all normal symmetries are bosonic
- according to the Coleman-Mandula theorem
  - all symmetry generators have to commute with the generators of the Poincaré algebra
  - no other symmetries are allowed for a meaningful QFT
- Supersymmetry evades this restriction by using anticommutators
  - Supersymmetry generators are fermionic
  - they extend the Poincaré algebra to the Super-Poincaré algebra

# The Super-Poincaré algebra

- the Poincaré algebra with generators  $M^{\alpha\beta}$  and  $P^{\mu}$ 

$$M^{\kappa\lambda}, M^{\rho\sigma}] = i(-g^{\kappa\rho}M^{\lambda\sigma} + g^{\lambda\rho}M^{\kappa\sigma} + g^{\kappa\sigma}M^{\lambda\rho} - g^{\lambda\sigma}M^{\kappa\rho}) \quad , \qquad (1)$$

$$[P^{\mu}, P^{\nu}] = 0 \quad \text{and} \quad [M^{\kappa\lambda}, P^{\mu}] = i(-g^{\kappa\mu}P^{\lambda} + g^{\lambda\mu}P^{\kappa}) \quad (2)$$

- is extended by the Supersymmetry generators Q<sub>α</sub> and Q<sub>α</sub> to

  [M<sup>µν</sup>, Q<sub>α</sub>] = <sup>1</sup>/<sub>2</sub>(σ<sup>µν</sup>)<sub>α</sub><sup>β</sup>Q<sub>β</sub> , [M<sup>µν</sup>, Q<sub>α</sub>] = -<sup>1</sup>/<sub>2</sub>(σ<sup>µν</sup>)<sup>β</sup><sub>α</sub>Q<sub>β</sub> , (3)

  ⇒ Q<sub>α</sub> and Q<sub>α</sub> transform as spinors under Lorentz transformations

  {Q<sub>α</sub>, Q<sub>α</sub>} = 2σ<sup>µ</sup><sub>αα</sub>P<sub>µ</sub> , and [Q<sub>α</sub>, P<sup>µ</sup>] = [Q<sub>α</sub>, P<sup>µ</sup>] = 0 (4)

  ⇒ the algebra closes
- mass dimensions of the generators:
  - $P^{\mu}$  has 1
  - $M^{\kappa\lambda}$  has 0
  - Q,  $\bar{Q}$  have half the dimension of  $P^{\mu}$ , so  $[Q] = [\bar{Q}] = \frac{1}{2}$

#### Superspace

- the normal coordinates  $x^{\mu}$  can be extended to  $(x^{\mu}, \theta^{lpha}, \overline{\theta}_{\dot{lpha}})$ 
  - $\theta^{\alpha}$ ,  $\bar{\theta}_{\dot{\alpha}}$  with  $\alpha, \dot{\alpha}$  = 1,2 are Grassman valued parameters
- The SUSY generators can be represented by differential operators:

$$Q_{\alpha} = \frac{\partial}{\partial \theta^{\alpha}} + i\sigma^{\mu}_{\alpha\dot{\alpha}}\bar{\theta}^{\dot{\alpha}}\frac{\partial}{\partial x^{\mu}} \quad \text{and} \quad \bar{Q}_{\dot{\alpha}} = -\frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} - i\theta^{\alpha}\sigma^{\mu}_{\alpha\dot{\alpha}}\frac{\partial}{\partial x^{\mu}} \quad (5)$$
  
- similar to  $P_{\mu} = -i\frac{\partial}{\partial x^{\mu}}$ 

• it is convenient to introduce differential operators

$$D_{\alpha} = \frac{\partial}{\partial \theta^{\alpha}} - i\sigma^{\mu}_{\alpha\dot{\alpha}}\bar{\theta}^{\dot{\alpha}}\frac{\partial}{\partial x^{\mu}} \qquad \text{and} \qquad \bar{D}_{\dot{\alpha}} = -\frac{\partial}{\partial\bar{\theta}^{\dot{\alpha}}} + i\theta^{\alpha}\sigma^{\mu}_{\alpha\dot{\alpha}}\frac{\partial}{\partial x^{\mu}} \qquad (6)$$

– they anticommute with  $Q_{lpha}$  and  $ar{Q}_{\dot{lpha}}$  and have a similar algebra:

$$\{D_{\alpha}, Q_{\beta}\} = \{D_{\alpha}, \bar{Q}_{\dot{\beta}}\} = \{\bar{D}_{\dot{\alpha}}, Q_{\beta}\} = \{\bar{D}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}}\} = 0$$
(7)

$$\{D_{\alpha}, D_{\beta}\} = \{\bar{D}_{\dot{\alpha}}, \bar{D}_{\dot{\beta}}\} = 0 \qquad \text{and} \qquad \{D_{\alpha}, \bar{D}_{\dot{\beta}}\} = 2i\sigma^{\mu}_{\alpha\dot{\beta}}\partial_{\mu} \qquad (8)$$

#### Superfields in Superspace

- a Superfield S is a function of  $(x^{\mu}, \theta^{\alpha}, \overline{\theta}_{\dot{\alpha}})$
- it can be expanded in component fields
  - the expansion terminates since  $(\theta^{\alpha})^2 = (\bar{\theta}_{\dot{\alpha}})^2 = 0$
  - the highest term is the coefficient of  $\theta\theta = \theta^{\alpha}\theta_{\alpha}$  or  $\bar{\theta}\bar{\theta} = \bar{\theta}_{\dot{\alpha}}\bar{\theta}^{\dot{\alpha}}$

$$S = s + \theta \chi + \bar{\theta}\bar{\chi} + \theta\theta m + \bar{\theta}\bar{\theta} n + \theta\sigma^{\mu}\bar{\theta}v_{\mu} + \theta\theta \bar{\theta}\bar{\lambda} + \bar{\theta}\bar{\theta}\theta\lambda + \theta\theta \bar{\theta}\bar{\theta}d$$
(9)

• The SUSY transformation with spinorial parameter  $\eta$  is  $\delta_{\eta} = \eta Q + \bar{\eta}\bar{Q}$   $\delta_{\eta}S = \delta_{\eta}s + \theta\delta_{\eta}\chi + \bar{\theta}\delta_{\eta}\bar{\chi} + \theta\theta\,\delta_{\eta}m + \bar{\theta}\bar{\theta}\,\delta_{\eta}n + \theta\sigma^{\mu}\bar{\theta}\delta_{\eta}v_{\mu}$  (10)  $+\theta\theta\,\bar{\theta}\delta_{\eta}\bar{\lambda} + \bar{\theta}\bar{\theta}\,\theta\delta_{\eta}\lambda + \theta\theta\,\bar{\theta}\bar{\theta}\,\delta_{\eta}d$  $= (\eta Q + \bar{\eta}\bar{Q})S = (\eta\frac{\partial}{\partial\theta} + i(\eta\sigma^{\mu}\bar{\theta})\partial_{\mu} + \bar{\eta}\frac{\partial}{\partial\bar{\theta}} + i(\theta\sigma^{\mu}\bar{\eta})\partial_{\mu})S$  (11)

gives the transformation property of the component fields.

- since Qs and Ds anticommute
  - constraints written with Ds are unaffected!

Superfields containing bosons and fermions

- Superfields describe multiplets of component fields
- but they have too many (unnecessary) degrees of freedom (dof)
- $\Rightarrow$  constraints:
  - chiral Superfields are defined as  $\bar{D}_{\dot{\alpha}}\Phi = D_{\alpha}\Phi^{\dagger} = 0$  (12)

- solved by 
$$\Phi = \Phi(y = x - i\theta\sigma^{\mu}\overline{\theta}, \theta, 0)$$
, so  $\Phi = \phi + 2\theta\psi - \theta\theta F$  (13)

$$- \delta_{\eta}\phi = 2\eta^{\alpha}\psi_{\alpha}, \ \delta_{\eta}\psi_{\alpha} = -\eta_{\alpha}F - i(\sigma^{\mu}\bar{\eta})_{\alpha}\partial_{\mu}\phi, \ \delta_{\eta}F = -2i(\partial_{\mu}\psi)\sigma^{\mu}\bar{\eta}$$
(14)

- F has mass dimension 2  $\Rightarrow$  auxiliar field
- complex scalar  $\phi$  has 2 dof, Weyl spinor  $\psi$  has 2 dof
- Vector Superfields are defined as  $V = V^{\dagger}$  (15)
  - in Wess Zumino gauge:  $V = \theta \sigma^{\mu} \overline{\theta} v_{\mu} + \theta \theta \overline{\theta} \overline{\lambda} + \overline{\theta} \overline{\theta} \theta \lambda + \theta \theta \overline{\theta} \overline{\theta} D$  (16)

\* then 
$$V^2 = -\frac{1}{2}\theta\theta\,\overline{\theta}\overline{\theta}v^{\mu}v_{\mu}$$
 and  $V^3 = 0$  (17)

#### The minimal supersymmetric Standardmodel (MSSM)

- gives a superpartner to each particle in the Standarmodel:
  - fermions get the scalar sfermions
  - vector bosons (gauge bosons) get the fermionic gauginos
  - the 2 doublets of Higgs bosons get the fermionic higgsinos

#### the Lagrangian consists of

- supersymmetric parts:
  - vector superfields in the SM gauge group  $SU(3)_{color} \times SU(2)_L \times U(1)_Y$
  - chiral superfields give the matter fields and the higgses
  - the interaction between chiral and vector superfields
- and soft breaking terms:
  - they are not supersymmetric invariant
  - the couplings have a mass dimension  $\geq 1$
  - they also break spontaneously  $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$ 
    - $\Rightarrow$  no SUSY breaking  $\Rightarrow$  no masses in the MSSM

### MSSM and Renormalisation

- the soft breaking terms (masses and trilinear couplings) break SUSY
  - they generate a mass splitting between superpartners:

$$\tilde{m}^2 = m_{\text{fermion}}^2 - m_{\text{boson}}^2 \sim \mathcal{O}(1) \text{ TeV}$$
(18)

- the natural cut-off scale for the SM is the Plank scale:  $m_P \sim 10^{19} {
  m GeV}$ 
  - the loop corrections to the Higgs mass should be  $\Delta m_H^2 \sim {\cal O}(lpha m_P^2)$
  - in the MSSM the loop corrections are  $\Delta m_{H}^{2} \sim \mathcal{O}(\alpha \tilde{m}^{2})$
  - $\Rightarrow$  stabilizes the Higgspotential
    - \* the Higgs self coupling is also a gauge coupling
- the running of the couplings are changed
  - the three gauge couplings meet at a single scale  $m_{
    m GUT} \sim 10^{18} {
    m GeV}$ 
    - \* a grand unified theory (GUT) describes the three forces as different representations of one single force
  - $\Rightarrow$  predictions for proton decay are consistent with experiment
    - $\ast\,$  non-SUSY GUTs give a too fast proton decay

## MSSM and Cosmology

- Astronomers measure the content of the universe:
  - 74% Dark Energy
  - 22% Dark Matter
  - 3.6% Intergalactic gas
  - 0.4% Stars, etc ...



- the MSSM has a discrete symmetry: *R*-parity
  - supersymmetric particles can only be produced in pairs
  - a SUSY particle can only decay into a SUSY particle
  - $\Rightarrow$  the lightest supersymmetric particle (LSP) is stable
    - $*\,$  this is usually the neutralino  $\tilde{\chi}^{\rm 0}_1$  with  $m_{\tilde{\chi}^{\rm 0}_1}>{\rm 50GeV}$
- $\Rightarrow$  the MSSM provides a Dark Matter candidate
  - if SUSY particles are found by LHC
    - $\Rightarrow$  some properties of dark matter can be investigated

#### supersymmetric flat space

- as in GR it will be helpful to use forms
  - they are easily generalized to superspace
  - but they no longer vanish for p > n, as there are spinors, too
- as in GR we can choose any basis, not only  $dz^M = (dz^m, d\theta^{\mu}, d\bar{\theta}_{\dot{\mu}})$ 
  - m denotes the space-time index,  $\mu$  and  $\dot{\mu}$  the spinor indices
  - a better basis is given by the supersymmetric covariant derivatives

$$D_{a} = \frac{\partial}{\partial x^{a}} \quad D_{\alpha} = \frac{\partial}{\partial \theta^{\alpha}} - i\sigma^{\mu}_{\alpha\dot{\alpha}}\bar{\theta}^{\dot{\alpha}}\frac{\partial}{\partial x^{\mu}} \quad \bar{D}^{\dot{\alpha}} = -\frac{\partial}{\partial\bar{\theta}_{\dot{\alpha}}} + i\theta_{\alpha}\sigma^{\mu}_{\alpha\dot{\beta}}\epsilon^{\dot{\beta}\dot{\alpha}}\frac{\partial}{\partial x^{\mu}}$$
(19)

- i.e. 
$$e^A = (e^a, e^{\alpha}, e_{\dot{\alpha}})$$
 and  $d = dz^M \partial_M = e^A D_A$  (20)

\* this relation also defines the vielbein:  $e^A = dz^M e_M{}^A$  (21)

\* 
$$d(dz^M) = 0$$
 but  $de^A = dz^M dz^N \partial_N e_M{}^A = e^M{}_B e^B e^C D_C e^A \neq 0$  (22)

- this defines supersymmetric flat space
- but even in flat space, the supersymmetric torsion does not vanish:

$$T_{\alpha\dot{\beta}}{}^{c} = T_{\dot{\beta}\alpha}{}^{c} = 2i\sigma^{c}_{\alpha\dot{\beta}}$$
(23)

### local Supersymmetry

- SUSY always includes fermions, the basic quantities are
  - the local vielbein  $E_M{}^A$
  - and the spin connection  $\omega_M{}^A{}_B$ 
    - $\ast$  A and B are called Lorentz indices
    - \* M and N are Einstein indices (general coordinate transformations)
- the Lorentz group can be seen as the local symmetry group
  - with local Lorentz transformations (LLTs)  $\Lambda_B{}^A$
  - the space time and spinorial parts are linked:

$$\sigma^{a}_{\alpha\dot{\alpha}}\sigma^{b}_{\beta\dot{\beta}}\Lambda_{ab} = -2\epsilon_{\alpha\beta}\Lambda_{\dot{\alpha}\dot{\beta}} + 2\epsilon_{\dot{\alpha}\dot{\beta}}\Lambda_{\alpha\beta}$$
(24)

• a general coordinate transformation in superspace  $z'^M = z^M - \xi^M$ 

$$\delta_{\xi} V^{A} = -\xi^{B} E_{B}{}^{M} \partial_{M} V^{A} + V^{B} \Lambda_{B}{}^{A} = -\xi^{B} \nabla_{B} V^{A} + V^{B} \xi^{C} \omega_{CB}{}^{A} + V^{B} \Lambda_{B}{}^{A}$$
(25)

- taking  $\Lambda_B{}^A = -\xi^C \omega_{CB}{}^A$  gives supergauge transformations
  - \* or gauged supersymmetry transformations

### Supergravity

- all of the introduced quantites are superfields
  - they can be expanded in the superspace coordinates
  - the metric is replaced by the vielbein as the dynamic quantity
  - constraints on the torsion:  $T_{\alpha\dot{\beta}}^{\ c} = T_{\dot{\beta}\alpha}^{\ c} = 2i\sigma_{\alpha\dot{\beta}}^{c}$  (26)
    - $\Rightarrow$  express the connection in terms of the vielbein
  - the vielbein contains graviton and gravitino
- gives a scenario for SUSY breaking
  - with mechanisms to motivate the soft breaking terms
- but this SUSY breaking happens at high energies
  - relevant for Cosmology
    - \* but only for the first nanoseconds

but it does not make GR a renormalisable QFT