3. Special Relativity (SR) - Generators as differential operators

Translation and Rotation Operators

- The momentum operator $\vec{P}=-i \frac{\partial}{\partial \vec{x}}=-i \vec{\partial}$ generates translations:
- in index notation: $P_{k}=-i \frac{\partial}{\partial x^{k}}=-i \partial_{k}$

$$
\begin{align*}
e^{i a^{k} P_{k}} f(x) & =e^{a^{k} \partial_{k}} f(x)=\sum_{n=0}^{\infty} \frac{1}{n!}\left(a^{k} \partial_{k}\right)^{n} f(x) \tag{1}\\
& =f(x)+a^{k} \partial_{k} f(x)+\frac{1}{2} a^{j} a^{k} \partial_{j} \partial_{k} f(x)+\ldots
\end{align*}
$$

- the Taylorseries of $f(x+a)$ is

$$
\begin{equation*}
f(x+a)=f(x)+a^{k} \partial_{k} f(x)+\frac{1}{2} a^{j} a^{k} \partial_{j} \partial_{k} f(x)+\cdots=e^{i \vec{a} \vec{P}} f(x) \tag{2}
\end{equation*}
$$

\Rightarrow the operator $e^{i \vec{a} \vec{P}}$ moves the function f by the amount \vec{a}

- The angular momentum operator $\vec{L}=\vec{X} \times \vec{P}$ generates rotations
- in index notation: $L_{j}=\epsilon_{j k \ell} x^{k} P_{\ell}=-i \epsilon_{j k \ell} x^{k} \partial_{\ell}$
- or $\quad L_{x}=i\left(z \partial_{y}-y \partial_{z}\right), \quad L_{y}=i\left(x \partial_{z}-z \partial_{x}\right), \quad L_{z}=i\left(y \partial_{x}-x \partial_{y}\right)$

3. Special Relativity (SR) - Generators as differential operators

Translation and Rotation Operators

- The components of \vec{L} do not commute:
- if you rotate around the \hat{x}-axis and then around the \hat{y}-axis, you get a different result than rotating first around \hat{y} and then \hat{x}.
- mathematically:

$$
\begin{align*}
{\left[L_{y}, L_{x}\right]=} & i^{2}\left[\left(x \partial_{z}-z \partial_{x}\right)\left(z \partial_{y}-y \partial_{z}\right)-\left(z \partial_{y}-y \partial_{z}\right)\left(x \partial_{z}-z \partial_{x}\right)\right] \\
= & i^{2}\left[\left(x \partial_{y}+x z \partial_{z} \partial_{y}-x y \partial_{z}^{2}-z^{2} \partial_{x} \partial_{y}+z y \partial_{x} \partial_{z}\right)\right. \\
& \left.-\left(z x \partial_{y} \partial_{z}-z^{2} \partial_{y} \partial_{x}-y x \partial_{z}^{2}+y \partial_{x}+y z \partial_{z} \partial_{x}\right)\right] \\
= & i^{2}\left[x \partial_{y}-y \partial_{x}\right]=-i L_{z} \tag{5}
\end{align*}
$$

- or in index notation: $\left[L_{j}, L_{k}\right]=i \epsilon_{j k \ell} L_{\ell} \quad \Rightarrow \quad$ Rotationgroup
- but the square $L^{2}=\vec{L} \cdot \vec{L}=L_{k} L_{k}$ does commute:

$$
\begin{align*}
{\left[L^{2}, L_{j}\right] } & =L_{k}\left[L_{k}, L_{j}\right]+\left[L_{k}, L_{j}\right] L_{k}=L_{k} i \epsilon_{k j \ell} L_{\ell}+i \epsilon_{k j \ell} L_{\ell} L_{k} \\
& =L_{h} i \epsilon_{h j m} L_{m}+i \epsilon_{m j h} L_{h} L_{m}=i\left(\epsilon_{h j m}+\epsilon_{m j h}\right) L_{h} L_{m}=0 \tag{7}
\end{align*}
$$

\Rightarrow use L^{2} and L_{z} to describe quantum mechanical states (particles)

3. Special Relativity (SR) - the Rotationgroup

Eigenstates of the Rotationgroup

- We write an eigenstate of the operators L^{2} and L_{z} as $|\lambda, m\rangle$

$$
\begin{equation*}
L^{2}|\lambda, m\rangle=\lambda|\lambda, m\rangle \quad \text { and } \quad L_{z}|\lambda, m\rangle=m|\lambda, m\rangle \tag{8}
\end{equation*}
$$

- $|f\rangle$ is called a ket and used to denote a quantum mechanical state.
- We define the ladder operators $L_{ \pm}=L_{x} \mp i L_{y}$ with

$$
\begin{align*}
& {\left[L^{2}, L_{ \pm}\right]=\left[L^{2}, L_{x}\right] \mp i\left[L^{2}, L_{y}\right]=0 \quad \text { and }} \tag{9}\\
& {\left[L_{z}, L_{ \pm}\right]=\left[L_{z}, L_{x}\right] \mp i\left[L_{z}, L_{y}\right]=i L_{y} \mp i\left(-i L_{x}\right)= \pm\left(L_{x} \mp i L_{y}\right)= \pm L_{ \pm}} \tag{10}
\end{align*}
$$

$\Rightarrow L_{ \pm}|\lambda, m\rangle$ is also an eigenstate of L^{2} and L_{z} :

$$
\begin{align*}
L^{2}\left(L_{ \pm}|\lambda, m\rangle\right) & =\left(\left[L^{2}, L_{ \pm}\right]+L_{ \pm} L^{2}\right)|\lambda, m\rangle=0+L_{ \pm} L^{2}|\lambda, m\rangle \\
& =L_{ \pm} \lambda|\lambda, m\rangle=\lambda\left(L_{ \pm}|\lambda, m\rangle\right) \tag{11}
\end{align*}
$$

and

$$
\begin{align*}
L_{z}\left(L_{ \pm}|\lambda, m\rangle\right) & =\left(\left[L_{z}, L_{ \pm}\right]+L_{ \pm} L_{z}\right)|\lambda, m\rangle=\left(\pm L_{ \pm}+L_{ \pm} L_{z}\right)|\lambda, m\rangle \\
& =\left(\pm L_{ \pm}+L_{ \pm} m\right)|\lambda, m\rangle=(m \pm 1)\left(L_{ \pm}|\lambda, m\rangle\right) \tag{12}
\end{align*}
$$

3. Special Relativity (SR) - the Rotationgroup

Eigenstates of the Rotationgroup

- $L_{ \pm}$does not change the eigenvalue λ of the state $|\lambda, m\rangle$
- $L_{ \pm}$changes the eigenvalue m of the state $|\lambda, m\rangle$
\Rightarrow the states $|\lambda, m+n\rangle$ with $n \in Z$ are related
\Rightarrow for each λ there would be ∞ many states unless there is
* $a=m_{\text {min }}$ with $L_{-}|\lambda, a\rangle=0$ and
* $b=m_{\text {max }}$ with $L_{+}|\lambda, b\rangle=0$
- using

$$
\begin{align*}
L_{ \pm} L_{\mp} & =\left(L_{x} \mp i L_{y}\right)\left(L_{x} \pm i L_{y}\right)=L_{x}^{2} \pm i L_{x} L_{y} \mp i L_{y} L_{x}+L_{y}^{2} \\
& =\left(L_{x}^{2}+L_{y}^{2}+L_{z}^{2}\right)-L_{z}^{2} \pm i\left[L_{x}, L_{y}\right]=L^{2}-L_{z}^{2} \pm i\left(i L_{z}\right) \\
& =L^{2}-L_{z}\left(L_{z} \pm 1\right) \tag{13}
\end{align*}
$$

we can relate a and b.

3. Special Relativity (SR) - the Rotationgroup

Eigenstates of the Rotationgroup

- relating a and b :

$$
\begin{gather*}
-\quad 0=L_{+} L_{-}|\lambda, a\rangle=\left(\lambda-\left(a^{2}+a\right)\right)|\lambda, a\rangle \quad \Rightarrow \quad \lambda=a^{2}+a \tag{14}\\
-\quad 0=L_{-} L_{+}|\lambda, b\rangle=\left(\lambda-\left(b^{2}-b\right)\right)|\lambda, b\rangle \quad \Rightarrow \quad \lambda=b^{2}-b \tag{15}\\
a(a+1)=b(b-1) \quad \text { or } \quad a=-b \tag{16}
\end{gather*}
$$

- Applying $\left(L_{+}\right) n$ times on the state $|\lambda, a\rangle$ gives $|\lambda, a+n\rangle$
- for some n we have to reach $|\lambda, b\rangle \Rightarrow a+n=b$
- with $a=-b$ we get $-b+n=b$ or $m_{\max }=b=\frac{n}{2}$
- The rotationgroup allows for half integer eigenstates

$\Rightarrow \quad$ Spinors

... we will encounter spinors again ...

Groups - what is a group?

- a set G together with a 'multiplication o' with the properties:
- for $a, b \in G \Rightarrow c=a \circ b \in G$
$-(a \circ b) \circ c=a \circ(b \circ c)$
$-\forall a \in G: \exists e \in G$ with $a \circ e=e \circ a=a$
$-\forall a \in G: \exists a^{-1} \in G$ with $a \circ a^{-1}=a^{-1} \circ a=e$
- if $a \circ b=b \circ a \forall a, b \in G$: abelian group, otherwise non-abelian
- abelian: $\{\mathcal{R},+\}$ or $\left\{\mathcal{R}^{+}, \times\right\}$
- non-abelian: regular square matrices with the matrix multiplication
- continuous groups: the elements depend on a continuous parameter
- example: rotations around an axis $R[\theta]$ with $\theta \in[0,2 \pi)$
- Lie group: a continuous group with an analytic multiplication
$-g[\vec{x}] \circ g[\vec{y}]=g[f(\vec{x}, \vec{y})]$ with $f(\vec{x}, \vec{y})$ analytic in \vec{x} and \vec{y}
- the unit element is $e=g[\overrightarrow{0}]$

3. Special Relativity (SR) - Algebra of the Poincaré group

Lie groups and Lie algebras

- The $n \times n$ (complex) matrices form representations of Lie groups
- group multiplication is analytic \Rightarrow expansion around unit element
- unit element $e=\mathbf{1}_{n \times n}$
- representation $T(g[\alpha])=\exp \left[i \alpha_{i} X_{i}\right] \Rightarrow X_{k}=-\left.i \frac{\partial T(g[\alpha])}{\partial \alpha_{k}}\right|_{\vec{\alpha}=0}$
- generators $\left\{X_{k}\right\}$ span the representation of the Lie group
- the generators $\left\{X_{k}\right\}$ fulfill the Lie algebra $\left[X_{j}, X_{k}\right]=C_{j k}^{\ell} X_{\ell}$
- with the antisymmetric structure constants $C_{j k}^{\ell}=-C_{k j}^{\ell}$
- rank of the group: number of commuting generators
- a Casimir operator commutes with all generators $\Rightarrow \propto e$
- the indices i, j, k, ℓ need not indicate single numbers!
- for the generators we will have $X_{i}=X_{[m n]}=-X_{[n m]}$

3. Special Relativity (SR) - Algebra of the Poincaré group

Representations of the Lie group

- using the Jacobi identity

$$
\begin{align*}
0 & =[A,[B, C]]+[B,[C, A]]+[C,[A, B]] \tag{19}\\
& =A B C-A C B-B C A+C B A+B C A-B A C-C A B+A C B+C A B-C B A-A B C+B A C
\end{align*}
$$

we get for the structure constants

$$
\begin{align*}
0 & =C_{b c}{ }^{d}[A, D]+C_{c a}{ }^{d}[B, D]+C_{a b}{ }^{d}[C, D] \tag{20}\\
& =C_{b c}{ }^{d} C_{a d}^{e}+C_{c a}^{d} C_{b d}^{e}+C_{a b}^{d} C_{c d}^{e}=-\left(C_{c a}{ }^{d} C_{d b}^{e}-C_{c b}{ }^{d} C_{d a}^{e}\right)+C_{a b}{ }^{d} C_{c d}^{e}
\end{align*}
$$

- writing the structure constants as matrices $\left(M_{k}\right)_{j}{ }^{\ell}=C_{j k}^{\ell}$ we have

$$
\begin{equation*}
0=-\left[\left(M_{a}\right)_{c}{ }^{d}\left(M_{b}\right)_{d}^{e}-\left(M_{b}\right)_{c}^{d}\left(M_{a}\right)_{d}^{e}\right]+C_{a b}^{d}\left(M_{d}\right)_{c}^{e} \tag{21}
\end{equation*}
$$

or

$$
\begin{equation*}
\left[M_{a}, M_{b}\right]=C_{a b}{ }^{d} M_{d} \tag{22}
\end{equation*}
$$

\Rightarrow the structure constants form the adjoint representation of the Lie group

3. Special Relativity (SR) - Algebra of the Poincaré group

Lie Algebra of the rotation group

- a rotation around the \hat{z}-axis by the angle θ is done by the matrix

$$
R[\theta]=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \tag{23}\\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)=e^{i \theta L_{z}}
$$

- in index notation: $R[\theta]^{j}{ }_{k}=\cos \theta\left(\delta_{1}^{j} \delta_{k}^{1}+\delta_{2}^{j} \delta_{k}^{2}\right)-\sin \theta\left(\delta_{1}^{j} \delta_{k}^{2}-\delta_{2}^{j} \delta_{k}^{1}\right)+\delta_{3}^{j} \delta_{k}^{3}$
- so the generator of the rotations, $i L_{z}$, is

$$
i L_{z}=\left.\frac{\partial R[\theta]}{\partial \theta}\right|_{\theta=0}=\left.\left(\begin{array}{ccc}
-\sin \theta & -\cos \theta & 0 \tag{25}\\
\cos \theta & -\sin \theta & 0 \\
0 & 0 & 0
\end{array}\right)\right|_{\theta=0}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- and similar

$$
i L_{x}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{26}\\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \quad i L_{y}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

- these rotations (incl. L_{x} and L_{y}) act on 3d column vectors $\vec{v}=\left(\begin{array}{l}v_{x} \\ v_{y} \\ v_{z}\end{array}\right)$

3. Special Relativity (SR) - Algebra of the Poincaré group

Lie Algebra of the rotation group

- with simple matrix multiplication we can see:

$$
\begin{array}{cl}
{\left[i L_{x}, i L_{y}\right]=-i L_{z} \quad\left[i L_{y}, i L_{z}\right]=-i L_{x} \quad\left[i L_{z}, i L_{x}\right]=-i L_{y}} \\
- \text { or in index notation with } x=1, y=2, \text { and } z=3: & {\left[L_{j}, L_{k}\right]=i \epsilon_{j k \ell} L_{\ell}} \tag{28}
\end{array}
$$

- but there is a smaller dimensional realisation of the rotation group!
- using the Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \tag{29}\\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- one can define the Spin matrices $S_{k}=\frac{1}{2} \sigma_{k}$, which give

$$
\begin{equation*}
\left[S_{j}, S_{k}\right]=i \epsilon_{j k \ell} S_{\ell} \tag{30}
\end{equation*}
$$

- these Spin matrices act on 2d complex column vectors $\vec{s}=\binom{\alpha}{\beta}$ with $|\alpha|^{2}+|\beta|^{2}=1 \quad \Rightarrow \quad$ Spinors
\Rightarrow fundamental representation of the rotation group $S U(2)$

3. Special Relativity (SR) - Algebra of the Poincaré group

Rotations of Spinors

- with simple matrix multiplication we can see for the Pauli matrices:

$$
\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{z}^{2}=\left(\begin{array}{ll}
1 & 0 \tag{31}\\
0 & 1
\end{array}\right)=1_{2 \times 2}
$$

- So the finite rotation of a spinor around the \hat{y}-axis is

$$
\begin{align*}
R[\theta] & =e^{i \theta S_{y}}=\sum_{n=0}^{\infty} \frac{1}{n!}\left(i \theta \frac{1}{2} \sigma_{y}\right)^{n}=\sum_{n=2 m} \frac{1}{n!}\left(i \frac{\theta}{2}\right)^{n} \sigma_{y}^{n}+\sum_{n=2 m+1} \frac{1}{n!}\left(i \frac{\theta}{2}\right)^{n} \sigma_{y}^{n} \\
& =\sum_{n}^{\infty} \frac{(-1)^{n}\left(\frac{\theta}{2}\right)^{2 n}}{(2 n)!}\left(\sigma_{y}^{2}\right)^{n}+i \sum_{n}^{\infty} \frac{(-1)^{n}\left(\frac{\theta}{2}\right)^{2 n+1}}{(2 n+1)!}\left(\sigma_{y}^{2}\right)^{n} \sigma_{y} \\
& =\cos \frac{\theta}{2} * 1_{2 \times 2}+i \sin \frac{\theta}{2} \sigma_{y}=\left(\begin{array}{cc}
\cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\
\sin \frac{\theta}{2} & \cos \frac{\theta}{2}
\end{array}\right) \tag{32}
\end{align*}
$$

- acting on the spinor $\vec{s}=\binom{\alpha}{\beta}$
\Rightarrow spinors rotate only with half of the rotation angle θ

3. Special Relativity (SR) - Algebra of the Poincaré group

Lorentz transformations (like Galilean transformations)

 consist of Boosts and Rotations- a boost in \widehat{x} was done by

$$
\begin{equation*}
\wedge(\eta)_{\nu}^{\mu}=\cosh \eta\left(\delta_{0}^{\mu} \delta_{\nu}^{0}+\delta_{1}^{\mu} \delta_{\nu}^{1}\right)-\sinh \eta\left(\delta_{0}^{\mu} \delta_{\nu}^{1}+\delta_{1}^{\mu} \delta_{\nu}^{0}\right)+\delta_{2}^{\mu} \delta_{\nu}^{2}+\delta_{3}^{\mu} \delta_{\nu}^{3} \tag{33}
\end{equation*}
$$

- a rotation between \hat{y} and \hat{z} can be done by

$$
\begin{equation*}
\wedge(\theta)^{\mu}{ }_{\nu}=\delta_{0}^{\mu} \delta_{\nu}^{0}+\delta_{1}^{\mu} \delta_{\nu}^{1}+\cos \theta\left(\delta_{2}^{\mu} \delta_{\nu}^{2}+\delta_{3}^{\mu} \delta_{\nu}^{3}\right)-\sin \theta\left(\delta_{2}^{\mu} \delta_{\nu}^{3}-\delta_{3}^{\mu} \delta_{\nu}^{2}\right) \tag{34}
\end{equation*}
$$

- we obtain the generators for boosts with $-\left.i \frac{\partial \wedge(\eta)^{\mu}{ }_{\nu}}{\partial \eta}\right|_{\eta=0}=$

$$
\begin{equation*}
-i \sinh \eta\left(\delta_{0}^{\mu} \delta_{\nu}^{0}+\delta_{1}^{\mu} \delta_{\nu}^{1}\right)+\left.i \cosh \eta\left(\delta_{0}^{\mu} \delta_{\nu}^{1}+\delta_{1}^{\mu} \delta_{\nu}^{0}\right)\right|_{\eta=0}=i\left(\delta_{0}^{\mu} \delta_{\nu}^{1}+\delta_{1}^{\mu} \delta_{\nu}^{0}\right) \tag{35}
\end{equation*}
$$

- we obtain the generators for rotations with $-\left.i \frac{\partial \wedge(\theta)^{\mu}{ }_{\nu}}{\partial \theta}\right|_{\theta=0}=$

$$
\begin{equation*}
+i \sin \theta\left(\delta_{2}^{\mu} \delta_{\nu}^{2}+\delta_{3}^{\mu} \delta_{\nu}^{3}\right)+\left.i \cos \theta\left(\delta_{2}^{\mu} \delta_{\nu}^{3}-\delta_{3}^{\mu} \delta_{\nu}^{2}\right)\right|_{\theta=0}=i\left(\delta_{2}^{\mu} \delta_{\nu}^{3}-\delta_{3}^{\mu} \delta_{\nu}^{2}\right) \tag{36}
\end{equation*}
$$

3. Special Relativity (SR) - Algebra of the Poincaré group

- The other boosts go in \widehat{y} or \hat{z} direction: $i\left(\delta_{0}^{\mu} \delta_{\nu}^{i}+\delta_{i}^{\mu} \delta_{\nu}^{0}\right)$, or with the indices $0 i$ down: $\left(M_{0 i}\right)^{\mu}{ }_{\nu}=i\left(\delta_{0}^{\mu}\left(-g_{i \nu}\right)+\delta_{i}^{\mu} g_{0 \nu}\right)$.
- The other rotations go in $\widehat{x} \hat{y}$ or $\hat{x} \hat{z}$ direction: $i\left(\delta_{j}^{\mu} \delta_{\nu}^{k}-\delta_{k}^{\mu} \delta_{\nu}^{j}\right)$, or with the indices $j k$ up: $\left(M_{j k}\right)^{\mu}{ }_{\nu}=i\left(\delta_{j}^{\mu}\left(-g_{k \nu}\right)-\delta_{k}^{\mu}\left(-g_{j \nu}\right)\right)$.
- both generators have now the same form: $\left(M_{\alpha \beta}\right)^{\mu}{ }_{\nu}=-i\left(\delta_{\alpha}^{\mu} g_{\beta \nu}-\delta_{\beta}^{\mu} g_{\alpha \nu}\right)$
- with $\omega^{\alpha \beta}=-\omega^{\beta \alpha}$ we get

$$
\begin{equation*}
\wedge(\omega)^{\mu}{ }_{\nu}=\exp \left[i\left(M_{\alpha \beta} \omega^{\alpha \beta}\right)^{\mu}{ }_{\nu}\right]=\exp \left[\left(\delta_{\alpha}^{\mu} g_{\beta \nu}-\delta_{\beta}^{\mu} g_{\alpha \nu}\right) \omega^{\alpha \beta}\right] \tag{39}
\end{equation*}
$$

- these generators fulfill the Lie algebra of the Lorentz group:

$$
\begin{equation*}
\left[M_{\alpha \beta}, M_{\gamma \delta}\right]_{\nu}^{\mu}=i\left(g_{\alpha \gamma} M_{\beta \delta}-g_{\beta \gamma} M_{\alpha \delta}-g_{\alpha \delta} M_{\beta \gamma}+g_{\beta \delta} M_{\alpha \gamma}\right)^{\mu}{ }_{\nu} \tag{40}
\end{equation*}
$$

- unifying time and spatial translations $P_{\mu}=\left(H, P_{i}\right)$.
- we get the rest of the Poincaré algebra:

$$
\begin{equation*}
\left[P_{\mu}, P_{\nu}\right]=0 \quad \text { and } \quad\left[M_{\alpha \beta}, P_{\mu}\right]=i\left(g_{\alpha \mu} P_{\beta}-g_{\beta \mu} P_{\alpha}\right) \tag{42}
\end{equation*}
$$

3. Special Relativity (SR) - Algebra of the Poincaré group

Invariants of the Poincare group

- obviously $[a b, c]=a[b, c]+[a, c] b=a b c-a c b+a c b-c a b=a b c-c a b$

$$
\begin{equation*}
\left[P_{\mu}, P^{2}\right]=\left[P_{\mu}, P_{\nu}\right] P^{\nu}+P^{\nu}\left[P_{\mu}, P_{\nu}\right]=0 \tag{43}
\end{equation*}
$$

and

$$
\begin{align*}
{\left[M_{\alpha \beta}, P^{2}\right] } & =g^{\mu \nu}\left[M_{\alpha \beta}, P_{\mu}\right] P_{\nu}+g^{\mu \nu} P_{\mu}\left[M_{\alpha \beta}, P_{\nu}\right] \tag{44}\\
& =g^{\mu \nu} i\left(g_{\alpha \mu} P_{\beta}-g_{\beta \mu} P_{\alpha}\right) P_{\nu}+g^{\mu \nu} P_{\mu} i\left(g_{\alpha \nu} P_{\beta}-g_{\beta \nu} P_{\alpha}\right) \\
& =-2 i\left[P_{\alpha}, P_{\beta}\right]=0
\end{align*}
$$

$\Rightarrow P^{2}=m^{2}$ invariant is a consequence of the Poincaré algebra!

- Another invariant is W^{2}
- with the Pauli-Lubanski vector $W^{\mu}=\frac{1}{2} \epsilon^{\mu \nu \rho \lambda} M_{\nu \rho} P_{\lambda}$
- since P_{μ} and W^{μ} commute: $\quad\left[P_{\kappa}, W^{\mu}\right]=\frac{1}{2} \epsilon^{\mu \nu \rho \lambda}\left[P_{\kappa}, M_{\nu \rho} P_{\lambda}\right]$

$$
\begin{equation*}
=\frac{1}{2} \epsilon^{\mu \nu \rho \lambda}\left(\left[P_{\kappa}, M_{\nu \rho}\right] P_{\lambda}+M_{\nu \rho}\left[P_{\kappa}, P_{\lambda}\right]\right)=\frac{1}{2} \epsilon^{\mu \nu \rho \lambda} i\left(g_{\rho \kappa} P_{\nu}-g_{\nu \kappa} P_{\rho}\right) P_{\lambda}=0 \tag{46}
\end{equation*}
$$

\Rightarrow Particles can be characterised by the eigenvalues of P^{2} and W^{2}

3. Special Relativity (SR) - Algebra of the Poincaré group

Invariants of the Poincaré group

- the spin vector W^{μ} is orthogonal to P_{μ} :

$$
\begin{equation*}
(P . W)=P^{\mu} \frac{1}{2} \epsilon_{\mu \nu \rho \lambda} M^{\nu \rho} P^{\lambda}=0 \tag{47}
\end{equation*}
$$

- a particle at rest: $P_{\mu}=(m, 0)$ and $W_{\mu}=\frac{1}{2} m \epsilon_{\mu \nu \rho 0} M^{\nu \rho}=m(0, \vec{J})$
- then

$$
\begin{equation*}
W^{2}=-m^{2} \vec{J}^{2}=-m^{2} s(s+1) \tag{48}
\end{equation*}
$$

\Rightarrow the eigenvalues of P^{2} is m^{2} and of W^{2} is $m^{2} s(s+1)$

- a massless particle has $P_{\mu}=(\eta, \eta, 0,0)$ and $W^{\mu}=\frac{1}{2} \epsilon^{\mu \nu \rho \lambda} M_{\nu \rho} P_{\lambda}$
- and we get $\quad P^{2}=(P . W)=W^{2}=0$
\Rightarrow so the eigenvalues of P^{2} and W^{2} are 0
- noticing $\quad 0=\lambda^{2} P^{2}-2 \lambda(P . W)+W^{2}=(\lambda P-W)^{2}$
- we can require $W^{\mu}=\lambda P^{\mu}$ with the helicity $\lambda=0, \pm \frac{1}{2}, \pm 1, \ldots$
* λ depends on the representation (i.e. the spin) of the particle
\Rightarrow Particles are characterised by mass and spin !

3. Special Relativity (SR) - Algebra of the Poincaré group

Investigating the Lorentz group

- distinguishing again boosts and rotations

$$
\begin{equation*}
K_{i}=M_{0 i}=-M^{0 i} \quad \text { and } \quad J_{i}=\frac{1}{2} \epsilon_{i j k} M^{j k} \tag{53}
\end{equation*}
$$

the Lorentz algebra gives

$$
\begin{equation*}
\left[J_{j}, J_{k}\right]=i \epsilon_{j k \ell} J_{\ell}, \quad\left[K_{j}, K_{k}\right]=-i \epsilon_{j k \ell} J_{\ell}, \quad\left[J_{j}, K_{k}\right]=i \epsilon_{j k \ell} K_{\ell} \tag{54}
\end{equation*}
$$

- defining

$$
\begin{equation*}
L_{i}=N_{i}=\frac{1}{2}\left(J_{i}+i K_{i}\right) \quad \text { and } \quad R_{i}=N_{i}^{\dagger}=\frac{1}{2}\left(J_{i}-i K_{i}\right) \tag{55}
\end{equation*}
$$

one gets

$$
\begin{equation*}
\left[L_{j}, R_{k}\right]=0, \quad\left[L_{j}, L_{k}\right]=i \epsilon_{j k \ell} L_{\ell}, \quad\left[R_{j}, R_{k}\right]=i \epsilon_{j k \ell} R_{\ell} \tag{56}
\end{equation*}
$$

- the Lorentz algebra is similar to $S U(2)_{L} \otimes S U(2)_{R}$!
- two invariants: $L_{i} L_{i}=n(n+1)$ and $R_{i} R_{i}=m(m+1)$
- since $J_{i}=L_{i}+R_{i} \quad \Rightarrow \quad$ spin $j=n+m$

3. Special Relativity (SR) - Algebra of the Poincaré group

classifying particles

- according to the eigenstates (n, m) of $S U(2)_{L} \otimes S U(2)_{R}$
- $(0,0)$ is a scalar
- $\left(\frac{1}{2}, 0\right)$ is the χ_{α} left-handed Weyl-spinor
- ($0, \frac{1}{2}$) is the $\bar{\eta}^{\dot{\alpha}}$ right-handed Weyl-spinor
$-\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)$ is $\Psi=\binom{\chi^{\alpha}}{\bar{\eta}^{\dot{\alpha}}}$, the Dirac-spinor
$-\left(\frac{1}{2}, 0\right) \otimes\left(0, \frac{1}{2}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$ is $\left(\chi \sigma^{\mu} \bar{\eta}\right)=\chi^{\alpha} \sigma_{\alpha \dot{\alpha}}^{\mu} \bar{\eta}^{\dot{\alpha}}$, the spin-1 four-vector
\Rightarrow in that sense is the spinor the square root of the vector
- under Parity: $J_{i} \xrightarrow{\mathrm{P}} J_{i}, K_{i} \xrightarrow{\mathrm{P}}-K_{i}, \Rightarrow L_{i} \stackrel{\mathrm{P}}{\longleftrightarrow} R_{i},(n, m) \stackrel{\mathrm{P}}{\longleftrightarrow}(m, n)$
- the scalar stays the same
$-\left(\frac{1}{2}, 0\right) \stackrel{\mathrm{P}}{\longleftrightarrow}\left(0, \frac{1}{2}\right)$, therefore $\chi_{\alpha} \stackrel{\mathrm{P}}{\longleftrightarrow} \bar{\eta}^{\dot{\alpha}}$
$-\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right) \stackrel{P}{\longleftrightarrow}\left(0, \frac{1}{2}\right) \oplus\left(\frac{1}{2}, 0\right)=\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)$,
\Rightarrow so a Dirac-spinor stays a Dirac-spinor
- the four-vector stays the same

3. Special Relativity (SR) - Algebra of the Poincaré group

classifying particles

- Charge conjugation also interchanges $S U(2)_{L} \Leftrightarrow S U(2)_{R}$
- like Parity
\Rightarrow the combined transformation CP leaves $S U(2)_{L}$ and $S U(2)_{R}$ invariant
- but it still includes mathematically a complex conjugation
- Time reversal T is an antiunitary transformation
- it includes a complex conjugation
any quantum field theory
- built from the representations of the Poincaré algebra
- that means: scalars, spinors, vectors
\Rightarrow has to be invariant under CPT

