
8. General Relativity — Gravitational Waves
Historical ramblings . . . ( arXiv:1609.09400 [physics.hist-ph] )

•1864 Maxwell predicts electromagnetic waves

1867 Hertz discovers electromagnetic waves

1915 Einstein publishes GR

1916 – 1937 pro and contra gravtitational waves

1939 – 1945 second world war

1957 Meeting at Chapel Hill on General Relativity
∗ with Gravitational Waves (GW) as one topic

∗ Feynman gives the "sticky bead" argument, convincing that GWs are detectable

⇒ start of GW detection experiments

1983 initial LIGO project (Weiss, Thorne, Drever)

1988 NSF funds LIGO

1993 starting of VIRGO

2003 VIRGO completed

2010 beginning of aLIGO

2015 aLIGO: engineering test and detection of GW
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8. General Relativity — Gravitational Waves

What is actually a ”wave” ?

• "Why the Notion of Radiation is Non-Trivial" ( arXiv:2201.11634 [gr-qc] )

– for EM we know, how a source Jµ(t′, x⃗′) generates the field Aµ(t, x⃗):

Aµ(t, x⃗) =
1

4π

∫
V
d3x′

∫
T
dt′

Jµ(t′, x⃗′)

||x⃗ − x⃗′||
δ(t′ + ||x⃗ − x⃗′|| − t) (1)

∗ but not all changing fields are radiation example: eddy current break

• from a ”wave” we usually require

– it is periodic with a frequency ω

∗ and has the corresponding wavelength λ = 2πc
ω

– it travels also far away from the source, which has a finite size d

∗ so we can write r = ||x⃗|| ≫ d

– the field of the wave drops like 1
r with the distance

• for the radiation zone we assume d ≪ λ ≪ r (2)
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8. General Relativity — Gravitational Waves

Rigorous treatment ( arXiv:2201.11634 [gr-qc] )

• construct a conformal completion of spacetime

– start with outgoing Eddington-Finkelstein coordinates (u = t− r∗, r, θ, ϕ)

∗ built from the tortoise coordinate r∗ = r + rS ln |r/rS − 1| with rS = 2GM (3)

– conformally rescale the line element with ρ = 1
r

( to move r = ∞ to ρ = 0 )

ds̃2 = ρ2(du2 +2dudr − r2d2Ω) = du2 − 2dudρ− d2Ω (4)

⇒ the ”boundary” at infinity is discussed as ρ → 0

• use the Newman-Penrose Null Tetrad Formalism compare c04Riga-gr2.pdf

– to formulate the limit ρ → 0 in mathematical exact terms

∗ and to replace tensors by complex functions, i.e. Newman-Penrose scalars

– apply the peeling theorem to identify the radiation

• for Penrose diagrams use additionally the rescaling tan(t± r) = t̂± r̂ (5)

– to draw the infinities on a finite sheet of paper . . .
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8. General Relativity — linearized gravity

Arguments for linearized gravity

• we experience gravity as weak (in terms of the GR description)

⇒ detection of GWs allows the weak-field description

• GWs travel to us through nearly empty space

⇒ propagation of GWs allows the weak-field description

• we will see: some production of GWs can be described in weak-field limit

• gravity with a perturbation series of the metric compare (3) of c04Riga-gr3.pdf

gµν = ηµν + hµν with |hµν| ≪ 1 and ηµν Minkovsky or FRW (6)

⇒ we need to linearize Γλ
µν, Rλ

µνρ, Rµν, R, and Gµν in terms of hµν

• gravity is a gauge theory: xµ → xµ′ = xµ + ξµ(x) (7)

– xµ′ has to give the same physics as the original xµ

⇒ restrictions for the parametrisation of hµν
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8. General Relativity — gauging linearized gravity

parametrizing metric and gauge transformations

we distinguish between time (index 0) and space (indices i, j, k, . . . )

• for simplicity we assume Cartesian space coordinates (x, y, z)

– with the space metric δjk, allowing simple raising and lowering

• then we write the metric as the line element: d2s = gµνdxµdxν

we keep a2(t) for generality: we can always set a(t) = a0 for Minkovsky space.

d2s = a2(t)[(1 + 2A)dt2 − 2Bidtdx
i − (δjk + hjk)dx

jdxk] (8)

with A, Bi = ∂iB + B̂i and hjk as perturbations

– that can be decomposed into S(calar)-V(ector)-T(ensor) parts
. . . which stay among themselves in first order perturbation theory

1
2hjk = Cδjk + (∂j∂k − 1

3δjk ∂⃗
2)E + 1

2(∂jÊk + ∂kÊj) + Êjk (9)

– vectors and tensors are transverse: ∂jB̂j = ∂jÊj = ∂jÊjk = ∂kÊjk = 0 (10)

– and the tensor is traceless: δjkÊjk = 0 (11)
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8. General Relativity — gauging linearized gravity

parametrizing metric and gauge transformations

• the perturbations A, B, C, E, B̂i, Êi, and Êjk change
under the transformation eq.(7) xµ → xµ′ = xµ + ξµ(x)

• but the Bardeen variables do not:

Ψ = A+ ȧ
a(B − d

dtE) + d
dt(B − d

dtE) Êjk

−Φ = C + ȧ
a(B − d

dtE)− 1
3 ∂⃗2E) Φ̂i = −(B̂i − d

dtÊi)
(12)

– they are gauge invariant
∗ and have 2 scalar , 2 vector , and 2 tensor degrees of freedom (d.o.f.)

∗ the four gauge transformations eq.(7) remove 4 d.o.f.s from the 10 of the symmetric hµν

• one can always choose a gauge that the local metric is given by

d2s = a2(t)[(1 + 2Ψ)dt2 − 2Φ̂idtdx
i − (1− 2Φ)d x⃗2 − 2Êjkdx

jdxk] (13)

– so h00 = 2Ψ , h0i = hi0 = −2Φ̂i , hjk = 2Φδjk − 2Êjk (14)

∗ and ∂µhµ0 = ∂0h00 + ∂ihi0 = 2∂0Ψ− 2∂iΦ̂i = 2∂0Ψ (15)
∂µhµk = ∂0h0k + ∂ihik = −2∂0Φ̂k +2∂iΦδik − 2∂iÊik = −2∂0Φ̂k +2∂kΦ (16)
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8. General Relativity — linearised Einstein equations

linearised Christoffel symbols Γλ
µν = 1

2g
λρ(∂µgνρ + ∂νgµρ − ∂ρgµν) (17)

• up to first order in the perturbations Γλ
µν = Γ[0]λ

µν + Γ̂λ
µν

Γ[0]λ
µν = 1

2a
−2ηλρ(∂µa

2ηνρ + ∂νa
2ηµρ − ∂ρa

2ηµν) (18)

– with the only nonvanishing Γ[0]0
00 = ȧ

a and Γ[0]0
jk = ȧ

aδjk (19)

∗ which are zero for Minkovsky space background

• at first order we get more non-vanishing pieces . . .

Γ̂λ
µν = 1

2a2h
λρ(∂µa

2ηνρ + ∂νa
2ηµρ − ∂ρa

2ηµν) + 1
2a2η

λρ(∂µa
2hνρ + ∂νa

2hµρ − ∂ρa
2hµν) (20)

– for a result we have to specify the decomposition of the perturbation hµν

∗ and split the sums over µ into 0 and i

• for detection and local propagation of GWs, we can set a constant

– then Γλ
µν = Γ̂λ

µν = 1
2η

λρ(∂µhνρ + ∂νhµρ − ∂ρhµν) (21)

∗ hµν here is the general one from eq.(6)
∗ the linearised approach allows a general solution, that is simpler to write with this general hµν
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8. General Relativity — linearised Einstein equations

linearised Ricci tensor Rµν = R[0]
µν + R̂µν = R[0]λ

µλν + R̂λ
µλν (22)

• gives at zero order the background curvature

Rλ
µλν = ∂λΓ

[0]λ
νµ − ∂νΓ

[0]λ
λµ − Γ[0]λ

νκΓ
[0]κ

λµ +Γ[0]λ
λκΓ

[0]κ
νµ

= ∂0Γ
[0]0

νµ − ∂νΓ
[0]0

0µ − Γ[0]0
ν0Γ

[0]0
0µ +Γ[0]0

00Γ
[0]0

νµ

= δµ(ν ̸=0)[
d
dt

ȧ
a + (ȧa)

2] (23)

• and to first order

R̂λ
µλν = ∂λΓ̂

λ
νµ − ∂νΓ̂

λ
λµ − Γ[0]λ

νκΓ̂
κ
λµ − Γ̂λ

νκΓ
[0]κ

λµ +Γ[0]λ
λκΓ̂

κ
νµ + Γ̂λ

λκΓ
[0]κ

νµ (24)

• for a = a0 we get Rµν = R̂µν = ∂λΓ̂
λ
νµ − ∂νΓ̂

λ
λµ (25)

= 1
2(∂µ∂

ρhνρ + ∂ν∂
ρhµρ − ∂ρ∂

ρhµν − ∂ν∂µh)

– where h = ηλρhλρ is the ”trace” of hµν

• the Ricci scalar R = ηµνRµν = (∂λ∂ρhλρ − ∂λ∂
λh) (26)

• and the Einstein tensor Gµν = Rµν − 1
2ηµνR

= 1
2(∂µ∂

ρhνρ + ∂ν∂
ρhµρ − ∂ρ∂

ρhµν − ηµν∂
λ∂ρhλρ − ∂ν∂µh+ ηµν∂λ∂

λh)(27)
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8. General Relativity — linearised Einstein equations

simplifying the Einstein tensor

• using a trace-reversed perturbation h̄µν := hµν − 1
2ηµνh (28)

⇒ the trace term in Gµν disappears

• choosing additionally the Lorentz gauge ∂µh̄µν = 0 (29)

⇒ most terms in Gµν vanish: Gµν = −1
2∂ρ∂

ρh̄µν =: −1
22h̄µν (30)

⇒ Einstein equations become simple wave equations in vacuum:

Gµν = 8πGTµν ⇒ 2h̄µν = −16πGTµν
in vacuum

= 0 (31)

– with the simple solution h̄µν =
∫

d3kCµν(k⃗)e
i(ωt−k⃗·x⃗) (32)

∗ the Lorentz gauge leads to transversity: kµCµν = 0 (33)

• comparing to the Bardeen variables, eqs.(12) and (13):

– only the transverse-traceless Êik survives the Lorentz condition

⇒ transverse-traceless gauge hTT
jk = 2Êjk (34)
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8. General Relativity — Jakov Braver’s presentation

The transverse-traceless gauge

The transverse-traceless gauge:

For a wave propagating in the    direction:

Consider a particle initially at rest:

initially, zero acceleration

TT gauge coordinates stay attached to particles
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8. General Relativity — Jakov Braver’s presentation

Geodesic deviation

Tangent vector:

Deviation vector:

“Relative velocity of geodesics”:

“Relative acceleration of geodesics”:

Geodesic deviation equation:
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8. General Relativity — Jakov Braver’s presentation

Effect of gravitational waves on test particles

For nearby particles we have

particles are moving slowly, 
so we use “universal” time

separation between the particles

we use a single vector field for 
velocities of both particles

In the zeroth order in the perturbation,

The only required components are

Hence, since, in TT gauge,
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8. General Relativity — Jakov Braver’s presentation

Polarisation of gravitational waves

For a wave propagating in the    direction:

Let             :

“Plus” polarisation:
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8. General Relativity — Jakov Braver’s presentation

Polarisation of gravitational waves

For a wave propagating in the    direction:

Let             :

“Cross” polarisation:

Wave is invariant under rotation by 180°
around the direction of propagation

gravitons should have spin 2

(360°/180° = 2)
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8. General Relativity — Jakov Braver’s presentation

Energy flux

To discuss energy, we have to include the second order:

The Einstein equation in vacuum gives:or

zeroth order:

first order: (allows us to determine        )

second order:

Calculation of the energy–momentum tensor yields

— averaging over many wavelengths

and the energy flux is
(in conventional units,              ) 
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8. General Relativity — Jakov Braver’s presentation

Quadrupole moment tensor

General solution of the wave equation                                 :

In the limit 

distance to source wavelength source dimensions

we have

Using , one may show that

Employing the Newtonian approximation 
we define the quadrupole moment

The perturbation is then
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8. General Relativity — Jakov Braver’s presentation

Energy loss due to radiation

We are interested in the radiation power

We have

Finally, the integral may be performed to yield

One may show that

with reduced quadruple moment

To convert to the TT gauge, we use the formula

with a projection tensor

unit vector along the direction of propagation
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8. General Relativity — Jakov Braver’s presentation

Hulse–Taylor binary pulsar — energy loss

Mass density of the system:

leads to the energy loss due to gravitational radiation

Straightforward calculation of

and then
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8. General Relativity — Jakov Braver’s presentation

Hulse–Taylor binary pulsar — orbital decay

Using the equation of motion

we get the energy as

Expressing     in terms of the period    ,

Differentiating with respect to time 
and substituting the energy loss, 
we get the orbital decay

Taking into account that the masses are 
different and that the orbit is not circular, 
we find

Measured:
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