```
8. General Relativity - Gravitational Waves
Historical ramblings
... ( arXiv:1609.09400 [physics.hist-ph] )
1864 Maxwell predicts electromagnetic waves
```


1867 Hertz discovers electromagnetic waves

```
1915 Einstein publishes GR
1916 - 1937 pro and contra gravtitational waves
1939 - 1945 second world war
1957 Meeting at Chapel Hill on General Relativity
* with Gravitational Waves (GW) as one topic
* Feynman gives the "sticky bead" argument, convincing that GWs are detectable
\(\Rightarrow\) start of GW detection experiments
1983 initial LIGO project (Weiss, Thorne, Drever)
1988 NSF funds LIGO
1993 starting of VIRGO
2003 VIRGO completed
2010 beginning of aLIGO
2015 aLIGO: engineering test and detection of GW
```


What is actually a 'wave" ?

- "Why the Notion of Radiation is Non-Trivial" (arXiv:2201.11634 [gr-qc])
- for EM we know, how a source $J^{\mu}\left(t^{\prime}, \vec{x}^{\prime}\right)$ generates the field $A^{\mu}(t, \vec{x})$:

$$
\begin{equation*}
A^{\mu}(t, \vec{x})=\frac{1}{4 \pi} \int_{V} d^{3} x^{\prime} \int_{T} d t^{\prime} \frac{J^{\mu}\left(t^{\prime}, \vec{x}^{\prime}\right)}{\left\|\vec{x}-\vec{x}^{\prime}\right\|} \delta\left(t^{\prime}+\left\|\vec{x}-\vec{x}^{\prime}\right\|-t\right) \tag{1}
\end{equation*}
$$

* but not all changing fields are radiation example: eddy current break
- from a '"wave" we usually require
- it is periodic with a frequency ω
* and has the corresponding wavelength $\lambda=\frac{2 \pi c}{\omega}$
- it travels also far away from the source, which has a finite size d
* so we can write $r=\|\vec{x}\| \gg d$
- the field of the wave drops like $\frac{1}{r}$ with the distance
- for the radiation zone we assume $d \ll \lambda \ll r$

8. General Relativity - Gravitational Waves

Rigorous treatment (arXiv:2201.11634 [gr-qc])

- construct a conformal completion of spacetime
- start with outgoing Eddington-Finkelstein coordinates ($u=t-r^{*}, r, \theta, \phi$)
* built from the tortoise coordinate $r^{*}=r+r_{S} \ln \left|r / r_{S}-1\right|$ with $r_{S}=2 G M$ (3)
- conformally rescale the line element with $\rho=\frac{1}{r} \quad$ (to move $r=\infty$ to $\rho=0$)

$$
\begin{equation*}
d \tilde{s}^{2}=\rho^{2}\left(d u^{2}+2 d u d r-r^{2} d^{2} \Omega\right)=d u^{2}-2 d u d \rho-d^{2} \Omega \tag{4}
\end{equation*}
$$

\Rightarrow the '"boundary" at infinity is discussed as $\rho \rightarrow 0$

- use the Newman-Penrose Null Tetrad Formalism compare co4Riga-gr2.pdf
- to formulate the limit $\rho \rightarrow 0$ in mathematical exact terms
* and to replace tensors by complex functions, i.e. Newman-Penrose scalars
- apply the peeling theorem to identify the radiation
- for Penrose diagrams use additionally the rescaling $\tan (t \pm r)=\widehat{t} \pm \hat{r}$
- to draw the infinities on a finite sheet of paper ...

8. General Relativity - linearized gravity

Arguments for linearized gravity

- we experience gravity as weak (in terms of the GR description)
\Rightarrow detection of GWs allows the weak-field description
- GWs travel to us through nearly empty space
\Rightarrow propagation of GWs allows the weak-field description
- we will see: some production of GWs can be described in weak-field limit
- gravity with a perturbation series of the metric compare (3) of c04Riga-gr3.pdf

$$
\begin{equation*}
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \quad \text { with } \quad\left|h_{\mu \nu}\right| \ll 1 \quad \text { and } \quad \eta_{\mu \nu} \text { Minkovsky or FRW } \tag{6}
\end{equation*}
$$

\Rightarrow we need to linearize $\Gamma_{\mu \nu}^{\lambda}, R_{\mu \nu \rho}^{\lambda}, R_{\mu \nu}, R$, and $G_{\mu \nu}$ in terms of $h_{\mu \nu}$

- gravity is a gauge theory: $\quad x^{\mu} \rightarrow x^{\mu \prime}=x^{\mu}+\xi^{\mu}(x)$
- $x^{\mu \prime}$ has to give the same physics as the original x^{μ}
\Rightarrow restrictions for the parametrisation of $h_{\mu \nu}$

8. General Relativity

parametrizing metric and gauge transformations

we distinguish between time (index 0) and space (indices i, j, k, \ldots)

- for simplicity we assume Cartesian space coordinates (x, y, z)
- with the space metric $\delta_{j k}$, allowing simple raising and lowering
- then we write the metric as the line element: $d^{2} s=g_{\mu \nu} d x^{\mu} d x^{\nu}$ we keep $a^{2}(t)$ for generality: we can always set $a(t)=a_{0}$ for Minkovsky space.

$$
\begin{equation*}
d^{2} s=a^{2}(t)\left[(1+2 A) d t^{2}-2 B_{i} d t d x^{i}-\left(\delta_{j k}+h_{j k}\right) d x^{j} d x^{k}\right] \tag{8}
\end{equation*}
$$

with $A, B_{i}=\partial_{i} B+\widehat{B}_{i}$ and $h_{j k}$ as perturbations

- that can be decomposed into $S(c a l a r)-V(e c t o r)-T(e n s o r)$ parts
... which stay among themselves in first order perturbation theory

$$
\begin{equation*}
\frac{1}{2} h_{j k}=C \delta_{j k}+\left(\partial_{j} \partial_{k}-\frac{1}{3} \delta_{j k} \vec{\partial}^{2}\right) E+\frac{1}{2}\left(\partial_{j} \widehat{E}_{k}+\partial_{k} \widehat{E}_{j}\right)+\widehat{E}_{j k} \tag{9}
\end{equation*}
$$

- vectors and tensors are transverse: $\quad \partial^{j} \widehat{B}_{j}=\partial^{j} \widehat{E}_{j}=\partial^{j} \widehat{E}_{j k}=\partial^{k} \widehat{E}_{j k}=0$
- and the tensor is traceless: $\quad \delta^{j k} \widehat{E}_{j k}=0$

8. General Relativity

parametrizing metric and gauge transformations

- the perturbations $A, B, C, E, \widehat{B}_{i}, \hat{E}_{i}$, and $\hat{E}_{j k}$ change under the transformation eq.(7) $x^{\mu} \rightarrow x^{\mu \prime}=x^{\mu}+\xi^{\mu}(x)$
- but the Bardeen variables do not:

$$
\begin{align*}
\Psi & =A+\frac{\dot{a}}{a}\left(B-\frac{d}{d t} E\right)+\frac{d}{d t}\left(B-\frac{d}{d t} E\right) \tag{12}\\
-\Phi & \left.=C+\frac{\dot{a}}{a}\left(B-\frac{d}{d t} E\right)-\frac{1}{3} \vec{\partial}^{2} E\right)
\end{align*} \quad \widehat{E}_{j k}=-\left(\widehat{B}_{i}-\frac{d}{d t} \widehat{E}_{i}\right)
$$

- they are gauge invariant
* and have 2 scalar, 2 vector, and 2 tensor degrees of freedom (d.o.f.)
* the four gauge transformations eq.(7) remove 4 d.o.f.s from the 10 of the symmetric $h_{\mu \nu}$
- one can always choose a gauge that the local metric is given by

$$
\begin{align*}
& d^{2} s=a^{2}(t)\left[(1+2 \psi) d t^{2}-2 \widehat{\Phi}_{i} d t d x^{i}-(1-2 \Phi) d \vec{x}^{2}-2 \widehat{E}_{j k} d x^{j} d x^{k}\right] \tag{13}\\
& - \text { so } \quad h_{00}=2 \Psi, h_{0 i}=h_{i 0}=-2 \widehat{\Phi}_{i}, h_{j k}=2 \Phi \delta_{j k}-2 \widehat{E}_{j k} \tag{14}\\
& \text { * and } \\
& \partial^{\mu} h_{\mu 0}=\partial^{0} h_{00}+\partial^{i} h_{i 0}=2 \partial^{0} \psi-2 \partial^{i} \Phi_{i}=2 \partial_{0} \psi \tag{15}\\
& \partial^{\mu} h_{\mu k}=\partial^{0} h_{0 k}+\partial^{i} h_{i k}=-2 \partial^{0} \Phi_{k}+2 \partial^{i} \Phi \delta_{i k}-2 \partial^{i} \widehat{E}_{i k}=-2 \partial_{0} \widehat{\Phi}_{k}+2 \partial_{k} \Phi \tag{16}
\end{align*}
$$

8. General Relativity - linearised Einstein equations

linearised Christoffel symbols $\Gamma_{\mu \nu}^{\lambda}=\frac{1}{2} g^{\lambda \rho}\left(\partial_{\mu} g_{\nu \rho}+\partial_{\nu} g_{\mu \rho}-\partial_{\rho} g_{\mu \nu}\right)$

- up to first order in the perturbations $\Gamma_{\mu \nu}^{\lambda}=\Gamma^{[0]} \lambda_{\mu \nu}+\hat{\Gamma}_{\mu \nu}^{\lambda}$

$$
\begin{equation*}
\Gamma_{\mu \nu}^{[0] \lambda}=\frac{1}{2} a^{-2} \eta^{\lambda \rho}\left(\partial_{\mu} a^{2} \eta_{\nu \rho}+\partial_{\nu} a^{2} \eta_{\mu \rho}-\partial_{\rho} a^{2} \eta_{\mu \nu}\right) \tag{18}
\end{equation*}
$$

- with the only nonvanishing $\quad \Gamma^{[0]}{ }_{00}=\frac{\dot{a}}{a}$ and $\Gamma^{[0]}{ }_{j k}=\frac{\dot{a}}{a} \delta_{j k}$
* which are zero for Minkovsky space background
- at first order we get more non-vanishing pieces ...

$$
\begin{equation*}
\hat{\Gamma}_{\mu \nu}^{\lambda}=\frac{1}{2 a^{2}} h^{\lambda \rho}\left(\partial_{\mu} a^{2} \eta_{\nu \rho}+\partial_{\nu} a^{2} \eta_{\mu \rho}-\partial_{\rho} a^{2} \eta_{\mu \nu}\right)+\frac{1}{2 a^{2}} \eta^{\lambda \rho}\left(\partial_{\mu} a^{2} h_{\nu \rho}+\partial_{\nu} a^{2} h_{\mu \rho}-\partial_{\rho} a^{2} h_{\mu \nu}\right) \tag{20}
\end{equation*}
$$

- for a result we have to specify the decomposition of the perturbation $h_{\mu \nu}$ * and split the sums over μ into 0 and i
- for detection and local propagation of GWs, we can set a constant
- then

$$
\begin{equation*}
\Gamma_{\mu \nu}^{\lambda}=\hat{\Gamma}_{\mu \nu}^{\lambda}=\frac{1}{2} \eta^{\lambda \rho}\left(\partial_{\mu} h_{\nu \rho}+\partial_{\nu} h_{\mu \rho}-\partial_{\rho} h_{\mu \nu}\right) \tag{21}
\end{equation*}
$$

* $h_{\mu \nu}$ here is the general one from eq.(6)
* the linearised approach allows a general solution, that is simpler to write with this general $h_{\mu \nu}$

$$
\begin{equation*}
R_{\mu \nu}=R_{\mu \nu}^{[0]}+\widehat{R}_{\mu \nu}=R_{\mu \lambda \nu}^{[0] \lambda}+\widehat{R}_{\mu \lambda \nu}^{\lambda} \tag{22}
\end{equation*}
$$

- gives at zero order the background curvature
- and to first order

$$
\begin{equation*}
\hat{R}^{\lambda}{ }_{\mu \lambda \nu}=\partial_{\lambda} \hat{\Gamma}_{\nu \mu}^{\lambda}-\partial_{\nu} \hat{\Gamma}_{\lambda \mu}^{\lambda}-\Gamma^{[0] \lambda} \hat{\nu}^{[} \hat{\Gamma}_{\lambda \mu}^{\kappa}-\hat{\Gamma}_{\nu \kappa}^{\lambda} \Gamma^{[0] \kappa}{ }_{\lambda \mu}^{[\mu}+\Gamma_{\lambda \kappa}^{[0]} \lambda_{\nu \mu} \hat{\Gamma}_{\nu \mu}^{\kappa}+\hat{\Gamma}_{\lambda \kappa}^{\lambda} \Gamma_{\nu \mu}^{[0] \kappa} \tag{24}
\end{equation*}
$$

- for $a=a_{0}$ we get $\quad R_{\mu \nu}=\hat{R}_{\mu \nu}=\partial_{\lambda} \hat{\Gamma}_{\nu \mu}^{\lambda}-\partial_{\nu} \hat{\Gamma}_{\lambda \mu}^{\lambda}$

$$
\begin{equation*}
=\frac{1}{2}\left(\partial_{\mu} \partial^{\rho} h_{\nu \rho}+\partial_{\nu} \partial^{\rho} h_{\mu \rho}-\partial_{\rho} \partial^{\rho} h_{\mu \nu}-\partial_{\nu} \partial_{\mu} h\right) \tag{25}
\end{equation*}
$$

- where $h=\eta^{\lambda \rho} h_{\lambda \rho}$ is the "trace" of $h_{\mu \nu}$
- the Ricci scalar

$$
R=\eta^{\mu \nu} R_{\mu \nu}=\left(\partial^{\lambda} \partial^{\rho} h_{\lambda \rho}-\partial_{\lambda} \partial^{\lambda} h\right)
$$

$$
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} R
$$

$$
=\frac{1}{2}\left(\partial_{\mu} \partial^{\rho} h_{\nu \rho}+\partial_{\nu} \partial^{\rho} h_{\mu \rho}-\partial_{\rho} \partial^{\rho} h_{\mu \nu}-\eta_{\mu \nu} \partial^{\lambda} \partial^{\rho} h_{\lambda \rho}-\partial_{\nu} \partial_{\mu} h+\eta_{\mu \nu} \partial_{\lambda} \partial^{\lambda} h\right)(27)
$$

$$
\begin{align*}
& =\partial_{0} \Gamma^{[0] 0}{ }_{\nu \mu}-\partial_{\nu} \Gamma^{[0]}{ }_{0}{ }_{0 \mu}-\Gamma^{[0]{ }_{\nu 0}} \Gamma^{[0] 0_{O \mu}}+\Gamma^{[0]{ }_{00}} \Gamma^{[0] 0}{ }_{\nu \mu} \\
& =\delta_{\mu(\nu \neq 0)}\left[\frac{d}{d t} \frac{\dot{a}}{a}+\left(\frac{\dot{a}}{a}\right)^{2}\right] \tag{23}
\end{align*}
$$

8. General Relativity - linearised Einstein equations

simplifying the Einstein tensor

- using a trace-reversed perturbation $\quad \bar{h}_{\mu \nu}:=h_{\mu \nu}-\frac{1}{2} \eta_{\mu \nu} h$
\Rightarrow the trace term in $G_{\mu \nu}$ disappears
- choosing additionally the Lorentz gauge $\partial^{\mu} \bar{h}_{\mu \nu}=0$
\Rightarrow most terms in $G_{\mu \nu}$ vanish: $\quad G_{\mu \nu}=-\frac{1}{2} \partial_{\rho} \partial^{\rho} \bar{h}_{\mu \nu}=:-\frac{1}{2} \square \bar{h}_{\mu \nu}$
\Rightarrow Einstein equations become simple wave equations in vacuum:

$$
\begin{equation*}
G_{\mu \nu}=8 \pi G T_{\mu \nu} \quad \Rightarrow \quad \square \bar{h}_{\mu \nu}=-16 \pi G T_{\mu \nu} \stackrel{\text { in vacuum }}{=} 0 \tag{31}
\end{equation*}
$$

- with the simple solution $\quad \bar{h}_{\mu \nu}=\int d^{3} k C_{\mu \nu}(\vec{k}) e^{i(\omega t-\vec{k} \cdot \vec{x})}$
* the Lorentz gauge leads to transversity: $\quad k^{\mu} C_{\mu \nu}=0$
- comparing to the Bardeen variables, eqs.(12) and (13):
- only the transverse-traceless $\widehat{E}_{i k}$ survives the Lorentz condition
\Rightarrow transverse-traceless gauge

$$
\begin{equation*}
h_{j k}^{\top \top}=2 \widehat{E}_{j k} \tag{34}
\end{equation*}
$$

8. General Relativity - Jakov Braver's presentation

The transverse-traceless gauge
The transverse-traceless gauge: $k^{\mu} C_{\mu \nu}=0 \quad C^{\mu}{ }_{\mu}=0 \quad C_{\mu 0}=C_{0 \mu}=0$

$$
\partial^{\mu} h_{\mu \nu}^{\mathrm{TT}}=0 \quad \eta^{\mu \nu} h_{\mu \nu}^{\mathrm{TT}}=0 \quad h_{\mu 0}^{\mathrm{TT}}=h_{0 \mu}^{\mathrm{TT}}=0
$$

For a wave propagating in the z direction: $k^{\mu}=(\omega, 0,0, \omega)$

$$
h_{\mu \nu}^{\mathrm{TT}}(z, t)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & h_{+} & h_{\times} & 0 \\
0 & h_{\times} & -h_{+} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \mathrm{e}^{\mathrm{i} \omega(z-t)}
$$

Consider a particle initially at rest: $U^{\mu}=(1,0,0,0)$
$\frac{\mathrm{d} U^{\mu}}{\mathrm{d} \tau}+\Gamma_{\nu \lambda}^{\mu} U^{\nu} U^{\lambda}=0 \Longrightarrow$ initially, $\left.\frac{\mathrm{d} U^{\mu}}{\mathrm{d} \tau}\right|_{\tau=0}=-\Gamma_{00}^{\mu} \quad=0 \Longrightarrow$ zero acceleration
TT gauge coordinates stay attached to particles

Geodesic deviation

Tangent vector: $T^{\mu}=\frac{\partial x^{\mu}}{\partial t}$
Deviation vector: $S^{\mu}=\frac{\partial x^{\mu}}{\partial s}$
"Relative velocity of geodesics": $\quad V^{\mu}=\left(\nabla_{T} S\right)^{\mu}=T^{\nu} \nabla_{\nu} S^{\mu}$
"Relative acceleration of geodesics": $A^{\mu}=\left(\nabla_{T} V\right)^{\mu}$

Geodesic deviation equation:

$$
A^{\mu}=\frac{D^{2}}{\mathrm{~d} t^{2}} S^{\mu}=R_{\nu \rho \sigma}^{\mu} T^{\nu} T^{\rho} S^{\sigma} \quad \frac{D}{\mathrm{~d} \lambda}=\frac{\mathrm{d} x^{\mu}}{\mathrm{d} \lambda} \nabla_{\mu}
$$

8. General Relativity - Jakov Braver's presentation

Effect of gravitational waves on test particles
we use a single vector field for velocities of both particles
For nearby particles we have $\frac{D^{2}}{\mathrm{~d} t^{2}} S^{\mu}=R^{\mu}{ }_{\nu \rho \sigma} U^{\nu} U^{\rho} S^{\sigma}$
particles are moving slowly,
separation between the particles so we use "universal" time

In the zeroth order in the perturbation, $U^{\mu}=(1,0,0,0)$
Hence, $\frac{D^{2}}{\mathrm{~d} t^{2}}=\frac{\mathrm{d} x^{\mu}}{\mathrm{d} t} \nabla_{\mu} \frac{\mathrm{d} x^{\nu}}{\mathrm{d} t} \nabla_{\nu}=\nabla_{0} \nabla_{0}=\partial_{0} \partial_{0}$ since, in TT gauge, $\Gamma_{0 \nu}^{\mu}=0$
The only required components are $R^{\mu}{ }_{00 \sigma}=\frac{1}{2} \partial_{0} \partial_{0} h^{\mathrm{TT} \mu}{ }_{\sigma}$

$$
\frac{\partial^{2}}{\partial t^{2}} S^{\mu}=\frac{1}{2} S^{\sigma} \frac{\partial^{2}}{\partial t^{2}} h^{\mathrm{TT} \mu}{ }_{\sigma}
$$

8. General Relativity
 Jakov Braver's presentation

Polarisation of gravitational waves

$$
\frac{\partial^{2}}{\partial t^{2}} S^{\mu}=\frac{1}{2} S^{\sigma} \frac{\partial^{2}}{\partial t^{2}} h^{\mathrm{TT} \mu}{ }_{\sigma}
$$

For a wave propagating in the z direction: $k^{\mu}=(\omega, 0,0, \omega)$

$$
h_{\mu \nu}^{\mathrm{TT}}(z, t)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & h_{+} & h_{\times} & 0 \\
0 & h_{\times} & -h_{+} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \mathrm{e}^{\mathrm{i} \omega(z-t)} \quad \begin{array}{ll}
& \text { "Plus" polarisation: }
\end{array}
$$

Let $h_{x}=0$:

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial t^{2}} S^{x}=\frac{1}{2} S^{x} h_{+} \omega^{2} \mathrm{e}^{\mathrm{i} \omega(z-t)} \\
& \frac{\partial^{2}}{\partial t^{2}} S^{y}=-\frac{1}{2} S^{y} h_{+} \omega^{2} \mathrm{e}^{\mathrm{i} \omega(z-t)} S^{x}=S^{x}(0)\left(1+\frac{1}{2} h_{+} \mathrm{e}^{\mathrm{i} \omega(z-t)}+\mathcal{O}\left(h_{+}^{2}\right)\right) \\
& S^{y}(0)\left(1-\frac{1}{2} h_{+} \mathrm{e}^{\mathrm{i} \omega(z-t)}+\mathcal{O}\left(h_{+}^{2}\right)\right)
\end{aligned}
$$

8. General Relativity
 Jakov Braver's presentation

Polarisation of gravitational waves

$$
\frac{\partial^{2}}{\partial t^{2}} S^{\mu}=\frac{1}{2} S^{\sigma} \frac{\partial^{2}}{\partial t^{2}} h^{\mathrm{TT} \mu}{ }_{\sigma}
$$

For a wave propagating in the z direction: $k^{\mu}=(\omega, 0,0, \omega)$

$$
h_{\mu \nu}^{\mathrm{TT}}(z, t)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & h_{+} & h_{\times} & 0 \\
0 & h_{\times} & -h_{+} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \mathrm{e}^{\mathrm{i} \omega(z-t)} \quad \text { "Cross" polarisation: }
$$

Let $h_{+}=0$:

$$
\begin{aligned}
& S^{x}=S^{x}(0)+\frac{1}{2} h_{\times} \mathrm{e}^{\mathrm{i} \omega(z-t)} S^{y}(0)+\mathcal{O}\left(h_{\times}^{2}\right) \\
& S^{y}=S^{y}(0)+\frac{1}{2} h_{\times} \mathrm{e}^{\mathrm{i} \omega(z-t)} S^{x}(0)+\mathcal{O}\left(h_{\times}^{2}\right)
\end{aligned}
$$

Wave is invariant under rotation by 180° around the direction of propagation
\Longrightarrow gravitons should have spin 2

$$
\left(360^{\circ} / 180^{\circ}=2\right)
$$

Energy flux

To discuss energy, we have to include the second order:

$$
\begin{aligned}
& g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}^{(1)}+h_{\mu \nu}^{(2)}+\ldots \\
& R_{\mu \nu}=R_{\mu \nu}^{(0)}+R_{\mu \nu}^{\operatorname{lin}}\left(h_{\mu \nu}^{(1)}\right)+R_{\mu \nu}^{\operatorname{lin}}\left(h_{\mu \nu}^{(2)}\right)+R_{\mu \nu}^{\mathrm{quad}}\left(h_{\mu \nu}^{(1)}\right)+\ldots
\end{aligned}
$$

The Einstein equation in vacuum $R_{\mu \nu}+\frac{1}{2} R g_{\mu \nu}=0$ or $R_{\mu \nu}=0$ gives: zeroth order: $\quad R_{\mu \nu}^{(0)}=0$
first order: $\quad R_{\mu \nu}^{\operatorname{lin}}\left(h_{\mu \nu}^{(1)}\right)=0 \quad$ (allows us to determine $h_{\mu \nu}^{(1)}$)
second order: $R_{\mu \nu}^{\operatorname{lin}}\left(h_{\mu \nu}^{(2)}\right)-\frac{1}{2} R^{\operatorname{lin}}\left(h_{\mu \nu}^{(2)}\right) \eta_{\mu \nu}+\underbrace{R_{\mu \nu}^{\text {quad }}\left(h_{\mu \nu}^{(1)}\right)-\frac{1}{2} R^{\text {quad }}\left(h_{\mu \nu}^{(1)}\right) \eta_{\mu \nu}}_{\mu \nu}=0$
Calculation of the energy-momentum tensor yields

$$
\begin{aligned}
& t_{\mu \nu} \equiv \frac{1}{32 \pi G}\left\langle\left(\partial_{\mu} h_{i j}^{\mathrm{TT}}\right)\left(\partial_{\nu} h_{\mathrm{TT}}^{i j}\right)\right\rangle \\
&\langle\ldots\rangle-\text { averaging over many wavelengths }
\end{aligned}
$$

and the energy flux is $f=t_{00}$
(in conventional units, $f=c t_{00}$)

8. General Relativity

Quadrupole moment tensor

General solution of the wave equation $\square \bar{h}_{\mu \nu}=-16 \pi G T_{\mu \nu}$:

$$
\bar{h}_{i j}(t, x)=4 G \int \frac{T_{i j}\left(t-\left|x-x^{\prime}\right|, x^{\prime}\right)}{\left|x-x^{\prime}\right|} \mathrm{d} \boldsymbol{x}^{\prime}
$$

In the limit, $r \gg \delta r, \quad \lambda \gg \delta r$ we have $\bar{h}_{i j}(t, x)=\frac{4 G}{r} \int T_{i j}\left(t-r, \boldsymbol{x}^{\prime}\right) \mathrm{d} \boldsymbol{x}^{\prime}$ distance to source wavelength source dimensions
Using $\partial_{\mu} T^{\mu \nu}=0$, one may show that $\int T_{i j} \mathrm{~d} \boldsymbol{x}^{\prime}=\frac{1}{2} \frac{\partial^{2}}{\partial t^{2}} \int T_{00} x_{i} x_{j} \mathrm{~d} \boldsymbol{x}^{\prime}$
Employing the Newtonian approximation $T_{00}\left(t-r, \boldsymbol{x}^{\prime}\right)=\rho\left(t-r, \boldsymbol{x}^{\prime}\right)$ we define the quadrupole moment

$$
I_{i j}(t-r)=\int \rho\left(t-r, x^{\prime}\right) x_{i} x_{j} \mathrm{~d} x^{\prime}
$$

The perturbation is then

$$
\bar{h}_{i j}(t, x)=\frac{2 G}{r} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} I_{i j}(t-r)
$$

8. General Relativity - Jakov Braver's presentation

Energy loss due to radiation

$$
f=\frac{1}{32 \pi G}\left\langle\left(\partial_{0} h_{i j}^{\mathrm{TT}}\right)\left(\partial_{0} h_{\mathrm{TT}}^{i j}\right)\right\rangle
$$

We are interested in the radiation power $\frac{\mathrm{d} E}{\mathrm{~d} t}=\int_{S_{\infty}^{2}} f r^{2} \mathrm{~d} \Omega$
We have $\bar{h}_{i j}(t, x)=\frac{2 G}{r} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} I_{i j}(t-r)$
One may show that $h_{i j}^{\mathrm{TT}}(t, x)=\bar{h}_{i j}^{\mathrm{TT}}(t, x)=\frac{2 G}{r} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} I_{i j}^{\mathrm{TT}}(t-r)=\frac{2 G}{r} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} J_{i j}^{\mathrm{TT}}(t-r)$ with reduced quadruple moment $\quad J_{i j}=I_{i j}-\frac{1}{3} \delta_{i j} \delta^{k l} I_{k l}$
To convert to the TT gauge, we use the formula $J_{i j}^{\mathrm{TT}}=\left(P_{i}{ }^{k} P_{j}{ }^{l}-\frac{1}{2} P_{i j} P^{k l}\right) J_{k l}$ with a projection tensor $P_{i j}=\delta_{i j}-n_{i} n_{j}$
unit vector along the direction of propagation
Finally, the integral may be performed to yield $\frac{\mathrm{d} E}{\mathrm{~d} t}=-\frac{G}{5}\left\langle\frac{\mathrm{~d}^{3} J_{i j}}{\mathrm{~d} t^{3}} \frac{\mathrm{~d}^{3} J^{i j}}{\mathrm{~d} t^{3}}\right\rangle$

8. General Relativity - Jakov Braver's presentation

Hulse-Taylor binary pulsar - energy loss
Mass density of the system:

$$
\rho\left(t, x^{\prime}\right)=M \delta\left(x_{3}\right)\left(\delta\left(x_{1}-R \cos \omega t\right) \delta\left(x_{2}-R \sin \omega t\right)+\delta\left(x_{1}+R \sin \omega t\right) \delta\left(x_{2}+R \cos \omega t\right)\right)
$$

Straightforward calculation of $I_{i j}(t-r)=\int \rho\left(t-r, x^{\prime}\right) x_{i} x_{j} \mathrm{~d} x^{\prime}$ and then $J_{i j}=I_{i j}-\frac{1}{3} \delta_{i j} \delta^{k l} I_{k l}$
leads to the energy loss due to gravitational radiation

$$
\frac{\mathrm{d} E}{\mathrm{~d} t}=-\frac{G}{5}\left\langle\frac{\mathrm{~d}^{3} J_{i j}}{\mathrm{~d} t^{3}} \frac{\mathrm{~d}^{3} J^{i j}}{\mathrm{~d} t^{3}}\right\rangle=-\frac{128}{5} G M^{2} R^{4} \omega^{6}
$$

8. General Relativity - Jakov Braver's presentation

Hulse-Taylor binary pulsar - orbital decay

$$
\frac{\mathrm{d} E}{\mathrm{~d} t}=-\frac{G}{5}\left\langle\frac{\mathrm{~d}^{3} J_{i j}}{\mathrm{~d} t^{3}} \frac{\mathrm{~d}^{3} J^{i j}}{\mathrm{~d} t^{3}}\right\rangle=-\frac{128}{5} G M^{2} R^{4} \omega^{6}
$$

Using the equation of motion $\frac{G M^{2}}{(2 R)^{2}}=M \frac{v^{2}}{R}$
we get the energy as $E=-\frac{G M^{2}}{2 R}+M v^{2}=-\frac{G M^{2}}{4 R}$

Expressing R in terms of the period $T, E=-M\left(\frac{G \pi M}{2}\right)^{2 / 3} T^{-2 / 3}$

Differentiating with respect to time and substituting the energy loss, we get the orbital decay

$$
\frac{\mathrm{d} T}{\mathrm{~d} t}=-\frac{48 \pi}{5}\left(\frac{4 \pi G M}{T}\right)^{5 / 3}
$$

Taking into account that the masses are different and that the orbit is not circular, we find $\frac{\mathrm{d} T}{\mathrm{~d} t}=-(2.40247 \pm 0.00002) \times 10^{-12} \mathrm{~s} / \mathrm{s}$
Measured: $\frac{\mathrm{d} T}{\mathrm{~d} t}=-(2.4086 \pm 0.0052) \times 10^{-12} \mathrm{~s} / \mathrm{s}$

The Gravitational Wave Spectrum

Figure 7. Gravitational wave spectrum showing wavelength and frequency along with some anticipated sources and the kind of detectors one might use. Figure credit: NASA Goddard Space Flight Center.

