8. General Relativity — Gravitational Waves

Historical ramblings ... (arXiv:1609.09400 [physics.hist-ph])

- 1864 Maxwell predicts electromagnetic waves
- 1867 Hertz discovers electromagnetic waves
- 1915 Einstein publishes GR
- 1916 1937 pro and contra gravtitational waves
- 1939 1945 second world war
- 1957 Meeting at Chapel Hill on General Relativity
 - $\ast~$ with Gravitational Waves (GW) as one topic
 - * Feynman gives the "sticky bead" argument, convincing that GWs are detectable
 - $\Rightarrow\,$ start of GW detection experiments
- **1983** initial LIGO project (Weiss, Thorne, Drever)
- 1988 NSF funds LIGO
- 1993 starting of VIRGO
- 2003 VIRGO completed
- 2010 beginning of aLIGO
- 2015 aLIGO: engineering test and detection of GW

8. General Relativity—Gravitational WavesWhat is actually a ''wave'' ?

- "Why the Notion of Radiation is Non-Trivial" (arXiv:2201.11634 [gr-qc])
 - for EM we know, how a source $J^{\mu}(t', \vec{x}')$ generates the field $A^{\mu}(t, \vec{x})$:

$$A^{\mu}(t,\vec{x}) = \frac{1}{4\pi} \int_{V} d^{3}x' \int_{T} dt' \frac{J^{\mu}(t',\vec{x}')}{||\vec{x}-\vec{x}'||} \delta(t'+||\vec{x}-\vec{x}'||-t)$$
(1)

* but not all changing fields are radiation example: eddy current break

- from a "wave" we usually require
 - it is periodic with a frequency ω
 - * and has the corresponding wavelength $\lambda = \frac{2\pi c}{\omega}$
 - it travels also far away from the source, which has a finite size \boldsymbol{d}
 - * so we can write $r = ||\vec{x}|| \gg d$
 - the field of the wave drops like $\frac{1}{r}$ with the distance
- for the radiation zone we assume $d\ll\lambda\ll r$

(2)

8. General Relativity — Gravitational Waves Rigorous treatment (arXiv:2201.11634 [gr-qc])

- construct a conformal completion of spacetime
 - start with outgoing Eddington-Finkelstein coordinates ($u = t r^*, r, \theta, \phi$)
 - * built from the tortoise coordinate $r^* = r + r_S \ln |r/r_S 1|$ with $r_S = 2GM$ (3)
 - conformally rescale the line element with $\rho = \frac{1}{r}$ (to move $r = \infty$ to $\rho = 0$)

$$d\tilde{s}^{2} = \rho^{2}(du^{2} + 2dudr - r^{2}d^{2}\Omega) = du^{2} - 2dud\rho - d^{2}\Omega$$
(4)

- \Rightarrow the ''boundary'' at infinity is discussed as $\rho \rightarrow 0$
- use the Newman-Penrose Null Tetrad Formalism compare c04Riga-gr2.pdf – to formulate the limit $\rho \rightarrow 0$ in mathematical exact terms
 - * and to replace tensors by complex functions, i.e. Newman-Penrose scalars
 - apply the peeling theorem to identify the radiation
- for Penrose diagrams use additionally the rescaling $tan(t \pm r) = \hat{t} \pm \hat{r}$ (5)
 - to draw the infinities on a finite sheet of paper . . .

8. General Relativity — linearized gravity

Arguments for linearized gravity

- we experience gravity as weak (in terms of the GR description)
 detection of GWs allows the weak-field description
- GWs travel to us through nearly empty space
 - \Rightarrow propagation of GWs allows the weak-field description
- We will see: some production of GWs can be described in weak-field limit
- gravity with a perturbation series of the metric compare (3) of c04Riga-gr3.pdf $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ with $|h_{\mu\nu}| \ll 1$ and $\eta_{\mu\nu}$ Minkovsky or FRW (6)
 - \Rightarrow we need to linearize $\Gamma^{\lambda}_{\mu\nu}$, $R^{\lambda}_{\mu\nu\rho}$, $R_{\mu\nu}$, R, and $G_{\mu\nu}$ in terms of $h_{\mu\nu}$
- gravity is a gauge theory: $x^{\mu} \to x^{\mu'} = x^{\mu} + \xi^{\mu}(x)$ (7)
 - $x^{\mu\prime}$ has to give the same physics as the original x^{μ}
 - \Rightarrow restrictions for the parametrisation of $h_{\mu\nu}$

8. General Relativity — gauging linearized gravity parametrizing metric and gauge transformations

we distinguish between time (index 0) and space (indices i, j, k, ...)

- for simplicity we assume Cartesian space coordinates (x, y, z)
 - with the space metric δ_{jk} , allowing simple raising and lowering
- then we write the metric as the line element: $d^2s = g_{\mu\nu}dx^{\mu}dx^{\nu}$ we keep $a^2(t)$ for generality: we can always set $a(t) = a_0$ for Minkovsky space.

$$d^{2}s = a^{2}(t)[(1+2A)dt^{2} - 2B_{i}dtdx^{i} - (\delta_{jk} + h_{jk})dx^{j}dx^{k}]$$
(8)

with A, $B_i = \partial_i B + \hat{B}_i$ and h_{jk} as perturbations

- that can be decomposed into S(calar)-V(ector)-T(ensor) parts
...which stay among themselves in first order perturbation theory

$$\frac{1}{2}h_{jk} = C\delta_{jk} + (\partial_j\partial_k - \frac{1}{3}\delta_{jk}\vec{\partial}^2)E + \frac{1}{2}(\partial_j\hat{E}_k + \partial_k\hat{E}_j) + \hat{E}_{jk}$$
(9)

- vectors and tensors are transverse: $\partial^{j}\hat{B}_{j} = \partial^{j}\hat{E}_{j} = \partial^{j}\hat{E}_{jk} = \partial^{k}\hat{E}_{jk} = 0$ (10) - and the tensor is traceless: $\delta^{jk}\hat{E}_{jk} = 0$ (11)
- Thomas Gajdosik

Cosmology

8. General Relativity — gauging linearized gravity parametrizing metric and gauge transformations

- the perturbations $A, B, C, E, \hat{B}_i, \hat{E}_i$, and \hat{E}_{jk} change under the transformation eq.(7) $x^{\mu} \rightarrow x^{\mu'} = x^{\mu} + \xi^{\mu}(x)$
- but the Bardeen variables do not:

- they are gauge invariant
 - * and have 2 scalar, 2 vector, and 2 tensor degrees of freedom (d.o.f.)

* the four gauge transformations eq.(7) remove 4 d.o.f.s from the 10 of the symmetric $h_{\mu\nu}$

one can always choose a gauge that the local metric is given by

$$d^{2}s = a^{2}(t)[(1+2\Psi)dt^{2} - 2\hat{\Phi}_{i}dtdx^{i} - (1-2\Phi)d\vec{x}^{2} - 2\hat{E}_{jk}dx^{j}dx^{k}] \quad (13)$$

- so
$$h_{00} = 2\Psi, \ h_{0i} = h_{i0} = -2\hat{\Phi}_i, \ h_{jk} = 2\Phi\delta_{jk} - 2\hat{E}_{jk}$$
 (14)

* and
$$\partial^{\mu}h_{\mu0} = \partial^{0}h_{00} + \partial^{i}h_{i0} = 2\partial^{0}\Psi - 2\partial^{i}\hat{\Phi}_{i} = 2\partial_{0}\Psi$$
 (15)

$$\partial^{\mu}h_{\mu k} = \partial^{0}h_{0k} + \partial^{i}h_{ik} = -2\partial^{0}\widehat{\Phi}_{k} + 2\partial^{i}\Phi\delta_{ik} - 2\partial^{i}\widehat{E}_{ik} = -2\partial_{0}\widehat{\Phi}_{k} + 2\partial_{k}\Phi \quad (16)$$

8. General Relativity — linearised Einstein equations

linearised Christoffel symbols $\Gamma^{\lambda}_{\mu\nu} = \frac{1}{2}g^{\lambda\rho}(\partial_{\mu}g_{\nu\rho} + \partial_{\nu}g_{\mu\rho} - \partial_{\rho}g_{\mu\nu})$ (17)

• up to first order in the perturbations $\Gamma^{\lambda}_{\mu\nu} = \Gamma^{[0]}{}^{\lambda}_{\mu\nu} + \hat{\Gamma}^{\lambda}_{\mu\nu}$

$$\Gamma^{[0]\lambda}_{\mu\nu} = \frac{1}{2}a^{-2}\eta^{\lambda\rho}(\partial_{\mu}a^{2}\eta_{\nu\rho} + \partial_{\nu}a^{2}\eta_{\mu\rho} - \partial_{\rho}a^{2}\eta_{\mu\nu})$$
(18)

- with the only nonvanishing $\Gamma^{[0]0}_{00} = \frac{\dot{a}}{a}$ and $\Gamma^{[0]0}_{jk} = \frac{\dot{a}}{a}\delta_{jk}$ (19)

* which are zero for Minkovsky space background

• at first order we get more non-vanishing pieces . . .

$$\widehat{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2a^2} h^{\lambda\rho} (\partial_{\mu}a^2 \eta_{\nu\rho} + \partial_{\nu}a^2 \eta_{\mu\rho} - \partial_{\rho}a^2 \eta_{\mu\nu}) + \frac{1}{2a^2} \eta^{\lambda\rho} (\partial_{\mu}a^2 h_{\nu\rho} + \partial_{\nu}a^2 h_{\mu\rho} - \partial_{\rho}a^2 h_{\mu\nu})$$
(20)

- for a result we have to specify the decomposition of the perturbation $h_{\mu\nu}$ * and split the sums over μ into 0 and i
- for detection and local propagation of GWs, we can set a constant
 - then $\Gamma^{\lambda}_{\mu\nu} = \widehat{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2}\eta^{\lambda\rho}(\partial_{\mu}h_{\nu\rho} + \partial_{\nu}h_{\mu\rho} \partial_{\rho}h_{\mu\nu})$ (21)
 - * $h_{\mu\nu}$ here is the general one from eq.(6)
 - * the linearised approach allows a general solution, that is simpler to write with this general $h_{\mu
 u}$

8. General Relativity — linearised Einstein equations linearised Ricci tensor $R_{\mu\nu} = R^{[0]}_{\mu\nu} + \hat{R}_{\mu\nu} = R^{[0]\lambda}_{\mu\lambda\nu} + \hat{R}^{\lambda}_{\mu\lambda\nu}$ (22)

• gives at zero order the background curvature

$$R^{\lambda}{}_{\mu\lambda\nu} = \partial_{\lambda}\Gamma^{[0]}{}_{\nu\mu}^{\lambda} - \partial_{\nu}\Gamma^{[0]}{}_{\lambda\mu}^{\lambda} - \Gamma^{[0]}{}_{\nu\kappa}^{\lambda}\Gamma^{[0]}{}_{\lambda\mu}^{\kappa} + \Gamma^{[0]}{}_{\lambda\kappa}^{\lambda}\Gamma^{[0]}{}_{\nu\mu}^{\kappa}$$

$$= \partial_{0}\Gamma^{[0]}{}_{\nu\mu}^{0} - \partial_{\nu}\Gamma^{[0]}{}_{0\mu}^{0} - \Gamma^{[0]}{}_{\nu0}^{0}\Gamma^{[0]}{}_{0\mu}^{0} + \Gamma^{[0]}{}_{00}^{0}\Gamma^{[0]}{}_{\nu\mu}^{0}$$

$$= \delta_{\mu(\nu\neq0)}[\frac{d}{dt}\frac{\dot{a}}{a} + (\frac{\dot{a}}{a})^{2}]$$
(23)

and to first order

$$\hat{R}^{\lambda}{}_{\mu\lambda\nu} = \partial_{\lambda}\hat{\Gamma}^{\lambda}{}_{\nu\mu} - \partial_{\nu}\hat{\Gamma}^{\lambda}{}_{\lambda\mu} - \Gamma^{[0]\lambda}{}_{\nu\kappa}\hat{\Gamma}^{\kappa}{}_{\lambda\mu} - \hat{\Gamma}^{\lambda}{}_{\nu\kappa}\Gamma^{[0]\kappa}{}_{\lambda\mu} + \Gamma^{[0]\lambda}{}_{\lambda\kappa}\hat{\Gamma}^{\kappa}{}_{\nu\mu} + \hat{\Gamma}^{\lambda}{}_{\lambda\kappa}\Gamma^{[0]\kappa}{}_{\nu\mu}$$
(24)

• for
$$a = a_0$$
 we get $R_{\mu\nu} = \hat{R}_{\mu\nu} = \partial_{\lambda}\hat{\Gamma}^{\lambda}_{\nu\mu} - \partial_{\nu}\hat{\Gamma}^{\lambda}_{\lambda\mu}$ (25)
$$= \frac{1}{2}(\partial_{\mu}\partial^{\rho}h_{\nu\rho} + \partial_{\nu}\partial^{\rho}h_{\mu\rho} - \partial_{\rho}\partial^{\rho}h_{\mu\nu} - \partial_{\nu}\partial_{\mu}h)$$

- where $h = \eta^{\lambda \rho} h_{\lambda \rho}$ is the "trace" of $h_{\mu \nu}$

- the Ricci scalar $R = \eta^{\mu\nu}R_{\mu\nu} = (\partial^{\lambda}\partial^{\rho}h_{\lambda\rho} \partial_{\lambda}\partial^{\lambda}h) \quad (26)$
- and the Einstein tensor $G_{\mu\nu} = R_{\mu\nu} \frac{1}{2}\eta_{\mu\nu}R$

 $= \frac{1}{2} (\partial_{\mu} \partial^{\rho} h_{\nu\rho} + \partial_{\nu} \partial^{\rho} h_{\mu\rho} - \partial_{\rho} \partial^{\rho} h_{\mu\nu} - \eta_{\mu\nu} \partial^{\lambda} \partial^{\rho} h_{\lambda\rho} - \partial_{\nu} \partial_{\mu} h + \eta_{\mu\nu} \partial_{\lambda} \partial^{\lambda} h) (27)$

Thomas Gajdosik

8. General Relativity — linearised Einstein equations simplifying the Einstein tensor

- using a trace-reversed perturbation $\bar{h}_{\mu\nu} := h_{\mu\nu} \frac{1}{2}\eta_{\mu\nu}h$ (28) \Rightarrow the trace term in $G_{\mu\nu}$ disappears
- choosing additionally the Lorentz gauge $\partial^{\mu}\bar{h}_{\mu\nu} = 0$ (29)

 \Rightarrow most terms in $G_{\mu\nu}$ vanish: $G_{\mu\nu} = -\frac{1}{2}\partial_{\rho}\partial^{\rho}\bar{h}_{\mu\nu} = -\frac{1}{2}\Box\bar{h}_{\mu\nu}$ (30)

 \Rightarrow Einstein equations become simple wave equations in vacuum:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu} \quad \Rightarrow \quad \Box \bar{h}_{\mu\nu} = -16\pi G T_{\mu\nu} \stackrel{\text{in vacuum}}{=} 0 \tag{31}$$

- with the simple solution $\bar{h}_{\mu\nu} = \int d^3k C_{\mu\nu}(\vec{k}) e^{i(\omega t \vec{k} \cdot \vec{x})}$ (32)
 - * the Lorentz gauge leads to transversity: $k^{\mu}C_{\mu\nu} = 0$ (33)
- comparing to the Bardeen variables, eqs.(12) and (13):
 - only the transverse-traceless \hat{E}_{ik} survives the Lorentz condition
 - $\Rightarrow \text{ transverse-traceless gauge} \qquad h_{jk}^{\mathsf{T}\mathsf{T}} = 2\hat{E}_{jk} \tag{34}$

The transverse-traceless gauge

The transverse-traceless gauge: $k^{\mu}C_{\mu\nu} = 0$ $C^{\mu}_{\ \mu} = 0$ $C_{\mu0} = C_{0\mu} = 0$ $\partial^{\mu}h^{TT}_{\mu\nu} = 0$ $\eta^{\mu\nu}h^{TT}_{\mu\nu} = 0$ $h^{TT}_{\mu0} = h^{TT}_{0\mu} = 0$

For a wave propagating in the *z* direction: $k^{\mu} = (\omega, 0, 0, \omega)$

$$h_{\mu\nu}^{\rm TT}(z,t) = \begin{pmatrix} 0 & 0 & 0 & 0\\ 0 & h_+ & h_\times & 0\\ 0 & h_\times & -h_+ & 0\\ 0 & 0 & 0 & 0 \end{pmatrix} e^{\mathrm{i}\omega(z-t)}$$

Consider a particle initially at rest: $U^{\mu} = (1, 0, 0, 0)$

 $\left|\frac{\mathrm{d}U^{\mu}}{\mathrm{d}\tau} + \Gamma^{\mu}_{\nu\lambda}U^{\nu}U^{\lambda} = 0 \implies \text{initially,} \left|\frac{\mathrm{d}U^{\mu}}{\mathrm{d}\tau}\right|_{\tau=0} = -\overline{\Gamma^{\mu}_{00}} = 0 \implies \text{zero acceleration}$

TT gauge coordinates stay attached to particles

 $\gamma_s(t)$

Geodesic deviation

S

Tangent vector: $T^{\mu} = \frac{\partial x^{\mu}}{\partial t}$ Deviation vector: $S^{\mu} = \frac{\partial x^{\mu}}{\partial s}$

"Relative velocity of geodesics": $V^{\mu} = (\nabla_T S)^{\mu} = T^{\nu} \nabla_{\nu} S^{\mu}$

"Relative acceleration of geodesics": $A^{\mu} = (\nabla_T V)^{\mu}$

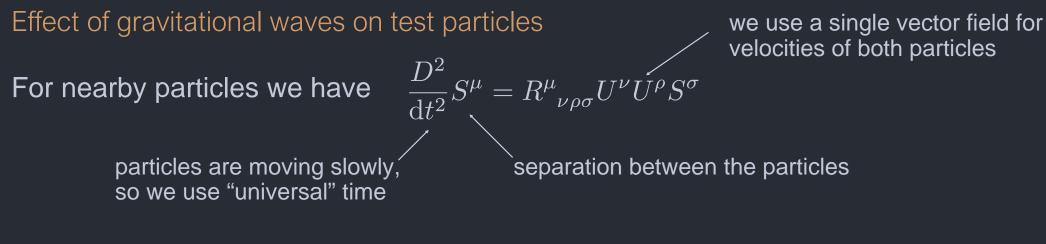
Geodesic deviation equation:

 $[T^{\mu}]$

 S^{μ}

$$A^{\mu} = \frac{D^2}{\mathrm{d}t^2} S^{\mu} = R^{\mu}{}_{\nu\rho\sigma} T^{\nu} T^{\rho} S^{\sigma}$$

 $\frac{D}{\mathrm{d}\lambda} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda} \nabla_{\mu}$



In the zeroth order in the perturbation, $U^{\mu} = (1, 0, 0, 0)$

Hence, $\frac{D^2}{\mathrm{d}t^2} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}t} \nabla_{\mu} \frac{\mathrm{d}x^{\nu}}{\mathrm{d}t} \nabla_{\nu} = \nabla_0 \nabla_0 = \partial_0 \partial_0$ since, in TT gauge, $\Gamma^{\mu}_{0\nu} = 0$

The only required components are $R^{\mu}_{\ 00\sigma} = \frac{1}{2} \partial_0 \partial_0 h^{TT\mu}_{\ \sigma}$

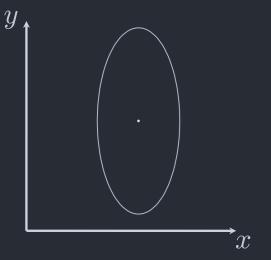
$$\frac{\partial^2}{\partial t^2} S^{\mu} = \frac{1}{2} S^{\sigma} \frac{\partial^2}{\partial t^2} h^{\mathrm{TT}\mu}{}_{\sigma}$$

Polarisation of gravitational waves

For a wave propagating in the z direction: $k^{\mu} = (\omega, 0, \overline{0, \omega})$

$$h_{\mu\nu}^{\rm TT}(z,t) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & h_{\times} & 0 \\ 0 & h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} e^{i\omega(z-t)}$$
 "Plus" polarisation

$$\frac{\partial^2}{\partial t^2} S^{\mu} = \frac{1}{2} S^{\sigma} \frac{\partial^2}{\partial t^2} h^{\mathrm{TT}\mu}{}_{\sigma}$$



Let $h_{\times} = 0$:

Polarisation of gravitational waves

For a wave propagating in the z direction: $k^{\mu}=(\omega,0,0,\omega)$

$$h_{\mu\nu}^{\rm TT}(z,t) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_{+} & h_{\times} & 0 \\ 0 & h_{\times} & -h_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} e^{i\omega(z-t)}$$
 "Cross" polarisation:

$$\frac{\partial^2}{\partial t^2} S^{\mu} = \frac{1}{2} S^{\sigma} \frac{\partial^2}{\partial t^2} h^{\mathrm{TT}\mu}{}_{\sigma}$$

 $\overbrace{ }^{x}$

Let $h_{+} = 0$:

$$S^{x} = S^{x}(0) + \frac{1}{2}h_{\times}e^{i\omega(z-t)}S^{y}(0) + \mathcal{O}(h_{\times}^{2})$$
$$S^{y} = S^{y}(0) + \frac{1}{2}h_{\times}e^{i\omega(z-t)}S^{x}(0) + \mathcal{O}(h_{\times}^{2})$$

Wave is invariant under rotation by 180° around the direction of propagation \implies gravitons should have spin 2

|y|

 $(360^{\circ}/180^{\circ} = 2)$

Thomas Gajdosik

Cosmology

Energy flux

To discuss energy, we have to include the second order:

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}^{(1)} + h_{\mu\nu}^{(2)} + \dots$$

$$R_{\mu\nu} = R_{\mu\nu}^{(0)} + R_{\mu\nu}^{\lim}(h_{\mu\nu}^{(1)}) + R_{\mu\nu}^{\lim}(h_{\mu\nu}^{(2)}) + R_{\mu\nu}^{quad}(h_{\mu\nu}^{(1)}) + \dots$$
The Einstein equation in vacuum $R_{\mu\nu} + \frac{1}{2}Rg_{\mu\nu} = 0$ or $R_{\mu\nu} = 0$ gives:
zeroth order: $R_{\mu\nu}^{(0)} = 0$
first order: $R_{\mu\nu}^{(0)}(h_{\mu\nu}^{(1)}) = 0$ (allows us to determine $h_{\mu\nu}^{(1)}$)
second order: $R_{\mu\nu}^{\lim}(h_{\mu\nu}^{(2)}) - \frac{1}{2}R^{\lim}(h_{\mu\nu}^{(2)})\eta_{\mu\nu} + R_{\mu\nu}^{quad}(h_{\mu\nu}^{(1)}) - \frac{1}{2}R^{quad}(h_{\mu\nu}^{(1)})\eta_{\mu\nu} = 0$
 $= -8\pi Ct$

Calculation of the energy-momentum tensor yields

 $t_{\mu\nu} \equiv \frac{1}{32\pi G} \left\langle (\partial_{\mu} h_{ij}^{\rm TT}) (\partial_{\nu} h_{\rm TT}^{ij}) \right\rangle$

and the energy flux is $f = t_{00}$ (in conventional units, $f = ct_{00}$)

 $\langle \ldots \rangle$ — averaging over many wavelengths

Quadrupole moment tensor

General solution of the wave equation $\Box \bar{h}_{\mu\nu} = -16\pi G T_{\mu\nu}$:

$$\bar{h}_{ij}(t, \boldsymbol{x}) = 4G \int \frac{T_{ij}(t - |\boldsymbol{x} - \boldsymbol{x}'|, \boldsymbol{x}')}{|\boldsymbol{x} - \boldsymbol{x}'|} \, \mathrm{d}\boldsymbol{x}'$$
n the limit
$$r \gg \delta r, \quad \lambda \gg \delta r \quad \text{we have} \quad \bar{h}_{ij}(t, \boldsymbol{x}) = \frac{4G}{r} \int T_{ij}(t - r, \boldsymbol{x}') \, \mathrm{d}\boldsymbol{x}'$$
distance to source
wavelength
source dimensions
Jsing $\partial_{\mu}T^{\mu\nu} = 0$, one may show that
$$\int T_{ij} \, \mathrm{d}\boldsymbol{x}' = \frac{1}{2} \frac{\partial^2}{\partial t^2} \int T_{00} x_i x_j \, \mathrm{d}\boldsymbol{x}'$$

Employing the Newtonian approximation $T_{00}(t - r, \mathbf{x}') = \rho(t - r, \mathbf{x}')$ we define the quadrupole moment

$$I_{ij}(t-r) = \int \rho(t-r, \boldsymbol{x}') x_i x_j \, \mathrm{d}\boldsymbol{x}'$$

The perturbation is then

$$\bar{h}_{ij}(t, \boldsymbol{x}) = \frac{2G}{r} \frac{\mathrm{d}^2}{\mathrm{d}t^2} I_{ij}(t-r)$$

Thomas Gajdosik

Energy loss due to radiation

We are interested in the radiation power $\frac{\mathrm{d}E}{\mathrm{d}t} = \int_{S^2} fr^2 \mathrm{d}\Omega$

We have $\bar{h}_{ij}(t, \boldsymbol{x}) = \frac{2G}{r} \frac{\mathrm{d}^2}{\mathrm{d}t^2} I_{ij}(t-r)$

One may show that $h_{ij}^{\text{TT}}(t, \boldsymbol{x}) = \bar{h}_{ij}^{\text{TT}}(t, \boldsymbol{x}) = \frac{2G}{r} \frac{d^2}{dt^2} I_{ij}^{\text{TT}}(t-r) = \frac{2G}{r} \frac{d^2}{dt^2} J_{ij}^{\text{TT}}(t-r)$ with reduced quadruple moment $J_{ij} = I_{ij} - \frac{1}{3} \delta_{ij} \delta^{kl} I_{kl}$ To convert to the TT gauge, we use the formula $J_{ij}^{\text{TT}} = \left(P_i^{\ k} P_j^{\ l} - \frac{1}{2} P_{ij} P^{kl}\right) J_{kl}$ with a projection tensor $P_{ij} = \delta_{ij} - n_i n_j$ unit vector along the direction of propagation

Finally, the integral may be performed to yield

 $\frac{\mathrm{d}E}{\mathrm{d}t} = -\frac{G}{5} \left\langle \frac{\mathrm{d}^3 J_{ij}}{\mathrm{d}t^3} \frac{\mathrm{d}^3 J^{ij}}{\mathrm{d}t^3} \right\rangle$

 $f = \frac{1}{32\pi G} \left\langle (\partial_0 h_{ij}^{\rm TT}) (\partial_0 h_{\rm TT}^{ij}) \right\rangle$

Hulse–Taylor binary pulsar — energy loss

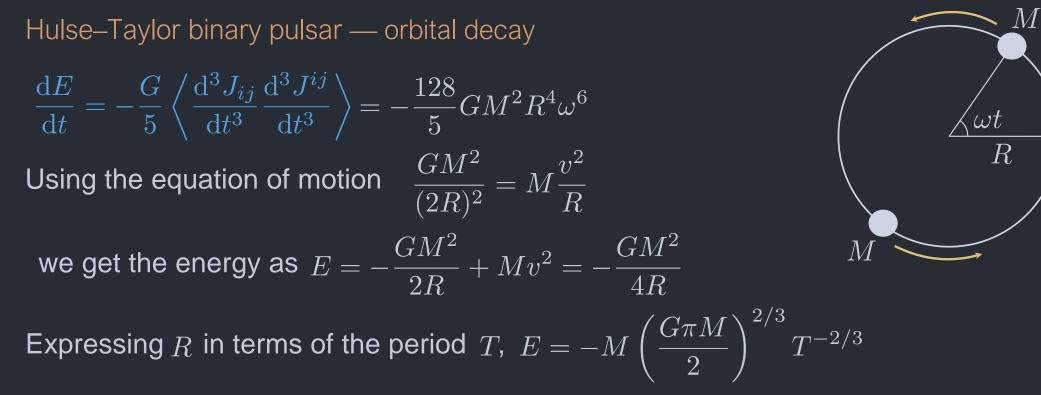
Mass density of the system:

 $\rho(t, \mathbf{x}') = M\delta(x_3) \left(\delta(x_1 - R\cos\omega t) \delta(x_2 - R\sin\omega t) + \delta(x_1 + R\sin\omega t) \delta(x_2 + R\cos\omega t) \right)$ Straightforward calculation of $I_{ij}(t-r) = \int \rho(t-r, \mathbf{x}') x_i x_j \, \mathrm{d}\mathbf{x}'$

and then
$$\ J_{ij} = I_{ij} - rac{1}{3} \delta_{ij} \delta^{kl} I_{kl}$$

leads to the energy loss due to gravitational radiation

$$\frac{\mathrm{d}E}{\mathrm{d}t} = -\frac{G}{5} \left\langle \frac{\mathrm{d}^3 J_{ij}}{\mathrm{d}t^3} \frac{\mathrm{d}^3 J^{ij}}{\mathrm{d}t^3} \right\rangle = -\frac{128}{5} G M^2 R^4 \omega^6$$



Differentiating with respect to time and substituting the energy loss, we get the orbital decay

$$\frac{\mathrm{d}T}{\mathrm{d}t} = -\frac{48\pi}{5} \left(\frac{4\pi GM}{T}\right)^{5/3}$$

Taking into account that the masses are different and that the orbit is not circular, we find $\frac{dT}{dt} = -(2.40247 \pm 0.00002) \times 10^{-12} \text{ s/s}$ Measured: $\frac{dT}{dt} = -(2.4086 \pm 0.0052) \times 10^{-12} \text{ s/s}$

The Gravitational Wave Spectrum

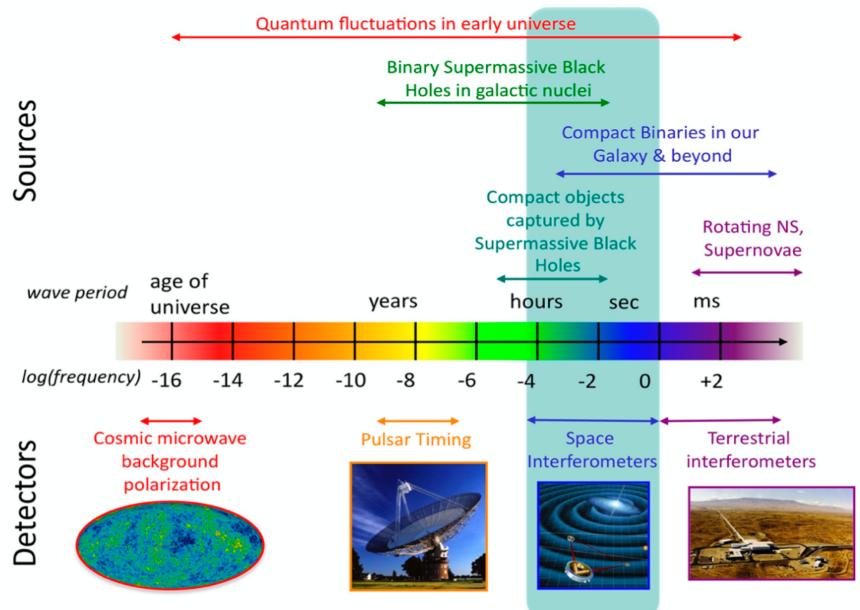


Figure 7. Gravitational wave spectrum showing wavelength and frequency along with some anticipated sources and the kind of detectors one might use. Figure credit: NASA Goddard Space Flight Center.