
6. General Relativity — Astro Particle Physics

description of the very early universe:

• curved space-time in the context of particle physics

• we need the particle physics description

– formulated in Hamiltonian mechanics

⇒ Quantum Mechanics

– or formulated in Lagrangian mechanics

⇒ using an action principle
∗ Quantum Mechanics through the Pathintegral formulation

• Special Relativity is the local symmetry group

⇒ Lagrangian mechanics as the unifying framework

? Can we formulate General Relativity in a Lagrangian picture?
? what is the dynamic degree of freedom?

∗ the metric

? what are the consequences?
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6. General Relativity — Lagrangian formulation of gravity

we can derive Einsteins equations also from an action:

• the starting point is the Einstein-Hilbert action

S =
∫
d4x

√
−g

(
Lm −

R

16πG

)
(1)

– R = R(gµν) is the Ricci scalar, G is Newtons gravitational constant

– g = det(gµν) is the determinant of the metric

• why this
√
−g ?

– using the differential calculus the volume element should be written as a 4-form

d4x = dx0 ∧ dx1 ∧ dx2 ∧ dx3 = 1
4!
ϵµνρσ dx

µ ∧ dxν ∧ dxρ ∧ dxσ (2)

– that transforms under coordinate transformations x→ x′ with ∂xµ

∂x′α = Λµα

d4x = 1
4!
ϵµνρσΛ

µ
αΛ

ν
βΛ

ρ
γΛ

σ
δdx

′α ∧ dx′β ∧ dx′γ ∧ dx′δ = det[Λ] d4x′ (3)

– the metric transforms under these coordinate transformations x→ x′

g′αβ = ΛµαΛ
ν
βgµν ⇒ g′ = det[g′αβ] = det[ΛµαΛ

ν
βgµν] = det[Λ]2 g (4)

– since det[ηµν] = det[diag(1,−1,−1,−1)] = −1 ⇒ g = det[gµν] < 0 (5)

⇒ (
√
−g d4x) is invariant: d4x′

√
−g′ = det[Λ]−1d4x

√
−g det[Λ]2 = d4x

√
−g (6)
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6. General Relativity — Lagrangian formulation of gravity

we can derive Einsteins equations also from an action:

• the variation of the action gives the Euler-Lagrange equations
• varying the Einstein-Hilbert action we get

δS =

∫
d4x

(
δ(
√
−gLm)− δ(

√
−g)g

αβRαβ

16πG
−

√
−g (δg

αβ)Rαβ

16πG
−

√
−gg

αβ(δRαβ)
16πG

)
(7)

– the first term is the variation of the matter Lagrangian

– the second term can be calculated from the identity
Tr[lnM ] = ln(det[M ]) ⇒ Tr[M−1δM ] = det[M ]−1δ det[M ] (8)

∗ setting M = gµν we have

M−1 = gµν and det[M ] = det[gµν] = det[(gµν)
−1] = 1/det[gµν] = 1/g (9)

∗ so Tr[M−1δM ] = gµνδgµν = gδ1
g
= −g δg

g2 = −δg
g

⇒ δ
√
−g = −δg

2
√
−g = − 1

2
√
−g(−g)gµνδg

µν = −1
2

√
−g gµνδgµν (10)

– the third term has already the wanted differential δgµν

– the fourth term gives a total divergence (see next slide)

⇒ it does not contribute to the equations of motion
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6. General Relativity — Lagrangian formulation of gravity

we can derive Einsteins equations also from an action:
• the variation of the Ricci tensor is the contracted variation of the Riemann tensor:

δRαβ = δRλ
αλβ = δ(δκλR

λ
ακβ) = δκλδ[∂κΓ

λ
αβ +ΓλκρΓ

ρ
αβ − (κ↔ β)] (11)

• the trick in the calculation is to realize, that δΓ is a difference of two connections
⇒ it is a tensor and we can calculate the covariant derivative:

∇κδΓ
λ
αβ = ∂κδΓ

λ
αβ +ΓλκνδΓ

ν
αβ − ΓµκαδΓ

λ
µβ − ΓµκβδΓ

λ
αµ (12)

– the antisymmetric part in (κ↔ β) gives

∇κδΓ
λ
αβ −∇βδΓ

λ
ακ = ∂κδΓ

λ
αβ +ΓλκνδΓ

ν
αβ − ΓµκαδΓ

λ
µβ − ΓµκβδΓ

λ
αµ

−∂βδΓλακ − ΓλβνδΓ
ν
ακ +ΓµβαδΓ

λ
µκ +ΓµβκδΓ

λ
αµ

= ∂κδΓ
λ
αβ +ΓλκµδΓ

µ
αβ + δΓλκµΓ

µ
αβ − (κ↔ β)

= δ[∂κΓ
λ
αβ +ΓλκµΓ

µ
αβ]− (κ↔ β) = δRλ

ακβ (13)

• so the term gαβ(δRαβ) can be written as

gαβδRαβ = gαβ(∇λδΓ
λ
αβ −∇βδΓ

λ
αλ) = ∇κgκλg

αβδΓλαβ −∇αδΓλαλ

= ∇α[gαβg
µνδΓβµν − δΓλαλ] = ∇αVα (14)

• and the integral over it gives only the boundary terms∫
Ω
d4x

√
−g∇α[gαβg

µνδΓβµν − δΓλαλ] =
[
gαβg

µνδΓβµν − δΓλαλ
]
∂Ω

→ 0 (15)
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6. General Relativity — Lagrangian formulation of gravity

we can derive Einsteins equations also from an action:

• varying the matter Lagrangian with respect to δgµν

δSm

δgµν
=
∂(

√
−gLm)

∂gµν
− ∂ρ

∂(
√
−gLm)

∂gµν,ρ
=:

√
−g
2

Tµν (16)

gives the definition of the symmetric Hilbert (stress energy) tensor !

• the canonical stress energy tensor ( using Φ,µ := ∂µΦ )

Tµν :=
∂Lm
∂Φ,µ

Φ,ν − Lmδµν (17)

is not necessarily symmetric (when both indices are up or down)

• the Belinfante-Rosenfeld (stress-energy) tensor

T
µν
B = T

µ
λg
λν + ∂λ(S

µνλ+ Sνµλ − Sλνµ) (18)

– adds a divergence of the spin part Sµνλ to make it symmetric

– it is equivalent to the Hilbert tensor
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6. General Relativity — Lagrangian formulation of gravity

we can derive Einsteins equations also from an action:

• putting the parts of the variation with respect to δgµν together

δS

δgµν
= 0 =

√
−g
2

Tµν − (−1
2

√
−g gµν)

R

16πG
−

√
−g

Rµν

16πG

= −
√
−g

16πG

(
Rµν − 1

2gµνR− 8πGTµν
)

(19)

⇒ we get Einsteins equations

• we get also the field equations in the curved space time

– they are the normal Euler-Lagrange equations

δS

δΦ
= 0 =

√
−g

∂Lm
∂Φ

− ∂ρ

(
√
−g

∂Lm
∂Φ,ρ

)
=

√
−g

(
∂Lm
∂Φ

−∇ρ
∂Lm
∂Φ,ρ

)
(20)

∗ the last equality only holds, if ∂Lm
∂Φ,ρ

= V ρ is a vector
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6. General Relativity — examples of matter Lagrangians

complex scalar Lagrangian:

• using only first derivatives of the complex scalar field ϕ

– the flat space Lagrangian

Lϕ = (∂µϕ∗)(∂µϕ)−m2
ϕϕ

∗ϕ− V (ϕ∗ϕ) (21)

– can be written with covariant derivatives as

Lϕ = gµν(∇µϕ∗)(∇νϕ)−m2
ϕϕ

∗ϕ− V (ϕ∗ϕ) (22)

• the canonical stress energy tensor

Tµν =
∂Lϕ
∂ϕ,µ

ϕ,ν +
∂Lϕ
∂ϕ∗,µ

ϕ∗,ν − Lϕδµν (23)

= gλµ[(∇λϕ∗)ϕ,ν + (∇λϕ)ϕ∗,ν]− δµν[g
λκ(∇λϕ∗)(∇κϕ)−m2

ϕϕ
∗ϕ− V (ϕ∗ϕ)]

is already symmetric (when both indices are up or down)

– and the same as the Hilbert tensor (since ∇µϕ = ∂µϕ = ϕ,µ)
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6. General Relativity — examples of matter Lagrangians

Maxwell Lagrangian:

• using the vector potential Aµ and its fieldstrength Fµν = ∂µAν − ∂νAµ

– the flat space Lagrangian is LA = −1
4F

µνFµν = −1
4F

2 (24)

∗ the vector potential can be written as a one-form A = Aµdxµ

∗ the fieldstrength as a two-form F = 1
2
Fµνdxµdxν = dA

⇒ there is no metric dependence in Fµν

– the Lagrangian on a curved manifold is just

LA = −1
4g
αµgβνFαβFµν = −1

2A
β,α(Aβ,α −Aα,β) (25)

• the canonical stress energy tensor

T µν =
∂LA
∂Aρ,µ

Aρ,ν − δµν LA

= [−1
2
gβρgαµ(Aβ,α −Aα,β)− 1

2
Aβ,α(δρβδ

µ
α − δραδ

µ
β)]Aρ,ν +

1
4
δµνF

2

= −F µρAρ,ν + δµν
1
4
F 2 (26)

is not symmetric (when both indices are up or down)
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6. General Relativity — examples of matter Lagrangians

Maxwell Lagrangian:
• using the generators of Lorentz transformations that act on four-vectors

(J µν)αβ = i(gαµδνβ − gανδµβ) (27)

• the spin tensor Sµνλ = i
2
∂LA

∂Aα
,µ

(J νλ)αβA
β = −1

2
gραF

ρµ(gανδλβ − gαλδνβ)A
β

= −1
2
(F νµAλ − F λµAν) = 1

2
(F µνAλ − F µλAν) = −Sµλν (28)

• and its derivative ∂λ(S
µνλ + Sνµλ + Sλµν)

= 1
2
∂λ(F

µνAλ − F µλAν + F νµAλ − F νλAµ + F λµAν − F λνAµ)

= ∂λ(F
λµAν) = −(∂λF

λµ)Aν − F λµAν,λ = −gαβFαµAν,β (29)

• we get the Belinfante-Rosenfeld tensor

T µνB = T µλg
λν + ∂λ(S

µνλ + Sνµλ + Sλµν)

= gαβF
αµAβ,ν + 1

4
gµνF 2 − gαβF

αµAν,β = −gαβFαµF βν + 1
4
gµνF 2 (30)

• the Hilbert tensor
Tµν = 2 ∂

∂gµν
[−1

4
gαρgβσFαβFρσ]− gµνLA = −1

2
[δαµg

ρ
νg
βσ + gαρδβµg

σ
ν ]FαβFρσ − gµνLA

= −1
2
[FµβFνσg

βσ + FαµFρνg
αρ]− gµνLA = −FµβFνσgβσ + 1

4
gµνF

2 (31)

gives the same result
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6. General Relativity — examples of matter Lagrangians

Dirac Lagrangian:

• using the Dirac spinor ψ and its adjoint ψ̄ = ψ†γ0

– the flat space Lagrangian Lψ = ψ̄(i/∂ −m)ψ (32)

– can be written with a covariant derivative as Lψ = ψ̄(igµνγµ∇ν −m)ψ (33)

⇒ the covariant derivative has to use the spin connection !

• the canonical stress energy tensor is not symmetric (when both indices are up or down)

T µν =
∂Lψ
∂ψ,µ

ψ,ν + ψ̄,ν
∂Lϕ
∂ψ̄,µ

− Lψδµν = ψ̄iγµψ,ν + ψ̄,ν · 0− δµνψ̄(iγ
λ∇λ −m)ψ (34)

⇒ we need the Belinfante-Rosenfeld tensor T µνB = T µλg
λν + ∂λ(S

µνλ + Sνµλ + Sλµν) (35)

– with the spintensor Sλµν =
i

2

∂Lψ
∂ψα,λ

(J µν)αβψ
β (36)

∗ α is the spinor index of the Dirac spinor ψ

∗ (J µν)αβ = − i
4
[γµ, γν]αβ generates the Lorentz transformation on the spinors

• for the Hilbert tensor Tµν =
2

√
−g

δ(
√
−gLψ)
δgµν

= 2
δLψ
δgµν

− gµνLψ (37)

– we have to include the dependence of the spin connections on the metric
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6. General Relativity — paradigm of inflation

most models of inflation assume one or more scalar fields

• taking real scalar fields ϕk with the abbreviation ϕ2 =
∑

k ϕ
2
k

Sϕ =

∫
d4x

√
−gLϕ =

∫
d4x

√
−g 1

2

∑
k

gµν(∂µϕk)(∂νϕk)− V (ϕ2) (38)

– we get the field equations
δSϕ

δϕj(y)
= 0 =

∫
d4x

√
−g

∑
k

gµν(∂µδ
j
kδ(x− y))(∂νϕk)− V ′(ϕ2)2ϕj(x)δ(x− y)

= −
∫
d4xδ(x− y)∂µ[

√
−g gµν(∂νϕj)] +

√
−g V ′(ϕ2)2ϕj(y)

= −
√
−g

(
∇µ[g

µν(∂νϕj)] + 2ϕjV
′) = −

√
−g

(
∇ν(∂νϕj) + 2ϕjV

′) (39)

– and the stress energy tensor

Tµν = 2
∂Lϕ
∂gµν

− gµνLm =
∑
b

(∂µϕb)(∂νϕb)− gµν[12

∑
b

(∂ρϕb)(∂ρϕb)− V (ϕ2)] (40)

T00 = 1
2

∑
b[ϕ̇

2
b + (∂⃗ϕb)2] + V (ϕ2) = H(ϕ) T0i =

∑
b ϕ̇b(∂iϕb)

Tii =
∑

b[(∂iϕb)
2 + a2

2
ϕ̇2
b −

a2

2
(∂⃗ϕb)2]− a2V (ϕ2) Tjk =

∑
b(∂jϕb)(∂kϕb)

(41)

– for a homogeneous and isotropic field, we can set (∂jϕb) → 0 so (∂⃗ϕb) → 0, too)

– that gives us ρ = 1
2

∑
b ϕ̇

2
b + V and p = 1

2

∑
b ϕ̇

2
b − V

Thomas Gajdosik Cosmology 2023 / 09 / 01 11



6. General Relativity — paradigm of inflation

using only a single scalar field

• with a sizeable, but slowly varying potential V (ϕ2)

• and ϕ slowly varying, i.e. ϕ̇≪ V

– we get the conditions like with the cosmological constant:
∗ ρ > 0 and p < −1

3ρ

⇒ the scalar field does not act like ”normal” matter
– using the Friedmann equations for the Robertson-Walker metric

1
2
Rii +

1
6
R00 =

ȧ2 + k

a2
=

4πG

3
(ϕ̇2 +2V ) 1

3
R00 = −

ä

a
=

8πG

3
(ϕ̇2 − V ) (42)

– together with the field equations, remembering (∂jϕb) → 0,

0 = gµν∇µ(∂νϕ) + 2ϕV ′ = gµν∂µ(∂νϕ) + gµνΓρµν(∂ρϕ) + 2ϕV ′ = ϕ̈− 3
ȧ

a
ϕ̇+2ϕV ′ (43)

– making the ansatz a = ceHinflt we get

H2
infl +

k

a2
=

4πG

3
(2V + ϕ̇2) H2

infl =
4πG

3
(2V − 2ϕ̇2) (44)

⇒ k = 4πGa2ϕ̇2 ≥ 0 ⇒ only flat or de Sitter . . . consistent with measurements

– and Hinfl ∼ 8π
3

V
M2

P

for Hinflt ∼ 60 ⇒ V ∼ 45
2π

t
P

t
M2

P
∼ 8× 10−12M2

P
∼ (3.45× 1013GeV)2
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6. General Relativity — paradigm of inflation

how does inflation stop?

• even with the ”slowly rolling” inflaton field, there is a small change

⇒ the field value approaches its minimum

• the inflaton field dominates, but there are the other fields, too

⇒ it can decay into the other fields

• with the increasing scale factor, the temperature drops

– the effective potential can decrease to the minimum value

– assuming for example a form like the SM Higgs potential
∗ the value of the inflaton field stays large: ϕ is heavy

∗ but the value of the potential can go to zero: Hinfl → 0

⇒ inflation stops

– including supersymmetry
∗ the value of the potential is bounded from below, mostly positive

• the heavy inflaton decays into the other fields: reheating
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6. General Relativity — paradigm of inflation

consequences of inflation

• the universe appears as flat, homogeneous, and isotropic

– as is seen in the CMB

• the seeds for structure formation can be understood

– as quantum fluctuations blown up to cosmic scales

• the primordial particle spectrum is thermal

– from the decay of the inflaton

problems with inflation

• how ”natural” are the conditions for inflation ?

• how can we understand the ”ordered” state after inflation

– coming from an ”unordered” state before inflaton ?

∗ it seems the initial conditions for inflation have to be more fine
tuned than the conditions of the accelerating universe we see now

Thomas Gajdosik Cosmology 2023 / 09 / 01 14



6. General Relativity — paradigm of inflation

current research issues regarding inflation

• the simplest assumptions are too restrictive

– minimal coupling ( ϕ is only used as the source in Tµν )

– single field

– ∂iϕ ∼ 0

⇒ generalized G-inflation (Galileon inflation):

– more terms in the Lagrangian

S =
∫
d4x

√
−g

 5∑
i=1

Li −
R

16πG

 (45)

– the first term, L1, being a SM-like Higgs Lagrangian:

L1 = |Dµϕ|2 + λ(|ϕ|2 − v2)2 (46)

∗ ϕ the inflaton field and Dµ its covariant derivative

∗ λ the self-coupling of the inflaton

∗ v the vacuum expectation value of the inflaton field
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6. General Relativity — paradigm of inflation

current research issues regarding inflation

• other terms in generalized G-inflation:
L2 = K(ϕ,X) L3 = −G32ϕ

L4 = −G4R+G4X

[
(2ϕ)2 − (∇2ϕ)2

]
L5 = −G5Gµν(∇µ∇νϕ)− 1

6
G5X

[
(2ϕ)3 − 3(2ϕ)(∇2ϕ)2 +2(∇2ϕ)3

] (47)

– where the kinetic term of the inflaton is X = −1
2
gµν(∇µϕ)(∇νϕ)

– K(ϕ,X) is the Kähler potential

– Gi = Gi(ϕ,X) is a paramterizing function with its derivative GiX = ∂Gi

∂X

– and the abbreviations
(2ϕ) = (∇µ∇µϕ) (∇2ϕ)2 = (∇µ∇νϕ)(∇µ∇νϕ)

(∇2ϕ)3 = (∇µ∇νϕ)(∇ν∇ρϕ)(∇ρ∇µϕ)
(48)

• modifies the allowed potential for the ”Higgs” field
– can easier accommodate initial conditions and end of inflation

– at the ”expense” of several additional functions

∗ thereby being again less predictive
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