6. General Relativity — Astro Particle Physics
description of the very early universe:
e Ccurved space-time in the context of particle physics

e we need the particle physics description
— formulated in Hamiltonian mechanics
= Quantum Mechanics

— or formulated in Lagrangian mechanics

— using an action principle
* Quantum Mechanics through the Pathintegral formulation

e Special Relativity is the local symmetry group
= Lagrangian mechanics as the unifying framework

? Can we formulate General Relativity in a Lagrangian picture?
? what is the dynamic degree of freedom?
x the metric
7 what are the consequences?

Thomas Gajdosik Cosmology 2023 / 09 / 01



6. General Relativity — LLagrangian formulation of gravity
we can derive Einsteins equations also from an action:

e the starting point is the Einstein-Hilbert action

5= /d%‘/_—g (ﬁm N 16};(;) (1)

— R = R(guv) is the Ricci scalar, G is Newtons gravitational constant

— g = det(guv) is the determinant of the metric

e why this /—g 7
— using the differential calculus the volume element should be written as a 4-form

d*z = dz® Adat A dx® A da® = %eu,}pg dx? N dx” A dxP N dx® (2)
— that transforms under coordinate transformations z — z’ with gaf,’; = N/,
d*t = Leuwpe NN BN Nosda'™ A da’P A da' A da’® = det[A] d*a’ (3)
— the metric transforms under these coordinate transformations = — 2’
Gop = NN = g = det[gl5] = det[A¥ Ngu] = det[A]? g (4)
— since det[n,] = det[diag(1,—-1,-1,-1)]=-1 = g=det[g.] <O (5)
= (y/=gd*z) is invariant: d*z'/—¢ = det[A]_1d4:c\/—g det[A]? = d*zv/—g (6)
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6. General Relativity — LLagrangian formulation of gravity
we can derive Einsteins equations also from an action:

e the variation of the action gives the Euler-Lagrange equations
e varying the Einstein-Hilbert action we get

5 = [ o (5(v/=gLu) = S(v=a) el - V=g 4 — V=5 2) ™
— the first term is the variation of the matter Lagrangian
— the second term can be calculated from the identity
Tr[in M] = In(det[M]) = Tr[M 16M] = det[M] 16 det[M] (8)
x setting M = g" we have
M~t=g, and det[M] = det[¢g"] = det[(gn) '] = 1/det[gw] =1/g (9)

« 50 Tr[M16M] = g, 09" = gé; = _959 — %g

= Sy/—g =5 ——Qﬁ(—g)guu5g“”=—%\/—gguﬁg”‘” (10)

V=g

— the third term has already the wanted differential égH”
— the fourth term gives a total divergence (see next slide)
= it does not contribute to the equations of motion
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6. General Relativity — LLagrangian formulation of gravity

we can derive Einsteins equations also from an action:

e the variation of the Ricci tensor is the contracted variation of the Riemann tensor:

SRap = 0R’, 55 = 6(65R,.5) = 06[0:T 05 + T, 05 — (5 <> B)]

(11)

e the trick in the calculation is to realize, that 4 is a difference of two connections

= it is a tensor and we can calculate the covariant derivative:

Vbl ng = 0x6T 05 4 T2, 00 L — Th,6T0s — Th20T0, (12)
— the antisymmetric part in (k < 8) gives
Vedlog — Vadlo, = 00T pg 4+ Th, 6Tk —TH,0 5 — 0T,
—850T 0, — 3,000, + T4, 6T + 5670,
= 0:0T o+ TR0k, 4+ 6T 0, — (k< B)
= G0N+ Tl — (ke B) = OR,; (13)
e so the term ¢g*¥(§R,53) can be written as
g*P6Ras = g’ (Va8 h5 — V5T Ay) = Voguag™ ol ag — VT Ay
= V%[gapg"’orh, — T o] = V*V, (14)
e and the integral over it gives only the boundary terms
/Qd4ac —9 V[gapg" 8T, — 6To\] = [gapg" 6T, — 6T 0] o, = O (15)
Thomas Gajdosik Cosmology 2023 / 09 / 01 4



6. General Relativity — LLagrangian formulation of gravity
we can derive Einsteins equations also from an action:

e varying the matter Lagrangian with respect to dg"”

0Sm . 8(\/—9/3771) 8(\/—9£m) . V—g
— — 8, —: Ty (16)
dgHV ogHv g 2

gives the definition of the symmetric Hilbert (stress energy) tensor !

e the canonical stress energy tensor ( using @, =9, )

is not necessarily symmetric (when both indices are up or down)

e the Belinfante-Rosenfeld (stress-energy) tensor

ng/ — TM)\g)\V + 8)\(S,uy)\ + Sl/,u)\ . S)\l/,u,) (18)

— adds a divergence of the spin part S#”* to make it symmetric
— it is equivalent to the Hilbert tensor
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6. General Relativity — LLagrangian formulation of gravity
we can derive Einsteins equations also from an action:

e putting the parts of the variation with respect to 6g"” together

55 v/ —¢g 1 R,LLV
= 0 = T, — (—=+/— — /=
§ghv 5 L = (=5V=99m) g 16nG

— we get Einsteins equations

e we get also the field equations in the curved space time

— they are the normal Euler-Lagrange equations

55 —OLm 9L &Lom OLm
5D o P (V gacb,p) VI ( oD ”acb,p)
oLy, __

+ the last equality only holds, if 0D, = VP is a vector

(19)

(20)
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6. General Relativity — examples of matter Lagrangians
complex scalar Lagrangian:

e using only first derivatives of the complex scalar field ¢
— the flat space Lagrangian

Ly = (0"¢*)(0up) — m3e™ ¢ — V(¢*¢) (21)
— can be written with covariant derivatives as
Ly =g"" (Vud™) (Vo) — mGo™ ¢ — V(¢*¢) (22)
e the canonical stress energy tensor
oL oL
TH  — ¢ P L x — L O 23
% 8¢7M¢,V + 8¢TM¢’V oY v ( )

= gM[(Vad")ow + (Vad) 9% ] — [0 (Vad*) (Vi) — m3e™ ¢ — V(¢%¢)]
is already symmetric (when both indices are up or down)
— and the same as the Hilbert tensor (since V¢ = 8,06 = ¢,.)
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6. General Relativity — examples of matter Lagrangians
Maxwell Lagrangian:
e using the vector potential A, and its fieldstrength Fj,, = 0yAy — OV Ay
— the flat space Lagrangian is £ = —2FMF,, = —}F? (24)
* the vector potential can be written as a one-form A = A, dz*

* the fieldstrength as a two-form F = 1F,,da#dz” = dA

— there is no metric dependence in F,

— the Lagrangian on a curved manifold is just

L= —2g™gPYFogFu = —2AP%(Ag o — An ) (25)
e the canonical stress energy tensor
™" = ;jfp‘:Ap,y—&j LA
= [-39%9" (A0 — Aap) — SAP (8504 — 6001 Ap + 04 F
= —F"A,,+ 68, 2F° (26)

is not symmetric (when both indices are up or down)
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6. General Relativity — examples of matter Lagrangians

Maxwell Lagrangian:

® using the generators of Lorentz transformations that act on four-vectors

(TH)* g = i(g™d% — g*d'y) (27)
e the spin tensor S** = %gjz(j”)“ﬁAﬁ = — 1 gpaF"" (g™ 6% — g**6'%) AP
= —L(F"AY — FM™AY) = L(FM AN — FIRAY) = —S5HY (28)
e and its derivative  9,(S** 4 SVEA 4 S
= LO\(FM"AY— FFMAY 4 FYHAN — FYA AR  FMAY — FYAR)
= O\(FMAY) = —(O\FM)AY — FMAY, = —gog " AVP (29)
e we get the Belinfante-Rosenfeld tensor
Tgl/ — T“A g)\u + 9 ( GHVA 4+ GUHA 4+ SAW)
= GapF AP 4 29" F? — gogF A = —g g FOHFY 4 29" F? (30)
e the Hilbert tensor
Tw = 255:1-39"9" FapFpol — guwla = —516:909" + 9°°6,97 1 FapFps — guvLa
—2[Fu8F009”” 4 FapFpg®] — gula = —FugFu0g™ + 29w F? (31)
gives the same result
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6. General Relativity — examples of matter Lagrangians

Dirac Lagrangian:

e using the Dirac spinor @ and its adjoint ¢ = @DHO
— the flat space Lagrangian Ly =¥ (Gd — m)y (32)
— can be written with a covariant derivative as L, = ¥ (ig"'v,V, — m) (33)
—> the covariant derivative has to use the spin connection !

® the canonical stress energy tensor is not symmetric (when both indices are up or down)

oL 0Ly -, .
T, = 24, 4 Puo=> — Lol = Pivh, + Py - 0 — ShP(iv Vs — m)y (34)
O, 0
= we need the Belinfante-Rosenfeld tensor T = T*, g™ + 0,5(S** 4 SY#* + SM)  (35)
— with the spintensor SA — ; giff (TH)% 4 e (36)

x « IS the spinor index of the Dirac spinor
* (jW)O‘ﬁ = _%[,Y,L,,yy]aﬂ generates the Lorentz transformation on the spinors

2 0(v=gLy) _ 0Ly
V=g bgm 59"

— we have to include the dependence of the spin connections on the metric

e for the Hilbert tensor Ty =

— gLy (37)
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6. General Relativity — paradigm of inflation
most models of inflation assume one or more scalar fields
e taking real scalar fields ¢; with the abbreviation ¢ = ", ¢?
Sp = / d*zy/—g Ly = / d*av/=g35 Y 9" (0.1 (Butpr) — V(67) (38)
— we get the field equations ¢

58 |
3¢; (q;) 0= / d*zv/=g Zk:g“"(@u5i5(w — ) (Oudr) — V' (¢2)26;(x)6(x — y)

- / d*26(z — )0,V =7 §" ()] + V=g V'(6*)2¢,()
= —vV=g (Vulg"™(0up)] + 26;V') = —v/—=g (V" (0u8)) +2¢;V")  (39)

— and the stress energy tensor

- g,uvﬁm = Z(auqbb)(auqbb) - gw/[% Z(8p¢b)(8p¢b) - V(¢2)] (40)
b b

Too = L3162+ (8)%] + V(¢2) = H(s) Toi = 32, d(Bicdy)
Ti = >,[0i00)% + S 7 — L ()] — a®V (¢?) Tie = >_4(0;¢s) (k)

— for a homogeneous and isotropic field, we can set (ajgbb) — 0 so (8é) — 0, too)
— that givesus p=2> 2+ Vandp=1>,¢2 -V

(41)
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6. General Relativity — paradigm of inflation

using only a single scalar field

e Wwith a sizeable, but slowly varying potential V(gbz)

e and ¢ slowly varying, i.e. ¢ KV

=

we get the conditions like with the cosmological constant:
* p>0 and p<—%,0
the scalar field does not act like "normal’” matter

using the Friedmann equations for the Robertson-Walker metric

12 + k 4G a 8nG
TEE_ IO @ vy LRo=-2="C@ vy @)

together with the field equatlons, remembering (9;¢p) — O,
.. a -
0 = g"'Vu(0up) + 26V = g"0,(0v9) + g’ T, (9pp) + 20V = ¢ — -0+ 26V (43)

making the ansatz a = cefmt we get

%Rii + %Roo =

4G 4nG
Hiy + —(2V + ¢°) Hiy = —(2V 2¢°) (44)
k = 4nGa’¢p? > O = Only flat or de Sitter ...  consistent with measurements
and Hinp ~ £ for Hipnt ~60 = V ~ 22 tPMQ ~ 8 x 10712M2 ~ (3.45 x 1013GeV)>?

3 M?
P
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6. General Relativity — paradigm of inflation

how does inflation stop?

e even with the "'slowly rolling” inflaton field, there is a small change
= the field value approaches its minimum

e the inflaton field dominates, but there are the other fields, too
= it can decay into the other fields

e with the increasing scale factor, the temperature drops
— the effective potential can decrease to the minimum value

— assuming for example a form like the SM Higgs potential
«x the value of the inflaton field stays large: ¢ is heavy

« but the value of the potential can go to zero: Hijys — O
= inflation stops

— including supersymmetry
+ the value of the potential is bounded from below, mostly positive

e the heavy inflaton decays into the other fields: reheating
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6. General Relativity — paradigm of inflation
consequences of inflation

e the universe appears as flat, homogeneous, and isotropic
— as is seen in the CMB

e the seeds for structure formation can be understood
— as quantum fluctuations blown up to cosmic scales

e the primordial particle spectrum is thermal
— from the decay of the inflaton

problems with inflation

e how ""natural” are the conditions for inflation 7

e how can we understand the "ordered’ state after inflation

— coming from an "unordered’ state before inflaton 7

* it seems the initial conditions for inflation have to be more fine
tuned than the conditions of the accelerating universe we see now
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6. General Relativity — paradigm of inflation

current research issues regarding inflation

e the simplest assumptions are too restrictive
— minimal coupling ( ¢ is only used as the source in T}, )
— single field
— 0,0~ 0
— generalized G-inflation (Galileon inflation):
— more terms in the Lagrangian

5
R
S:/d4 V=l > ;- 45
v J (Z; ’ 167TG> (45)
— the first term, £1, being a SM-like Higgs Lagrangian:
L1 = |Duol® + A(|¢]* — v*)? (46)

* @ the inflaton field and D, its covariant derivative
* A the self-coupling of the inflaton
« v the vacuum expectation value of the inflaton field

Thomas Gajdosik Cosmology 2023 / 09 / 01 15



6. General Relativity — paradigm of inflation
current research issues regarding inflation

e Oother terms in generalized G-inflation:

L = K(¢,X) L3 = —Gz0¢
Lo = —GaR+ Gax [(3¢)? — (V3¢)?] (47)
Ls = —G5Gu(VHVY¢) — ¢Gsx [(O9) — 3(09)(V39)? + 2(V2¢)?]

— where the kinetic term of the inflaton is X = —%g““(qub)(V,,qb)

— K(¢,X) is the Kahler potential

— G = Gi(¢p, X) is a paramterizing function with its derivative G;x = %
— and the abbreviations

(Op) = (VuVF9) (V29)? = (VuVug)(VIVY9)

(V29)3 = (VuV0)(V,V?0)(V,V ) (48)

e Mmodifies the allowed potential for the "Higgs' field

— can easier accommodate initial conditions and end of inflation
— at the "expense’ of several additional functions

* thereby being again less predictive
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