6. General Relativity - Astro Particle Physics

description of the very early universe:

- curved space-time in the context of particle physics
- we need the particle physics description
- formulated in Hamiltonian mechanics
\Rightarrow Quantum Mechanics
- or formulated in Lagrangian mechanics
\Rightarrow using an action principle
* Quantum Mechanics through the Pathintegral formulation
- Special Relativity is the local symmetry group
\Rightarrow Lagrangian mechanics as the unifying framework
? Can we formulate General Relativity in a Lagrangian picture?
? what is the dynamic degree of freedom?
* the metric
? what are the consequences?

6. General Relativity - Lagrangian formulation of gravity

we can derive Einsteins equations also from an action:

- the starting point is the Einstein-Hilbert action

$$
\begin{equation*}
S=\int d^{4} x \sqrt{-g}\left(\mathcal{L}_{m}-\frac{R}{16 \pi G}\right) \tag{1}
\end{equation*}
$$

$-R=R\left(g_{\mu \nu}\right)$ is the Ricci scalar, G is Newtons gravitational constant
$-g=\operatorname{det}\left(g_{\mu \nu}\right)$ is the determinant of the metric

- why this $\sqrt{-g}$?
- using the differential calculus the volume element should be written as a 4-form

$$
\begin{equation*}
d^{4} x=d x^{0} \wedge d x^{1} \wedge d x^{2} \wedge d x^{3}=\frac{1}{4!} \epsilon_{\mu \nu \rho \sigma} d x^{\mu} \wedge d x^{\nu} \wedge d x^{\rho} \wedge d x^{\sigma} \tag{2}
\end{equation*}
$$

- that transforms under coordinate transformations $x \rightarrow x^{\prime}$ with $\frac{\partial x^{\mu}}{\partial x^{\alpha}}=\Lambda_{\alpha}^{\mu}$

$$
\begin{equation*}
d^{4} x=\frac{1}{4!} \epsilon_{\mu \nu \rho \sigma} \wedge_{\alpha}^{\mu} \wedge^{\nu}{ }_{\beta} \wedge^{\rho}{ }_{\gamma} \wedge_{\delta}^{\sigma} d x^{\prime \alpha} \wedge d x^{\prime \beta} \wedge d x^{\prime \gamma} \wedge d x^{\prime \delta}=\operatorname{det}[\wedge] d^{4} x^{\prime} \tag{3}
\end{equation*}
$$

- the metric transforms under these coordinate transformations $x \rightarrow x^{\prime}$

$$
\begin{array}{r}
g_{\alpha \beta}^{\prime}=\wedge_{\alpha}^{\mu} \Lambda_{\beta}^{\nu} g_{\mu \nu} \quad \Rightarrow \quad g^{\prime}=\operatorname{det}\left[g_{\alpha \beta}^{\prime}\right]=\operatorname{det}\left[\wedge_{\alpha}^{\mu} \Lambda_{\beta}^{\nu} g_{\mu \nu}\right]=\operatorname{det}[\Lambda]^{2} g \\
- \\
\text { since } \quad \operatorname{det}\left[\eta_{\mu \nu}\right]=\operatorname{det}[\operatorname{diag}(1,-1,-1,-1)]=-1 \quad \Rightarrow \quad g=\operatorname{det}\left[g_{\mu \nu}\right]<0 \tag{6}\\
\Rightarrow\left(\sqrt{-g} d^{4} x\right) \text { is invariant: } \quad d^{4} x^{\prime} \sqrt{-g^{\prime}}=\operatorname{det}[\Lambda]^{-1} d^{4} x \sqrt{-g \operatorname{det}[\Lambda]^{2}}=d^{4} x \sqrt{-g}
\end{array}
$$

6. General Relativity - Lagrangian formulation of gravity

we can derive Einsteins equations also from an action:

- the variation of the action gives the Euler-Lagrange equations
- varying the Einstein-Hilbert action we get

$$
\begin{equation*}
\delta S=\int d^{4} x\left(\delta\left(\sqrt{-g} \mathcal{L}_{m}\right)-\delta(\sqrt{-g}) \frac{g^{a \beta} R_{a s}}{16 \pi G}-\sqrt{-g} \frac{\left(\delta g^{a \beta}\right) R_{a s}}{16 \pi G}-\sqrt{-g} \frac{g^{a^{\beta}}\left(\delta R_{a s}\right)}{16 \pi G}\right) \tag{7}
\end{equation*}
$$

- the first term is the variation of the matter Lagrangian
- the second term can be calculated from the identity

$$
\begin{equation*}
\operatorname{Tr}[\ln M]=\ln (\operatorname{det}[M]) \quad \Rightarrow \quad \operatorname{Tr}\left[M^{-1} \delta M\right]=\operatorname{det}[M]^{-1} \delta \operatorname{det}[M] \tag{8}
\end{equation*}
$$

* setting $M=g^{\mu \nu}$ we have

$$
\begin{equation*}
M^{-1}=g_{\mu \nu} \quad \text { and } \quad \operatorname{det}[M]=\operatorname{det}\left[g^{\mu \nu}\right]=\operatorname{det}\left[\left(g_{\mu \nu}\right)^{-1}\right]=1 / \operatorname{det}\left[g_{\mu \nu}\right]=1 / g \tag{9}
\end{equation*}
$$

* so $\operatorname{Tr}\left[M^{-1} \delta M\right]=g_{\mu \nu} \delta g^{\mu \nu}=g \delta \frac{1}{g}=-g \frac{\delta g}{g^{2}}=-\frac{\delta g}{g}$

$$
\begin{equation*}
\Rightarrow \quad \delta \sqrt{-g}=\frac{-\delta g}{2 \sqrt{-g}}=-\frac{1}{2 \sqrt{-g}}(-g) g_{\mu \nu} \delta g^{\mu \nu}=-\frac{1}{2} \sqrt{-g} g_{\mu \nu} \delta g^{\mu \nu} \tag{10}
\end{equation*}
$$

- the third term has already the wanted differential $\delta g^{\mu \nu}$
- the fourth term gives a total divergence (see next slide)
\Rightarrow it does not contribute to the equations of motion

6. General Relativity - Lagrangian formulation of gravity

we can derive Einsteins equations also from an action:

- the variation of the Ricci tensor is the contracted variation of the Riemann tensor:

$$
\begin{equation*}
\delta R_{\alpha \beta}=\delta R_{\alpha \lambda \beta}^{\lambda}=\delta\left(\delta_{\lambda}^{\kappa} R_{\alpha \kappa \beta}^{\lambda}\right)=\delta_{\lambda}^{\kappa} \delta\left[\partial_{\kappa} \Gamma_{\alpha \beta}^{\lambda}+\Gamma_{\kappa \rho}^{\lambda} \Gamma_{\alpha \beta}^{\rho}-(\kappa \leftrightarrow \beta)\right] \tag{11}
\end{equation*}
$$

- the trick in the calculation is to realize, that $\delta \Gamma$ is a difference of two connections \Rightarrow it is a tensor and we can calculate the covariant derivative:

$$
\begin{equation*}
\nabla_{\kappa} \delta \Gamma_{\alpha \beta}^{\lambda}=\partial_{\kappa} \delta \Gamma_{\alpha \beta}^{\lambda}+\Gamma_{\kappa \nu}^{\lambda} \delta \Gamma_{\alpha \beta}^{\nu}-\Gamma_{\kappa \alpha}^{\mu} \delta \Gamma_{\mu \beta}^{\lambda}-\Gamma_{\kappa \beta}^{\mu} \delta \Gamma_{\alpha \mu}^{\lambda} \tag{12}
\end{equation*}
$$

- the antisymmetric part in ($\kappa \leftrightarrow \beta$) gives

$$
\begin{align*}
\nabla_{\kappa} \delta \Gamma_{\alpha \beta}^{\lambda}-\nabla_{\beta} \delta \Gamma_{\alpha \kappa}^{\lambda}= & \partial_{\kappa} \delta \Gamma_{\alpha \beta}^{\lambda}+\Gamma_{\kappa \nu}^{\lambda} \delta \Gamma_{\alpha \beta}^{\nu}-\Gamma_{\kappa \alpha}^{\mu} \delta \Gamma_{\mu \beta}^{\lambda}-\Gamma_{\kappa \beta}^{\mu} \delta \Gamma_{\alpha \mu}^{\lambda} \\
& -\partial_{\beta} \delta \Gamma_{\alpha \kappa}^{\lambda}-\Gamma_{\beta \nu}^{\lambda} \delta \Gamma_{\alpha \kappa}^{\nu}+\Gamma_{\beta \alpha}^{\mu} \delta \Gamma_{\mu \kappa}^{\lambda}+\Gamma_{\beta \kappa}^{\mu} \delta \Gamma_{\alpha \mu}^{\lambda} \\
= & \partial_{\kappa} \delta \Gamma_{\alpha \beta}^{\lambda}+\Gamma_{\kappa \mu}^{\lambda} \delta \Gamma_{\alpha \beta}^{\mu}+\delta \Gamma_{\kappa \mu}^{\lambda} \Gamma_{\alpha \beta}^{\mu}-(\kappa \leftrightarrow \beta) \\
= & \delta\left[\partial_{\kappa} \Gamma_{\alpha \beta}^{\lambda}+\Gamma_{\kappa \mu}^{\lambda} \Gamma_{\alpha \beta}^{\mu}\right]-(\kappa \leftrightarrow \beta)=\delta R_{\alpha \kappa \beta}^{\lambda} \tag{13}
\end{align*}
$$

- so the term $g^{\alpha \beta}\left(\delta R_{\alpha \beta}\right)$ can be written as

$$
\begin{align*}
g^{\alpha \beta} \delta R_{\alpha \beta} & =g^{\alpha \beta}\left(\nabla_{\lambda} \delta \Gamma_{\alpha \beta}^{\lambda}-\nabla_{\beta} \delta \Gamma_{\alpha \lambda}^{\lambda}\right)=\nabla^{\kappa} g_{\kappa \lambda} g^{\alpha \beta} \delta \Gamma_{\alpha \beta}^{\lambda}-\nabla^{\alpha} \delta \Gamma_{\alpha \lambda}^{\lambda} \\
& =\nabla^{\alpha}\left[g_{\alpha \beta} g^{\mu \nu} \delta \Gamma_{\mu \nu}^{\beta}-\delta \Gamma_{\alpha \lambda}^{\lambda}\right]=\nabla^{\alpha} V_{\alpha} \tag{14}
\end{align*}
$$

- and the integral over it gives only the boundary terms

$$
\begin{equation*}
\int_{\Omega} d^{4} x \sqrt{-g} \nabla^{\alpha}\left[g_{\alpha \beta} g^{\mu \nu} \delta \Gamma_{\mu \nu}^{\beta}-\delta \Gamma_{\alpha \lambda}^{\lambda}\right]=\left[g_{\alpha \beta} g^{\mu \nu} \delta \Gamma_{\mu \nu}^{\beta}-\delta \Gamma_{\alpha \lambda}^{\lambda}\right]_{\partial \Omega} \rightarrow 0 \tag{15}
\end{equation*}
$$

6. General Relativity - Lagrangian formulation of gravity

we can derive Einsteins equations also from an action:

- varying the matter Lagrangian with respect to $\delta g^{\mu \nu}$

$$
\begin{equation*}
\frac{\delta S_{m}}{\delta g^{\mu \nu}}=\frac{\partial\left(\sqrt{-g} \mathcal{L}_{m}\right)}{\partial g^{\mu \nu}}-\partial_{\rho} \frac{\partial\left(\sqrt{-g} \mathcal{L}_{m}\right)}{\partial g^{\mu \nu}{ }_{, \rho}}=: \frac{\sqrt{-g}}{2} T_{\mu \nu} \tag{16}
\end{equation*}
$$

gives the definition of the symmetric Hilbert (stress energy) tensor !

- the canonical stress energy tensor (using $\Phi_{, \mu}:=\partial_{\mu} \Phi$)

$$
\begin{equation*}
T_{\nu}^{\mu}:=\frac{\partial \mathcal{L}_{m}}{\partial \Phi_{, \mu}} \Phi_{, \nu}-\mathcal{L}_{m} \delta_{\nu}^{\mu} \tag{17}
\end{equation*}
$$

is not necessarily symmetric (when both indices are up or down)

- the Belinfante-Rosenfeld (stress-energy) tensor

$$
\begin{equation*}
T_{B}^{\mu \nu}=T_{\lambda}^{\mu} g^{\lambda \nu}+\partial_{\lambda}\left(S^{\mu \nu \lambda}+S^{\nu \mu \lambda}-S^{\lambda \nu \mu}\right) \tag{18}
\end{equation*}
$$

- adds a divergence of the spin part $S^{\mu \nu \lambda}$ to make it symmetric
- it is equivalent to the Hilbert tensor

6. General Relativity - Lagrangian formulation of gravity

 we can derive Einsteins equations also from an action:- putting the parts of the variation with respect to $\delta g^{\mu \nu}$ together

$$
\begin{align*}
\frac{\delta S}{\delta g^{\mu \nu}}=0 & =\frac{\sqrt{-g}}{2} T_{\mu \nu}-\left(-\frac{1}{2} \sqrt{-g} g_{\mu \nu}\right) \frac{R}{16 \pi G}-\sqrt{-g} \frac{R_{\mu \nu}}{16 \pi G} \\
& =-\frac{\sqrt{-g}}{16 \pi G}\left(R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R-8 \pi G T_{\mu \nu}\right) \tag{19}
\end{align*}
$$

\Rightarrow we get Einsteins equations

- we get also the field equations in the curved space time
- they are the normal Euler-Lagrange equations

$$
\begin{equation*}
\frac{\delta S}{\delta \Phi}=0=\sqrt{-g} \frac{\partial \mathcal{L}_{m}}{\partial \Phi}-\partial_{\rho}\left(\sqrt{-g} \frac{\partial \mathcal{L}_{m}}{\partial \Phi_{, \rho}}\right)=\sqrt{-g}\left(\frac{\partial \mathcal{L}_{m}}{\partial \Phi}-\nabla_{\rho} \frac{\partial \mathcal{L}_{m}}{\partial \Phi_{, \rho}}\right) \tag{20}
\end{equation*}
$$

* the last equality only holds, if $\frac{\partial \mathcal{L}_{m}}{\partial \Phi_{, \rho}}=V^{\rho}$ is a vector

6. General Relativity

complex scalar Lagrangian:

- using only first derivatives of the complex scalar field ϕ
- the flat space Lagrangian

$$
\begin{equation*}
\mathcal{L}_{\phi}=\left(\partial^{\mu} \phi^{*}\right)\left(\partial_{\mu} \phi\right)-m_{\phi}^{2} \phi^{*} \phi-V\left(\phi^{*} \phi\right) \tag{21}
\end{equation*}
$$

- can be written with covariant derivatives as

$$
\begin{equation*}
\mathcal{L}_{\phi}=g^{\mu \nu}\left(\nabla_{\mu} \phi^{*}\right)\left(\nabla_{\nu} \phi\right)-m_{\phi}^{2} \phi^{*} \phi-V\left(\phi^{*} \phi\right) \tag{22}
\end{equation*}
$$

- the canonical stress energy tensor

$$
\begin{gather*}
T^{\mu}{ }_{\nu}=\frac{\partial \mathcal{L}_{\phi}}{\partial \phi, \mu} \phi_{, \nu}+\frac{\partial \mathcal{L}_{\phi}}{\partial \phi_{, \mu}^{*}} \phi_{, \nu}^{*}-\mathcal{L}_{\phi} \delta_{\nu}^{\mu} \tag{23}\\
=g^{\lambda \mu}\left[\left(\nabla_{\lambda} \phi^{*}\right) \phi_{, \nu}+\left(\nabla_{\lambda} \phi\right) \phi_{, \nu}^{*}\right]-\delta_{\nu}^{\mu}\left[g^{\lambda \kappa}\left(\nabla_{\lambda} \phi^{*}\right)\left(\nabla_{\kappa} \phi\right)-m_{\phi}^{2} \phi^{*} \phi-V\left(\phi^{*} \phi\right)\right]
\end{gather*}
$$

is already symmetric (when both indices are up or down)

- and the same as the Hilbert tensor (since $\nabla_{\mu} \phi=\partial_{\mu} \phi=\phi_{, \mu}$)

6. General Relativity

Maxwell Lagrangian:

- using the vector potential A_{μ} and its fieldstrength $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$
- the flat space Lagrangian is $\mathcal{L}_{A}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}=-\frac{1}{4} F^{2}$
* the vector potential can be written as a one-form $A=A_{\mu} d x^{\mu}$
* the fieldstrength as a two-form $F=\frac{1}{2} F_{\mu \nu} d x^{\mu} d x^{\nu}=d A$
\Rightarrow there is no metric dependence in $F_{\mu \nu}$
- the Lagrangian on a curved manifold is just

$$
\begin{equation*}
\mathcal{L}_{A}=-\frac{1}{4} g^{\alpha \mu} g^{\beta \nu} F_{\alpha \beta} F_{\mu \nu}=-\frac{1}{2} A^{\beta, \alpha}\left(A_{\beta, \alpha}-A_{\alpha, \beta}\right) \tag{25}
\end{equation*}
$$

- the canonical stress energy tensor

$$
\begin{align*}
T_{\nu}^{\mu} & =\frac{\partial \mathcal{L}_{A}}{\partial A_{\rho, \mu}} A_{\rho, \nu}-\delta_{\nu}^{\mu} \mathcal{L}_{A} \\
& =\left[-\frac{1}{2} g^{\beta \rho} g^{\alpha \mu}\left(A_{\beta, \alpha}-A_{\alpha, \beta}\right)-\frac{1}{2} A^{\beta, \alpha}\left(\delta_{\beta}^{\rho} \delta_{\alpha}^{\mu}-\delta_{\alpha}^{\rho} \delta_{\beta}^{\mu}\right)\right] A_{\rho, \nu}+\frac{1}{4} \delta_{\nu}^{\mu} F^{2} \\
& =-F^{\mu \rho} A_{\rho, \nu}+\delta_{\nu}^{\mu} \frac{1}{4} F^{2} \tag{26}
\end{align*}
$$

is not symmetric (when both indices are up or down)

6. General Relativity - examples of matter Lagrangians

Maxwell Lagrangian:

- using the generators of Lorentz transformations that act on four-vectors

$$
\begin{equation*}
\left(\mathcal{J}^{\mu \nu}\right)^{\alpha}{ }_{\beta}=i\left(g^{\alpha \mu} \delta_{\beta}^{\nu}-g^{\alpha \nu} \delta_{\beta}^{\mu}\right) \tag{27}
\end{equation*}
$$

- the spin tensor $S^{\mu \nu \lambda}=\frac{i}{2} \frac{\partial \mathcal{L}_{A}}{\partial A_{\mu}^{\alpha}}\left(\mathcal{J}^{\nu \lambda}\right)^{\alpha}{ }_{\beta} A^{\beta}=-\frac{1}{2} g_{\rho \alpha} F^{\rho \mu}\left(g^{\alpha \nu} \delta_{\beta}^{\lambda}-g^{\alpha \lambda} \delta_{\beta}^{\nu}\right) A^{\beta}$

$$
\begin{equation*}
=-\frac{1}{2}\left(F^{\nu \mu} A^{\lambda}-F^{\lambda \mu} A^{\nu}\right)=\frac{1}{2}\left(F^{\mu \nu} A^{\lambda}-F^{\mu \lambda} A^{\nu}\right)=-S^{\mu \lambda \nu} \tag{28}
\end{equation*}
$$

- and its derivative $\partial_{\lambda}\left(S^{\mu \nu \lambda}+S^{\nu \mu \lambda}+S^{\lambda \mu \nu}\right)$

$$
\begin{align*}
& =\frac{1}{2} \partial_{\lambda}\left(F^{\mu \nu} A^{\lambda}-F^{\mu \lambda} A^{\nu}+F^{\nu \mu} A^{\lambda}-F^{\nu \lambda} A^{\mu}+F^{\lambda \mu} A^{\nu}-F^{\lambda \nu} A^{\mu}\right) \\
& =\partial_{\lambda}\left(F^{\lambda \mu} A^{\nu}\right)=-\left(\partial_{\lambda} F^{\lambda \mu}\right) A^{\nu}-F^{\lambda \mu} A_{, \lambda}^{\nu}=-g_{\alpha \beta} F^{\alpha \mu} A^{\nu, \beta} \tag{29}
\end{align*}
$$

- we get the Belinfante-Rosenfeld tensor

$$
\begin{align*}
T_{B}^{\mu \nu} & =T^{\mu}{ }_{\lambda} g^{\lambda \nu}+\partial_{\lambda}\left(S^{\mu \nu \lambda}+S^{\nu \mu \lambda}+S^{\lambda \mu \nu}\right) \\
& =g_{\alpha \beta} F^{\alpha \mu} A^{\beta, \nu}+\frac{1}{4} g^{\mu \nu} F^{2}-g_{\alpha \beta} F^{\alpha \mu} A^{\nu, \beta}=-g_{\alpha \beta} F^{\alpha \mu} F^{\beta \nu}+\frac{1}{4} g^{\mu \nu} F^{2} \tag{30}
\end{align*}
$$

- the Hilbert tensor

$$
\begin{align*}
T_{\mu \nu} & =2 \frac{\partial}{\partial g^{\mu}}\left[-\frac{1}{4} g^{\alpha \rho} g^{\beta \sigma} F_{\alpha \beta} F_{\rho \sigma}\right]-g_{\mu \nu} \mathcal{L}_{A}=-\frac{1}{2}\left[\delta_{\mu}^{\alpha} g_{\nu}^{\rho} g^{\beta \sigma}+g^{\alpha \rho} \delta_{\mu}^{\beta} g_{]}^{\sigma}\right] F_{\alpha \beta} F_{\rho \sigma}-g_{\mu \nu} \mathcal{L}_{A} \\
& =-\frac{1}{2}\left[F_{\mu \beta} F_{\nu \sigma} g^{\beta \sigma}+F_{\alpha \mu} F_{\rho \nu} g^{\alpha \rho}\right]-g_{\mu \nu} \mathcal{L}_{A}=-F_{\mu \beta} F_{\nu \sigma} g^{\beta \sigma}+\frac{1}{4} g_{\mu \nu} F^{2} \tag{31}
\end{align*}
$$

gives the same result

6. General Relativity

Dirac Lagrangian:

- using the Dirac spinor ψ and its adjoint $\bar{\psi}=\psi^{\dagger} \gamma^{0}$
- the flat space Lagrangian $\quad \mathcal{L}_{\psi}=\bar{\psi}(i \not \partial-m) \psi$
- can be written with a covariant derivative as $\mathcal{L}_{\psi}=\bar{\psi}\left(i g^{\mu \nu} \gamma_{\mu} \nabla_{\nu}-m\right) \psi$
\Rightarrow the covariant derivative has to use the spin connection !
- the canonical stress energy tensor is not symmetric (when both indices are up or down)

$$
\begin{equation*}
T^{\mu}{ }_{\nu}=\frac{\partial \mathcal{L}_{\psi}}{\partial \psi} \psi_{, \mu}+\bar{\psi}, \nu \frac{\partial \mathcal{L}_{\phi}}{\partial \bar{\psi} \overline{,}_{\mu}}-\mathcal{L}_{\psi} \delta_{\nu}^{\mu}=\bar{\psi} i \gamma^{\mu} \psi_{, \nu}+\bar{\psi}_{, \nu} \cdot 0-\delta_{\nu}^{\mu} \bar{\psi}\left(i \gamma^{\lambda} \nabla_{\lambda}-m\right) \psi \tag{34}
\end{equation*}
$$

\Rightarrow we need the Belinfante-Rosenfeld tensor $T_{B}^{\mu \nu}=T^{\mu}{ }_{\lambda}{ }^{\lambda^{\lambda \nu}}+\partial_{\lambda}\left(S^{\mu \nu \lambda}+S^{\nu \mu \lambda}+S^{\lambda \mu \nu}\right)$

- with the spintensor

$$
\begin{equation*}
S^{\lambda \mu \nu}=\frac{i}{2} \frac{\partial \mathcal{L}_{\psi}}{\partial \psi_{, \lambda}^{\alpha}}\left(\mathcal{J}^{\mu \nu}\right)^{\alpha}{ }_{\beta} \psi^{\beta} \tag{35}
\end{equation*}
$$

* α is the spinor index of the Dirac spinor ψ
* $\left(\mathcal{J}^{\mu \nu}\right)^{\alpha}{ }_{\beta}=-\frac{i}{4}\left[\gamma^{\mu}, \gamma^{\nu}\right]^{\alpha}{ }_{\beta}$ generates the Lorentz transformation on the spinors
- for the Hilbert tensor $\quad T_{\mu \nu}=\frac{2}{\sqrt{-g}} \frac{\delta\left(\sqrt{-g} \mathcal{L}_{\psi}\right)}{\delta g^{\mu \nu}}=2 \frac{\delta \mathcal{L}_{\psi}}{\delta g^{\mu \nu}}-g_{\mu \nu} \mathcal{L}_{\psi}$
- we have to include the dependence of the spin connections on the metric

6. General Relativity - paradigm of inflation

most models of inflation assume one or more scalar fields

- taking real scalar fields ϕ_{k} with the abbreviation $\phi^{2}=\sum_{k} \phi_{k}^{2}$

$$
\begin{equation*}
S_{\phi}=\int d^{4} x \sqrt{-g} \mathcal{L}_{\phi}=\int d^{4} x \sqrt{-g} \frac{1}{2} \sum_{k} g^{\mu \nu}\left(\partial_{\mu} \phi_{k}\right)\left(\partial_{\nu} \phi_{k}\right)-V\left(\phi^{2}\right) \tag{38}
\end{equation*}
$$

- we get the field equations

$$
\begin{align*}
\frac{\delta S_{\phi}}{\delta \phi_{j}(y)}=0 & =\int d^{4} x \sqrt{-g} \sum_{k} g^{\mu \nu}\left(\partial_{\mu} \delta_{k}^{j} \delta(x-y)\right)\left(\partial_{\nu} \phi_{k}\right)-V^{\prime}\left(\phi^{2}\right) 2 \phi_{j}(x) \delta(x-y) \\
& =-\int d^{4} x \delta(x-y) \partial_{\mu}\left[\sqrt{-g} g^{\mu \nu}\left(\partial_{\nu} \phi_{j}\right)\right]+\sqrt{-g} V^{\prime}\left(\phi^{2}\right) 2 \phi_{j}(y) \\
& =-\sqrt{-g}\left(\nabla_{\mu}\left[g^{\mu \nu}\left(\partial_{\nu} \phi_{j}\right)\right]+2 \phi_{j} V^{\prime}\right)=-\sqrt{-g}\left(\nabla^{\nu}\left(\partial_{\nu} \phi_{j}\right)+2 \phi_{j} V^{\prime}\right) \tag{39}
\end{align*}
$$

- and the stress energy tensor

$$
\begin{array}{rlrl}
T_{\mu \nu} & =2 \frac{\partial \mathcal{L}_{\phi}}{\partial g^{\mu \nu}}-g_{\mu \nu} \mathcal{L}_{m}=\sum_{b}\left(\partial_{\mu} \phi_{b}\right)\left(\partial_{\nu} \phi_{b}\right)-g_{\mu \nu}\left[\frac{1}{2} \sum_{b}\left(\partial^{\rho} \phi_{b}\right)\left(\partial_{\rho} \phi_{b}\right)-V\left(\phi^{2}\right)\right] \\
T_{00} & =\frac{1}{2} \sum_{b}\left[\dot{\phi}_{b}^{2}+\left(\vec{\partial} \phi_{b}\right)^{2}\right]+V\left(\phi^{2}\right)=H(\phi) & T_{0 i}=\sum_{b} \dot{\phi}_{b}\left(\partial_{i} \phi_{b}\right) \tag{41}\\
T_{i i} & =\sum_{b}\left[\left(\partial_{i} \phi_{b}\right)^{2}+\frac{a^{2}}{2} \dot{\phi}_{b}^{2}-\frac{a^{2}}{2}\left(\vec{\partial} \phi_{b}\right)^{2}\right]-a^{2} V\left(\phi^{2}\right) & T_{j k}=\sum_{b}\left(\partial_{j} \phi_{b}\right)\left(\partial_{k} \phi_{b}\right)
\end{array}
$$

- for a homogeneous and isotropic field, we can set $\left(\partial_{j} \phi_{b}\right) \rightarrow 0 \quad$ so $\left(\vec{\partial} \phi_{b}\right) \rightarrow 0$, too $)$
- that gives us $\rho=\frac{1}{2} \sum_{b} \dot{\phi}_{b}^{2}+V$ and $\mathbf{p}=\frac{1}{2} \sum_{b} \dot{\phi}_{b}^{2}-V$

6. General Relativity - paradigm of inflation

using only a single scalar field

- with a sizeable, but slowly varying potential $V\left(\phi^{2}\right)$
- and ϕ slowly varying, i.e. $\phi \ll V$
- we get the conditions like with the cosmological constant:
* $\rho>0$ and $\mathbf{p}<-\frac{1}{3} \rho$
\Rightarrow the scalar field does not act like 'normal' matter
- using the Friedmann equations for the Robertson-Walker metric

$$
\begin{equation*}
\frac{1}{2} R_{i i}+\frac{1}{6} R_{00}=\frac{\dot{a}^{2}+k}{a^{2}}=\frac{4 \pi G}{3}\left(\dot{\phi}^{2}+2 V\right) \quad \frac{1}{3} R_{00}=-\frac{\ddot{a}}{a}=\frac{8 \pi G}{3}\left(\dot{\phi}^{2}-V\right) \tag{42}
\end{equation*}
$$

- together with the field equations, remembering $\left(\partial_{j} \phi_{b}\right) \rightarrow 0$,

$$
\begin{equation*}
0=g^{\mu \nu} \nabla_{\mu}\left(\partial_{\nu} \phi\right)+2 \phi V^{\prime}=g^{\mu \nu} \partial_{\mu}\left(\partial_{\nu} \phi\right)+g^{\mu \nu} \Gamma_{\mu \nu}^{\rho}\left(\partial_{\rho} \phi\right)+2 \phi V^{\prime}=\ddot{\phi}-3 \frac{\dot{a}}{a} \dot{\phi}+2 \phi V^{\prime} \tag{43}
\end{equation*}
$$

- making the ansatz $a=c e^{H_{\text {inft }}}$ we get

$$
H_{\mathrm{infl}}^{2}+\frac{k}{a^{2}}=\frac{4 \pi G}{3}\left(2 V+\dot{\phi}^{2}\right) \quad H_{\mathrm{infl}}^{2}=\frac{4 \pi G}{3}\left(2 V-2 \dot{\phi}^{2}\right)
$$

$\Rightarrow k=4 \pi G a^{2} \dot{\phi}^{2} \geq 0 \quad \Rightarrow$ only flat or de Sitter \ldots consistent with measurements

- and $H_{\text {infl }} \sim \frac{8 \pi}{3} \frac{V}{M_{P}^{2}}$ for $H_{\text {infl }} \sim 60 \Rightarrow V \sim \frac{45}{2 \pi} \frac{t_{P}}{t} M_{P}^{2} \sim 8 \times 10^{-12} M_{P}^{2} \sim\left(3.45 \times 10^{13} \mathrm{GeV}\right)^{2}$

6. General Relativity - paradigm of inflation

how does inflation stop?

- even with the 'slowly rolling' inflaton field, there is a small change \Rightarrow the field value approaches its minimum
- the inflaton field dominates, but there are the other fields, too \Rightarrow it can decay into the other fields
- with the increasing scale factor, the temperature drops
- the effective potential can decrease to the minimum value
- assuming for example a form like the SM Higgs potential * the value of the inflaton field stays large: ϕ is heavy
* but the value of the potential can go to zero: $H_{\text {infl }} \rightarrow 0$
\Rightarrow inflation stops
- including supersymmetry
* the value of the potential is bounded from below, mostly positive
- the heavy inflaton decays into the other fields: reheating

6. General Relativity - paradigm of inflation

consequences of inflation

- the universe appears as flat, homogeneous, and isotropic
- as is seen in the CMB
- the seeds for structure formation can be understood
- as quantum fluctuations blown up to cosmic scales
- the primordial particle spectrum is thermal
- from the decay of the inflaton

problems with inflation

- how 'natural' are the conditions for inflation ?
- how can we understand the "ordered" state after inflation
- coming from an "unordered' state before inflaton ?
* it seems the initial conditions for inflation have to be more fine tuned than the conditions of the accelerating universe we see now

6. General Relativity - paradigm of inflation

current research issues regarding inflation

- the simplest assumptions are too restrictive
- minimal coupling (ϕ is only used as the source in $T_{\mu \nu}$)
- single field
- $\partial_{i} \phi \sim 0$
\Rightarrow generalized G-inflation (Galileon inflation):
- more terms in the Lagrangian

$$
\begin{equation*}
S=\int d^{4} x \sqrt{-g}\left(\sum_{i=1}^{5} \mathcal{L}_{i}-\frac{R}{16 \pi G}\right) \tag{45}
\end{equation*}
$$

- the first term, \mathcal{L}_{1}, being a SM-like Higgs Lagrangian:

$$
\begin{equation*}
\mathcal{L}_{1}=\left|D_{\mu} \phi\right|^{2}+\lambda\left(|\phi|^{2}-v^{2}\right)^{2} \tag{46}
\end{equation*}
$$

* ϕ the inflaton field and D_{μ} its covariant derivative
* λ the self-coupling of the inflaton
* v the vacuum expectation value of the inflaton field

6. General Relativity - paradigm of inflation

current research issues regarding inflation

- other terms in generalized G-inflation:

$$
\begin{align*}
& \mathcal{L}_{2}=K(\phi, X) \quad \mathcal{L}_{3}=-G_{3} \square \phi \\
& \mathcal{L}_{4}=-G_{4} R+G_{4 X}\left[(\square \phi)^{2}-\left(\nabla^{2} \phi\right)^{2}\right] \quad \tag{47}\\
& \mathcal{L}_{5}=-G_{5} G_{\mu \nu}\left(\nabla^{\mu} \nabla^{\nu} \phi\right)-\frac{1}{6} G_{5 X}\left[(\square \phi)^{3}-3(\square \phi)\left(\nabla^{2} \phi\right)^{2}+2\left(\nabla^{2} \phi\right)^{3}\right]
\end{align*}
$$

- where the kinetic term of the inflaton is $X=-\frac{1}{2} g^{\mu \nu}\left(\nabla_{\mu} \phi\right)\left(\nabla_{\nu} \phi\right)$
- $K(\phi, X)$ is the Kähler potential
- $G_{i}=G_{i}(\phi, X)$ is a paramterizing function with its derivative $G_{i X}=\frac{\partial G_{i}}{\partial X}$
- and the abbreviations

$$
\begin{align*}
(\square \phi) & =\left(\nabla_{\mu} \nabla^{\mu} \phi\right) \quad\left(\nabla^{2} \phi\right)^{2}=\left(\nabla_{\mu} \nabla_{\nu} \phi\right)\left(\nabla^{\mu} \nabla^{\nu} \phi\right) \tag{48}\\
\left(\nabla^{2} \phi\right)^{3} & =\left(\nabla_{\mu} \nabla^{\nu} \phi\right)\left(\nabla_{\nu} \nabla^{\rho} \phi\right)\left(\nabla_{\rho} \nabla^{\mu} \phi\right)
\end{align*}
$$

- modifies the allowed potential for the ''Higgs' field
- can easier accommodate initial conditions and end of inflation
- at the 'expense" of several additional functions
* thereby being again less predictive

