
4. General Relativity — non-vacuum solutions
assuming the solution to be homogeneous and isotropic

• the space part of the curvature tensor has to be maximally symmetric:

R(3)
jkℓm = k(g(3)jℓ g

(3)
km − g(3)jm g

(3)
kℓ ) ⇒ R(3)

km = 2kg(3)km (1)

• using Frobenius theorem, we can write the metric as

ds2 = g00(t
′)dt′2 − g(3)jk (t′)dxjdxk = dt2 − a2(t)g(3)jk dx

jdxk (2)

• isotropic and homogeneous definitely includes spherically symmetric
⇒ we can use Frobenius theorem again to write

g(3)jk dx
jdxk = grr(r)dr

2 + r2d2Ω = e2βdr2 + r2d2Ω (3)

• we can use our calculation of the Schwarzschild metric for the space part
– by setting α(t, r) = 0 and β = β(r) we get

R(3)
rr = 2

r
∂rβ and R(3)

φφ = R(3)
ϑϑ sin2 ϑ = (1− e−2β[−r(∂rβ) + 1]) sin2 ϑ (4)

– using R(3)
km = 2kg(3)km we get from (rr): 2ke2β = 2

r
∂rβ and from (ϑϑ):

2kr2 = 1− e−2β[−r(∂rβ) + 1] = 1+ e−2β[r(kre2β)− 1] = 1+ kr2 − e−2β (5)

⇒ e−2β = 1− kr2 and we get the Robertson-Walker metric

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2d2Ω

]
(6)
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4. General Relativity — Robertson-Walker metric

features of
ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2d2Ω

]
= dt2 − a2(t)dσ2 (7)

• k can be from {−1,0,+1}
– the substitutions k → k

|k|, a→ a
√

|k|, r → r√
|k|

leave the metric invariant

• dσ2, the space part of the metric, describes constant curvature:

– k = 1 is called closed (de Sitter)
∗ the substitution r → sinχ gives the metric of S3: dσ2 = dχ2 + sin2χd2Ω

– k = 0 is called flat (Euclidean)
∗ one has the metric of R3: dσ2 = dr2 + r2d2Ω = dx2 + dy2 + dz2

– k = −1 is called open (anti-de Sitter)
∗ the substitution r → sinh ξ gives the metric: dσ2 = dξ2 + sinh2ξ d2Ω

• the only function not determined by symmetry is the scale factor a(t)

– a(t) will be determined by the Einstein equations
∗ that means: the energy content determines the size of the curvature
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4. General Relativity — Robertson-Walker metric

calculating the non-vanishing curvature functions
• using the definition ȧ = ∂ta

Γtrr =
aȧ

1−kr2 Γtϑϑ = aȧr2 Γtφφ = aȧr2 sin2 ϑ Γrtr = Γϑtϑ = Γφtφ = ȧ
a

Γrrr =
kr

1−kr2 Γrϑϑ = −r(1− kr2) Γrφφ = −r(1− kr2) sin2 ϑ Γϑrϑ = Γφrφ = 1
r

(8)

Γϑφφ = − sinϑ cosϑ Γφϑφ = cosϑ
sinϑ

• gives
Rtrtr = aä

1−kr2 Rtϑtϑ = aär2 Rtφtφ = aär2 sin2 ϑ (9)

Rrϑrϑ = −a2(ȧ2+k)r2

1−kr2 Rrφrφ = −a2(ȧ2+k)r2 sin2 ϑ
1−kr2 Rϑφϑφ = −a2(ȧ2 + k)r4 sin2 ϑ

• and contracting gives Rtt = −3
ä

a
(10)

Rrr =
aä+2ȧ2+2k

1−kr2 = −grr aä+2ȧ2+2k
a2 (11)

Rϑϑ = (aä+2ȧ2 +2k)r2 = −gϑϑaä+2ȧ2+2k
a2 (12)

Rφφ = (aä+2ȧ2 +2k)r2 sin2 ϑ = −gφφaä+2ȧ2+2k
a2 (13)

⇒ there are only two independent components of the Ricci tensor:

R00 = −3
ä

a
and Rii =

aä+2ȧ2 +2k

a2
(14)
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4. General Relativity — energy stress tensor

cosmological forms of matter

• taking stars and galaxies: we see no interaction except gravity

• the electromagnetic field has interaction

• assuming both of them in their rest frame
– the average motion vanishes

∗ the galaxy rotates, but does not move;

∗ other galaxies move away, but summing over all of them gives no net motion

∗ the sun emits light, but in all directions the same

– they can be described as a cosmological ”perfect fluid”

∗ with density ρ : like the mass of a particle ⇒ timelike

∗ and pressure p : pushing things away ⇒ spacelike

• writing it covariantly with the timelike comoving coordinates Uµ

– and hµν = gµν − UµUν, projecting to the spacelike hypersurface, orthogonal to Uµ

Tµν = ρUµUν − phµν = (ρ+ p)UµUν − pgµν (15)
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4. General Relativity — Friedmann equations

using the stress energy tensor of the perfect fluid

• we get its trace as: T = gµνTµν = (ρ+ p)U2 − 4p = ρ− 3p (16)

• Einstein equations in terms of the Ricci tensor are

Rµν = 8πG(Tµν − 1
2Tgµν) = 8πG((ρ+ p)UµUν − pgµν − 1

2(ρ− 3p)gµν) (17)

or in components R00 = −3
ä

a
= 4πG(ρ+3p) (18)

Rii =
aä+2ȧ2 +2k

a2
= 4πG(ρ− p) (19)

• rearranging gives the Friedmann equations ( also found by Lemaître )(
ȧ

a

)2
=

8

3
πGρ−

k

a2
ä

a
= −

4

3
πG(ρ+3p) (20)

• H = ȧ
a is the Hubble parameter

– it describes the change of the scale parameter a(t)

– the value of H for the universe today is H0 ∼ 72km/s
Mpc

∼ 2.3× 10−18/s
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4. General Relativity — solving Friedmann equations

Time evolution

• assuming ”regular” matter and energy we have ρ > 0 and p ≥ 0

– that ignores the cosmological constant

• then we get ä = −4π
3 aG(ρ+3p) < 0

– since the scale factor a(t) is positive, ä(t) is negative

⇒ ȧ gets smaller with time ⇒ deceleration

• today t0 we measure ȧ0 := ȧ(t0) = H(t0)a(t0) =: H0a0 > 0

– a(t) gets smaller when we ”go back” in time

– going back far enough we reach a time, when a(t) was zero!

⇒ everything we see now had at that time no distance

⇒ we can estimate the age of the universe as tUniverse < a0/ȧ0 = 1/H0

∗ we do not know the value of the scale factor today, though

• we see a naked spacelike singularity: the Big Bang
– all timelike curves have their origin in that singularity

Thomas Gajdosik Cosmology 2023 / 09 / 01 6



4. General Relativity — solving Friedmann equations

Energy conservation

• for a better understanding we have to look at the behaviour of Tµν
– Tµν is conserved, which means ∇µTµν = ∇µT

µ
ν = 0

– for the energy component Tµ0 = gµνTν0 = δ
µ
0ρ we get

0 = ∇µT
µ
0 = ∂µT

µ
0 +ΓµµρT

ρ
0 − Γρµ0T

µ
ρ (21)

∗ for the summed terms we have Γµµ0 = Γrrt +Γϑϑt +Γφφt = 3 ȧ
a

and

Γρµ0T
µ
ρ = ΓrrtT

r
r +ΓϑϑtT

ϑ
ϑ +ΓφφtT

φ
φ = ȧ

a
(grrTrr + gϑϑTϑϑ + gφφTφφ) = ȧ

a
(gµνTµν − gttTtt)

= ȧ
a
(T − T00) = ȧ

a
(ρ− 3p− ρ) = −3 ȧ

a
p (22)

• for a perfect fluid we can write an equation of state: p = wρ

– since we assume the laws of physics do not change, we get w independent of time

⇒ so energy conservation gives us 0 = ρ̇+3
ȧ

a
(ρ+ p) = ρ̇+3

ȧ

a
(1 + w)ρ (23)

– this can be integrated: ρ̇

ρ
= −3 (1 + w)

ȧ

a
⇒ ρ ∝ a−3(1+w) (24)
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4. General Relativity — solving Friedmann equations

equation of state

• the equation of state can be derived from Tµν

– from the consideration of the perfect fluid we have T = ρ− 3p

– from the description of matter with a Lagrangian

LQED = ψ̄(i /D −m)ψ − 1
4F

µνFµν (25)

we can calculate Tµν:

Tµν = i
2ψ̄{γµ, Dν}ψ − gµνψ̄(i /D −m)ψ − FλµFλν +

1
4gµνF

ρσFρσ (26)

when applying the equation of motion (i /D −m)ψ = 0, contraction gives

T = i
2ψ̄2 /Dψ − 4ψ̄(i /D −m)ψ − FλνFλν +

1
44F

ρσFρσ = mψ̄ψ ∼ ρ (27)

• that gives the equation of state for

– photons: ρ− 3p = 0 ⇒ wγ = 1
3 . . . radiation

– fermions: ρ− 3p = ρ ⇒ wd = 0 . . . dust
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4. General Relativity — solving Friedmann equations

using the equation of state

• the scale factor shrinks when we go back

– the energy density increases: ργ ∝ a−4 and ρm ∝ a−3

∗ when a→ 0 as we go back ργ, ρm → ∞
∗ this is the singularity! (not that a→ 0)

• today (1998) we have a ratio ρm/ργ ∼ 106

– but going back in time radiation was more important than today

• considering the total energy in a volume cube of length a: ρa3

d
dtρa

3 = ρ̇a3 +3ρȧa2 = a3(ρ̇+3ρȧa) = a3(−3pȧa) = −3pȧa2 ≤ 0 (28)

⇒ ρa3 cannot increase with time ⇒ ρa2 → 0 as a→ ∞

• with the first Friedman equation ȧ2 = 8π
3 Gρa

2 − k

– for k ≤ 0: ȧ2 −→
a→∞ 0 or 1 ≥ 0 . . . the expansion slows down

– for k = 1: ȧ2 −→
a→∞ −1 < 0 . . . a contradiction

⇒ there has to be amax and then the universe contracts again
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4. General Relativity — Time evolution

a dust-only universe

• has w = 0 and we can write ρ = ma−3

– the Friedmann equations with the abbreviation b = 4π
3 Gm

ȧ2 = 2ba−1 − k ä = −ba−2 (29)
can be solved parametrically by

for k = −1 for k = 0 for k = +1

a = b (coshϕ− 1)
t = b (sinhϕ− ϕ)

a =
(
9b
2

)1/3
t2/3

a = b (1− cosϕ)
t = b (ϕ− sinϕ)

(30)

∗ for calculating ȧ one has to use the chain-rule d
dt

= dϕ
dt

d
dϕ

∗ and calculate dϕ
dt

= ( dt
dϕ
)−1

– for k = 1 we have amax = 2b after a finite time tmax

∗ and after the finite time 2tmax we get a(2tmax) = 0 ⇒ ”Big Crunch”

• expanding into a Taylor series around t = 0, one sees in all solutions:

a ∼ ϕ2 t ∼ ϕ3 ⇒ a ∝ t2/3 for small t (31)
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4. General Relativity — Time evolution

a radiation-only universe

• has w = 1
3 and we can write ρ = Ea−4

– the Friedmann equations with the abbreviation b2 = 8π
3 GE

ȧ2 = b2a−2 − k ä = −b2a−3 (32)
can be solved by

for k = −1 for k = 0 for k = +1

a = [(2b+ t)t]1/2 a = (4b)1/4 t1/2 a = [(2b− t)t]1/2
(33)

– for k = 1 we have a limited time t < 2b ⇒ ”Big Crunch”

• for early times t≪ b we have for all solutions: a ∝ t1/2

Dust:

a(t)

a0

0
t0 t→

Radiation:

a(t)

a0

0
t0 t→
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4. General Relativity — Time evolution

a vaccum-only universe

• has w = −1 and we can write ρ = Λ
8πG

– then either density ρ or pressure p become negative !

∗ opposite to the assumptions of ”normal matter”

• the metric has a larger symmetry: the full Lorentz group

• the first Friedmann equation tellsȧ2 = Λ
3a

2 − k (34)

– for Λ < 0 we have to have k = −1 (anti-de Sitter)

∗ with Λ
3
= −b2 we get a = b−1 sin bt ⇒ ”Big Crunch”

∗ consistent with the second Friedmann equation ä = −b2a

– for Λ > 0 we can write Λ
3 = b2 and get

for k = −1 for k = 0 for k = +1

a = b−1 sinh bt a = b−1ebt a = b−1 cosh bt
(35)

∗ consistent with the second Friedmann equation ä = b2a

∗ we have exponential growth a ∝ ebt . . . Inflation
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4. General Relativity — Time evolution

today it seems that ä > 0

⇒ the universe does not contain only normal matter

• conservation of the stress-energy tensor still holds

⇒ the scaling of the energy density stays the same:

ργ ∝ a−4 ρm ∝ a−3 ρΛ ∝ a0 (36)

⇒ Λ was smaller (= less important) in earlier times

• introducing the ”critical density” ρcrit =
3H2

8πG

• the ”density parameter” Ω = 8πG
3H2ρ = ρ

ρcrit

– the first Friedmann equation becomes

H2 = ρH2

ρcrit
− k
a2

= ΩH2 − k
a2

or Ω− 1 =
k

a2H2
(37)

• the different components of the stress energy tensor

– can be written as dimensionless densities

ρtotal = ργ + ρm+ ρΛ = ρcrit(Ωγ +Ωm+ΩΛ) = ρcritΩ (38)
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4. General Relativity — measuring cosmological parameters

measuring deceleration / acceleration

• defining the deceleration parameter q = −äa
ȧ2

– we can relate q to Ω using the second Friedmann equation

q = −
äa

ȧ2
= −H−2 ä

a
=

4πG

3H2
(ρ+3p) =

1

2ρcrit
ρ(1 + 3w)

=
1

2
(1 + 3w)Ω (39)

– w describes the overall state of the universe

∗ we know the values of w for radiation, dust, and vacuum

∗ but what is the right mixture?

• how to measure q and Ω in a FLRW universe ?

– there is no timelike Killing vector

∗ that would give conserved quantities
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4. General Relativity — measuring cosmological parameters

measuring deceleration / acceleration

• there is a Killing tensor Kµν = a2hµν = a2(gµν − UµUν) (40)

⇒ K2 := −KµνV µV ν is constant along a geodesic

• for a massive particle we have V µ = 1
mp

µ and V 2 = V µVµ = 1

K2 = −a2(V 2 − (U.V )2) = −a2((V 0)2 − |V⃗ |2 − (V 0)2) = a2|V⃗ |2 (41)

⇒ |V⃗ | = 1
m|p⃗| = K

a decreases as the universe expands

⇒ a gas cools down

• for a photon we have p2 = pµpµ = 0
– the comoving observer measures its frequency ω = (U.p)

K2 = −a2(p2 − (U.p)2) = a2ω2 ⇒ ω = K
a

(42)

– emitted with the frequency ω1 at the scale factor a1
– we get the cosmological redshift

z = λ0−λ1
λ1

= ω1
ω0

− 1 =
a0
a1

− 1 (43)
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4. General Relativity — measuring cosmological parameters

how can we measure time and distance?

• proper distance is measured between two events ∆s2 = −(A−B)2

– infinitesimally we can go along a radial line from A to B: ∆s =
∫ B
A
ds

−(ds)2 = gµνdx
µdxν = dt2 − a2(t)

[
dr2

1− kr2
+ r2d2Ω

]
(44)

∗ on a radial connection between A and B we have dt = 0 and d2Ω = 0

(ds)2 = a2(t)
1

1− kr2
dr2 or ds = a(t)

1√
1− kr2

dr (45)

– so formally we can write the distance as

∆s = a(t)

∫ rB

rA

dr√
1− kr2

(46)

⇒ ∆s increases with time due to the expansion

• distance measurements in SR are done with light signals:

– by the travel time of a light signal from A to B (and back): ds = a(t)c dt

– but for large distances: which a(t) should we take?
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4. General Relativity — measuring cosmological parameters

how can we measure time and distance?

• additionally: we have to find a frame so that

all events on the measuring grid are at the same time

⇒ comoving frame

• in the comoving frame

– ”stationary” objects stay at the same comoving distance χ

– light needs the conformal time η to travel this distance

dt = a(t) dη or η =
∫ t

0

dt′

a(t′)
(47)

∗ and infinitesimally: dχ = c dη

– the farthest comoving distance light can reach in a given time:

⇒ comoving horizon
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4. General Relativity — measuring cosmological parameters

how can we measure time and distance?

• the comoving distance of a light source (as(ts)) to us (a0(t0) = 1)

– can be integrated along the light ray:

χ(as)

c
=

∫ t0

ts
dη =

∫ t0

ts

dt

a(t)
=

∫ a0

as

da

a

dt

da
=

∫ 1

as

da

aȧ
=

∫ 1

as

da

a2 ȧa

=
∫ 1

as

da

a2H(a)
(48)

• using the scale factor – redshift relation

1+ z =
a0
a(z)

=
1

a(z)
, so dz = −a−2da (49)

• this comoving distance χ of a light source at zs can be expressed as

χ(zs) =
∫ a0

as

da

a2H(a)
=

∫ z(a0)

z(as)
(−dz)

1

H(a(z))
=

∫ zs

0

dz

H(z)
(50)
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4. General Relativity — measuring cosmological parameters

how can we measure time and distance?

• the luminosity distance is dL =
√

L
4πF

– L = Es
∆ts

is the known absolute luminosity of the source

– F = Eo
∆to ∗ surface = L(d)

4πd2
is the flux measured by the observer

• on the comoving grid the surface ist ”constant” 4πd2 = 4πχ2(zs)

– the ratio of emitted over observed energy is the redshift Es
Eo

= 1+ zs

– the ratio of observer time over emitter time is also the redshift ∆to
∆ts

= 1+ zs

d
L
=

√
Es

∆ts

∆to4πχ2(zs)

4πEo
= χ(zs)

√
Es

Eo

∆to

∆ts
= χ(zs) ∗ (1 + zs) = (1+ zs)

∫ zs

0

dz

H(z)
(51)

– we can measure dL in dependence of the redshift zs

• but how to calculate H(z) ?
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4. General Relativity — measuring cosmological parameters

how can we measure time and distance?

• introducing a ”curvature density” Ωk = −k
a2
0
H2

0

• and taking all densities as defined today: Ωγ,m = 8πG
3H2

0
ργ0,m0

• we can write the first Friedmann equation(
ȧ

a

)2
= H2 =

[
Ωγ

(
a0
a

)4
+Ωm

(
a0
a

)3
+Ωk

(
a0
a

)2
+ΩΛ

]
H2

0
(52)

– since we know the cosmological redshift a
a0

= 1
1+z

H2 =
[
Ωγ (1 + z)4 +Ωm (1 + z)3 +Ωk (1 + z)2 +ΩΛ

]
H2

0
(53)

• so we get the Hubbles law (in a ”modern” formulation)

dL(z) =
(1+ z)

H0

∫ z

0
dz′

[
Ωγ

(
1+ z′

)4
+Ωm

(
1+ z′

)3
+Ωk

(
1+ z′

)2
+ΩΛ

]−1
2
(54)

⇒ measuring the functional form of dL(z) determines also the Ωi
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