4. General Relativity — non-vacuum solutions

assuming the solution to be homogeneous and isotropic

• the space part of the curvature tensor has to be maximally symmetric:

$$R_{jk\ell m}^{(3)} = k(g_{j\ell}^{(3)}g_{km}^{(3)} - g_{jm}^{(3)}g_{k\ell}^{(3)}) \qquad \Rightarrow \qquad R_{km}^{(3)} = 2kg_{km}^{(3)}$$
(1)

• using Frobenius theorem, we can write the metric as

$$ds^{2} = g_{00}(t')dt'^{2} - g_{jk}^{(3)}(t')dx^{j}dx^{k} = dt^{2} - a^{2}(t)g_{jk}^{(3)}dx^{j}dx^{k}$$
(2)

isotropic and homogeneous definitely includes spherically symmetric
 we can use Frobenius theorem again to write

$$g_{jk}^{(3)}dx^{j}dx^{k} = g_{rr}(r)dr^{2} + r^{2}d^{2}\Omega = e^{2\beta}dr^{2} + r^{2}d^{2}\Omega$$
(3)

- we can use our calculation of the Schwarzschild metric for the space part
 - by setting $\alpha(t,r) = 0$ and $\beta = \beta(r)$ we get

$$R_{rr}^{(3)} = \frac{2}{r}\partial_r\beta \qquad \text{and} \qquad R_{\varphi\varphi}^{(3)} = R_{\vartheta\vartheta}^{(3)}\sin^2\vartheta = (1 - e^{-2\beta}[-r(\partial_r\beta) + 1])\sin^2\vartheta \qquad (4)$$

- using
$$R_{km}^{(3)} = 2kg_{km}^{(3)}$$
 we get from (rr) : $2ke^{2\beta} = \frac{2}{r}\partial_r\beta$ and from $(\vartheta\vartheta)$:

$$2kr^{2} = 1 - e^{-2\beta} [-r(\partial_{r}\beta) + 1] = 1 + e^{-2\beta} [r(kre^{2\beta}) - 1] = 1 + kr^{2} - e^{-2\beta}$$
(5)

 $\Rightarrow e^{-2\beta} = 1 - kr^2$ and we get the Robertson-Walker metric

$$ds^{2} = dt^{2} - a^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}d^{2}\Omega \right]$$
(6)

4. General Relativity — Robertson-Walker metric

features of $ds^2 = dt^2 - a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2 d^2 \Omega \right] = dt^2 - a^2(t) d\sigma^2$

- $k \text{ can be from } \{-1, 0, +1\}$
 - the substitutions $k\to \frac{k}{|k|}$, $a\to a\sqrt{|k|}$, $r\to \frac{r}{\sqrt{|k|}}$ leave the metric invariant
- $d\sigma^2$, the space part of the metric, describes constant curvature:

$$-k = 1$$
 is called closed (de Sitter)

* the substitution $r \to \sin \chi$ gives the metric of S^3 : $d\sigma^2 = d\chi^2 + \sin^2 \chi d^2 \Omega$

$$-k = 0$$
 is called flat (Euclidean)

* one has the metric of R^3 : $d\sigma^2=dr^2+r^2d^2\Omega=dx^2+dy^2+dz^2$

$$-k = -1$$
 is called open (anti-de Sitter)

- * the substitution $r \to \sinh \xi$ gives the metric: $d\sigma^2 = d\xi^2 + \sinh^2 \xi d^2 \Omega$
- the only function not determined by symmetry is the scale factor a(t)
 - -a(t) will be determined by the Einstein equations
 - $\ast\,$ that means: the energy content determines the size of the curvature

(7)

4. General Relativity — Robertson-Walker metric

calculating the non-vanishing curvature functions

• using the definition $\dot{a} = \partial_t a$

$$\Gamma_{rr}^{t} = \frac{a\dot{a}}{1-kr^{2}} \qquad \Gamma_{\vartheta\vartheta}^{t} = a\dot{a}r^{2} \qquad \Gamma_{\varphi\varphi}^{t} = a\dot{a}r^{2}\sin^{2}\vartheta \qquad \Gamma_{tr}^{r} = \Gamma_{t\vartheta}^{\vartheta} = \Gamma_{t\varphi}^{\varphi} = \frac{\dot{a}}{a}$$

$$\Gamma_{rr}^{r} = \frac{kr}{1-kr^{2}} \qquad \Gamma_{\vartheta\vartheta}^{r} = -r(1-kr^{2}) \qquad \Gamma_{\varphi\varphi}^{r} = -r(1-kr^{2})\sin^{2}\vartheta \qquad \Gamma_{r\vartheta}^{\vartheta} = \Gamma_{r\varphi}^{\varphi} = \frac{1}{r} \qquad (8)$$

$$\Gamma_{\varphi\varphi}^{\vartheta} = -\sin\vartheta\cos\vartheta \qquad \Gamma_{\vartheta\varphi}^{\varphi} = \frac{\cos\vartheta}{\sin\vartheta}$$

$$R_{trtr} = \frac{a\ddot{a}}{1-kr^2} \qquad R_{t\vartheta t\vartheta} = a\ddot{a}r^2 \qquad R_{t\varphi t\varphi} = a\ddot{a}r^2 \sin^2\vartheta \qquad (9)$$

$$R_{r\vartheta r\vartheta} = -\frac{a^2(\dot{a}^2+k)r^2}{1-kr^2} \qquad R_{r\varphi r\varphi} = -\frac{a^2(\dot{a}^2+k)r^2\sin^2\vartheta}{1-kr^2} \qquad R_{\vartheta\varphi\vartheta\varphi} = -a^2(\dot{a}^2+k)r^4\sin^2\vartheta$$

• and contracting gives $R_{tt} = -3\frac{\ddot{a}}{a}$ (10)

$$R_{rr} = \frac{a\ddot{a} + 2\dot{a}^2 + 2k}{1 - kr^2} = -g_{rr} \frac{a\ddot{a} + 2\dot{a}^2 + 2k}{a^2}$$
(11)

$$R_{\vartheta\vartheta} = (a\ddot{a} + 2\dot{a}^2 + 2k)r^2 = -g_{\vartheta\vartheta}\frac{a\ddot{a} + 2\dot{a}^2 + 2k}{a^2}$$
(12)

$$R_{\varphi\varphi} = (a\ddot{a} + 2\dot{a}^2 + 2k)r^2 \sin^2 \vartheta = -g_{\varphi\varphi} \frac{a\ddot{a} + 2\dot{a}^2 + 2k}{a^2}$$
(13)

 \Rightarrow there are only two independent components of the Ricci tensor:

$$R_{00} = -3\frac{\ddot{a}}{a}$$
 and $R_{ii} = \frac{a\ddot{a} + 2\dot{a}^2 + 2k}{a^2}$ (14)

4. General Relativity — energy stress tensor

cosmological forms of matter

- taking stars and galaxies: we see no interaction except gravity
- the electromagnetic field has interaction
- assuming both of them in their rest frame
 - the average motion vanishes
 - * the galaxy rotates, but does not move;
 - * other galaxies move away, but summing over all of them gives no net motion
 - $\ast\,$ the sun emits light, but in all directions the same
 - they can be described as a cosmological "perfect fluid"
 - * with density ρ : like the mass of a particle \Rightarrow timelike
 - * and pressure p : pushing things away \Rightarrow spacelike
- writing it covariantly with the timelike comoving coordinates U^{μ}
 - and $h_{\mu\nu} = g_{\mu\nu} U_{\mu}U_{\nu}$, projecting to the spacelike hypersurface, orthogonal to U^{μ}

$$T_{\mu\nu} = \rho U_{\mu}U_{\nu} - \mathbf{p}h_{\mu\nu} = (\rho + \mathbf{p})U_{\mu}U_{\nu} - \mathbf{p}g_{\mu\nu}$$
(15)

4. General Relativity — Friedmann equations

using the stress energy tensor of the perfect fluid

- we get its trace as: $T = g^{\mu\nu}T_{\mu\nu} = (\rho + \mathbf{p})U^2 4\mathbf{p} = \rho 3\mathbf{p}$ (16)
- Einstein equations in terms of the Ricci tensor are
- $R_{\mu\nu} = 8\pi G(T_{\mu\nu} \frac{1}{2}Tg_{\mu\nu}) = 8\pi G((\rho + \mathbf{p})U_{\mu}U_{\nu} \mathbf{p}g_{\mu\nu} \frac{1}{2}(\rho 3\mathbf{p})g_{\mu\nu}) \quad (17)$ or in components $R_{00} = -3\frac{\ddot{a}}{a} = 4\pi G(\rho + 3\mathbf{p}) \quad (18)$

$$R_{ii} = \frac{a\ddot{a} + 2\dot{a}^2 + 2k}{a^2} = 4\pi G(\rho - \mathbf{p})$$
(19)

• rearranging gives the Friedmann equations (also found by Lemaître)

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8}{3}\pi G\rho - \frac{k}{a^2} \qquad \qquad \frac{\ddot{a}}{a} = -\frac{4}{3}\pi G(\rho + 3\mathbf{p}) \tag{20}$$

- $H = \frac{\dot{a}}{a}$ is the Hubble parameter
 - it describes the change of the scale parameter a(t)
 - the value of H for the universe today is $H_{_0} \sim 72 rac{{\rm km/s}}{{
 m Mpc}} \sim 2.3 imes 10^{-18}/{
 m s}$

- 4. General Relativity solving Friedmann equations
 Time evolution
 - assuming "regular" matter and energy we have $\rho > 0$ and $\mathbf{p} \ge 0$
 - that ignores the cosmological constant
 - then we get $\ddot{a} = -\frac{4\pi}{3}aG(\rho + 3\mathbf{p}) < 0$
 - since the scale factor a(t) is positive, $\ddot{a}(t)$ is negative
 - \Rightarrow \dot{a} gets smaller with time \Rightarrow deceleration
 - today t_0 we measure $\dot{a}_0 := \dot{a}(t_0) = H(t_0)a(t_0) =: H_0a_0 > 0$
 - a(t) gets smaller when we ''go back'' in time
 - going back far enough we reach a time, when a(t) was zero!
 - \Rightarrow everything we see now had at that time no distance
 - \Rightarrow we can estimate the age of the universe as $t_{\rm Universe} < a_0/\dot{a}_0 = 1/H_0$
 - \ast we do not know the value of the scale factor today, though
 - we see a naked spacelike singularity: the **Big Bang**
 - all timelike curves have their origin in that singularity

4. General Relativity — solving Friedmann equations Energy conservation

- for a better understanding we have to look at the behaviour of $T_{\mu\nu}$
 - $T_{\mu\nu}$ is conserved, which means $\nabla^{\mu}T_{\mu\nu} = \nabla_{\mu}T^{\mu}_{\nu} = 0$
 - for the energy component $T^{\mu}_{0} = g^{\mu\nu}T_{\nu0} = \delta^{\mu}_{0}\rho$ we get

$$0 = \nabla_{\mu} T^{\mu}_{0} = \partial_{\mu} T^{\mu}_{0} + \Gamma^{\mu}_{\mu\rho} T^{\rho}_{0} - \Gamma^{\rho}_{\mu0} T^{\mu}_{\rho}$$
(21)

* for the summed terms we have $\Gamma^{\mu}_{\mu 0} = \Gamma^{r}_{rt} + \Gamma^{\vartheta}_{\vartheta t} + \Gamma^{\varphi}_{\varphi t} = 3\frac{\dot{a}}{a}$ and

$$\Gamma^{\rho}_{\mu0}T^{\mu}_{\rho} = \Gamma^{r}_{rt}T^{r}_{r} + \Gamma^{\vartheta}_{\vartheta t}T^{\vartheta}_{\vartheta} + \Gamma^{\varphi}_{\varphi t}T^{\varphi}_{\varphi} = \frac{\dot{a}}{a}(g^{rr}T_{rr} + g^{\vartheta\vartheta}T_{\vartheta\vartheta} + g^{\varphi\varphi}T_{\varphi\varphi}) = \frac{\dot{a}}{a}(g^{\mu\nu}T_{\mu\nu} - g^{tt}T_{tt})$$

$$= \frac{\dot{a}}{a}(T - T_{00}) = \frac{\dot{a}}{a}(\rho - \mathbf{3p} - \rho) = -\mathbf{3}\frac{\dot{a}}{a}\mathbf{p}$$
(22)

- for a perfect fluid we can write an equation of state: $\mathbf{p}=w\rho$
 - since we assume the laws of physics do not change, we get w independent of time
 - \Rightarrow so energy conservation gives us $0 = \dot{\rho} + 3\frac{a}{a}(\rho + \mathbf{p}) = \dot{\rho} + 3\frac{a}{a}(1 + w)\rho$ (23)
 - this can be integrated: $\frac{\dot{\rho}}{\rho} = -3(1+w)\frac{\dot{a}}{a} \Rightarrow \rho \propto a^{-3(1+w)}$ (24)

General Relativity — solving Friedmann equations
 equation of state

- the equation of state can be derived from $T_{\mu\nu}$
 - from the consideration of the perfect fluid we have $T=\rho-3\mathbf{p}$
 - from the description of matter with a Lagrangian

$$\mathcal{L}_{\mathsf{QED}} = \bar{\psi}(i\not{D} - m)\psi - \frac{1}{4}F^{\mu\nu}F_{\mu\nu}$$
(25)

we can calculate $T_{\mu\nu}$:

$$T_{\mu\nu} = \frac{i}{2}\bar{\psi}\{\gamma_{\mu}, D_{\nu}\}\psi - g_{\mu\nu}\bar{\psi}(i\not\!\!D - m)\psi - F^{\lambda}_{\mu}F_{\lambda\nu} + \frac{1}{4}g_{\mu\nu}F^{\rho\sigma}F_{\rho\sigma}$$
(26)

when applying the equation of motion $(i\not\!\!D-m)\psi = 0$, contraction gives

$$T = \frac{i}{2}\bar{\psi}2\mathcal{D}\psi - 4\bar{\psi}(i\mathcal{D} - m)\psi - F^{\lambda\nu}F_{\lambda\nu} + \frac{1}{4}4F^{\rho\sigma}F_{\rho\sigma} = m\bar{\psi}\psi \sim \rho \qquad (27)$$

- that gives the equation of state for
 - photons: $\rho 3\mathbf{p} = 0 \quad \Rightarrow \quad w_{\gamma} = \frac{1}{3} \quad \dots \quad \text{radiation}$ - fermions: $\rho - 3\mathbf{p} = \rho \quad \Rightarrow \quad w_d = 0 \quad \dots \quad \text{dust}$

4. General Relativity — solving Friedmann equations using the equation of state

- the scale factor shrinks when we go back
 - the energy density increases: $ho_\gamma \propto a^{-4}$ and $ho_m \propto a^{-3}$

* when a
ightarrow 0 as we go back $ho_{\gamma},
ho_{m}
ightarrow \infty$

- * this is the singularity! (not that $a \rightarrow 0$)
- today (1998) we have a ratio $ho_m/
 ho_\gamma\sim 10^6$
 - but going back in time radiation was more important than today
- considering the total energy in a volume cube of length $a: \rho a^3$ $\frac{d}{dt}\rho a^3 = \dot{\rho}a^3 + 3\rho \dot{a}a^2 = a^3(\dot{\rho} + 3\rho \dot{a}a) = a^3(-3\mathbf{p}\dot{a}a) = -3\mathbf{p}\dot{a}a^2 \leq 0$ (28) $\Rightarrow \rho a^3$ cannot increase with time $\Rightarrow \rho a^2 \to 0$ as $a \to \infty$
- with the first Friedman equation $\dot{a}^2 = \frac{8\pi}{3}G\rho a^2 k$

 \Rightarrow there has to be a_{\max} and then the universe contracts again

4. General Relativity — Time evolution

a dust-only universe

• has w = 0 and we can write $\rho = ma^{-3}$

- the Friedmann equations with the abbreviation $b = \frac{4\pi}{3}Gm$

$$\dot{a}^2 = 2ba^{-1} - k$$
 $\ddot{a} = -ba^{-2}$ (29)

can be solved parametrically by

for
$$k = -1$$

 $a = b(\cosh \phi - 1)$
 $t = b(\sinh \phi - \phi)$
for $k = 0$
 $a = \begin{pmatrix} 9b \\ 2 \end{pmatrix}^{1/3} t^{2/3}$
for $k = +1$
 $a = b(1 - \cos \phi)$
for $k = +1$
 $t = b(\phi - \sin \phi)$
(30)

* for calculating \dot{a} one has to use the chain-rule $\frac{d}{dt} = \frac{d\phi}{dt} \frac{d}{d\phi}$ * and calculate $\frac{d\phi}{dt} = (\frac{dt}{d\phi})^{-1}$

- for k = 1 we have $a_{\max} = 2b$ after a finite time t_{\max}

- * and after the finite time $2t_{max}$ we get $a(2t_{max}) = 0 \implies$ "Big Crunch"
- expanding into a Taylor series around t = 0, one sees in all solutions:

$$a \sim \phi^2$$
 $t \sim \phi^3 \Rightarrow a \propto t^{2/3}$ for small t (31)
Gajdosik Cosmology 2023 / 09 / 01 10

4. General Relativity — Time evolution

a radiation-only universe

• has
$$w = \frac{1}{3}$$
 and we can write $\rho = Ea^{-4}$

- the Friedmann equations with the abbreviation $b^2 = \frac{8\pi}{3}GE$

$$\dot{a}^2 = b^2 a^{-2} - k$$
 $\ddot{a} = -b^2 a^{-3}$ (32)

can be solved by

for
$$k = -1$$
 for $k = 0$ for $k = +1$
 $a = [(2b+t)t]^{1/2}$ $a = (4b)^{1/4} t^{1/2}$ $a = [(2b-t)t]^{1/2}$
(33)

- for k = 1 we have a limited time $t < 2b \Rightarrow$ "Big Crunch"

• for early times $t \ll b$ we have for all solutions:

 $a \propto t^{1/2}$

- 4. General Relativity Time evolution
- a vaccum-only universe
 - has w = -1 and we can write $\rho = \frac{\Lambda}{8\pi G}$
 - then either density ρ or pressure **p** become negative !
 - * opposite to the assumptions of "normal matter"
 - the metric has a larger symmetry: the full Lorentz group
- the first Friedmann equation $\dot{a}^2 = \frac{\Lambda}{3}a^2 k$ tells (34)- for $\Lambda < 0$ we have to have k = -1 (anti-de Sitter) * with $\frac{\Lambda}{3} = -b^2$ we get $a = b^{-1} \sin bt \qquad \Rightarrow \qquad$ ''Big Crunch'' * consistent with the second Friedmann equation $\ddot{a} = -b^2 a$ - for $\Lambda > 0$ we can write $\frac{\Lambda}{3} = b^2$ and get for k = -1 for k = 0 for k = +1(35) $a = b^{-1} \sinh bt$ $a = b^{-1} e^{bt}$ $a = b^{-1} \cosh bt$ * consistent with the second Friedmann equation $\ddot{a} = b^2 a$ * we have exponential growth $a\propto e^{bt}$... Inflation Thomas Gajdosik Cosmology 2023 / 09 / 01 12

4. General Relativity — Time evolution

today it seems that $\ddot{a} > 0$

 \Rightarrow the universe does not contain only normal matter

- conservation of the stress-energy tensor still holds
 - \Rightarrow the scaling of the energy density stays the same:

 $\rho_{\gamma} \propto a^{-4} \qquad \rho_m \propto a^{-3} \qquad \rho_{\Lambda} \propto a^0 \qquad (36)$ $\Rightarrow \Lambda \text{ was smaller (= less important) in earlier times}$

- introducing the ''critical density'' $\rho_{\rm crit} = \frac{3H^2}{8\pi G}$
- the ''density parameter'' $\Omega = \frac{8\pi G}{3H^2} \rho = \frac{\rho}{\rho_{\rm crit}}$
 - the first Friedmann equation becomes

$$H^{2} = \frac{\rho H^{2}}{\rho_{\text{crit}}} - \frac{k}{a^{2}} = \Omega H^{2} - \frac{k}{a^{2}} \qquad \text{or} \qquad \Omega - 1 = \frac{k}{a^{2} H^{2}} \qquad (37)$$

- the different components of the stress energy tensor
 - can be written as dimensionless densities

$$\rho_{\text{total}} = \rho_{\gamma} + \rho_m + \rho_{\Lambda} = \rho_{\text{crit}}(\Omega_{\gamma} + \Omega_m + \Omega_{\Lambda}) = \rho_{\text{crit}}\Omega$$
(38)

- General Relativity measuring cosmological parameters
 measuring deceleration / acceleration
 - defining the deceleration parameter $q = -\frac{\ddot{a}a}{\dot{a}^2}$
 - we can relate q to Ω using the second Friedmann equation

$$q = -\frac{\ddot{a}a}{\dot{a}^2} = -H^{-2}\frac{\ddot{a}}{a} = \frac{4\pi G}{3H^2}(\rho + 3\mathbf{p}) = \frac{1}{2\rho_{\text{crit}}}\rho(1+3w)$$
$$= \frac{1}{2}(1+3w)\Omega$$
(39)

- \boldsymbol{w} describes the overall state of the universe
 - $\ast\,$ we know the values of w for radiation, dust, and vacuum
 - * but what is the right mixture?
- how to measure q and Ω in a FLRW universe ?
 - there is no timelike Killing vector
 - * that would give conserved quantities

- General Relativity measuring cosmological parameters
 measuring deceleration / acceleration
 - there is a Killing tensor $K_{\mu\nu} = a^2 h_{\mu\nu} = a^2 (g_{\mu\nu} U_{\mu}U_{\nu})$ (40)

 $\Rightarrow K^2 := -K_{\mu\nu}V^{\mu}V^{\nu}$ is constant along a geodesic

- for a massive particle we have $V^{\mu} = \frac{1}{m}p^{\mu}$ and $V^2 = V^{\mu}V_{\mu} = 1$ $K^2 = -a^2(V^2 - (U.V)^2) = -a^2((V^0)^2 - |\vec{V}|^2 - (V^0)^2) = a^2|\vec{V}|^2$ (41) $\Rightarrow |\vec{V}| = \frac{1}{m}|\vec{p}| = \frac{K}{a}$ decreases as the universe expands
 - \Rightarrow a gas cools down
- for a photon we have $p^2 = p^{\mu}p_{\mu} = 0$
 - the comoving observer measures its frequency $\omega = (U.p)$

$$K^{2} = -a^{2}(p^{2} - (U.p)^{2}) = a^{2}\omega^{2} \quad \Rightarrow \quad \omega = \frac{K}{a}$$

$$\tag{42}$$

- emitted with the frequency ω_1 at the scale factor a_1
- we get the cosmological redshift

$$z = \frac{\lambda_0 - \lambda_1}{\lambda_1} = \frac{\omega_1}{\omega_0} - 1 = \frac{a_0}{a_1} - 1$$
(43)

4. General Relativity — measuring cosmological parameters
 how can we measure time and distance?

• proper distance is measured between two events $\Delta s^2 = -(A - B)^2$

- infinitesimally we can go along a radial line from A to B: $\Delta s = \int_A^B ds$

$$-(ds)^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = dt^{2} - a^{2}(t)\left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}d^{2}\Omega\right]$$
(44)

* on a radial connection between A and B we have dt=0 and $d^2\Omega=0$

$$(ds)^{2} = a^{2}(t)\frac{1}{1-kr^{2}}dr^{2}$$
 or $ds = a(t)\frac{1}{\sqrt{1-kr^{2}}}dr$ (45)

so formally we can write the distance as

$$\Delta s = a(t) \int_{r_A}^{r_B} \frac{dr}{\sqrt{1 - kr^2}} \tag{46}$$

 $\Rightarrow \Delta s$ increases with time due to the expansion

- distance measurements in SR are done with light signals:
 - by the travel time of a light signal from A to B (and back): ds = a(t)c dt
 - but for large distances: which a(t) should we take?

4. General Relativity — measuring cosmological parameters

how can we measure time and distance?

 additionally: we have to find a frame so that all events on the measuring grid are at the same time

 \Rightarrow comoving frame

- in the comoving frame
 - "stationary" objects stay at the same comoving distance χ
 - light needs the conformal time η to travel this distance

$$dt = a(t) d\eta$$
 or $\eta = \int_0^t \frac{dt'}{a(t')}$ (47)

- \ast and infinitesimally: $d\chi = c\,d\eta$
- the farthest comoving distance light can reach in a given time:
 - \Rightarrow comoving horizon

4. General Relativity — measuring cosmological parametershow can we measure time and distance?

• the comoving distance of a light source $(a_s(t_s))$ to us $(a_0(t_0) = 1)$

– can be integrated along the light ray:

$$\frac{\chi(a_s)}{c} = \int_{t_s}^{t_0} d\eta = \int_{t_s}^{t_0} \frac{dt}{a(t)} = \int_{a_s}^{a_0} \frac{da}{a} \frac{dt}{da} = \int_{a_s}^{1} \frac{da}{a\dot{a}} = \int_{a_s}^{1} \frac{da}{a^2 \dot{a}} = \int_{a_s}^{1} \frac{da}{a^2 H(a)}$$
(48)

• using the scale factor – redshift relation

$$1 + z = \frac{a_0}{a(z)} = \frac{1}{a(z)}$$
, so $dz = -a^{-2}da$ (49)

• this comoving distance χ of a light source at z_s can be expressed as

$$\chi(z_s) = \int_{a_s}^{a_0} \frac{da}{a^2 H(a)} = \int_{z(a_s)}^{z(a_0)} (-dz) \frac{1}{H(a(z))} = \int_0^{z_s} \frac{dz}{H(z)}$$
(50)

4. General Relativity — measuring cosmological parameters

how can we measure time and distance?

• the luminosity distance is $d_L = \sqrt{\frac{L}{4\pi F}}$

- $L = \frac{E_s}{\Delta t_s}$ is the known absolute luminosity of the source - $F = \frac{E_o}{\Delta t_o * \text{surface}} = \frac{L(d)}{4\pi d^2}$ is the flux measured by the observer

- on the comoving grid the surface ist "constant" $4\pi d^2 = 4\pi \chi^2(z_s)$
 - the ratio of emitted over observed energy is the redshift $\frac{E_s}{E_o} = 1 + z_s$
 - the ratio of observer time over emitter time is also the redshift $\frac{\Delta t_o}{\Delta t_s} = 1 + z_s$

$$\boldsymbol{d}_{L} = \sqrt{\frac{E_{s}}{\Delta t_{s}} \frac{\Delta t_{o} 4\pi \chi^{2}(z_{s})}{4\pi E_{o}}} = \chi(z_{s}) \sqrt{\frac{E_{s}}{E_{o}} \frac{\Delta t_{o}}{\Delta t_{s}}} = \chi(z_{s}) * (1+z_{s}) = (1+z_{s}) \int_{0}^{z_{s}} \frac{dz}{H(z)} \quad (51)$$

- we can measure d_L in dependence of the redshift z_s

• but how to calculate H(z) ?

- 4. General Relativity measuring cosmological parameters
 how can we measure time and distance?
 - introducing a ''curvature density'' $\Omega_k = \frac{-k}{a_0^2 H_0^2}$
 - and taking all densities as defined today: $\Omega_{\gamma,m} = \frac{8\pi G}{3H_0^2} \rho_{\gamma 0,m0}$
 - we can write the first Friedmann equation

$$\left(\frac{\dot{a}}{a}\right)^2 = H^2 = \left[\Omega_\gamma \left(\frac{a_0}{a}\right)^4 + \Omega_m \left(\frac{a_0}{a}\right)^3 + \Omega_k \left(\frac{a_0}{a}\right)^2 + \Omega_\Lambda\right] H_0^2 \qquad (52)$$

– since we know the cosmological redshift $\frac{a}{a_0} = \frac{1}{1+z}$

$$H^{2} = \left[\Omega_{\gamma} \left(1+z\right)^{4} + \Omega_{m} \left(1+z\right)^{3} + \Omega_{k} \left(1+z\right)^{2} + \Omega_{\Lambda}\right] H_{0}^{2}$$
 (53)

• so we get the Hubbles law (in a "modern" formulation)

$$d_{L}(z) = \frac{(1+z)}{H_{0}} \int_{0}^{z} dz' \left[\Omega_{\gamma} \left(1+z' \right)^{4} + \Omega_{m} \left(1+z' \right)^{3} + \Omega_{k} \left(1+z' \right)^{2} + \Omega_{\Lambda} \right]^{-\frac{1}{2}} (54)$$

 \Rightarrow measuring the functional form of $d_L(z)$ determines also the Ω_i