4. General Relativity — non-vacuum solutions

assuming the solution to be homogeneous and isotropic
e the space part of the curvature tensor has to be maximally symmetric:

B = kDol —oDo) = R =2k 1)
e using Frobenius theorem, we can write the metric as
ds? = goo(t)dt"? — (3)(75 Vdal da® = dt? — 2(t)g§,§)dmjdxk (2)

isotropic and homogeneous definitely includes spherically symmetric
— we can use Frobenius theorem again to write

( )dxjdw = g (P)dr? + r2d?Q = 2Pdr? 4+ r2d?Q (3)
e We can use our calculatlon of the Schwarzschild metric for the space part
— by setting a(t,7) =0 and 8 = B(r) we get
R® = 25,8 and R®) = R sin29 = (1 — e 2’[-r(8,8) + 1])sin?9  (4)
— using R(3) = 2kg<3) we get from (rr): 2ke?’ = %&B and from (99):
2kr’=1—e 2 [—r(0,8) + 1] =14+ e P[r(kre?’) —1] =1+ kr? — e 2 (5)

= e 20 =1 — kr? and we get the Robertson-Walker metric
dr?
1 — kr2
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ds® = dt? — a?(t) + r2d°Q2 (6)




4. General Relativity — Robertson-Walker metric

features of

d 2
d82 — dtz — GQ(t) ]_L]qz —I— 7“26129 — dtQ - GQ(t)dO-Q (7)

— RT
e k can be from {—-1,0,41}

— the substitutions k& — &, a — a+/|k|, » = —= leave the metric invariant

A" NG
o daz, the space part of the metric, describes constant curvature:
— k =1 is called closed (de Sitter)

* the substitution r — siny gives the metric of S3: do2 = dx? + sin?y d2Q2

— k = 0 is called flat (Euclidean)
* one has the metric of R3: do? = dr? + r2d°Q2 = dz? + dy? + dz°

— k= —1 is called open (anti-de Sitter)
* the substitution r — sinh ¢ gives the metric: do? = d¢2? 4 sinh?¢ d2Q2

e the only function not determined by symmetry is the scale factor a(t)
— a(t) will be determined by the Einstein equations

* that means: the energy content determines the size of the curvature
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4. General Relativity — Robertson-Walker metric

calculating the non-vanishing curvature functions
e using the definition a = 0;a

M, =% rty = aar? rt, = aar?sin®y M. =ry=ri,=2
M =1te Ty=-r(l—-k?)  T,=-r(l-k?)sin®9  T=T{=1 (8
v — ; @ __ cost
I‘W_ —sSinY cosY I‘W— sy
e gives . . o
9 Rirtr = 770 Rigr9 = aar? Riptp = adr?sin? (9)
Rm?m? — _% Rrgorgo = -2 (4 Tﬁigzsm v Rﬂgpf&(p = —az(dz -+ k)?“4 Sin2 ]
e and contracting gives R, — —3% (10)
a
Rop = 9420420 = _g, abt0040 (1)
Ryy = (ai + 2a° + 2k)r? = —gy,uit20tak (12)
Ry, = (ad + 2a° + 2k)r?sin 9 = —g,,,20t20 42k (13)

= there are only two independent components of the Ricci tensor:

Roo = —3g and R;; = ad + a2 + (14)
a a
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4. General Relativity — energy stress tensor

cosmological forms of matter

e taking stars and galaxies: we see no interaction except gravity
e the electromagnetic field has interaction
e assuming both of them in their rest frame

— the average motion vanishes

« the galaxy rotates, but does not move;
x Oother galaxies move away, but summing over all of them gives no net motion
« the sun emits light, but in all directions the same

— they can be described as a cosmological "perfect fluid”
« With density p : like the mass of a particle = timelike

« and pressure p : pushing things away = spacelike

e writing it covariantly with the timelike comoving coordinates U#

— and hu = g — ULU,, projecting to the spacelike hypersurface, orthogonal to U*

Ty = pUUy — phyy = (p+ D)U,LLUV — PGuv (15)
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4. General Relativity — Friedmann equations

using the stress energy tensor of the perfect fluid
e we get its trace as: T = g""T,, = (p+ p)U? —4p = p — 3p (16)
e Einstein equations in terms of the Ricci tensor are

Ry = 87TG(TW/ — %Tgu,/) = 871G ((p + D)U,qu — PGuv — %(P - 30)9#!/) (17)

or in components Rop = 3¢ — 417G (p + 3p) (18)
a
ad + 242 + 2k

Ry = > = 4nG(p—p) (19)

e rearranging gives the Friedmann equations (also found by Lemaitre)

k 4
3 a a 3

a

o H =% is the Hubble parameter

— it describes the change of the scale parameter a(t)

km/s

— the value of H for the universe today is H, ~ 72 VDG

~ 2.3 x 10718/s
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4. General Relativity — solving Friedmann equations
Time evolution

e assuming "regular’ matter and energy we have p >0 and p >0

— that ignores the cosmological constant

e then we get a = —%ﬂaG(p-l- 3p) <0
— since the scale factor a(t) is positive, a(t) is negative
= a gets smaller with time = deceleration

e today t, we measure a, 1= a(ty) = H(ty)a(ty) =: Hyay > 0
— a(t) gets smaller when we "'go back’” in time
— going back far enough we reach a time, when a(t) was zero!
= everything we see now had at that time no distance
= we can estimate the age of the universe as t i ere < ao/09 = 1/H,

* we do not know the value of the scale factor today, though

e we see a naked spacelike singularity: the Big Bang

— all timelike curves have their origin in that singularity
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4. General Relativity — solving Friedmann equations

Energy conservation

e for a better understanding we have to look at the behaviour of T},
— Ty is conserved, which means V#T,, =V,T), =0
— for the energy component T = gH¥T,o = §Hp we get

— 0 p p
0= VuTo = 0uTq~+Th,To—TroTh (21)
+ for the summed terms we have ', =17, + ), 4+ 5, = 3% and
Mool = LI+ TT8 + 5T = 4(g" T + "' Too + 99T ) = 2(g" Ty — g"Tit)
= 4T —To) =%p—3p—p) =-3% (22)

e for a perfect fluid we can write an equation of state: p = wp

— since we assume the laws of physics do not change we get w mdependent of time

= SO energy conservation gives us 0 =p+3- Yp+p) =p+3 Y1+ w)p (23)

— this can be integrated: p _ _3(1 _|_w>g = poca 3t (24)
P a
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4. General Relativity — solving Friedmann equations
equation of state
e the equation of state can be derived from T},

— from the consideration of the perfect fluid we have T'= p — 3p

— from the description of matter with a Lagrangian
Lqep = PGP —m)y — zFHFy, (25)
we can calculate Tj,:
T,uz/ — %@Z{w, Du}w — g,ul/lz(ilb - m)w - F,ﬁF)\V + %Q,LLI/FpOFpJ (26)
when applying the equation of motion (i) — m)y = 0, contraction gives
T = 592y — 49GIp — m)yp — FNVFy, + 24F P Fpe = mip ~p  (27)
e that gives the equation of state for

radiation

— photons: p—3p =20 = Wry

O W+

— fermions: p—3p =p = Wy dust
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4. General Relativity — solving Friedmann equations
using the equation of state

e the scale factor shrinks when we go back
— the energy density increases: py < a~% and pm < a=3
* when a — 0 as we go back p~, pm — o0

« this is the singularity! (not that a — 0)

e today (1998) we have a ratio pm/py ~ 10°
— but going back in time radiation was more important than today

e considering the total energy in a volume cube of length a: pa3
dpa® = pa® + 3paa® = a>(p+ 3p%) = a>(-3p%) = —3paa®* <0  (28)
= pa3 cannot increase with time = pa2 — 0 as a =+

e with the first Friedman equation 4 = $£Gpa? — k

— for k£ < O: a? Sdo Oorl >0 ... the expansion slows down
—fork=1: &% , =i -1 <O ... a contradiction

— there has to be amax and then the universe contracts again

Thomas Gajdosik Cosmology 2023 / 09 / 01 9



4. General Relativity — Time evolution
a dust-only universe

e has w = 0 and we can write p = ma 3
— the Friedmann equations with the abbreviation b = %Gm
a® = 2ba ! — k 4= —ba? (29)
can be solved parametrically by

for k= -1 for k=20 for £k = +1
= b(cosh¢ —1) Y= (%)1/3 12/3 a = b(l-—cose) (30)
t = b(sinh¢— ¢) SN2 t = b(¢p—sing)
+x for calculating a one has to use the chain-rule % = %%

d __ (dty—1
+ and calculate 7> = (%)

— for Kk = 1 we have amax = 2b after a finite time tmax

* and after the finite time 2tmax we get a(2tmax) =0 =  "Big Crunch”

e expanding into a Taylor series around ¢t = O, one sees in all solutions:

a~ &2 t o~ S = a o t2/3 for small ¢ (31)
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4. General Relativity — Time evolution

a radiation-only universe

e has w = % and we can write p = Ea~%

— the Friedmann equations with the abbreviation 2 = 8IGE

0’ =b%a"° —k q = —b%a"3 (32)
can be solved by
for k= -1 for k=20 for £k = +1
a=[2b+ 0012 a=@)YAE2  a=[(2b— )Y (33)

— for Kk =1 we have a |limited time t<2b = "Big Crunch”

e for early times t < b we have for all solutions: a o t1/2
a(t) a(t)

Dust: Radiation:

CLO a‘O
0 \ 0 \

¢ t— £ t—
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4. General Relativity — Time evolution

a vaccum-only universe

e has w = —1 and we can write p = %

— then either density p or pressure p become negative !

* opposite to the assumptions of "normal matter”

e the metric has a larger symmetry: the full Lorentz group

e the first Friedmann equation 0l = %aQ —k tells (34)
— for A < 0 we have to have k£ = —1 (anti-de Sitter)
* with 2 = —b? we get a = b~ !sinbt —  "Big Crunch”
+ consistent with the second Friedmann equation a = —b%a
— for A > 0 we can write %z b2 and get
for k= -1 for k=20 for k = +41 (35)
a =b"1lsinhbt a=>b"let a = b~! coshbt
* consistent with the second Friedmann equation a = b2a
* we have exponential growth a X ebt Inflation
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4. General Relativity — Time evolution

today it seems that a > 0

=

the universe does not contain only normal matter

conservation of the stress-energy tensor still holds
= the scaling of the energy density stays the same:

pry X a % pm ox a” S op o< a® (36)
= A was smaller (= less important) in earlier times
. . Ve ea L H2
e introducing the ''critical density Pcrit = gW—G
1 . ] - 87TG — P
e the "density parameter” 2 = 3P = pe
— the first Friedmann equation becomes
2 _pH?> kK _ 2 k .k
He =0 — 5=QH" — 5 or Q-1= 72 (37)
e the different components of the stress energy tensor
— can be written as dimensionless densities
protal = Py + Pm + pA = pcrit(2y + Q2m + Q2A) = prit2 (38)
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4. General Relativity — measuring cosmological parameters

measuring deceleration / acceleration

e defining the deceleration parameter g = —g—g
— we can relate q to 2 using the second Friedmann equation
da _zd 47TG
= ————=-H “-=——= 3p) = 14 3w
q > ~ = 372(P13p) 2pcritp( + 3w)
1
= 5(1 + 3w)R

— w describes the overall state of the universe

+* we know the values of w for radiation, dust, and vacuum

x but what is the right mixture?

e how to measure q and €2 in a FLRW universe 7
— there is no timelike Killing vector

« that would give conserved quantities

(39)
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4. General Relativity — measuring cosmological parameters

measuring deceleration / acceleration

e there is a Killing tensor K, = thW = a2(gW —U,Uy) (40)
- K2 := = — K,/ VHVY is constant along a geodesic
e for a massive particle we have V# = Ep“ and V2 =VHFV, =1
K? = —a®(V? = (UV)?) = —a®((V%)? = [V = (V®)?) = a?|V? (41)
= V]| = %|ﬁ| = % decreases as the universe expands
— a gas cools down
e for a photon we have p? = ptp, =0
— the comoving observer measures its frequency w = (U.p)
K? = —a*(p* — (Up)?) = d’w® = w=2=2 (42)
— emitted with the frequency wi at the scale factor ay
— we get the cosmological redshift
z = >\0>\1>\1 = z—(l) — 1= Z—cl’ — (43)
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4. General Relativity — measuring cosmological parameters

how can we measure time and distance?

e proper distance is measured between two events As?2 = —(A — B)?

— infinitesimally we can go along a radial line from A to B: As = ff ds
2

—(ds)? = gdrtdr” = dt* — a®(t) [ — 5+ r2d*Q
« on a radial connection between A and B we have dt = 0 and d?Q2 =0
1 1
1_—Wdr2 or dS — Cl,(t) d?“

(ds)? = a*(t)
V31— kr?
— so formally we can write the distance as

'z dr
As = a(t)/
TA \/ 1 - er

— As increases with time due to the expansion

e distance measurements in SR are done with light signals:

— by the travel time of a light signal from A to B (and back): ds = a(t)cdt

— but for large distances: which a(t) should we take?

(44)

(45)

(46)
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4. General Relativity — measuring cosmological parameters
how can we measure time and distance?

e additionally: we have to find a frame so that
all events on the measuring grid are at the same time

= comoving frame

e in the comoving frame

— "'stationary’” objects stay at the same comoving distance y

— light needs the conformal time n to travel this distance

dt = a(t) dn or n = /Ot ac(li/) (47)

« and infinitesimally: dxy = cdn

— the farthest comoving distance light can reach in a given time:

= comoving horizon
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4. General Relativity — measuring cosmological parameters
how can we measure time and distance?

e the comoving distance of a light source (as(ts)) to us (ag(tg) = 1)
— can be integrated along the light ray:

o) _ o, _ o dt _ prodadt _ plda s pda g
ts t a

C s a(t) ~ Jas a da as aQ < 0,2% as a2H(a)

e uUSing the scale factor — redshift relation

1
1+ 2= %o _ , SO dz = —a"?da (49)
a(z)  a(z)
e this comoving distance x of a light source at zs can be expressed as
ag da /Z(ao) 1 Zs dz
zg) = — = —dz = 50
x(zs) /a ZH@ ey P HGE) b HE) (50)
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4. General Relativity — measuring cosmological parameters

how can we measure time and distance?

L

e the luminosity distance is d, = ypy

= ftss is the known absolute luminosity of the source

R A — E __ L(d) ;
P = mianface = and? 'S the flux measured by the observer

e on the comoving grid the surface ist "constant” 4nd? = 47x2(zs)

— the ratio of emitted over observed energy is the redshift g—z =1+ z4

— the ratio of observer time over emitter time is also the redshift ﬁiz =1+ z4

x2(zs
dL=\/ES AtoATX () _ )y [ 2280 — () + <1+zs>—<1+zs>/

(51)

At 4 FE, Ats H(z)

— we can measure d, in dependence of the redshift zs

e but how to calculate H(z) 7
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4. General Relativity — measuring cosmological parameters

how can we measure time and distance?

—k

e introducing a "curvature density” 2 = 575
0 0

e and taking all densities as defined today: 2y m = gLH%pfyO,mO
0

e we can write the first Friedmann equation

(9)2 _H2— [97 (%)4 + <%)3 +Q (%)2 + QA] H2  (52)

a a

— since we know the cosmological redshift -~ = 1_1|_Z
0]

H? = [Qy (14 2)*+ Qm(1+2)°+Q, (14+2)2+ Qa| HT  (53)
e sO we get the Hubbles law (in a "modern” formulation)
1
2

d, (z) = (1T+OZ)/OZdz’ [Q7 (1424 Qm (14 2+ (142 + Q/\] (54)

= measuring the functional form of d,(z) determines also the €;
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