3. General Relativity — Equivalence Principle

What do we require of a theory of gravitation?

- it should reproduce the known classical physics
 - the Weak Equivalence Principle (WEP)
 - * inertial mass equals gravitational mass
 - with Special Relativity we noticed:
 - * mass is just a form of energy
- it should generalize the WEP
 - uniform acceleration is similar to an extended gravitational field
 - * a free falling observer cannot detect the gravitational field
 - ⇒ the free falling observer replaces the inertial frame of SR
- ⇒ Einsteins Equivalence Principle:

"In small enough regions of spacetime, we only need SR; it is impossible to detect the gravitational field"

Thomas Gajdosik Cosmology 2023 / 09 / 01 1

3. General Relativity — Geodesic equation

How can we "derive" General Relativity?

- without gravity a test particle should move on a straight line
 - like in Newtonian mechanics
- but what is a "straight line" in a curved spacetime?
 - \Rightarrow a curve $x(\tau)$ with tangent vector $\frac{dx}{d\tau}$, constant along the curve
- \Rightarrow geodesic equation: $0 = \nabla_V V$ with $V = \frac{dx}{d\tau}$ or

$$\frac{dx^{\mu}}{d\tau} \left(\partial_{\mu} \frac{dx^{\rho}}{d\tau} + \Gamma^{\rho}_{\mu\nu} \frac{dx^{\nu}}{d\tau} \right) = \frac{d^{2}x^{\rho}}{d\tau^{2}} + \Gamma^{\rho}_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} = 0 \tag{1}$$

- locally we can always choose an orthonormal coordinate system
 - the Christoffel symbols vanish at the point $P: \Gamma^{\rho}_{\mu\nu}|_{P} = 0$
 - \Rightarrow at P we get for the "straight line"

$$\left. \frac{d^2 x^{\mu}}{d\tau^2} \right|_P = 0 \qquad \text{with solution:} \qquad x^{\mu} = x_0^{\mu} + v^{\mu} \tau \tag{2}$$

3. General Relativity — Einstein equations

How can we "derive" General Relativity?

- Newtonian gravity has to be a limiting case for
 - constant and weak gravitational fields
 - slow moving test particles
- ⇒ the metric should have Minkovski form with a small perturbation:

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \qquad \text{with} \qquad |h_{\mu\nu}| \ll 1 \tag{3}$$

- slow moving means $|\frac{dx^i}{d\tau}| \ll \frac{dx^0}{d\tau} = \frac{dt}{d\tau}$
 - ⇒ the geodesic equation becomes a perturbation series:

$$\frac{d^2t}{d\tau^2} = 0 \quad \text{and} \quad \frac{d^2x^i}{d\tau^2} + \Gamma^i_{00}\frac{dt}{d\tau}\frac{dt}{d\tau} = (\frac{dt}{d\tau})^2(\frac{d^2x^i}{dt^2} + \frac{1}{2}\eta^{ij}(-\partial_j h_{00})) = 0 \quad (4)$$

— and the second looks like Newtons equation for gravity:

$$\frac{d^2x^i}{dt^2} = a^i = -\frac{d}{dx^i}\Phi = -\frac{d}{dx^i}(-\frac{GM}{r})$$
(5)

⇒ we can identify the Newtonian limit for the metric as

$$g_{00} = 1 - 2\frac{GM}{r}$$
 and $g_{ii} = -1$ (6)

3. General Relativity — Einstein equations

How can we "derive" General Relativity?

generalizing the Poisson equation for gravity

$$\nabla^2 \Phi = 4\pi G \rho \tag{7}$$

- we need second derivatives of the potential, i.e. the metric
 - ⇒ the Riemann curvature tensor ... or contractions of it
- a generalization for the density
 - \Rightarrow the stress-energy tensor $T_{\mu\nu}$ with $T_{00}=\rho$
 - * which is conserved: $\nabla^{\mu}T_{\mu\nu}=0$
- \Rightarrow we have to find a conserved tensor, made out of $R^{
 ho}_{\ \sigma\mu\nu}$
 - contracting the second Bianchi identity:

$$0 = g^{\mu\rho}g^{\nu\lambda}(R_{\mu\nu\rho\sigma;\lambda} + R_{\mu\nu\lambda\rho;\sigma} + R_{\mu\nu\sigma\lambda;\rho}) = R_{\nu\sigma;\lambda}g^{\nu\lambda} - R_{;\sigma} + R_{\mu\sigma;\rho}g^{\mu\rho} = 2\nabla^{\mu}R_{\mu\sigma} - \nabla_{\sigma}R$$
(8)

- \Rightarrow tells us that the Einstein tensor $G_{\mu\nu}=R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}$ is conserved
- \Rightarrow Einstein equations $G_{\mu\nu} = R_{\mu\nu} \frac{1}{2}Rg_{\mu\nu} = 8\pi GT_{\mu\nu}$ (9)

3. General Relativity — Vacuum solutions

Ricci flatness

contracting the Einstein equations

$$g^{\mu\nu}(R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu}) = R(1 - \frac{4}{2}) = -R = 8\pi G g^{\mu\nu} T_{\mu\nu} = 8\pi G T \tag{10}$$

we can rewrite them as

$$R_{\mu\nu} = 8\pi G T_{\mu\nu} + \frac{1}{2} R g_{\mu\nu} = 8\pi G (T_{\mu\nu} - \frac{1}{2} T g_{\mu\nu})$$
 (11)

- vacuum means $T_{\mu\nu}=0$. So we get $R_{\mu\nu}=0$
 - solutions with this behaviour are called Ricci flat
 - * but that does not require $R^{\mu}_{\nu\rho\sigma} = 0$
- including the electro-magnetic field as $T_{\mu\nu}=g^{\alpha\beta}F_{\mu\alpha}F_{\nu\beta}-\frac{1}{4}g_{\mu\nu}F_{\alpha\beta}F^{\alpha\beta}$
 - ⇒ gives the electro-vacuum solutions
 - * they are not Ricci flat
- including the cosmological constant Λ as $T_{\mu\nu}=-g_{\mu\nu}\frac{\Lambda}{8\pi G}$
 - ⇒ gives the "Lambda-vacuum" solutions
 - * de Sitter space (dS_4) with $\Lambda > 0$
 - * anti-de Sitter space (AdS_4) with $\Lambda < 0$

3. General Relativity — Vacuum solutions

symmetries can classify the possible solutions

- ullet a vanishing $R^{\mu}_{\ \nu\rho\sigma}$ gives the maximally symmetric solution
 - Minkovski spacetime has the constant metric $\eta_{\mu\nu}$
 - ⇒ allows invariance under all Lorentz transformations
- the spherically symmetric solution is the Schwarzschild metric
 - it does not change with time \Rightarrow static
 - it is invariant under rotations around the central mass
 - inclusion of the EM field: the static Reissner-Nordström metric
- rotational symmetry around an axis: the stationary Kerr metric
 - inclusion of the EM field: the stationary Kerr-Newman metric
- since these solutions are static or stationary
 - there are no problems with time evolution and stability
 - ⇒ used for studying features of spacetime: black holes, singularities

Thomas Gajdosik Cosmology 2023 / 09 / 01 6

3. General Relativity — Symmetries

How can we express symmetries?

- We know from Noether's theorem :
 - symmetries are connected to conserved quantities
 - the derivative of conserved quantities vanishes
- with the Lie derivative one studies the change along the vector
 - if the Lie derivative $\mathcal{L}_V(X)$ vanishes
 - $\Rightarrow X$ is invariant along V
 - \Rightarrow the vector V generates a symmetry transformation for X
- if $\mathcal{L}_V(g_{\mu\nu}) = 0 \quad \Rightarrow \quad V$ generates a symmetry for M
 - such a vectorfield V is called Killing vectorfield
 - the equation is called Killing equation $(\mathcal{L}_V(g_{\mu\nu}) = 0)$

$$0 = V^{\rho}(\nabla_{\rho}g_{\mu\nu}) + g_{\lambda\nu}(\nabla_{\mu}V^{\lambda}) + g_{\mu\lambda}(\nabla_{\nu}V^{\lambda}) = (\nabla_{\mu}V_{\nu}) + (\nabla_{\nu}V_{\mu})$$
 (12)

- here we have used the definition of the Lie derivative on covectors from

$$\mathcal{L}_{V}(A^{\mu}\omega_{\mu}) = V^{\nu}\nabla_{\nu}(A^{\mu}\omega_{\mu}) = V^{\nu}[(\nabla_{\nu}A^{\mu})\omega_{\mu} + A^{\mu}(\nabla_{\nu}\omega_{\mu})]$$

$$= \mathcal{L}_{V}(A^{\mu})\omega_{\mu} + A^{\mu}\mathcal{L}_{V}(\omega_{\mu}) = [V^{\nu}(\nabla_{\nu}A^{\mu}) - A^{\nu}(\nabla_{\nu}V^{\mu})]\omega_{\mu} + A^{\mu}\mathcal{L}_{V}(\omega_{\mu})$$
(13)

 Thomas Gajdosik
 Cosmology
 2023 / 09 / 01
 7

3. General Relativity — Symmetries

Killing vectorfields express the symmetries

- for S^2 we have three Killing vector fields $V^{(1)}$, $V^{(2)}$, $V^{(3)}$
 - they 'close' under commutation: $[V^{(j)},V^{(k)}]=\epsilon^{jk\ell}V^{(\ell)}$
 - \Rightarrow they form the rotation group SO(3)
 - $-S^2$ is maximally symmetric
- for a spherically symmetric M
 - we have to have three Killing vector fields $V^{(j)}$
 - these $V^{(j)}$ transport points around within the same sphere
 - \Rightarrow they foliate M (like onion shells)
- Frobenius theorem tells us:
 - we can pick coordinates b^k in the space spanned by $V^{(j)}$
 - and coordinates a^K outside the space spanned by $V^{(j)}$
 - then the metric in M can be written as

$$ds^2 = g_{JK}(a)da^J da^K + g_{jk}(a)db^j db^k$$
(14)

Thomas Gajdosik Cosmology 2023 / 09 / 01 8

3. General Relativity — Symmetries

Spherical symmetry

- choosing the coordinates on S^2 as (ϑ,φ) with $d^2\Omega=d^2\vartheta+\sin^2\vartheta d^2\varphi$
- choosing the coordinates outside S^2 as (a,b) we get the metric

$$ds^{2} = g_{aa}da^{2} + g_{ab}(dadb + dbda) + g_{bb}db^{2} - r^{2}(a,b)d^{2}\Omega$$
(15)

- inverting r(a,b) to b(a,r) we can replace b by r
- finding t(a,r) so that cross terms in (t,r) vanishes: $dt = \frac{\partial t}{\partial a}da + \frac{\partial t}{\partial r}dr$
- making an ansatz with functions m(t,r) and n(t,r)

$$ds^{2} = mdt^{2} + ndr^{2} - r^{2}d^{2}\Omega$$

= $m[(\frac{\partial t}{\partial a})^{2}da^{2} + (\frac{\partial t}{\partial a})(\frac{\partial t}{\partial r})(dadr + drda) + (\frac{\partial t}{\partial r})^{2}dr^{2}] + ndr^{2} - r^{2}d^{2}\Omega$ (16)

- gives three equations

$$m(\frac{\partial t}{\partial a})^2 = g_{aa}$$
 $m(\frac{\partial t}{\partial a})(\frac{\partial t}{\partial r}) = g_{ar}$ $m(\frac{\partial t}{\partial r})^2 + n = g_{rr}$ (17)

- can be solved for m, n, and t, which gives then a(t,r)
- looking at the flat Minkovsky metric $ds^2=dt^2-dr^2-r^2d^2\Omega$
 - we assume $m=e^{2\alpha(t,r)}$ positive and $n=-e^{2\beta(t,r)}$ negative
- \Rightarrow we get the metric $ds^2 = e^{2\alpha(t,r)}dt^2 e^{2\beta(t,r)}dr^2 r^2d^2\Omega$ (18)
 - now we have to solve the Einstein equations

calculating the non-vanishing Christoffel symbols

•
$$\Gamma^t_{\mu\nu} = \frac{1}{2}g^{tt}(\partial_{\mu}g_{\nu t} + \partial_{\nu}g_{\mu t} - \partial_{t}g_{\mu\nu}) = \frac{1}{2}e^{-2\alpha}[(\partial_{\mu}\delta^t_{\nu} + \partial_{\nu}\delta^t_{\mu})e^{2\alpha} - \partial_{t}g_{\mu\nu}]$$
 gives

$$\Gamma_{tt}^t = \frac{1}{2}e^{-2\alpha}[2\partial_t e^{2\alpha} - \partial_t e^{2\alpha}] = \partial_t \alpha \tag{19}$$

$$\Gamma_{tr}^t = \frac{1}{2}e^{-2\alpha}[\partial_r e^{2\alpha}] = \partial_r \alpha \tag{20}$$

$$\Gamma_{rr}^t = \frac{1}{2}e^{-2\alpha}[-\partial_t(-e^{2\beta})] = e^{-2(\alpha-\beta)}\partial_t\beta \tag{21}$$

•
$$\Gamma^r_{\mu\nu} = \frac{1}{2}g^{rr}(\partial_\mu g_{\nu r} + \partial_\nu g_{\mu r} - \partial_r g_{\mu\nu}) = -\frac{1}{2}e^{-2\beta}[(\partial_\mu \delta^r_\nu + \partial_\nu \delta^r_\mu)(-e^{2\beta}) - \partial_r g_{\mu\nu}]$$
 gives

$$\Gamma_{tt}^r = \frac{1}{2}e^{-2\beta}[\partial_r e^{2\alpha}] = e^{2(\alpha-\beta)}\partial_r \alpha \tag{22}$$

$$\Gamma_{tr}^{r} = \frac{1}{2}e^{-2\beta}[\partial_{t}e^{2\beta}] = \partial_{t}\beta \tag{23}$$

$$\Gamma_{rr}^{r} = \frac{1}{2}e^{-2\beta}[2\partial_{r}e^{2\beta} + \partial_{r}(-e^{2\beta})] = \partial_{r}\beta$$
(24)

$$\Gamma_{\vartheta\vartheta}^r = \frac{1}{2}e^{-2\beta}[\partial_r(-r^2)] = -e^{-2\beta}r$$
 (25)

$$\Gamma_{\varphi\varphi}^{r} = \frac{1}{2}e^{-2\beta}[\partial_{r}(-r^{2}\sin^{2}\vartheta)] = -e^{-2\beta}r\sin^{2}\vartheta \tag{26}$$

•
$$\Gamma^{\vartheta}_{\mu\nu} = \frac{1}{2}g^{\vartheta\vartheta}(\partial_{\mu}g_{\nu\vartheta} + \partial_{\nu}g_{\mu\vartheta} - \partial_{\vartheta}g_{\mu\nu}) = -\frac{1}{2}r^{-2}[(\partial_{\mu}\delta^{\vartheta}_{\nu} + \partial_{\nu}\delta^{\vartheta}_{\mu})(-r^{2}) - \partial_{\vartheta}g_{\mu\nu}]$$
 gives

$$\Gamma_{r\vartheta}^{\vartheta} = -\frac{1}{2}r^{-2}[\partial_r(-r^2)] = r^{-1}$$
 (27)

$$\Gamma^{\vartheta}_{\varphi\varphi} = -\frac{1}{2}r^{-2}[-\partial_{\vartheta}(-r^2\sin^2{\vartheta})] = -\sin{\vartheta}\cos{\vartheta}$$
 (28)

•
$$\Gamma^{\varphi}_{\mu\nu} = \frac{1}{2}g^{\varphi\varphi}(\partial_{\mu}g_{\nu\varphi} + \partial_{\nu}g_{\mu\varphi} - \partial_{\varphi}g_{\mu\nu}) = -\frac{1}{2}r^{-2}\sin^{-2}\vartheta[(\partial_{\mu}\delta^{\varphi}_{\nu} + \partial_{\nu}\delta^{\varphi}_{\mu})(-r^{2}\sin^{2}\vartheta)]$$
 gives

$$\Gamma_{r\varphi}^{\varphi} = \frac{1}{2}r^{-2}\sin^{-2}\vartheta[\partial_r r^2\sin^2\vartheta] = r^{-1}$$
(29)

$$\Gamma^{\varphi}_{\vartheta\varphi} = \frac{1}{2}r^{-2}\sin^{-2}\vartheta[\partial_{\vartheta}r^{2}\sin^{2}\vartheta] = \frac{\cos\vartheta}{\sin\vartheta}$$
(30)

Thomas Gajdosik

calculating from the Γ s the non-vanishing Riemann tensor components

•
$$R_{tr\sigma\rho} = g_{tt}(\partial_{\sigma}\Gamma^{t}_{\rho r} - \Gamma^{t}_{\rho\lambda}\Gamma^{\lambda}_{\sigma r}) - (\rho \leftrightarrow \sigma) = e^{2\alpha}(\partial_{\sigma}\Gamma^{t}_{\rho r} - \Gamma^{t}_{\rho t}\Gamma^{t}_{\sigma r} - \Gamma^{t}_{\rho r}\Gamma^{r}_{\sigma r} - \partial_{\rho}\Gamma^{t}_{\sigma r} + \Gamma^{t}_{\sigma t}\Gamma^{t}_{\rho r} + \Gamma^{t}_{\sigma r}\Gamma^{r}_{\rho r})$$
 gives

$$R_{trtr} = e^{2\alpha} (\partial_t \Gamma_{rr}^t - \Gamma_{rt}^t \Gamma_{tr}^t - \Gamma_{rr}^t \Gamma_{tr}^r - \partial_r \Gamma_{tr}^t + \Gamma_{tt}^t \Gamma_{rr}^t + \Gamma_{tr}^t \Gamma_{rr}^r)$$

$$= e^{2\alpha} (\partial_t (e^{-2(\alpha-\beta)} \partial_t \beta) - (\partial_r \alpha)^2 - (e^{-2(\alpha-\beta)} \partial_t \beta)(\partial_t \beta) - \partial_r (\partial_r \alpha) + (\partial_t \alpha)(e^{-2(\alpha-\beta)} \partial_t \beta) + (\partial_r \alpha)(\partial_r \beta))$$

$$= e^{2\beta} [\partial_t^2 \beta - (\partial_t \alpha)(\partial_t \beta) + (\partial_t \beta)^2] - e^{2\alpha} [\partial_r^2 \alpha + (\partial_r \alpha)^2 - (\partial_r \alpha)(\partial_r \beta)]$$
(31)

• $R_{t\vartheta\sigma\rho} = g_{tt}(\partial_{\sigma}\Gamma^{t}_{\rho\vartheta} - \Gamma^{t}_{\rho\lambda}\Gamma^{\lambda}_{\sigma\vartheta}) - (\rho \leftrightarrow \sigma) = -e^{2\alpha}(\Gamma^{t}_{\rho r}\Gamma^{r}_{\sigma\vartheta} - \Gamma^{t}_{\sigma r}\Gamma^{r}_{\rho\vartheta})$ gives

$$R_{t\vartheta t\vartheta} = -e^{2\alpha} (\Gamma_{\vartheta r}^t \Gamma_{t\vartheta}^r - \Gamma_{tr}^t \Gamma_{\vartheta\vartheta}^r) = e^{2\alpha} (\partial_r \alpha) (-e^{-2\beta} r)$$

$$= -e^{2(\alpha - \beta)} r (\partial_r \alpha)$$
(32)

$$R_{t\vartheta r\vartheta} = e^{2\alpha} (\Gamma_{rr}^t \Gamma_{\vartheta\vartheta}^r) = e^{2\alpha} (e^{-2(\alpha-\beta)} \partial_t \beta) (-e^{-2\beta} r)$$

$$= -r(\partial_t \beta)$$
(33)

• $R_{t\varphi\sigma\rho} = g_{tt}(\partial_{\sigma}\Gamma^{t}_{\rho\varphi} - \Gamma^{t}_{\rho\lambda}\Gamma^{\lambda}_{\sigma\varphi}) - (\rho \leftrightarrow \sigma) = -e^{2\alpha}(\Gamma^{t}_{\rho r}\Gamma^{r}_{\sigma\varphi} - \Gamma^{t}_{\sigma r}\Gamma^{r}_{\rho\varphi})$ gives

$$R_{t\varphi t\varphi} = -e^{2\alpha} (\Gamma_{\varphi r}^t \Gamma_{t\varphi}^r - \Gamma_{tr}^t \Gamma_{\varphi\varphi}^r) = e^{2\alpha} (\partial_r \alpha) (-e^{-2\beta} r \sin^2 \vartheta)$$

$$= -e^{2(\alpha - \beta)} r \sin^2 \vartheta (\partial_r \alpha)$$
(34)

$$R_{t\varphi r\varphi} = e^{2\alpha} (\Gamma_{rr}^t \Gamma_{\varphi\varphi}^r) = e^{2\alpha} (e^{-2(\alpha-\beta)} \partial_t \beta) (-e^{-2\beta} r \sin^2 \vartheta)$$

$$= -r \sin^2 \vartheta (\partial_t \beta)$$
(35)

Thomas Gajdosik

calculating from the Γ s the non-vanishing Riemann tensor components

•
$$R_{r\vartheta\sigma\rho} = g_{rr}(\partial_{\sigma}\Gamma^{r}_{\rho\vartheta} - \Gamma^{r}_{\rho\lambda}\Gamma^{\lambda}_{\sigma\vartheta}) - (\rho \leftrightarrow \sigma) = -e^{2\beta}(\partial_{\sigma}\Gamma^{r}_{\rho\vartheta} - \Gamma^{r}_{\sigma r}\Gamma^{r}_{\rho\vartheta} - \Gamma^{r}_{\sigma\vartheta}\Gamma^{\varphi}_{\rho\vartheta}) - (\rho \leftrightarrow \sigma) \text{ gives}$$

$$R_{r\varthetar\vartheta} = -e^{2\beta}(\partial_{r}\Gamma^{r}_{\vartheta\vartheta} - \Gamma^{r}_{rr}\Gamma^{r}_{\vartheta\vartheta} - \Gamma^{r}_{r\vartheta}\Gamma^{\vartheta}_{\vartheta\vartheta} - \Gamma^{r}_{r\varphi}\Gamma^{\varphi}_{\vartheta\vartheta} - \partial_{\vartheta}\Gamma^{r}_{r\vartheta} + \Gamma^{r}_{\vartheta r}\Gamma^{r}_{r\vartheta} + \Gamma^{r}_{\vartheta\vartheta}\Gamma^{\varphi}_{r\vartheta} + \Gamma^{r}_{\vartheta\varphi}\Gamma^{\varphi}_{r\vartheta})$$

$$= -e^{2\beta}(\partial_{r}(-e^{-2\beta}r) - (\partial_{r}\beta)(-e^{-2\beta}r) + (-e^{-2\beta}r)(r^{-1})) = -2r(\partial_{r}\beta) + 1 + r(\partial_{r}\beta) - 1$$

$$= -r(\partial_{r}\beta)$$
(36)

•
$$R_{r\varphi\sigma\rho} = g_{rr}(\partial_{\sigma}\Gamma^{r}_{\rho\varphi} - \Gamma^{r}_{\rho\lambda}\Gamma^{\lambda}_{\sigma\varphi}) - (\rho \leftrightarrow \sigma) = -e^{2\beta}(\partial_{\sigma}\Gamma^{r}_{\rho\varphi} - \Gamma^{r}_{\sigma r}\Gamma^{r}_{\rho\varphi} - \Gamma^{r}_{\sigma\vartheta}\Gamma^{\vartheta}_{\rho\varphi} - \Gamma^{r}_{\sigma\varphi}\Gamma^{\varphi}_{\rho\varphi}) - (\rho \leftrightarrow \sigma)$$
 gives
$$R_{r\varphi r\varphi} = -e^{2\beta}(\partial_{r}\Gamma^{r}_{\varphi\varphi} - \Gamma^{r}_{rr}\Gamma^{r}_{\varphi\varphi} - \Gamma^{r}_{r\vartheta}\Gamma^{\vartheta}_{\varphi\varphi} - \Gamma^{r}_{r\varphi}\Gamma^{\varphi}_{\varphi\varphi} - \partial_{\varphi}\Gamma^{r}_{r\varphi} + \Gamma^{r}_{\varphi r}\Gamma^{r}_{r\varphi} + \Gamma^{r}_{\varphi\vartheta}\Gamma^{\vartheta}_{r\varphi} + \Gamma^{r}_{\varphi\varphi}\Gamma^{\varphi}_{r\varphi})$$

$$R_{r\varphi r\varphi} = -e^{-\beta} \left(\partial_r \Gamma_{\varphi\varphi} - \Gamma_{rr} \Gamma_{\varphi\varphi} - \Gamma_{r\vartheta} \Gamma_{\varphi\varphi} - \Gamma_{r\varphi} \Gamma_{\varphi\varphi} - \partial_{\varphi} \Gamma_{r\varphi} + \Gamma_{\varphi r} \Gamma_{r\varphi} + \Gamma_{\varphi\vartheta} \Gamma_{r\varphi} + \Gamma_{\varphi\varphi} \Gamma_{r\varphi} \right)$$

$$= -e^{2\beta} \left(\partial_r (-e^{-2\beta} r \sin^2 \vartheta) - (\partial_r \beta) (-e^{-2\beta} r \sin^2 \vartheta) + (-e^{-2\beta} r \sin^2 \vartheta) (r^{-1}) \right)$$

$$= -r \sin^2 \vartheta \left(\partial_r \beta \right)$$
(37)

•
$$R_{\vartheta\varphi\sigma\rho} = g_{\vartheta\vartheta}(\partial_{\sigma}\Gamma^{\vartheta}_{\rho\varphi} - \Gamma^{\vartheta}_{\rho\lambda}\Gamma^{\lambda}_{\sigma\varphi}) - (\rho \leftrightarrow \sigma) = -r^2(\partial_{\sigma}\Gamma^{\vartheta}_{\rho\varphi} - \Gamma^{\vartheta}_{\rho\tau}\Gamma^{\tau}_{\sigma\varphi} - \Gamma^{\vartheta}_{\rho\vartheta}\Gamma^{\vartheta}_{\sigma\varphi} - \Gamma^{\vartheta}_{\rho\varphi}\Gamma^{\varphi}_{\sigma\varphi}) - (\rho \leftrightarrow \sigma)$$
 gives

$$R_{\vartheta\varphi\vartheta\varphi} = -r^{2}(\partial_{\vartheta}\Gamma^{\vartheta}_{\varphi\varphi} - \Gamma^{\vartheta}_{\varphi r}\Gamma^{r}_{\vartheta\varphi} - \Gamma^{\vartheta}_{\varphi\vartheta}\Gamma^{\vartheta}_{\vartheta\varphi} - \Gamma^{\vartheta}_{\varphi\varphi}\Gamma^{\varphi}_{\vartheta\varphi} - \partial_{\varphi}\Gamma^{\vartheta}_{\vartheta\varphi} + \Gamma^{\vartheta}_{\vartheta r}\Gamma^{r}_{\varphi\varphi} + \Gamma^{\vartheta}_{\vartheta\vartheta}\Gamma^{\vartheta}_{\varphi\varphi} + \Gamma^{\vartheta}_{\vartheta\varphi}\Gamma^{\varphi}_{\varphi\varphi})$$

$$= -r^{2}(\partial_{\vartheta}(-\sin\vartheta\cos\vartheta) - (-\sin\vartheta\cos\vartheta)(\frac{\cos\vartheta}{\sin\vartheta}) + (r^{-1})(-e^{-2\beta}r\sin^{2}\vartheta))$$

$$= r^{2}(\cos^{2}\vartheta - \sin^{2}\vartheta - \cos^{2}\vartheta + e^{-2\beta}\sin^{2}\vartheta)$$

$$= r^{2}\sin^{2}\vartheta(e^{-2\beta} - 1)$$
(38)

contracting gives the Ricci tensor components, which have to be zero

•
$$R_{t\mu} = g^{tt}R_{ttt\mu} + g^{rr}R_{rtr\mu} + g^{\vartheta\vartheta}R_{\vartheta t\vartheta\mu} + g^{\varphi\varphi}R_{\varphi t\varphi\mu} = g^{rr}R_{tr\mu r} + g^{\vartheta\vartheta}R_{t\vartheta\mu\vartheta} + g^{\varphi\varphi}R_{t\varphi\mu\varphi}$$
 gives
$$R_{tt} = -e^{-2\beta}(e^{2\beta}[\partial_t^2\beta - (\partial_t\alpha)(\partial_t\beta) + (\partial_t\beta)^2] - e^{2\alpha}[\partial_r^2\alpha + (\partial_r\alpha)^2 - (\partial_r\alpha)(\partial_r\beta)])$$

$$-r^{-2}[-e^{2(\alpha-\beta)}r(\partial_r\alpha)] - r^{-2}\sin^{-2}\vartheta\left[-e^{2(\alpha-\beta)}r\sin^2\vartheta\left(\partial_r\alpha\right)\right]$$

$$= -[\partial_t^2\beta - (\partial_t\alpha)(\partial_t\beta) + (\partial_t\beta)^2] + e^{2(\alpha-\beta)}[\partial_r^2\alpha + (\partial_r\alpha)^2 - (\partial_r\alpha)(\partial_r\beta) + 2r^{-1}(\partial_r\alpha)]$$
(39)

$$R_{tr} = -r^{-2}[-r(\partial_t \beta)] - r^{-2}\sin^{-2}\vartheta\left[-r\sin^2\vartheta\left(\partial_t \beta\right)\right] = 2r^{-1}(\partial_t \beta)$$

$$\tag{40}$$

• $R_{r\mu} = g^{tt}R_{trt\mu} + g^{rr}R_{rrr\mu} + g^{\vartheta\vartheta}R_{\vartheta r\vartheta\mu} + g^{\varphi\varphi}R_{\varphi r\varphi\mu} = g^{tt}R_{trt\mu} + g^{\vartheta\vartheta}R_{r\vartheta\mu\vartheta} + g^{\varphi\varphi}R_{r\varphi\mu\varphi}$ gives

$$R_{rr} = e^{-2\alpha} (e^{2\beta} [\partial_t^2 \beta - (\partial_t \alpha)(\partial_t \beta) + (\partial_t \beta)^2] - e^{2\alpha} [\partial_r^2 \alpha + (\partial_r \alpha)^2 - (\partial_r \alpha)(\partial_r \beta)])$$

$$-r^{-2} [-r(\partial_r \beta)] - r^{-2} \sin^{-2} \vartheta [-r \sin^2 \vartheta (\partial_r \beta)]$$

$$= e^{2(\beta - \alpha)} [\partial_t^2 \beta - (\partial_t \alpha)(\partial_t \beta) + (\partial_t \beta)^2] - \partial_r^2 \alpha - (\partial_r \alpha)^2 + (\partial_r \alpha)(\partial_r \beta) + 2r^{-1} (\partial_r \beta)$$
(41)

 $\bullet \quad R_{\vartheta\mu} = g^{tt}R_{t\vartheta t\mu} + g^{rr}R_{r\vartheta r\mu} + g^{\vartheta\vartheta}R_{\vartheta\vartheta\vartheta\mu} + g^{\varphi\varphi}R_{\varphi\vartheta\varphi\mu} = e^{-2\alpha}R_{t\vartheta t\mu} - e^{-2\beta}R_{r\vartheta r\mu} - r^{-2}\sin^{-2}\vartheta\,R_{\vartheta\varphi\mu\varphi} \text{ gives }$

$$R_{\vartheta\vartheta} = e^{-2\alpha} [-e^{2(\alpha-\beta)}r(\partial_r\alpha)] - e^{-2\beta} [-r(\partial_r\beta)] - r^{-2}\sin^{-2}\vartheta [r^2\sin^2\vartheta (e^{-2\beta} - 1)]$$

$$= 1 - e^{-2\beta} [r(\partial_r\alpha) - r(\partial_r\beta) + 1]$$
(42)

• $R_{\varphi\mu}=g^{tt}R_{t\varphi t\mu}+g^{rr}R_{r\varphi r\mu}+g^{\vartheta\vartheta}R_{\vartheta\varphi\vartheta\mu}+g^{\varphi\varphi}R_{\varphi\varphi\varphi\mu}=e^{-2\alpha}R_{t\varphi t\mu}-e^{-2\beta}R_{r\varphi r\mu}-r^{-2}R_{\vartheta\varphi\vartheta\mu}$ gives

$$R_{\varphi\varphi} = e^{-2\alpha} [e^{2\alpha} (\partial_r \alpha) (-e^{-2\beta} r \sin^2 \vartheta)] - e^{-2\beta} [-r \sin^2 \vartheta (\partial_r \beta)] - r^{-2} [r^2 \sin^2 \vartheta (e^{-2\beta} - 1)]$$

$$= -e^{-2\beta} r \sin^2 \vartheta (\partial_r \alpha) + e^{-2\beta} r \sin^2 \vartheta (\partial_r \beta)] - e^{-2\beta} \sin^2 \vartheta + \sin^2 \vartheta$$

$$= (1 - e^{-2\beta} [r(\partial_r \alpha) - r(\partial_r \beta) + 1]) \sin^2 \vartheta = R_{\vartheta\vartheta} \sin^2 \vartheta$$
(43)

⇒ we get four independent equations

using R_{tr} and $R_{\vartheta\vartheta}$

- $R_{tr} = 2r^{-1}(\partial_t \beta) = 0$ tells us that $\beta = \beta(r)$
- ullet taking the derivative with respect to t of $R_{arthetaartheta}$

$$\partial_t R_{\vartheta\vartheta} = -e^{-2\beta} [r(\partial_t \partial_r \alpha) - r(\partial_t \partial_r \beta)] = -e^{-2\beta} r(\partial_t \partial_r \alpha) = 0 \quad (44)$$

tells us:

$$\alpha(t,r) = \alpha(r) + g(t) \tag{45}$$

• rescaling $t \to t' = \tilde{g}(t)$ with $dt' = e^{g(t)}dt$ (and renaming t' as t) we get

$$ds^{2} = e^{2\alpha(r)}dt^{2} - e^{2\beta(r)}dr^{2} - r^{2}d^{2}\Omega$$
(46)

- \Rightarrow all metric components are independent of t
 - \Rightarrow the metric has a timelike Killing vector ∂_0 !
 - ⇒ such a metric is called stationary
 - if ∂_0 is orthogonal to a family of hypersurfaces (like S^2)
 - ⇒ the metric is called static

using R_{tt} , R_{rr} , and $R_{\vartheta\vartheta}$

ullet since both, R_{tt} and R_{rr} , are zero, we get

$$0 = e^{2(\beta - \alpha)} R_{tt} + R_{rr} = 2r^{-1}(\partial_r \alpha) + 2r^{-1}(\partial_r \beta)$$
 (47)

- $\Rightarrow \alpha = -\beta + \text{const}$
 - \Rightarrow but the constant can be absorbed in a constant rescaling of t
- ullet using $R_{\vartheta\vartheta}$ again we get

$$0 = 1 - e^{-2\beta} [-2r(\partial_r \beta) + 1] = 1 - \partial_r (re^{-2\beta})$$
 (48)

which has the solution

$$re^{-2\beta} = r + \mu$$
 or $e^{-2\beta} = 1 + \frac{\mu}{r} = e^{2\alpha}$ (49)

- comparing with the weak field limit for $r \to \infty$ we get $\mu = -2GM$
 - and the Schwarzschild metric

$$ds^{2} = \left(1 - \frac{2GM}{r}\right)dt^{2} - \left(1 - \frac{2GM}{r}\right)^{-1}dr^{2} - r^{2}d^{2}\Omega \tag{50}$$

 Thomas Gajdosik
 Cosmology
 2023 / 09 / 01
 15

3. General Relativity — Schwarzschild metric

the Schwarzschild metric describes the vacuum outside a spherical mass

- the metric is asymptotically flat:
 - for $M \to 0$ or $r \to \infty$ we recover the Minkovsky metric
- ullet it has the physical singularity at r o 0
 - can be seen from $R^{abcd}R_{abcd}=48G^2M^2r^{-6}$
- it has a coordinate singularity at $r \rightarrow r_s = 2GM$
 - $-r_s$ is called the Schwarzschild radius
 - * the Schwarzschild radius for the Earth is \sim 8.87mm; for the sun \sim 2.95km
 - * but the radius of the Earth is $\sim 3870 \, \text{km}$; for the sun $\sim 7 * 10^5 \, \text{km}$
 - the coordinate singularity can be avoided by changing coordinates
 - * Kruskal-Szekeres coordinates are valid up to the physical singularity
 - st the radial coordinate of the Schwarzschild metric becomes timelike at r_s
- the Schwarzschild radius defines the event horizon
 - anything passing the event horizon can only move in the direction to r=0

3. General Relativity — more (electro-) vacuum solutions including the electro magnetic field

- a spherically symmetric (and hence static) solution exists
 - the static Reissner-Nordström metric:

$$ds^2 = \Delta dt^2 - \Delta^{-1} dr^2 - r^2 d^2 \Omega$$
(51)

with

$$\Delta = 1 - \frac{2GM}{r} + \frac{G(p^2 + q^2)}{r^2} = 1 - \frac{r_s}{r} + \frac{r_Q^2}{r^2}$$
 (52)

- -q(p) is the electric (magnetic) charge of the central mass
- $-p^2+q^2=GM^2$ is called an 'extremal black hole'
 - * then $\frac{1}{2}r_s=r_Q$ and $\Delta=(1-\frac{r_s}{2r})^2=(1-\frac{r_Q}{r})^2$
- this extreme Reissner-Nordström solution is used in theory to study
 - the information loss paradox of a black hole
 - the quantum gravity interpretation of a black hole
 - * the electron as a charged black hole would be super-extremal with ${1\over 2}r_s\sim 10^{-57}{
 m m}\ll r_Q\sim 10^{-36}{
 m m}$

3. General Relativity — more (electro-) vacuum solutions

including angular momentum of the central mass

- it took 48 years to find a solution that includes angular momentum
 - the stationary Kerr metric in Kerr-Schild form

$$g_{\mu\nu} = \eta_{\mu\nu} - \frac{2GMr^3}{r^4 + a^2z^2} k_{\mu}k_{\nu}$$
 with $k_{\mu} = (1, \frac{rx + ay}{r^2 + a^2}, \frac{ry - ax}{r^2 + a^2}, \frac{z}{r})$ (53)

- * where r is given by the solution of $1 = \frac{x^2 + y^2}{r^2 + a^2} + \frac{z^2}{r^2}$
- * and a parametrizes the angular momentum: J = Ma
- including additionally the electro magnetic field
 - requires the Kerr-Newman metric

$$ds^{2} = \frac{\Delta}{\rho^{2}} \left(dt - a \sin^{2}\theta \, d\phi \right)^{2} - \frac{\sin^{2}\theta}{\rho^{2}} \left(adt - (r^{2} + a^{2})d\phi \right)^{2} - \rho^{2} \left(\frac{dr^{2}}{\Delta} + d\theta^{2} \right)$$
 (54)

with
$$\Delta(r) = r^2 + a^2 - 2GMr + \frac{p^2 + q^2}{G} = r^2 + a^2 - r_s r + r_Q^2$$
 (55)

$$\rho^2(r,\theta) = r^2 + a^2 \sin^2 \theta \tag{56}$$

- the metric does not depend on t and $\phi \Rightarrow \partial_t$ and ∂_ϕ are Killing vectors
- notice the cross term between dt and $d\phi$
 - $\Rightarrow \partial_t$ is not orthogonal to S^2 hypersurfaces \Rightarrow not static

3. General Relativity — more (electro-) vacuum solutions

features of the Kerr-Newman metric

- there are several surfaces, where the metric becomes singular
 - with the Schwarzschild metric we had only the Schwarzschild horizon
 - with the Reissner-Nordström metric there are two horizons at $r_{\pm}=\frac{1}{2}(r_s\pm\sqrt{r_s^2-4r_Q^2})$
 - * going in $\partial_{(0)}$ changes its character at r_{\pm} : timelike $\stackrel{r_{+}}{\longrightarrow}$ spacelike $\stackrel{r_{-}}{\longrightarrow}$ timelike
 - with Kerr-Newman there is an additional Killing horizon outside of r_+
 - between the outer event horizon at r_+ and the Killing horizon is the ergosphere
- inside the ergosphere
 - everything rotates in the same direction as the central body
 - * this is called dragging of inertial frames
 - the conserved energy can be negative in the ergosphere
 - * following a geodesic into the ergosphere one can "throw a rock" into the black hole and emerge on a geodesic with more energy afterwards
 - ⇒ Penrose process
 - the extracted energy reduces the angular momentum of the black hole
- ⇒ analogy between black holes and thermodymics