3. General Relativity — Equivalence Principle
What do we require of a theory of gravitation 7

e it should reproduce the known classical physics
— the Weak Equivalence Principle (WEP)
+x Inertial mass equals gravitational mass

— with Special Relativity we noticed:
x Mass is just a form of energy

e it should generalize the WEP
— uniform acceleration is similar to an extended gravitational field
x a free falling observer cannot detect the gravitational field

= the free falling observer replaces the inertial frame of SR
= Einsteins Equivalence Principle:

"In small enough regions of spacetime, we only need SR;
it is impossible to detect the gravitational field”
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3. General Relativity — Geodesic equation
How can we "derive’” General Relativity 7

e without gravity a test particle should move on a straight line
— like in Newtonian mechanics

e but what is a "'straight line"” in a curved spacetime?

— a curve x(7) with tangent vector g—f, constant along the curve

= geodesic equation: 0 = ViV with V = g—f or
2
M(aud—wp+rp d_> _ dPal o, datdat
dr
e |locally we can always choose an orthonormal coordinate system
— the Christoffel symbols vanish at the point P: I),|p =0
= at P we get for the "'straight line”
d2 gt
dr2

=0 with solution: M = azg 4+ oM
P

(1)

(2)
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3. General Relativity — Einstein equations
How can we "derive’” General Relativity 7

e Newtonian gravity has to be a limiting case for
— constant and weak gravitational fields
— slow moving test particles

= the metric should have Minkovski form with a small perturbation:

Juv = Nuv + huv with |h,ul/| <1 (3)
- dz’ dz® __ dt
e slow moving means |~ | < 7~ = 7
= the geodesic equation becomes a perturbation series:
2 2 z . .
=0 and L 4rhoddt = (IH2(LE 4 Ini(—9;hop)) =0 (4)
— and the second looks like Newtons equation for gravity:
2.1 .
ddtQ =a' = _ECD — _da:"( GM) (5)
= we can identify the Newtonian limit for the metric as
goo =1 —2EM and gii = —1 (6)
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3. General Relativity — Einstein equations
How can we "derive’” General Relativity 7
e generalizing the Poisson equation for gravity
Vi = AGp (7)
— we need second derivatives of the potential, i.e. the metric
— the Riemann curvature tensor . or contractions of it

— a generalization for the density
— the stress-energy tensor T, with Tgg = p
+ which is conserved: V#T},, =0

— we have to find a conserved tensor, made out of Rng
— contracting the second Bianchi identity:

0= gungA(R,uypa;A + R,uu)\p;a + R,uyak;p) — RVO’;)\gVA — R;o' + R,w;pg“p = QVMRMU — Vs+R (8)

= tells us that the Einstein tensor G, = Ruy — 5Rguw IS conserved
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3. General Relativity — Vacuum solutions

Ricci flatness

e contracting the Einstein equations

" (Ruy — 5Rguw) = R(1 — 2) = —R = 87nGg"' Ty, = 8nGT (10)
we can rewrite them as

e vacuum means T, = 0. So we get R, =0
— solutions with this behaviour are called Ricci flat
* but that does not require R,,,, =0

e including the electro-magnetic field as T}, = g**F,oF,5 — %ngaﬁFo‘ﬂ
= gives the electro-vacuum solutions
x they are not Ricci flat

e including the cosmological constant A as T}, = —gwﬁ
= gives the "Lambda-vacuum” solutions
+ de Sitter space (dSz) with A >0
* anti-de Sitter space (AdSs) with A <0
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3. General Relativity — Vacuum solutions
symmetries can classify the possible solutions

e A vanishing R“ypg gives the maximally symmetric solution
— Minkovski spacetime has the constant metric nuy
= allows invariance under all Lorentz transformations

e the spherically symmetric solution is the Schwarzschild metric
— it does not change with time = static
— it is invariant under rotations around the central mass
— inclusion of the EM field: the static Reissner-Nordstrom metric

e rotational symmetry around an axis: the stationary Kerr metric
— inclusion of the EM field: the stationary Kerr-Newman metric

e Since these solutions are static or stationary
— there are no problems with time evolution and stability
= used for studying features of spacetime: black holes, singularities
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3. General Relativity — Symmetries
How can we express symmetries?

e We know from Noether's theorem :

— symmetries are connected to conserved quantities
— the derivative of conserved quantities vanishes

e with the Lie derivative one studies the change along the vector
— if the Lie derivative Ly/(X) vanishes
— X is invariant along V
= the vector V generates a symmetry transformation for X

o if Liy(guv) =0 =V generates a symmetry for M
— such a vectorfield V is called Killing vectorfield
— the equation is called Killing equation (£y(gu) = 0)
0 = VP(Vpgu) + 9 (VuV?) + gn (W V) = (VuVo) + (Vi V )

— here we have used the definition of the Lie derivative on covectors from
Ly(Arfw,) = V'V, (Alw,) = VI(VVAM)w, + AH(Vow,)]
— ﬁv(AM)w,u —|— Aﬂﬁv(wu) —_— [VV(VVA“) — AV(VVVM)]QJM —I— A“CV(wu)

(12)

(13)
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3. General Relativity — Symmetries
Killing vectorfields express the symmetries

e for S2 we have three Killing vector fields V(1), v(2) (3)
— they "close” under commutation: [V v (k)] = ¢ikly ()
— they form the rotation group SO(3)
— S2 is maximally symmetric

e for a spherically symmetric M
— we have to have three Killing vector fields v ()
— these V() transport points around within the same sphere
— they foliate M (like onion shells)

e Frobenius theorem tells us:
— we can pick coordinates bk in the space spanned by v ()
— and coordinates af* outside the space spanned by v ()
— then the metric in M can be written as

ds® = g (a)da’da’® + gjk(a)dbjdbk (14)
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3. General Relativity — Symmetries

Spherical symmetry
e choosing the coordinates on S2 as (9, ¢) with d2Q = d29 + sin? 9d2¢p
e choosing the coordinates outside S? as (a,b) we get the metric
ds? = geada® + gup(dadb + dbda) + gpdb® — 72 (a, b)d?Q
— inverting r(a,b) to b(a,r) we can replace b by r
— finding t(a,r) so that cross terms in (¢,r) vanishes: dt = %da + Stdr
— making an ansatz with functions m(¢,r) and n(¢,r)
ds® = mdt? + ndr® — r2d?Q
m[(2)?da® + (2£)(2)(dadr + drda) + (2£)%dr?] 4+ ndr® — r°d*Q
— gives three equations

m(%)Q — Yaa m(%)(%) — Yar m(%)z +n = g
— can be solved for m, n, and ¢, which gives then a(t,r)
e looking at the flat Minkovsky metric ds? = dt? — dr? — r2d?2
— we assume m = e2¢(1) positive and n = —e26(t71) negative
— we get the metric ds? = 20t gy2 _ 28(r) 2 _ 12420

— now we have to solve the Einstein equations

(15)

(16)

(17)

(18)
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3. General Relativity — spherical vacuum solutions

calculating the non-vanishing Christoffel symbols
) I’fw = %gtt(augut + 81/gut - 8tguy) - %e_Qa[(au(S,tj + 81/52)6205 — atg/“/] gives

Fit = % _2a[28t62a — 8t€2a] = O (19)
M, = 3¢ 72900, = d,x (20)
., Te 2 [—0(—e*)] = e 2 Po,p (21)

o 1, =29"(8ugvr + Ougur — Orgu) = —2e22[(8,8}, + 0,67,) (—€?*) — Brgyu] gives
r, = e 29> = X M9,a (22)
M, = 32710 = a8 (23)
M = Ze 26[287’62ﬁ + 87'(_62/8)] = (24)
My = 3P[0 (—r)] = —e?r (25)
r, = e ?[0.(—r’sin®¥)] = —e*’rsin®v (26)

o 0, =29""(8ugvs + 8ugus — Bgu) = —572[(8u07 + 0,67) (—r2) — Bygy] gives
My = —3r %[0 (—r)] =11 (27)
r, = —ir?[-0s(—r’sin®¥)] = —sinv cos? (28)

o If, = 29%°(8ugvp + Ovgup — Opgus) = —2r=2sin"29[(0,67 + 8,6;)(—r?sin®¥)] gives

rv, = Zr2sin"?9[0,r’sin® 9] =r~! (29)
Mo, = 5r 2sin"29[yr?sin® 9] = cosy (30)
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3. General Relativity — spherical vacuum solutions

calculating from the I's the non-vanishing Riemann tensor components

° Rtrap == gtt(aUrf)r —r r)\ ) - (p A4 G) - eza(affr,tor - rﬁ)trfﬂ” — . — 8Prtm" + rfjtrﬁ)r + r

pA OT pr' or
RtTt?“ - eza(atrf“r - rit r%r - rir r;;r - 87“ I—itfr + I—it rf"r + I—ir r:r)
= (0 P9B) — (9,0)? — (2P 9,B)(8:B) — 0,(0,c) + (8i) (e D 9,B) + (8,2)(0,8))
= [078 — (0:2)(8:B) + (01B8)?] — e**[DFax + (9,0)® — (8r) (98] (31)
o Rtﬁap — gtt(adrfng - rf))\réﬂ) T (P AN 0') = _€2a(rfjrr219 o rf)’Tr;/ﬁ) gives
Rigr9y = —620‘(I_f97nl_;9 — I_irl_fw) = ¢%*(9,a)(—e 2"r)
—e?@=Pr(5,a) (32)
Rugrg = €2*(I,T5y) = e*(e 2 9,8)(—e 2 r)
= —r(&B) (33)
o Ripop = gtt(aarfw — r;xré(p) —(p+ o) = —e2a(r§)rrgw — rfwl—;@) gives
Ripty = —eQa(FforF;O — rirl_fp(p) = e2%(8,a)(—e ?Prsin? )
= —e2(Frsin? 9 (8,a) (34)
Rigry = 2(M,r7) = e2*(e2*Dg,8)(—e ?’rsin?v)
= —rsin®¥ (8:8) (35)
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3. General Relativity — spherical vacuum solutions

calculating from the I's the non-vanishing Riemann tensor components

® Rrgop = grr(0oT 7y —T1.T05) = (p > 0) = =2 (6T — T, 17, =TT,V — Mo, 0y) — (p ¢ o) gives

Regro = —€P (O g — 1Ty — Trgl oy — Tr o — 0l 1y + T4 7y 4+ Tl 0y + Mool 7)
= =270, (= ?Pr) — (8:8)(—e *Pr) + (e *r)(r™ 1)) = —2r(0:8) + 1 + r(:8) — 1
= —7r(6:8) (36)
e R“PUP = g”"(adr;go - r;)\r:}gp) - (p A 0) - _eQB(aUr;go - I—er;go - I—Zﬁrgp - rgaprﬁp - (p <~ U) giveS
Rrpro = _625(87“ r;so o r:rl—:;sa - r:ﬁrgso o r:sor:gso o apriso + r;rr::so + I_Z"wl_f(p + r;@rfw)
= —e??(0,(—e ?Prsin?9¥) — (8,8)(—e ?’rsin?9) 4+ (—e ?rsin?9)(r 1))
= —rsin®9(9,8) (37)
¢ RﬂSOUP - gﬁﬂ(aaer - I_rg)\récp) - (p A J) - _T‘Q(at?rggp - rgrrggo o rgﬁrgap - I_'ggpl_ﬁ@) - (P A U) gives
Ropop = _TQ(aﬂrgw - I‘ZT Mo — rgﬁrgw - rgsorgw - 8@rgso + I, Moo+ rgﬁrgso + rgsorgso)
= —r?(9p(—sin¥ cosy) — (—sin¥ cos)(£2) + (r 1) (—e *Prsin®9))
= 1r2(cos?® —sin? ¥ — cos? ¥ + e 2P sin? ¥)
= r?sin?Y9 (e - 1) (38)
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3. General Relativity — spherical vacuum solutions

contracting gives the Ricci tensor components, which have to be zero

® Rtu = gtthttu + QTTthm + gﬁﬁRﬁtﬁp + g¢¢R<ptcpu == gthr,ur + gﬁﬂRtﬂuﬁ + gwat«pmp gives

Ry = —e 22?078 — (8:0)(9iB) + (0:iB)°] — €2*[07 v + (9,)® — (0,) (0:8)])
—r2[—e?@Pr(8,a)] — r2sin"2 9 [—e2( @ Frsin? Y (8ra)]
= —[078 = () (8:B) + (8:8)°] + 2 P[7a + (8r2)* = (8,2)(8:8) + 2r~ (9, )] (39)
Ry = —r2[—r(8B)] —r 2sin"29 [—rsin? 9 (88)] = 2r 1 (d:6) (40)
° R’I“,LL = gtthrt,u + grrRrrr,u + gﬁﬁRﬁrﬁp + QWRWW = gtthrtp, + gﬁﬁRrﬁ;u? + g(prmpmp gives
Ry = e 2(e*P[078 — (010)(8iB) + (uB8)?] — [0 e + (8r2)? — (8,2)(8,8)])
—r2[=r(8,8)] = r 2sin 29 [—rsin? ¥ (5,8)]
= U028 — (8a)(3:8) + (8B)*] — 87 — (8,0)* + (8,2)(8,8) + 2r~ 1 (8:8) (41)
4 Rﬂu — gtthl%,u + ngRrﬁru + gﬁﬂRﬁﬁﬁu + g(pSORgm%apd - 6_2aRt19t,u - 6_26Rr197“,u - T_2 Sin_2 9 Rﬁg@mp giveS
Ryg = e 2= Dr(9.a)] — e 2P [—r(8,8)] — r 2sin~29 [r?sin? 9 (e 2% — 1)]
= 1—e?[r(9a) —r(08) +1] (42)
b chu — gtthcpt,u + ngRrgor,u + gleﬁgm?,u + g@wawwu - 6_2aRt<pt,u - e_Q’Bchpru — 72 Rﬁgm?u gives
Ry, = e 2 [e?*(8,a) (—e ?Prsin?®)] — e ?P[—rsin? 9 (8,8)] — r 2 [r?sin? ¥ (e%F — 1)]
= —e rsin?9(8,a) + e ?’rsin?9 (9,8)] — e ?’sin? ¥ + sin%¥
= (1-e?’[r(8,a) —r(d:8) + 1]) sin?¥ = Ryysin? ¥ (43)

= we get four independent equations
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3. General Relativity — spherical vacuum solutions
using R and Rﬁﬁ

e Ry =2r—1(8,8) = 0 tells us that 8 = 5(r)

e taking the derivative with respect to t of Ryy

ORyy = —e *’[r(90ra) —r(80rB)] = —e *Pr(90ra) =0 (44)
tells us:
a(t,r) = a(r)+ g(t) (45)
e rescaling t — ¢/ = g(t) with dt/ = e9()d¢ (and renaming ¢’ as t) we get
ds? = 20 g2 _ 28(r) g2 _ 12420 (46)

= all metric components are independent of ¢
= the metric has a timelike Killing vector Jp !
— such a metric is called stationary

— if 9y is orthogonal to a family of hypersurfaces (like S2)
— the metric is called static
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3. General Relativity — spherical vacuum solutions
using Ry, Rrr, and Ryyp
e since both, Ry and Ry, are zero, we get
0 = 2Ry + Ry = 20 1(8r0) + 20 1(0,:8) (47)

= o = —5 —+ const
— but the constant can be absorbed in a constant rescaling of ¢

e USIiNg Ryg again we get

0 = 1—e29[—2r(0:8) + 1] =1 - 0r-(re 2P (48)
which has the solution
re 2% =r 4y or e 2P =1+ B o2e (49)
T
e comparing with the weak field limit for r —» oo we get = —-2GM
— and the Schwarzschild metric
2GM 2GM\ 1
ds?® = <1 — ) dt? — (1 — ) dr? — r2d?Q (50)
T r
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3. General Relativity — Schwarzschild metric
the Schwarzschild metric describes the vacuum outside a spherical mass

e the metric is asymptotically flat:
— for M — 0 or r — oo we recover the Minkovsky metric

e it has the physical singularity at » — 0O
— can be seen from R*®“R ;.. = 48G2M?2?r—5
e it has a coordinate singularity at r - r¢s = 2GM

— rs IS called the Schwarzschild radius

* the Schwarzschild radius for the Earth is ~ 8.87mm: for the sun ~ 2.95km
* but the radius of the Earth is ~ 3870km: for the sun ~ 7 % 10°km

— the coordinate singularity can be avoided by changing coordinates

* Kruskal-Szekeres coordinates are valid up to the physical singularity

* the radial coordinate of the Schwarzschild metric becomes timelike at rg

e the Schwarzschild radius defines the event horizon

— anything passing the event horizon can only move in the direction to »r =20
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3. General Relativity — more (electro-) vacuum solutions
including the electro magnetic field

e a spherically symmetric (and hence static) solution exists
— the static Reissner-Nordstrom metric:

ds® = Adt® — A7 1dr? — r2d?Q (51)
with 2 2 2
2GM G r
A — 1_ n (p +Q):1_"°3_|_Q (52)
r 7“2 T 7“2

— g(p) is the electric (magnetic) charge of the central mass
— p2 4 g2 = GM? is called an "extremal black hole”

% then ir, =rg and A = (1 - 2)2 = (1 - 2)?

e this extreme Reissner-Nordstrom solution is used in theory to study
— the information loss paradox of a black hole
— the quantum gravity interpretation of a black hole

* the electron as a charged black hole would be super-extremal with %7‘5 ~107°"m <« rg ~ 10736m
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3. General Relativity — more (electro-) vacuum solutions
including angular momentum of the central mass

e it took 48 years to find a solution that includes angular momentum
— the stationary Kerr metric in Kerr-Schild form

3 . —

« where r is given by the solution of 1 =2ztv 4 2

r2-+4a? r2

* and a parametrizes the angular momentum: J = Ma

e including additionally the electro magnetic field
— requires the Kerr-Newman metric

A i 29 dr2
ds? = = (dt — asin0.de)” — 5'22 (adt — (2 + a2)de) — p? (% 4 d92) (54)
with A(r) = r?+a®—-2GMr+ 7% =724 a’ —rgr + r% (55)
p%(r,0) = r?4a?sin%6 (56)

— the metric does not depend on t and ¢ = 0O; and 94 are Killing vectors
— notice the cross term between dt and d¢

= 0 is not orthogonal to S2 hypersurfaces = not static
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3. General Relativity — more (electro-) vacuum solutions

features of the Kerr-Newman metric

e there are several surfaces, where the metric becomes singular
— with the Schwarzschild metric we had only the Schwarzschild horizon
— with the Reissner-Nordstrom metric there are two horizons at r4 = %(rsi r§ — 47%)
* going in 8(0) changes its character at r4: timelike AN spacelike =5 timelike
— with Kerr-Newman there is an additional Killing horizon outside of r
— between the outer event horizon at r4 and the Killing horizon is the ergosphere
e inside the ergosphere
— everything rotates in the same direction as the central body
x this is called dragging of inertial frames

— the conserved energy can be negative in the ergosphere

+« following a geodesic into the ergosphere one can "throw a rock” into the
black hole and emerge on a geodesic with more energy afterwards

= Penrose process

— the extracted energy reduces the angular momentum of the black hole

— analogy between black holes and thermodymics
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