2. General Relativity — the metric
mathematical definition:
e a metric in M is a symmetric, bilinear, non-degenerate function
gp :TpxTp — R

— the metric acts on (contravariant) vectors (tensor indices)
— symmetric means ¢g(X,Y)=g¢9(Y,X)eR for X, Y € Tp
— Dbilinear means for X,Y,Z € Tp and a,b,c € R

g(aX +bY,cZ) =acg(X,Z)+bcg(Y,Z) € R

— non-degenerate: g(X,Y)=0forall Y €e Tp only if X =0
— acting on the basis vectors f?(u) gives the metric tensor

g (P) = 9(8(): €0))|

e the metric allows length and angle measurements

g(X,Y)
| X || * ||Y]|

IX| = /lg(X,X)| and  cosp=

(1)

(2)

(3)

(4)
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2. General Relativity — the metric
examples for the metric
e in Euclidean space the metric is the normal dot-product:
qa b= gjkajbk = jkajbk SO gj=r =1 and g;x,=0 (5)

— we can use this metric of the embedding to get the induced metric in S?

gik = 9(€y), €ky) = €() - €w) SO g11 = s, g2 =g21 =0 g2=1 (6)
= asS we can see, the metric tensor depends on the position
e in Minkovsky space we had goo = 1, g4 = —1, and g+, =
— we can generalize the line element
As? = (cAt)? — (Ax)? — (AY)? — (A2)? = gDzt @ Ax? (7)

— the "differentials’” Ax here are not multiplied with their "natural” wedge product

e one can define the inverse metric g"” by
9" gup = 5Z (8)

— the inverse metric is the metric of the cotangent space
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2. General Relativity — the metric
connection and the metric

e the metric gives angles
= SO we can relate angles between vector fields all over the manifold

e but we have not specified the vectorfield, that defines parallel transport

— that is done with the connection / gauge field
— the metric has to be compatible with this choice

e as seen with the Lie bracket, parallel transport has to do with derivation
— the Lie derivative was a map L(Tp) : Tp — Tp
x leaving the differentiated object in its own representation
— the directional derivative was a map D(T1p) : R — Tp
= this is, what we want
« but it does not connect the different points in M

= including an affine connection I' to make a covariant derivative V
+ like in gauge theories: V=041 =d+ w
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2. General Relativity — Levi Civita connection
definition for a covariant derivative:

e the covariant derivative Vi in the direction of U
— should map tensors to tensors
— be linear in the direction: Vi v T = fVyT +gVy T
— be linear in the argument: Vi (T + S) =VyT + Vi S
— follow the Leibniz rule: Vi (T ®S) = (VpT) S+ T ® (Vi S)
— commute with contractions: V; 63 =0
* this means in index notation V,(T%y) = V. (6,T"x,) = 6,V (T?x) = (VT ) i
— be the partial derivative on scalars: V¢ = U(¢) = (U)*0u¢p

definition of the Levi Civita connection:

e the covariant derivative Vi in the direction of U
— is metric compatible: Vi g(X,Y) =0
— is torsion free: (VxY — Vy X) = [X, Y]

* this is also easier explained in index notation
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2. General Relativity — Levi Civita connection
using the natural basis
e the covariant derivative V, goes into the direction of 9,
e the covariant derivative in the direction of U is V; = U!V,,
— linearity in the direction is obvious from U € Tp(M)
writing the Levi Civita connection as:
VuAY =0, AY + T ,AP and Vuay = Ouay + rw/ap (9)
e commutation with contractions means:
— with B = Ala, = §)APa, a scalar:
VuB = 83[(0uAP + 0,4 )ay + AP(duay + Mha)]

(OuAPYay + AP(Ouap) + (M6, A%ap + AA rha]  (10)
alu(AVaq/) _I_ Ayap[l_ﬁy —I_ I_ ]

= D, =0,
+ covariant indices transform opposite from contravariant ones
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2. General Relativity — Levi Civita connection
writing the Levi Civita connection as:
VMAV — 3MAV —I— I_'ZpAp and Vlua/y — alua/y — rﬁ,/ap (11)

e torsion free means:
X YP — YR XP = XHY P (T, =T )

= the Christoffel symbols I}, = '}, are symmetric

e Mmetric compatible means:

— _ A A
0 = V,OQMV — 8PQMV — rp,ug)\y - I_pl/g)\,u (13)
0 = Ougvp— Tpudrp — Mo + 0ugup — T2 — Topdrn — OpGuw + Tugrw + Mg
= Ou9up + OvGup — Opguv — 2r2u9/\p (14)

= the Christoffel symbols can be calculated from the metric:

ri\w — %g)\p(augup ~+ Ovgup — Opguv) (15)
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2. General Relativity — Riemann curvature tensor
The difference between a Riemannian manifold and flat space

e parallel transport of a vector V' along a curve C(t) is defined by

- \
VigmY =

0

e taking the curve as a Levi Civita parallelogramoid
— along the curves A and B

A(As) B(AD o

A'(=As) B(—At)
Foo —  P1o 11 — R

o1 —  Poo (16)

+ with B’ parallel transported along A, so V4B =0, and B’ = B

— we can compare the vector at Py1 between the two different paths

A(A B(At B(At A(A
Poo (—f) Pio (—>) P14 and Poo (—>) Po1 (—f) P14 (17)

— and the difference of the parallel transported vector at P;q is

VEVAV — V4 VEV (18)
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2. General Relativity — Riemann curvature tensor
The difference between a Riemannian manifold and flat space

e evaluating the difference in the natural basis 9, we get

APBY (VyV, — V,V,)VHO, (19)

— due to the condition V4B =VgA =20

e using the affine connection we get
(VoV, = Vo)V = Vo (9,VF +TH V") = V,(0,VF +Th, V")
O (OpVH +TH V) — T (D VF 4+ TH V) +TH (9,VA+ ) VY)
— (B VI HTHV) + T (VE TR V) = Th (8, VA + T, V7)
= (BsTh, =0Tk, — T o, + TV — (T, — T ) (OAVH T VY)
=: R',, V=T (V,VH) (20)

= the Riemann curvature tensor R“Wp and the Torsion tensor Tgp

— T, vanishes for the Christoffel symbols [}, =Ty,
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2. General Relativity — Riemann curvature tensor
The difference between a Riemannian manifold and flat space

e in Euclidean (or Minkovsky) flat space one can use
— Cartesian coordinates, where the metric is constant
— the connection and the Riemann tensor vanish identically

— curvlinear coordinates, where the metric is not constant
— the connection is non zero
+ put the Riemann tensor still vanishes identically

e example: spherical coordinates in R3
— With unit vectors ey = (sycy, s9sp, o), gy = (cocyp, cose, —sy), and e, = (—sy,, ¢y, 0)
— the metric is ds? = dz? + dy2 4+ dz2 = dr2 4+ r2d92? + r2sin? 19d502
+ with non-zero coefficients g, = 1, ggg = r2, and gy, = r2sin? ¥

— the Christoffel symbols are

M, = 297 (Ougur + 0ugur — Orgu) =  Thy=—r T, =—rsin’y (21)
I‘ﬁ,, = %gw(augyﬁ + 0uguy — Opgu) = Ty =r"1 I‘}fw = —sindcosy (22)
re, = 39°°0ugve + Ougup — Opgpw) = Tf,=r"1 Tj =cotd (23)
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2. General Relativity — Riemann curvature tensor

The difference between a Riemannian manifold and flat space

e example: spherical coordinates in R3
— the Riemann tensor R*,,, = (0,5, — rgkrg,,) —(p < 0)

% in components R o, = (05T h, —TH T, — Fgﬁl‘ﬁy —M,r8) — (p+ o)
R7;“O'p — (8Ur;r o r;rl—gr o r;ﬁrgr o r;gorgr) o (p A U)
= (0,0 — 00— (=) (r 18y — (—rsin®9)62(r1)6%) — (p > o)
= (8967 +sin*96262) — (p«<>0) =0 (24)
Yop = (BT gy — 0y =70y =T, T8) — (p <o)
= (0,(—1)8) — (=r)8(r 1), — (—rsin®9)é2(cot ¥)67) — (p +» o)
= (6,6, +06,6,) —(p<>0)=0 (25)
r —_ r r r % r
R, = (0o, =00, =T o, —T,.Is,)—(p< o)

= (05(—755)82 — (—1)8) (—s9cy)8% — (—r53)62[(r )85 + (co/59)62]) — (p <> o)

= (—[6%s5+ 7“281901952]5/‘5 — rsﬁcﬂcsgéf + 51295;052. + Tsﬁc§5f5g) —(p < 0)

= —rsgcg(20267 4 6265 — 6%60) — (p > 0) =0 (26)
— and similar for R”‘iap and R?7,,

— RS3 is flat also in spherical coordinates
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2. General Relativity — Riemann curvature tensor

The difference between a Riemannian manifold and flat space
e example: S? with coordinates (2! = ¢,x? = ¥) and basis vectors e(1), e(2)
— embedded in R3 with (z,y,2) = r(spcy, spse, cy) and r constant
— the metric is ds? = (dz1)? 4+ (dz?)? = r2d9¥? + r2sin? 9dp?
+ with non-zero coefficients ggg = r? and gy, = r2sin? Y

— the Christoffel symbols are
v, = 2¢"(0ugvo + Ovguo — Oogw) = T, = —sindcosv (27)
rﬁy - %g(pcp(augwp + 8ugucp — Qogw) = r:g(p = cotv (28)

— the Riemann tensor in components R",;, = (0:T ) — 0,15, = T,05) — (p > o)

RYy,, = (0T —T0l0y—T0.I%) = (p< o) = (—(—sinycos®)s?(cot)s¢) — (p <+ o) =0 (29)
R, = (9,70, =Ty, —T0Ie)—(p< o) = (9,(—sindcosv)s? — (—sin¥ cos¥)s?(cot¥)s)) — (p > o)
= ([~ cos®¥ + sin® 9] + cos® ¥)5767 — (p > o) = sin®9(8%57 — 6257) 7 O (30)
R, = (8.1~ rfﬁrgﬁ — T2 %) — (p < o) = (9-(cot 9)5% — (cot ¥)s) (cot¥)57) — (p ++ o)
= ([-sinT? 916757 — cot®96762) — (p > 0) = —(626) — 62565) # O (31)
RGo, = (0175, — rfﬁrgso — 5l 5p) = (p < 0)
(690s(cot 9)5) — (cot¥)57 (—sind cos¥9)6¢ — (cot¥)?5567) — (p 4> o) =0 (32)

— S2 s not flat
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2. General Relativity — Riemann curvature tensor
Properties of the Riemann curvature tensor

e the first Bianchi identity

Rt -+ Ry, +R'Yy, =0 & RY wpo] = O (33)
e with the abbreviation V) X =: X.\, the second Bianchi identity
Ruupa;A + Rlul/)\p;a + Ruuak;p =0 <« Rlul/[pa;)\] — (34)
o lowering the first index Ryuupe = gnR, 50
Rpvpe = —Ruwop = —Ruppe = Rpopw (35)
e contraction gives the symmetric Ricci tensor and the Ricci scalar
RN iy = 9 Roupy = Ruw = Ruy g Ry = (36)
e this allows the decomposition  Ruvpe = Suvep + Evupe + Coopw

— using the traceless Ricci tensor S, = R, — %gw into a semi traceless part
E,uucrp - n_iQ(g;wSVp - gupsucr + gupSpLU - guch,LLp)
— and into the fully traceless Weyl tensor Cluop
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2. General Relativity — Riemann curvature tensor
Curvature in general

e fOr a curve we can imagine, how it bends on the plane or in space
— this is the extrinsic curvature
— the intrinsic curvature of a curve is zero
= it is similar to a straight line

e for a two dimensional surface we can imagine its bending in 3D space

— its intrinsic curvature is defined independently from the embedding
« in our example of the spere S? we calculated the Riemann curvature tensor

Rc,m‘}cp chgoﬁ — S|n 19 R%ﬁ@ Ri(pﬂ —1 (37)
+ this gives the Ricci tensor Ryy = RY)_, =1, Ry, = R’ = sin®9
+ and the Ricci scalar R = g"’Ryy + g*?Rypp =172-1+7r2sin"?9-sin®y = 2

— which gives the radius of the sphere

e for higher dimensional (hyper)surfaces the Ricci scalar
is the generalisation of the curvature radius
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2. General Relativity — orthonormal coordinates
using the metric we can change our basis to make it orthonormal:

e defining a new set of local coordinates

e(m) (@) = el ()9,
— the greek indices p indicate the natural basis 9,
* obtained from the coordinate functions X(z) on M
— the latin indices m indicate the orthonormal basis e,,)(x)
+ defined by the relation  g(e,) (), ey (x))(x) = Nmn
* the flat Minkovsky metric noo = 1, n; = —1, and £, =0

o e(m)(:c) IS an orthonormal coordinate system

e ey, (x) are called "vierbein” or tetrad
— its inverse e)}(x) is defined by eje]’ = 6, and epe), = 0

n
I m

— we can write the metric tensor in natural coordinates as

g/u/(w) = ezl(:c)eg(:c)nmn

(38)

(39)
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2. General Relativity — orthonormal coordinates
using the tetrad

e similar like for the natural coordinate basis 8(M)
— we can introduce a dual basis in T} by requiring e™(e,) = )

— this dual basis can also be written as ™ = eZ’Lda:(“)

e with the tetrad we can change any index into the orthonormal frame

— the vectors are just represented in a different basis
+ tensors can even have mixed components: Tj, = enThy = eme,T)n = emeles T/

prro p-orrs

e changing the coordinates x — z’ changes components of a tensor by

N N L
Tlglo./(w) — 83;/‘ 8;3P, 850/ Tﬁa(x> (40)

=> this is called a general coordinate transformation (GCT)

e changing the orthonormal basis e, — e, to another orthonormal one

— the metric does not change 1y, = 1.,

=> the transformation is a local Lorentz transformation (LLT) :
en(z) = en(x) = A" (2)em(x) (41)
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2. General Relativity — orthonormal coordinates
a connection is not a tensor
= a transformation of its indices might not lead to a connection

e parametrizing the connection in the orthonormal indices as

VTG = OuTY + wu'tTG — wusTS (42)
e studying the covariant derivative of a vector helps:
ViV = da"(V V) = (0,V° 4+ wut V) dat @ (e]0(0)) = e (0u(efVY) + wyfeb VP )da! @ 9y
= e7e,((0uV") + el (Duep) VP + elebw§VP)da" @ (o)
= (0,V" + e (Ouep) VP + egezwu%\/p)dw“ ® 0wy = (OuVY + I ,VP)dz! ® 0, (43)
= I, =eq(Ouey) + egegwu% or wyp = e‘}\egl_l))p — eg(ﬁueg) (44)

e multiplying with €% this can be written as the "tetrad postulate”
Ve, = Ouey — I_i‘wegb\ + wu%eg = (45)
e w7 Is called the spin connection

— since it transports an index that transforms under Lorentz transformations
* and Lorentz transformations act also on spinors
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2. General Relativity — orthonormal coordinates
the spin connection
e transforms as a one-form under GCTTs
e but inhomogenously under LLTs
wuh = wph = AN ol — NGO

e allows the implementation of a covariant exterior derivative:
— by writing forms we can suppress the tensor index of the natural basis:
«+ EM potential A = A,dz#, field strength F = 1F,, do"ds” = L(dA)udatdz”
— having a vector valued (or group valued) one-form A® = Afdzx",
— we can extend the exterior derivative to a covariant exterior derivative
2(VA)* = (VA)), dxt'dz” = (dA)},dx"dx” + (w A A)}, datdx”
= (0,A% + w4 AY)dxtdx”
— writing the torsion as a vector valued two form:
T = 1i7% datda” = %eg(rﬁy — 7 )dztdz” = (Ouey + w, %) dat da”

2" v
(Vyey)daxtdx” = Ve
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2. General Relativity — orthonormal coordinates

the spin connection

calculating the curvature tensor as a tensor valued two form
%(VHVV - V,,VM)V“eZda:“dx”@(p) — €gvvvaa(p) - egV(dV“ + wng)c‘?(p>
= ef(d(dV* 4+ wpV®) 4+ w A (dVE + wiV?)) O,
= (d®V* 4 (dwf)V’ —wi AdV? + w? A dVE + w? AwiV?))eld

= (dwi + w* Awf)Vbe, = R* V', (46)
gives the Maurer-Cartan structure equations
T = de® + W A e’ and R, = dwy + wi A wy (47)
this allows an easy "proof” of the Bianchi identities (R’ o] = 0 a@nd R’ oluriA] = 0)
VT* = d(de” + wi Ae’) +wi A (de® + Wb A ef) (48)

(dwg)/\eb—wg/\(deb)-|-wg/\(deb)—|-wg/\w2/\eczR“b/\ebz%Ra A e’ A dat A da”

buv
VR, = d(dw)+ wiAwf) + wl A (dwf + wiAwd) — (dws + w? Aw§) Aw) (49)
(dw?) A wf — wl A (dwf) + wl A (dwf) + w A (WA wd) — (dwd) Awi — (WA W) Awl =0
metric compatibility 0 = V. = 0uNap — WuiNeb — WupNac = —Wuba — Wyab
= gives an antisymmetric spin connection w,. = —wWuba
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