
1. General Relativity — vectors

What is a vector?

• a quantity that has a size and a direction

– the size of a vector a⃗ can be written as |⃗a|
– |⃗a| is usually a real number, but not necessarily positive

– the direction is ”optional”

• mathematical definition:

– a vector is an element of a vector space

• examples

– the real number x

– the vector pointing from a point A to a point B

– an n-tuple of numbers x⃗ = (x1, x2, . . . , xn)

– the RGB color value (r, g, b)

• in Geometric Algebra

– vectors are objects, that do not necessarily commute: ab ̸= ba
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1. General Relativity — vector space

mathematical definition:

• A vector space over a field (corpus) F is a set V with ”+” and ”∗”
– (V,+) forms an abelian group: for x⃗, y⃗, z⃗ ∈ V

∗ x⃗+ (y⃗ + z⃗) = (x⃗+ y⃗) + z⃗

∗ x⃗+ y⃗ = y⃗ + x⃗

∗ there exists 0⃗ ∈ V with x⃗+ 0⃗ = x⃗ for all x⃗ ∈ V

∗ for all x⃗ ∈ V there exists (−x⃗) ∈ V such that x⃗+ (−x⃗) = 0⃗

– (F,+, ∗) forms a field (corpus)

∗ (F,+) forms an abelian group

∗ (F\{0}, ∗) forms an abelian group

– for a, b ∈ F

∗ a ∗ (x⃗+ y⃗) = a ∗ x⃗+ a ∗ y⃗ and (a+ b) ∗ x⃗ = a ∗ x⃗+ b ∗ x⃗

∗ a ∗ (b ∗ x⃗) = (a ∗ b) ∗ x⃗

∗ 1 ∗ x⃗ = x⃗ for ”1” being the unit element of (F\{0}, ∗)
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1. General Relativity — vector space

examples:

• the real numbers over the real numbers

– the real numbers are a field, so they form also an abelian group . . .

• vectors in R3 (three dimensional Euclidean space) over R

• m× n real (complex) matrices over the real (complex) numbers

• tensors with arbitrary, but fixed index structure

– example: all tensors of the form tijk

• real analytic functions in [0,1] over R

• complex holomorphic functions over C

• solutions to homogeneous linear differential equations over R or C
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1. General Relativity — manifolds

loose mathematical definition:

• a manifold is a space that is locally similar to an Euclidean space
– every point of an n-dimensional manifold has a neighborhood homeomorphic

to an open subset of the n-dimensional space Rn.

∗ ”A is homeomorphic to B” = A can be continuously deformed to resemble B
( actually, there has only to be a continuous invertible mapping between A and B )

⇒ a ball is homeomorphic to a cube, but not to a torus

⇒ we can use our understanding of Euclidean space

– including all our mathematical tools
– and look, where the manifold differs from Rn

• we can make local maps (charts) of the manifold

– in regions where maps overlap, they should be compatible
– compatible maps that cover the whole manifold form an atlas

• example: the surface of the earth

– we need at least two maps to show the whole surface
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1. General Relativity — manifolds

why manifolds?

• they generalize normal Euclidean space

– example: the surface of the earth is not really Euclidean

• they preserve the local information

⇒ one can discuss causality

– no need for ”action at a distance”

• one can study wave phenomena on a manifold

– for that one needs differential equations – wave equations

⇒ differentiable manifolds

• if we can measure distances and angles

⇒ (Pseudo-) Riemannian manifolds

∗ they are also equipped with a metric
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1. General Relativity — manifolds

differentiable manifolds

• have a globally defined differential structure

– one can define differentiation similar to Euclidean space

∗ even multivariable differentiation

• allow a globally defined differentiable tangent space

– one can define differentiable

∗ functions

∗ vectors

∗ tensors

• calculus on differential manifolds

⇒ exterior derivative (Ėlie Cartan)

– generalizes the differential of a function to forms of higher degree

• the calculus on differential manifolds is differential geometry
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1. General Relativity — differential geometry

describes the properties of the manifold ”from within”

• a smooth (i.e. differentiable) curve C on a manifold M

can be understood as a smooth multidimensional function:

C : R → M (1)

– example: the 3D-helix C(t) = (r cos t, r sin t, bt)

• studying the smooth curves through a point P :

– differentiation with respect to t gives the tangent vector:

v⃗P =
d

dt
C(t)

∣∣∣∣
P

= (−r sin t, r cos t, b)|P (2)

– all tangent vectors in P form the tangent space TP

• the tangent space has the same dimension as M

– but is isomorphic (identical in structure) to Rn

Thomas Gajdosik Cosmology 2023 / 09 / 01 7



1. General Relativity — tangent space

N dimensional tangent space TP

• since we can reparametrize the curves C(t) → C(s) = C(t(s))

– the length of the tangent vector changes, but not its direction

• one can determine N linearly independent vectors

⇒ basis vectors of the tangent space TP

• with coordinate functions X(µ)(t) on the manifold

– we can define a ”natural” basis by

e⃗(µ) =
d

dt
X(µ)(t)

∣∣∣∣
P

= ”∂(µ) ” (3)

• any vector in TP is a linear combination of the basis vectors:

A⃗ =
N∑
µ

Aµe⃗(µ) or A = Aµ∂(µ) (4)

– Aµ are the (contravariant) components of the vector A
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1. General Relativity — tangent space

N dimensional tangent space TP

• using the coordinates X(µ) on the manifold

– we can define smooth functions of the manifold: f(X) ∈ R

⇒ then vectors v⃗ of the tangent space TP
can be seen as directional derivatives

Dv⃗f(x⃗) =
d

dt
f(x⃗+ v⃗t) =

N∑
µ

vµ
∂

∂xµ
f(x⃗) (5)

– again, the derivatives ∂µ = ∂
∂xµ form ”natural” basis directions

• one can define the cotangent space T ∗
P as the dual to TP :

– every element ω ∈ T ∗
P is a linear map ω : TP → R

ω(aV + bW ) = aω(V ) + bω(W ) ∈ R for V,W ∈ TP and ω ∈ T ∗
P

– and the dual vector space to T ∗
P is TP : V : T ∗

P → R

V (aω + bη) = aV (ω) + bV (η) ∈ R for ω, η ∈ T ∗
P and V ∈ TP
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1. General Relativity — tangent space

N dimensional cotangent space T ∗
P

• using the basis vectors e⃗(µ) of TP

– we can define basis vectors θ⃗(µ) in T ∗
P by

θ⃗(ν)(e⃗(µ)) = e⃗(µ)(θ⃗
(ν)) = δνµ (6)

– and write a covector ω in terms of the N basis vectors θ⃗(µ):

ω = ωµθ⃗
(µ) (7)

• the map TP × T ∗
P → R can be expressed as:

ω(V ) = ωµV
ν θ⃗(µ)(e⃗(ν)) = ωµV

νδµν = ωµV
µ ∈ R (8)

⇒ one can use components without specifying a basis

∗ assuming that the bases of TP and T ∗
P are related by θ⃗(ν)(e⃗(µ)) = δνµ

• all TP with P ∈ M give the 2N dimensional vector bundle TP(M)

• all T ∗
P with P ∈ M give the 2N dimensional cotangent bundle T ∗

P(M)
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1. General Relativity — tangent space

example TP(S2): the 2-sphere S2 with R2 attached to each point

• looking at the embedding in R3 we can choose coordinates (x, y, z)
– for the sphere they have to satisfy x2 + y2 + z2 = r2 = 1
– going to spherical coordinates we have on the sphere (r = 1, ϑ, φ)

∗ with x = sinϑ cosφ, y = sinϑ sinφ, and z = cosϑ

⇒ so for a coordinate patch (a map) we can use (ϑ, φ)

• the point P0 = (ϑ0, φ0) in S2 is embedded in R3:
– considering the curves through P0

C1(s) = (sinϑ0 cos s, sinϑ0 sin s, cosϑ0) (9)
C2(t) = (sin t cosφ0, sin t sinφ0, cos t) (10)

– the tangent plane at P0 has tangent vectors in R3

e⃗(1) = d
ds
C1(s)

∣∣
P0

= sinϑ0(− sinφ0, cosφ0,0) (11)

e⃗(2) = d
dt
C2(t)

∣∣
P0

= (cosϑ0 cosφ0, cosϑ0 sinφ0,− sinϑ0) (12)

– since e⃗(1) and e⃗(2) are linearly independent: ̸ ∃λ with e⃗(1) = λe⃗(2)
⇒ they form a basis in TP0

• using this basis, we can write any vector V in TP0
as V = V 1e⃗(1) + V 2e⃗(2) = V ie⃗(i)

⇒ the coordinates of V in TP(S2) are (ϑ0, φ0, V 1, V 2)

Thomas Gajdosik Cosmology 2023 / 09 / 01 11



1. General Relativity — tangent space

example TP(S2): the 2-sphere S2 with R2 attached to each point

• picking different curves through P0 is the same as changing the basis of TP0

– V → V ′ or (ϑ0, φ0, V 1, V 2) → (ϑ0, φ0, V ′1, V ′2)
– this change is a normal coordinate transformation in R2

∗ which can also stretch and rotate TP0

• going to a point P1 = (ϑ1, φ1)
– is a normal translation on S2

– but it can also change the basis of TP : (e⃗(1), e⃗(2)) → (e⃗ ′
(1), e⃗

′
(2))

– in R2 (and Rn) we have an understanding, what is parallel
– but e⃗(i) and e⃗ ′

(i) are not necessarily parallel

∗ in the embedding space R3 they would be

e⃗(1) = sϑ0
(−sφ0, cφ0,0) not parallel to e⃗ ′

(1) = sϑ1
(−sφ1, cφ1,0) (13)

e⃗(2) = (cϑ0
cφ0, cϑ0

sφ0,−sϑ0
) not parallel to e⃗ ′

(2) = (cϑ1
cφ1, cϑ1

sφ1,−sϑ1
) (14)

∗ in TP(S2) we only see

e⃗(1) = (ϑ0, φ0,1,0) . . . e⃗(2) = (ϑ0, φ0,0,1) (15)
e⃗ ′
(1) = (ϑ1, φ1,1,0) . . . e⃗ ′

(2) = (ϑ1, φ1,0,1) (16)

• how can we compare them from inside ?
– we need a connection
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1. General Relativity — connections

connections allow the definition of parallel transport on TP (M)

• for P0, P1 ∈ M the affine connection relates TP0
and TP1

– so that tangent vector fields can be differentiated

∗ i.e. compared between the points P0 and P1

∗ this comparison usually uses the concepts of pullback and pushforward

∗ these concepts become too mathematically abstract for this lecture . . .

• for our example it means, that by using an affine connection
– we can effectively reduce the dimension of TP(M) back to TP (or M)
– and the basis vectors in TP are smooth functions of the point:

e⃗(1)(ϑ, φ) and e⃗(2)(ϑ, φ) (17)

• the Cartan connection uses the Lie group structure of M

– and transports (coordinate) frames without specifying a metric

∗ uses the exterior derivative

• the Levi-Civita connection uses the additional structure of a metric

⇒ Riemannian manifolds . . . will be assumed for the rest of this lecture
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1. General Relativity — exterior derivative

formalizes the known differential of a multiparametric function

df(x, y, z) =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz (18)

• choosing coordinates (x, y, z) = (x1, x2, x3)

• the quantities dx, dy, and dz are understood as covectors or 1-forms

– forming a basis of T ∗
P with θ⃗(ν) = dxν

• the wegde product ”∧” defines the multiplication of forms

– it is antisymmetric: dx ∧ dy = −dy ∧ dx

⇒ it is nilpotent: dx ∧ dx = 0

– for obvious differentials dx the ∧ can be omitted: dx dy := dx ∧ dy

– a one-form in this natural basis: ω = ωµdxµ

– a p-form in this natural basis: Ω = Ωµ1...µpdx
µ1 ∧ · · · ∧ dxµp

∗ obviously, Ωµ1...µp is completely antisymmetric in its indices

∗ and p ≤ N , the dimension of M

Thomas Gajdosik Cosmology 2023 / 09 / 01 14



1. General Relativity — exterior derivative

features of the exterior derivative d

• increases the grade of a form
– defining the smooth functions f or xµ as 0-forms
– we have 1-forms df or dxµ

– a 2-form F = Fµνdxµ ∧ dxν gives a 3-form dF = (∂ρFµν)dxρ ∧ dxµ ∧ dxν

– for a N-form I = Iµ1...µN
dxµ1 ∧ · · · ∧ dxµN we get dI = 0

• defines the natural basis by

df(V ) = (∂µf)dx
µ(V ν∂ν) = V ν(∂µf)δ

µ
ν = V µ∂µ(f) = V (f) (19)

• follows the Leibnitz rule
– for a p-form α and a q-form β

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ (20)

• is useful for the discussion of fiber bundles G(M)
– with the Lie group G defined at every point of M

– the tangent bundle TP(M) is a fiber bundle with the tangent space TP

as the structure given at each point in M

• all forms on M form a vector space of dimension 2N
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1. General Relativity — Lie derivative

vector fields as derivatives of functions

• df(V ) = V (f) is again a function on M for V ∈ TP

• for X,Y ∈ TP we can define the Lie derivative or Lie bracket

LX(Y )(f) = [X,Y ](f) := X(Y (f))− Y (X(f)) ∈ R (21)

• the Lie bracket

– is bilinear and antisymmetric

– fulfills the Jacobi identity

[X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0 (22)

– LX(Y ) can be seen as the directional derivative of Y along X

⇒ it allows to define a parallel transport

∗ for [X,Y ](f) = 0, Y (f) stays constant along the flow of X

• the Lie bracket endows M with the algebraic structure of a Lie algebra
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1. General Relativity — the metric

mathematical definition:

• a metric in M is a symmetric, bilinear, non-degenerate function

gP : TP × TP → R (23)

– the metric acts on (contravariant) vectors (tensor indices)

– symmetric means g(X,Y ) = g(Y,X) ∈ R for X,Y ∈ TP

– bilinear means for X,Y, Z ∈ TP and a, b, c ∈ R

g(aX + bY, cZ) = ac g(X,Z) + bc g(Y, Z) ∈ R (24)

– non-degenerate: g(X,Y ) = 0 for all Y ∈ TP only if X = 0

– acting on the basis vectors e⃗(µ) gives the metric tensor

gµν(P ) = g(e⃗(µ), e⃗(ν))
∣∣∣
P

(25)

• the metric allows length and angle measurements

∥X∥ :=
√
|g(X,X)| and cosφ =

g(X,Y )

∥X∥ ∗ ∥Y ∥
(26)
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1. General Relativity — the metric

examples for the metric

• in Euclidean space the metric is the normal dot-product:

a⃗ · b⃗ = gjka
jbk = δjka

jbk so gj=k = 1 and gj ̸=k = 0 (27)

– we can use this metric of the embedding to get the induced metric in S2

gjk = g(e⃗(j), e⃗(k)) = e⃗(j) · e⃗(k) so g11 = s2ϑ0
g12 = g21 = 0 g22 = 1 (28)

⇒ as we can see, the metric tensor depends on the position

• in Minkovsky space we had g00 = 1, gii = −1, and gµ̸=ν = 0

– we can generalize the line element

∆s2 = (c∆t)2 − (∆x)2 − (∆y)2 − (∆z)2 = gµν∆xµ ⊗∆xν (29)

– the ”differentials” ∆x here are not multiplied with their ”natural” wedge product

• one can define the inverse metric gµν by

gµνgµρ = δνρ (30)

– the inverse metric is the metric of the cotangent space
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