1. General Relativity — vectors
What is a vector?

e a quantity that has a size and a direction
— the size of a vector @ can be written as |d]
— |a| is usually a real number, but not necessarily positive
— the direction is "optional”

e mathematical definition:
— a vector is an element of a vector space

e examples
— the real number x
— the vector pointing from a point A to a point B
— an n-tuple of numbers &£ = (z1,x>,...,Tn)
— the RGB color value (r,g,b)

e in Geometric Algebra
— vectors are objects, that do not necessarily commute: ab # ba
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1. General Relativity — vector space

mathematical definition:

e A vector space over a field (corpus) F is a set V with "4+ and "x"
— (V,4) forms an abelian group: for Z,4,Z7 ¢V

« T+ W+2H)=ET+y)+72
* T+Y=y+2
+ there exists 0 € V with 4+ 0= Z for all e V
« for all Z € V there exists (—Z) € V such that 4 (—%) =0
— (F, 4, ) forms a field (corpus)
+x (F,4) forms an abelian group
« (F\{0}, ) forms an abelian group
— for a,b € F
x ax (Z+Y) =axT+axy and (a+b)*xZ=axT+bxT
x a*x (bxZ) = (axb)*T

* 1x2Z =& for "1 being the unit element of (F\{0},x*)

Thomas Gajdosik Cosmology 2023 / 09 / 01



1. General Relativity — vector space

examples:

e the real numbers over the real numbers

— the real numbers are a field, so they form also an abelian group ...

e vectors in R3 (three dimensional Euclidean space) over R
e m X n real (complex) matrices over the real (complex) numbers

e tensors with arbitrary, but fixed index structure

— example: all tensors of the form t;7;

e real analytic functions in [0,1] over R
e complex holomorphic functions over C

e solutions to homogeneous linear differential equations over R or C
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1. General Relativity — manifolds
loose mathematical definition:

e a manifold is a space that is locally similar to an Euclidean space

— every point of an n-dimensional manifold has a neighborhood homeomorphic
to an open subset of the n-dimensional space R".

+ "A is homeomorphic to B”" = A can be continuously deformed to resemble B
( actually, there has only to be a continuous invertible mapping between A and B )

= a ball is homeomorphic to a cube, but not to a torus
— We can use our understanding of Euclidean space

— including all our mathematical tools
— and look, where the manifold differs from R"

e we can make local maps (charts) of the manifold

— in regions where maps overlap, they should be compatible
— compatible maps that cover the whole manifold form an atlas

e example: the surface of the earth
— we need at least two maps to show the whole surface
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1. General Relativity — manifolds
why manifolds?

e they generalize normal Euclidean space
— example: the surface of the earth is not really Euclidean

e they preserve the local information

— one can discuss causality
— Nno need for "action at a distance”

e One can study wave phenomena on a manifold
— for that one needs differential equations — wave equations
= differentiable manifolds

e if we can measure distances and angles
= (Pseudo-) Riemannian manifolds
+ they are also equipped with a metric
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1. General Relativity — manifolds
differentiable manifolds

e have a globally defined differential structure
— one can define differentiation similar to Euclidean space
* even multivariable differentiation

e allow a globally defined differentiable tangent space
— one can define differentiable
* functions

x vectors

x tensors

e calculus on differential manifolds
= exterior derivative (Elie Cartan)
— generalizes the differential of a function to forms of higher degree

e the calculus on differential manifolds is differential geometry
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1. General Relativity — differential geometry
describes the properties of the manifold "from within”

e a smooth (i.e. differentiable) curve C' on a manifold M
can be understood as a smooth multidimensional function:

C:R—M (1)
— example: the 3D-helix C(t) = (rcost,rsint,bt)

e studying the smooth curves through a point P:
— differentiation with respect to ¢t gives the tangent vector:

d
Up = £C(t) = (—rsint,rcost,b)|p (2)
P

— all tangent vectors in P form the tangent space Tp

e the tangent space has the same dimension as M
— but is isomorphic (identical in structure) to R"
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1. General Relativity — tangent space
N dimensional tangent space Tp
e since we can reparametrize the curves C(t) — C(s) = C(t(s))

— the length of the tangent vector changes, but not its direction

e one can determine N linearly independent vectors
= basis vectors of the tangent space Tp

e with coordinate functions X(M)(t) on the manifold
— we can define a "natural’ basis by

d d LR 1
) = x|, =" (3)
e any vector in Tp is a linear combination of the basis vectors:

N
A= %:Aué(u) or A = A“c?(u) (4)

— AM are the (contravariant) components of the vector A
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1. General Relativity — tangent space
N dimensional tangent space Tp

e using the coordinates X(u) on the manifold
— we can define smooth functions of the manifold: f(X) € R

= then vectors v of the tangent space Tp
can be seen as directional derivatives

d N9
Dﬁf(f) — af(f‘l' vt) = %:U’u@f(f) (5)

— again, the derivatives 9, = % form "natural’’ basis directions

e Oone can define the cotangent space T]’?, as the dual to Tp:
— every element w € Th is a linear map  w:Tp — R

wla@V +bW) =aw(V)+bw(W)e R for VW eTp and weTpH

— and the dual vector space to T5 is Tp:  V :Tp — R
V(iaw +bn) =aV(w) +bV(n) eR for w,neTp and V eTp
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1. General Relativity — tangent space
N dimensional cotangent space T,

e using the basis vectors €y of Tp

— we can define basis vectors (%) in T]’_f, by

0 (E() = 84 (0) = & (6)
— and write a covector w in terms of the N basis vectors §(H):
w = wﬂé(“) (7)
e the map Tp x T5 —+ R can be expressed as:
w(V) = wu VY0 (€(,y) = wu VYol = w,VF € R (8)
= Onhe can use components without specifying a basis
* assuming that the bases of Tp and T} are related by 97”)(5(“)) = 6"
e all Tp with P € M give the 2N dimensional vector bundle Tp(M)
e all T} with P € M give the 2N dimensional cotangent bundle T} (M)
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1. General Relativity — tangent space

example Tp(S?): the 2-sphere S? with R? attached to each point

e looking at the embedding in R3 we can choose coordinates (z, vy, z)
— for the sphere they have to satisfy z2 4+ y? + 22 = r? =
— going to spherical coordinates we have on the sphere (r = 1,9, ¢)

x With x = sinvY cosy, y = sin¥siny, and z = cosv
= so for a coordinate patch (a map) we can use (¥, ¢)

e the point Py = (Yo, o) in S? is embedded in R3:
— considering the curves through Py

C1(s) = (sinY¥gcoss,sinvgsins,cosdy) (9)
C2(t) = (sintcosyg,sintsin g, CoOSst) (10)
— the tangent plane at Py has tangent vectors in R3
€1y = %Cl(s)}ﬂ): sin Yo (— sin o, COS o, 0) (11)
€y = %Cg(t)‘P = (cos g COS g, COS Yo Sin g, — SinYg) (12)

— since €1y and €y are linearly independent: A with €y = Aé(y)
= they form a basis in Th,

e using this basis, we can write any vector V in Tp, as V = V1) + V2en) = Vie,

— the coordinates of V in Tp(S?) are (9o, o, VL, V?)

Thomas Gajdosik Cosmology 2023 / 09 / 01 11



1. General Relativity — tangent space

example Tp(S?): the 2-sphere S? with R? attached to each point

e picking different curves through Fp is the same as changing the basis of Tp,
— V = V' or (99,0, VL, V?) = (Y0, po, V', V'?)
— this change is a normal coordinate transformation in R2
* which can also stretch and rotate Tp,
e going to a point Py = (Y1, ¢1)
— is a normal translation on S2
— but it can also change the basis of Tp: (€(1), €2)) — (5(’1),5(’2))

— in R? (and R™) we have an understanding, what is parallel
— but 5@) and é'(’l.) are not necessarily parallel

« in the embedding space R3 they would be

€(1) = S9,(—Spo, Cg, 0) not parallel to €1y = 50,(—5¢p,, Cp,, 0) (13)
€2) = (€C9,Cp0» C4Sp0, —50,) not parallel to €(zy = (co,Cpy, C0,50,, —59,)  (14)
« in Tp(S?) we only see
€1y = (Yo, ¥0,1,0) .o €)= (Y0,%0,0,1) (15)
5(/1) = (191,g01,1,0) 5(,2) = (191,901,0,1) (16)
e how can we compare them from inside?
— we need a connection
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1. General Relativity — connections
connections allow the definition of parallel transport on Tp(M)

o for Py, P, € M the affine connection relates Tp, and Tp,
— sO that tangent vector fields can be differentiated
x 1.e. compared between the points Py and P,
* this comparison usually uses the concepts of pullback and pushforward

* these concepts become too mathematically abstract for this lecture ...

e for our example it means, that by using an affine connection
— we can effectively reduce the dimension of Tpr(M) back to Tp (or M)
— and the basis vectors in Tp are smooth functions of the point:

€1) (Y, ) and €2) (Y, ) (17)

e the Cartan connection uses the Lie group structure of M
— and transports (coordinate) frames without specifying a metric
x uses the exterior derivative

e the Levi-Civita connection uses the additional structure of a metric
= Riemannian manifolds . will be assumed for the rest of this lecture
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1. General Relativity — exterior derivative

formalizes the known differential of a multiparametric function

0
df (x,y,z) = a—fdac + —]yfd + a—]zcdz (18)

e choosing coordinates (z,v,2) = (z1, 22, 23)

e the quantities dz, dy, and dz are understood as covectors or 1-forms
— forming a basis of T'; with o0V) = dg¥

e the wegde product "A" defines the multiplication of forms
— it is antisymmetric: dx A dy = —dy N dx
= it is nilpotent: de Adx = 0O
— for obvious differentials dx the A can be omitted: dxdy := dx A dy

— a one-form in this natural basis: w = wydz#
— a p-form in this natural basis: €2 = €2, .. y,dxH1 A - A dxhp

* Obviously, Qul---up IS completely antisymmetric in its indices

x* and p < N, the dimension of M
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1. General Relativity — exterior derivative
features of the exterior derivative d

e increases the grade of a form

— defining the smooth functions f or z* as O-forms

— we have 1-forms df or dx*

— a 2-form F = Fj,dz* A dz¥ gives a 3-form dF = (0,F,,)dx” N dz# N dz”
— for a N-form I =1, .., dx* A--- Ndx*¥ we get dI =0

e defines the natural basis by
df (V') = (Ouf)dx"(V"0,) = V¥V (Ouf)é = VFO.(f) = V(f) (19)

e follows the Leibnitz rule
— for a p-form o« and a g-form

dlanB) =daNB+ (—1)PaAndB (20)

e is useful for the discussion of fiber bundles G(M)
— with the Lie group G defined at every point of M
— the tangent bundle Tp(M) is a fiber bundle with the tangent space Tp
as the structure given at each point in M

e all forms on M form a vector space of dimension oN
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1. General Relativity — Lie derivative
vector fields as derivatives of functions
e df(V) =V (f) is again a function on M for V € Tp

e for X,Y € I'p we can define the Lie derivative or Lie bracket
Lx(Y)(f) =X, Y](f) =XX())-Y(X()) €R (21)

e the Lie bracket
— is bilinear and antisymmetric
— fulfills the Jacobi identity

(XY, Z] 4+ 2, [ X Y]+ [V, [Z2,X]] =0 (22)
— Lx(Y) can be seen as the directional derivative of Y along X
= it allows to define a parallel transport

« for [ X,Y](f) =0, Y(f) stays constant along the flow of X

e the Lie bracket endows M with the algebraic structure of a Lie algebra

Thomas Gajdosik Cosmology 2023 / 09 / 01 16



1. General Relativity — the metric
mathematical definition:
e a metric in M is a symmetric, bilinear, non-degenerate function
gp . Tp xTp —- R (23)

— the metric acts on (contravariant) vectors (tensor indices)
— symmetric means ¢g(X,Y)=g¢g(Y,X)e R for X, Y € Tp
— Dbilinear means for X,Y,Z € Tp and a,b,c € R

g(aX +bY,cZ) =acg(X,Z)+bcg(Y,Z) € R (24)

— non-degenerate: g(X,Y) =0 forall Y €e Tp only if X =0
— acting on the basis vectors f?(u) gives the metric tensor

9. (P) = (&), €0 (25)
e the metric allows length and angle measurements
g(X,Y)
IX]:=/lg(X,X)| and  cosg= (26)
v [ X[ s (1Y)
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1. General Relativity — the metric
examples for the metric
e in Euclidean space the metric is the normal dot-product:
qa b= gjkajbk = jkajbk SO gj=r =1 and gz, =0 (27)

— we can use this metric of the embedding to get the induced metric in S?

git = 9(€(), €k)) = €(j) " €w) SO g11 = sj, g2 =g21 =0 g2 =1 (28)
= as we can see, the metric tensor depends on the position
e in Minkovsky space we had gop = 1, g4 = —1, and g+, =
— we can generalize the line element
As? = (cAt)? — (Ax)? — (Ay)? — (A2)? = gzt @ Az”  (29)

— the "differentials’” Ax here are not multiplied with their "natural” wedge product

e one can define the inverse metric g"” by
9" gup = 5Z (30)

— the inverse metric is the metric of the cotangent space
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