1. General Relativity — vectors

What is a vector?

- a quantity that has a size and a direction
 - the size of a vector \vec{a} can be written as $|\vec{a}|$
 - $|\vec{a}|$ is usually a real number, but not necessarily positive
 - the direction is "optional"
- mathematical definition:
 - a vector is an element of a vector space
- examples
 - the real number x
 - the vector pointing from a point A to a point B
 - an *n*-tuple of numbers $\vec{x} = (x_1, x_2, \dots, x_n)$
 - the RGB color value (r, g, b)
- in Geometric Algebra
 - vectors are objects, that do not necessarily commute: $ab \neq ba$

1. General Relativity — vector space

mathematical definition:

- A vector space over a field (corpus) F is a set V with "+" and "*"
 - (V,+) forms an abelian group: for $\vec{x}, \vec{y}, \vec{z} \in V$

*
$$\vec{x} + (\vec{y} + \vec{z}) = (\vec{x} + \vec{y}) + \vec{z}$$

- $* \vec{x} + \vec{y} = \vec{y} + \vec{x}$
- * there exists $\vec{0} \in V$ with $\vec{x} + \vec{0} = \vec{x}$ for all $\vec{x} \in V$
- * for all $\vec{x} \in V$ there exists $(-\vec{x}) \in V$ such that $\vec{x} + (-\vec{x}) = \vec{0}$

*
$$a * (\vec{x} + \vec{y}) = a * \vec{x} + a * \vec{y}$$
 and $(a + b) * \vec{x} = a * \vec{x} + b * \vec{x}$

$$* a * (b * \vec{x}) = (a * b) * \vec{x}$$

* $1 * \vec{x} = \vec{x}$ for "1" being the unit element of $(F \setminus \{0\}, *)$

1. General Relativity — vector space examples:

- the real numbers over the real numbers
 - the real numbers are a field, so they form also an abelian group ...
- vectors in \mathbf{R}^3 (three dimensional Euclidean space) over \mathbf{R}
- $m \times n$ real (complex) matrices over the real (complex) numbers
- tensors with arbitrary, but fixed index structure
 - example: all tensors of the form $t_i{}^j{}_k$
- \bullet real analytic functions in [0,1] over ${\bf R}$
- complex holomorphic functions over C
- \bullet solutions to homogeneous linear differential equations over ${\bf R}$ or ${\bf C}$

1. General Relativity — manifolds

loose mathematical definition:

- a manifold is a space that is **locally** similar to an Euclidean space
 - every point of an n-dimensional manifold has a neighborhood homeomorphic to an open subset of the n-dimensional space \mathbf{R}^n .
 - * 'A is homeomorphic to B'' = A can be continuously deformed to resemble B (actually, there has only to be a continuous invertible mapping between A and B)
 - $\Rightarrow\,$ a ball is homeomorphic to a cube, but not to a torus
- ⇒ we can use our understanding of Euclidean space
 - including all our mathematical tools
 - and look, where the manifold differs from ${f R}^n$
 - we can make local maps (charts) of the manifold
 - in regions where maps overlap, they should be compatible
 - compatible maps that cover the whole manifold form an atlas
 - example: the surface of the earth
 - we need at least two maps to show the whole surface

1. General Relativity — manifolds why manifolds?

- they generalize normal Euclidean space
 - example: the surface of the earth is not really Euclidean
- they preserve the local information
- \Rightarrow one can discuss causality
 - no need for "action at a distance"
 - one can study wave phenomena on a manifold
 - for that one needs differential equations wave equations
 - ⇒ differentiable manifolds
 - if we can measure distances and angles
 - ⇒ (Pseudo-) Riemannian manifolds
 - * they are also equipped with a metric

1. General Relativity — manifolds

differentiable manifolds

- have a globally defined differential structure
 - one can define differentiation similar to Euclidean space
 - * even multivariable differentiation
- allow a globally defined differentiable tangent space
 - one can define differentiable
 - * functions
 - * vectors
 - * tensors
- calculus on differential manifolds
 - \Rightarrow exterior derivative (Élie Cartan)
 - generalizes the differential of a function to forms of higher degree
- the calculus on differential manifolds is differential geometry

1. General Relativity — differential geometry

describes the properties of the manifold "from within"

• a smooth (i.e. differentiable) curve C on a manifold M can be understood as a smooth multidimensional function:

$$C: \mathbf{R} \to M \tag{1}$$

- example: the 3D-helix $C(t) = (r \cos t, r \sin t, bt)$
- studying the smooth curves through a point P:
 - differentiation with respect to t gives the tangent vector:

$$\vec{v}_P = \frac{d}{dt} C(t) \Big|_P = (-r \sin t, r \cos t, b) \Big|_P$$
(2)

- all tangent vectors in P form the tangent space T_P

- \bullet the tangent space has the same dimension as M
 - but is isomorphic (identical in structure) to \mathbf{R}^n

- 1. General Relativity tangent space
- N dimensional tangent space $T_{\!P}$
 - since we can reparametrize the curves $C(t) \rightarrow C(s) = C(t(s))$
 - the length of the tangent vector changes, but not its direction
 - \bullet one can determine N linearly independent vectors
 - \Rightarrow basis vectors of the tangent space T_P
 - with coordinate functions $X_{(\mu)}(t)$ on the manifold
 - we can define a "natural" basis by

$$\vec{e}_{(\mu)} = \frac{d}{dt} X_{(\mu)}(t) \Big|_{P} = "\partial_{(\mu)}"$$
 (3)

• any vector in T_P is a linear combination of the basis vectors:

$$\vec{A} = \sum_{\mu}^{N} A^{\mu} \vec{e}_{(\mu)} \qquad \text{or} \qquad A = A^{\mu} \partial_{(\mu)} \tag{4}$$

– A^{μ} are the (contravariant) components of the vector A

- 1. General Relativity tangent space
- ${\cal N}$ dimensional tangent space ${\cal T}_{\cal P}$
 - using the coordinates $X_{(\mu)}$ on the manifold
 - we can define smooth functions of the manifold: $f(X) \in \mathbf{R}$
 - \Rightarrow then vectors \vec{v} of the tangent space T_P

can be seen as directional derivatives

$$D_{\vec{v}}f(\vec{x}) = \frac{d}{dt}f(\vec{x} + \vec{v}t) = \sum_{\mu}^{N} v^{\mu} \frac{\partial}{\partial x^{\mu}} f(\vec{x})$$
(5)

– again, the derivatives $\partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$ form 'natural'' basis directions

- one can define the cotangent space T_P^* as the dual to T_P :
 - every element $\omega \in T_P^*$ is a linear map $\omega : T_P \to \mathbf{R}$

 $\omega(aV + bW) = a\omega(V) + b\omega(W) \in \mathbf{R} \quad \text{for} \quad V, W \in T_P \quad \text{and} \quad \omega \in T_P^*$

- and the dual vector space to T_P^* is T_P : $V: T_P^* \to \mathbf{R}$

$$V(a\omega + b\eta) = aV(\omega) + bV(\eta) \in \mathbf{R}$$
 for $\omega, \eta \in T_P^*$ and $V \in T_P$

- 1. General Relativity tangent space
- N dimensional cotangent space T_P^\ast
 - using the basis vectors $\vec{e}_{(\mu)}$ of T_P
 - we can define basis vectors $\vec{\theta}^{(\mu)}$ in T_P^* by

$$\vec{\theta}^{(\nu)}(\vec{e}_{(\mu)}) = \vec{e}_{(\mu)}(\vec{\theta}^{(\nu)}) = \delta^{\nu}_{\mu}$$
(6)

- and write a covector ω in terms of the N basis vectors $\vec{\theta}^{(\mu)}$: $\omega = \omega_{\mu} \vec{\theta}^{(\mu)}$
- the map $T_P \times T_P^* \to \mathbf{R}$ can be expressed as:

$$\omega(V) = \omega_{\mu} V^{\nu} \vec{\theta}^{(\mu)}(\vec{e}_{(\nu)}) = \omega_{\mu} V^{\nu} \delta^{\mu}_{\nu} = \omega_{\mu} V^{\mu} \in \mathbf{R}$$
(8)

⇒ one can use components without specifying a basis

- * assuming that the bases of T_P and T_P^* are related by $\vec{\theta}^{(\nu)}(\vec{e}_{(\mu)}) = \delta^{\nu}_{\mu}$
- all T_P with $P \in M$ give the 2N dimensional vector bundle $T_P(M)$
- all T_P^* with $P \in M$ give the 2N dimensional cotangent bundle $T_P^*(M)$

(7)

1. General Relativity — tangent space

example $T_P(S^2)$: the 2-sphere S^2 with \mathbf{R}^2 attached to each point

- looking at the embedding in \mathbf{R}^3 we can choose coordinates (x,y,z)
 - for the sphere they have to satisfy $x^2 + y^2 + z^2 = r^2 = 1$
 - going to spherical coordinates we have on the sphere ($r=1,\vartheta,\varphi)$

* with $x = \sin \vartheta \cos \varphi$, $y = \sin \vartheta \sin \varphi$, and $z = \cos \vartheta$

- \Rightarrow so for a coordinate patch (a map) we can use (ϑ, φ)
- the point $P_0 = (\vartheta_0, \varphi_0)$ in S^2 is embedded in \mathbf{R}^3 :
 - considering the curves through P_0

$$C_1(s) = (\sin \vartheta_0 \cos s, \sin \vartheta_0 \sin s, \cos \vartheta_0)$$
(9)

$$C_2(t) = (\sin t \cos \varphi_0, \sin t \sin \varphi_0, \cos t)$$
(10)

– the tangent plane at P_0 has tangent vectors in \mathbf{R}^3

$$\vec{e}_{(1)} = \frac{d}{ds} C_1(s) \Big|_{P_0} = \sin \vartheta_0(-\sin \varphi_0, \cos \varphi_0, 0)$$
(11)

$$\vec{e}_{(2)} = \frac{d}{dt}C_2(t)\Big|_{P_0} = (\cos\vartheta_0\cos\varphi_0, \cos\vartheta_0\sin\varphi_0, -\sin\vartheta_0)$$
(12)

- since $\vec{e}_{(1)}$ and $\vec{e}_{(2)}$ are linearly independent: $\not\exists \lambda$ with $\vec{e}_{(1)} = \lambda \vec{e}_{(2)}$ \Rightarrow they form a basis in T_{P_0}

- using this basis, we can write any vector V in T_{P_0} as $V = V^1 \vec{e}_{(1)} + V^2 \vec{e}_{(2)} = V^i \vec{e}_{(i)}$
- \Rightarrow the coordinates of V in $T_P(S^2)$ are $(\vartheta_0, \varphi_0, V^1, V^2)$

1. General Relativity — tangent space

example $T_P(S^2)$: the 2-sphere S^2 with \mathbf{R}^2 attached to each point

- picking different curves through P_0 is the same as changing the basis of T_{P_0}
 - $V \to V'$ or $(\vartheta_0, \varphi_0, V^1, V^2) \to (\vartheta_0, \varphi_0, V'^1, V'^2)$
 - this change is a normal coordinate transformation in ${f R}^2$
 - $\ast\,$ which can also stretch and rotate T_{P_0}
- going to a point $P_1 = (\vartheta_1, \varphi_1)$
 - is a normal translation on ${\cal S}^2$
 - but it can also change the basis of T_P : $(\vec{e}_{(1)}, \vec{e}_{(2)}) \rightarrow (\vec{e}_{(1)}', \vec{e}_{(2)}')$
 - in \mathbf{R}^2 (and \mathbf{R}^n) we have an understanding, what is parallel
 - but $\vec{e}_{(i)}$ and $\vec{e}'_{(i)}$ are not necessarily parallel
 - $\ast\,$ in the embedding space ${\bf R}^3$ they would be

$$\vec{e}_{(1)} = s_{\vartheta_0}(-s_{\varphi_0}, c_{\varphi_0}, 0)$$
 not parallel to $\vec{e}_{(1)}' = s_{\vartheta_1}(-s_{\varphi_1}, c_{\varphi_1}, 0)$ (13)

$$\vec{e}_{(2)} = (c_{\vartheta_0}c_{\varphi_0}, c_{\vartheta_0}s_{\varphi_0}, -s_{\vartheta_0}) \quad \text{not parallel to} \quad \vec{e}_{(2)}' = (c_{\vartheta_1}c_{\varphi_1}, c_{\vartheta_1}s_{\varphi_1}, -s_{\vartheta_1}) \quad (14)$$

* in $T_P(S^2)$ we only see

$$\vec{e}_{(1)} = (\vartheta_0, \varphi_0, 1, 0) \qquad \dots \qquad \vec{e}_{(2)} = (\vartheta_0, \varphi_0, 0, 1)$$
(15)

$$\vec{e}_{(1)}' = (\vartheta_1, \varphi_1, 1, 0) \qquad \dots \qquad \vec{e}_{(2)}' = (\vartheta_1, \varphi_1, 0, 1)$$
 (16)

- how can we compare them from inside?
 - we need a connection

1. General Relativity — connections

connections allow the definition of parallel transport on $T_P(M)$

- for $P_0, P_1 \in M$ the affine connection relates T_{P_0} and T_{P_1}
 - so that tangent vector fields can be differentiated
 - * i.e. compared between the points P_0 and P_1
 - * this comparison usually uses the concepts of pullback and pushforward
 - $\ast\,$ these concepts become too mathematically abstract for this lecture \ldots
- for our example it means, that by using an affine connection
 - we can effectively reduce the dimension of $T_P(M)$ back to T_P (or M)
 - and the basis vectors in T_P are smooth functions of the point:

$$\vec{e}_{(1)}(\vartheta,\varphi)$$
 and $\vec{e}_{(2)}(\vartheta,\varphi)$ (17)

- the Cartan connection uses the Lie group structure of ${\cal M}$
 - and transports (coordinate) frames without specifying a metric
 - \ast uses the exterior derivative
- the Levi-Civita connection uses the additional structure of a metric
 - \Rightarrow Riemannian manifolds ... will be assumed for the rest of this lecture

1. General Relativity — exterior derivative

formalizes the known differential of a multiparametric function

$$df(x, y, z) = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$$
(18)

• choosing coordinates $(x, y, z) = (x^1, x^2, x^3)$

- the quantities dx, dy, and dz are understood as covectors or 1-forms - forming a basis of T_P^* with $\vec{\theta}^{(\nu)} = dx^{\nu}$
- \bullet the wegde product ''^'' defines the multiplication of forms
 - it is antisymmetric: $dx \wedge dy = -dy \wedge dx$
 - \Rightarrow it is nilpotent: $dx \wedge dx = 0$
 - for obvious differentials dx the \wedge can be omitted: $dx dy := dx \wedge dy$
 - a one-form in this natural basis: $\omega = \omega_{\mu} dx^{\mu}$
 - a *p*-form in this natural basis: $\Omega = \Omega_{\mu_1 \dots \mu_p} dx^{\mu_1} \wedge \dots \wedge dx^{\mu_p}$
 - * obviously, $\Omega_{\mu_1 \ldots \mu_p}$ is completely antisymmetric in its indices
 - \ast and $p\leq N\text{, the dimension of }M$

1. General Relativity — exterior derivative

features of the exterior derivative \boldsymbol{d}

- increases the grade of a form
 - defining the smooth functions f or x^{μ} as 0-forms
 - we have 1-forms df or dx^{μ}
 - a 2-form $F = F_{\mu\nu}dx^{\mu} \wedge dx^{\nu}$ gives a 3-form $dF = (\partial_{\rho}F_{\mu\nu})dx^{\rho} \wedge dx^{\mu} \wedge dx^{\nu}$
 - for a N-form $I = I_{\mu_1 \dots \mu_N} dx^{\mu_1} \wedge \dots \wedge dx^{\mu_N}$ we get dI = 0
- defines the natural basis by

$$df(V) = (\partial_{\mu}f)dx^{\mu}(V^{\nu}\partial_{\nu}) = V^{\nu}(\partial_{\mu}f)\delta^{\mu}_{\nu} = V^{\mu}\partial_{\mu}(f) = V(f)$$
(19)

- follows the Leibnitz rule
 - for a $p\text{-}\mathsf{form}\ \alpha$ and a $q\text{-}\mathsf{form}\ \beta$

$$d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^p \alpha \wedge d\beta$$
(20)

- is useful for the discussion of fiber bundles G(M)
 - with the Lie group ${\cal G}$ defined at every point of ${\cal M}$
 - the tangent bundle $T_P(M)$ is a fiber bundle with the tangent space T_P as the structure given at each point in M
- all forms on M form a vector space of dimension 2^N

1. General Relativity — Lie derivative

vector fields as derivatives of functions

- df(V) = V(f) is again a function on M for $V \in T_P$
- for $X, Y \in T_P$ we can define the Lie derivative or Lie bracket

$$\mathcal{L}_X(Y)(f) = [X, Y](f) := X(Y(f)) - Y(X(f)) \in \mathbb{R}$$
(21)

- the Lie bracket
 - is bilinear and antisymmetric
 - fulfills the Jacobi identity

[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0(22)

- $\mathcal{L}_X(Y)$ can be seen as the directional derivative of Y along X
 - \Rightarrow it allows to define a parallel transport
 - * for [X, Y](f) = 0, Y(f) stays constant along the flow of X
- the Lie bracket endows M with the algebraic structure of a Lie algebra

1. General Relativity — the metric

mathematical definition:

• a metric in M is a symmetric, bilinear, non-degenerate function

$$g_P: T_P \times T_P \to \mathbf{R} \tag{23}$$

- the metric acts on (contravariant) vectors (tensor indices)
- symmetric means $g(X,Y) = g(Y,X) \in \mathbf{R}$ for $X,Y \in T_P$
- bilinear means for $X, Y, Z \in T_P$ and $a, b, c \in \mathbf{R}$

$$g(aX + bY, cZ) = acg(X, Z) + bcg(Y, Z) \in \mathbf{R}$$
(24)

- non-degenerate: g(X, Y) = 0 for all $Y \in T_P$ only if X = 0
- acting on the basis vectors $\vec{e}_{(\mu)}$ gives the metric tensor

$$g_{\mu\nu}(P) = g(\vec{e}_{(\mu)}, \vec{e}_{(\nu)})\Big|_P$$
 (25)

• the metric allows length and angle measurements

$$||X|| := \sqrt{|g(X,X)|}$$
 and $\cos \varphi = \frac{g(X,Y)}{||X|| * ||Y||}$ (26)

1. General Relativity — the metric

examples for the metric

• in Euclidean space the metric is the normal dot-product:

$$\vec{a} \cdot \vec{b} = g_{jk} a^j b^k = \delta_{jk} a^j b^k$$
 so $g_{j=k} = 1$ and $g_{j\neq k} = 0$ (27)

- we can use this metric of the embedding to get the induced metric in S^2 $g_{jk} = g(\vec{e}_{(j)}, \vec{e}_{(k)}) = \vec{e}_{(j)} \cdot \vec{e}_{(k)}$ so $g_{11} = s_{\vartheta_0}^2$ $g_{12} = g_{21} = 0$ $g_{22} = 1$ (28)

- \Rightarrow as we can see, the metric tensor depends on the position
- in Minkovsky space we had $g_{00}=1$, $g_{ii}=-1$, and $g_{\mu\neq
 u}=0$

- we can generalize the line element

$$\Delta s^2 = (c\Delta t)^2 - (\Delta x)^2 - (\Delta y)^2 - (\Delta z)^2 = g_{\mu\nu} \Delta x^{\mu} \otimes \Delta x^{\nu}$$
(29)

- the "differentials" Δx here are **not** multiplied with their "natural" wedge product

• one can define the inverse metric $g^{\mu
u}$ by

$$g^{\mu\nu}g_{\mu\rho} = \delta^{\nu}_{\rho} \tag{30}$$

- the inverse metric is the metric of the cotangent space