What is a vector?

- a quantity that has a size and a direction
- the size of a vector \vec{a} can be written as $|\vec{a}|$
- | $\vec{a} \mid$ is usually a real number, but not necessarily positive
- the direction is 'optional"
- mathematical definition:
- a vector is an element of a vector space
- examples
- the real number x
- the vector pointing from a point A to a point B
- an n-tuple of numbers $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- the RGB color value (r, g, b)
- in Geometric Algebra
- vectors are objects, that do not necessarily commute: $a b \neq b a$

1. General Relativity

mathematical definition:

- A vector space over a field (corpus) F is a set V with "'+' and '" ${ }^{\prime}$ '
- ($V,+$) forms an abelian group: for $\vec{x}, \vec{y}, \vec{z} \in V$
* $\vec{x}+(\vec{y}+\vec{z})=(\vec{x}+\vec{y})+\vec{z}$
* $\vec{x}+\vec{y}=\vec{y}+\vec{x}$
* there exists $\overrightarrow{0} \in V$ with $\vec{x}+\overrightarrow{0}=\vec{x}$ for all $\vec{x} \in V$
* for all $\vec{x} \in V$ there exists $(-\vec{x}) \in V$ such that $\vec{x}+(-\vec{x})=\overrightarrow{0}$
$-(F,+, *)$ forms a field (corpus)
* $(F,+)$ forms an abelian group
* $(F \backslash\{0\}, *)$ forms an abelian group
- for $a, b \in F$
* $a *(\vec{x}+\vec{y})=a * \vec{x}+a * \vec{y} \quad$ and $\quad(a+b) * \vec{x}=a * \vec{x}+b * \vec{x}$
* $a *(b * \vec{x})=(a * b) * \vec{x}$
* $1 * \vec{x}=\vec{x}$ for ''1' being the unit element of $(F \backslash\{0\}, *)$

1. General Relativity - vector space

examples:

- the real numbers over the real numbers
- the real numbers are a field, so they form also an abelian group ...
- vectors in \mathbf{R}^{3} (three dimensional Euclidean space) over \mathbf{R}
- $m \times n$ real (complex) matrices over the real (complex) numbers
- tensors with arbitrary, but fixed index structure
- example: all tensors of the form $t_{i}{ }^{j}{ }_{k}$
- real analytic functions in $[0,1]$ over \mathbf{R}
- complex holomorphic functions over \mathbf{C}
- solutions to homogeneous linear differential equations over \mathbf{R} or \mathbf{C}

1. General Relativity
 \qquad

loose mathematical definition:

- a manifold is a space that is locally similar to an Euclidean space
- every point of an n-dimensional manifold has a neighborhood homeomorphic to an open subset of the n-dimensional space \mathbf{R}^{n}.
* "A is homeomorphic to B " $=A$ can be continuously deformed to resemble B (actually, there has only to be a continuous invertible mapping between A and B)
\Rightarrow a ball is homeomorphic to a cube, but not to a torus
\Rightarrow we can use our understanding of Euclidean space
- including all our mathematical tools
- and look, where the manifold differs from \mathbf{R}^{n}
- we can make local maps (charts) of the manifold
- in regions where maps overlap, they should be compatible
- compatible maps that cover the whole manifold form an atlas
- example: the surface of the earth
- we need at least two maps to show the whole surface

1. General Relativity - manifolds

why manifolds?

- they generalize normal Euclidean space
- example: the surface of the earth is not really Euclidean
- they preserve the local information
\Rightarrow one can discuss causality
- no need for 'action at a distance"'
- one can study wave phenomena on a manifold
- for that one needs differential equations - wave equations
\Rightarrow differentiable manifolds
- if we can measure distances and angles
\Rightarrow (Pseudo-) Riemannian manifolds
* they are also equipped with a metric

1. General Relativity - manifolds

differentiable manifolds

- have a globally defined differential structure
- one can define differentiation similar to Euclidean space * even multivariable differentiation
- allow a globally defined differentiable tangent space
- one can define differentiable
* functions
* vectors
* tensors
- calculus on differential manifolds
\Rightarrow exterior derivative (Ėlie Cartan)
- generalizes the differential of a function to forms of higher degree
- the calculus on differential manifolds is differential geometry

1. General Relativity - differential geometry

describes the properties of the manifold ''from within'"

- a smooth (i.e. differentiable) curve C on a manifold M can be understood as a smooth multidimensional function:

$$
\begin{equation*}
C: \mathbf{R} \rightarrow M \tag{1}
\end{equation*}
$$

- example: the 3D-helix $C(t)=(r \cos t, r \sin t, b t)$
- studying the smooth curves through a point P :
- differentiation with respect to t gives the tangent vector:

$$
\begin{equation*}
\vec{v}_{P}=\left.\frac{d}{d t} C(t)\right|_{P}=\left.(-r \sin t, r \cos t, b)\right|_{P} \tag{2}
\end{equation*}
$$

- all tangent vectors in P form the tangent space T_{P}
- the tangent space has the same dimension as M
- but is isomorphic (identical in structure) to \mathbf{R}^{n}

1. General Relativity - tangent space

N dimensional tangent space T_{P}

- since we can reparametrize the curves $C(t) \rightarrow C(s)=C(t(s))$
- the length of the tangent vector changes, but not its direction
- one can determine N linearly independent vectors
\Rightarrow basis vectors of the tangent space T_{P}
- with coordinate functions $X_{(\mu)}(t)$ on the manifold
- we can define a 'natural' basis by

$$
\begin{equation*}
\vec{e}_{(\mu)}=\left.\frac{d}{d t} X_{(\mu)}(t)\right|_{P}={ }^{\prime \prime} \partial_{(\mu)}, " \tag{3}
\end{equation*}
$$

- any vector in T_{P} is a linear combination of the basis vectors:

$$
\begin{equation*}
\vec{A}=\sum_{\mu}^{N} A^{\mu} \vec{e}_{(\mu)} \quad \text { or } \quad A=A^{\mu} \partial_{(\mu)} \tag{4}
\end{equation*}
$$

- A^{μ} are the (contravariant) components of the vector A

1. General Relativity - tangent space

N dimensional tangent space T_{P}

- using the coordinates $X_{(\mu)}$ on the manifold
- we can define smooth functions of the manifold: $f(X) \in \mathbf{R}$
\Rightarrow then vectors \vec{v} of the tangent space T_{P} can be seen as directional derivatives

$$
\begin{equation*}
D_{\vec{v}} f(\vec{x})=\frac{d}{d t} f(\vec{x}+\vec{v} t)=\sum_{\mu}^{N} v^{\mu} \frac{\partial}{\partial x^{\mu}} f(\vec{x}) \tag{5}
\end{equation*}
$$

- again, the derivatives $\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}$ form 'natural'' basis directions
- one can define the cotangent space T_{P}^{*} as the dual to T_{P} :
- every element $\omega \in T_{P}^{*}$ is a linear map $\omega: T_{P} \rightarrow \mathbf{R}$

$$
\omega(a V+b W)=a \omega(V)+b \omega(W) \in \mathbf{R} \quad \text { for } \quad V, W \in T_{P} \quad \text { and } \quad \omega \in T_{P}^{*}
$$

- and the dual vector space to T_{P}^{*} is $T_{P}: \quad V: T_{P}^{*} \rightarrow \mathbf{R}$

$$
V(a \omega+b \eta)=a V(\omega)+b V(\eta) \in \mathbf{R} \quad \text { for } \quad \omega, \eta \in T_{P}^{*} \quad \text { and } \quad V \in T_{P}
$$

1. General Relativity - tangent space

N dimensional cotangent space T_{P}^{*}

- using the basis vectors $\vec{e}_{(\mu)}$ of T_{P}
- we can define basis vectors $\vec{\theta}(\mu)$ in T_{P}^{*} by

$$
\begin{equation*}
\vec{\theta}^{(\nu)}\left(\vec{e}_{(\mu)}\right)=\vec{e}_{(\mu)}\left(\vec{\theta}^{(\nu)}\right)=\delta_{\mu}^{\nu} \tag{6}
\end{equation*}
$$

- and write a covector ω in terms of the N basis vectors $\vec{\theta}(\mu)$:

$$
\begin{equation*}
\omega=\omega_{\mu} \vec{\theta}^{(\mu)} \tag{7}
\end{equation*}
$$

- the map $T_{P} \times T_{P}^{*} \rightarrow \mathbf{R}$ can be expressed as:

$$
\begin{equation*}
\omega(V)=\omega_{\mu} V^{\nu} \vec{\theta}^{(\mu)}\left(\vec{e}_{(\nu)}\right)=\omega_{\mu} V^{\nu} \delta_{\nu}^{\mu}=\omega_{\mu} V^{\mu} \in \mathbf{R} \tag{8}
\end{equation*}
$$

\Rightarrow one can use components without specifying a basis * assuming that the bases of T_{P} and T_{P}^{*} are related by $\vec{\theta}^{(\nu)}\left(\vec{e}_{(\mu)}\right)=\delta_{\mu}^{\nu}$

- all T_{P} with $P \in M$ give the $2 N$ dimensional vector bundle $T_{P}(M)$
- all T_{P}^{*} with $P \in M$ give the $2 N$ dimensional cotangent bundle $T_{P}^{*}(M)$

1. General Relativity - tangent space

example $T_{P}\left(S^{2}\right)$: the 2-sphere S^{2} with \mathbf{R}^{2} attached to each point

- looking at the embedding in \mathbf{R}^{3} we can choose coordinates (x, y, z)
- for the sphere they have to satisfy $x^{2}+y^{2}+z^{2}=r^{2}=1$
- going to spherical coordinates we have on the sphere $(r=1, \vartheta, \varphi)$
* with $x=\sin \vartheta \cos \varphi, y=\sin \vartheta \sin \varphi$, and $z=\cos \vartheta$
\Rightarrow so for a coordinate patch (a map) we can use (ϑ, φ)
- the point $P_{0}=\left(\vartheta_{0}, \varphi_{0}\right)$ in S^{2} is embedded in \mathbf{R}^{3} :
- considering the curves through P_{0}

$$
\begin{align*}
C_{1}(s) & =\left(\sin \vartheta_{0} \cos s, \sin \vartheta_{0} \sin s, \cos \vartheta_{0}\right) \tag{9}\\
C_{2}(t) & =\left(\sin t \cos \varphi_{0}, \sin t \sin \varphi_{0}, \cos t\right) \tag{10}
\end{align*}
$$

- the tangent plane at P_{0} has tangent vectors in \mathbf{R}^{3}

$$
\begin{align*}
& \vec{e}_{(1)}=\left.\frac{d}{d s} C_{1}(s)\right|_{P_{0}}=\sin \vartheta_{0}\left(-\sin \varphi_{0}, \cos \varphi_{0}, 0\right) \tag{11}\\
& \vec{e}_{(2)}=\left.\frac{d}{d t} C_{2}(t)\right|_{P_{0}}=\left(\cos \vartheta_{0} \cos \varphi_{0}, \cos \vartheta_{0} \sin \varphi_{0},-\sin \vartheta_{0}\right) \tag{12}
\end{align*}
$$

- since $\vec{e}_{(1)}$ and $\vec{e}_{(2)}$ are linearly independent: $\nexists \lambda$ with $\vec{e}_{(1)}=\lambda \vec{e}_{(2)}$
\Rightarrow they form a basis in $T_{P_{0}}$
- using this basis, we can write any vector V in $T_{P_{0}}$ as $V=V^{1} \vec{e}_{(1)}+V^{2} \vec{e}_{(2)}=V^{i} \vec{e}_{(i)}$
\Rightarrow the coordinates of V in $T_{P}\left(S^{2}\right)$ are $\left(\vartheta_{0}, \varphi_{0}, V^{1}, V^{2}\right)$

1. General Relativity - tangent space

example $T_{P}\left(S^{2}\right)$: the 2-sphere S^{2} with \mathbf{R}^{2} attached to each point

- picking different curves through P_{0} is the same as changing the basis of $T_{P_{0}}$
$-V \rightarrow V^{\prime}$ or $\left(\vartheta_{0}, \varphi_{0}, V^{1}, V^{2}\right) \rightarrow\left(\vartheta_{0}, \varphi_{0}, V^{\prime 1}, V^{\prime 2}\right)$
- this change is a normal coordinate transformation in \mathbf{R}^{2}
* which can also stretch and rotate $T_{P_{0}}$
- going to a point $P_{1}=\left(\vartheta_{1}, \varphi_{1}\right)$
- is a normal translation on S^{2}
- but it can also change the basis of $T_{P}:\left(\vec{e}_{(1)}, \vec{e}_{(2)}\right) \rightarrow\left(\vec{e}_{(1)}^{\prime}, \vec{e}_{(2)}^{\prime}\right)$
- in \mathbf{R}^{2} (and \mathbf{R}^{n}) we have an understanding, what is parallel
- but $\vec{e}_{(i)}$ and $\vec{e}_{(i)}^{\prime}$ are not necessarily parallel
* in the embedding space \mathbf{R}^{3} they would be

$$
\begin{array}{rll}
\vec{e}_{(1)}=s_{\vartheta_{0}}\left(-s_{\varphi_{0}}, c_{\varphi_{0}}, 0\right) & \text { not parallel to } & \vec{e}_{(1)}^{\prime}=s_{\vartheta_{1}}\left(-s_{\varphi_{1}}, c_{\varphi_{1}}, 0\right) \\
\vec{e}_{(2)}=\left(c_{\vartheta_{0}} c_{\varphi_{0}}, c_{\vartheta_{0}} s_{\varphi_{0}},-s_{\vartheta_{0}}\right) & \text { not parallel to } & \vec{e}_{(2)}^{\prime}=\left(c_{\vartheta_{1}} c_{\varphi_{1}}, c_{\vartheta_{1}} s_{\varphi_{1}},-s_{\vartheta_{1}}\right) \tag{14}
\end{array}
$$

* in $T_{P}\left(S^{2}\right)$ we only see

$$
\begin{array}{lll}
\vec{e}_{(1)}=\left(\vartheta_{0}, \varphi_{0}, 1,0\right) & \ldots & \vec{e}_{(2)}=\left(\vartheta_{0}, \varphi_{0}, 0,1\right) \\
\vec{e}_{(1)}^{\prime}=\left(\vartheta_{1}, \varphi_{1}, 1,0\right) & \ldots & \vec{e}_{(2)}^{\prime}=\left(\vartheta_{1}, \varphi_{1}, 0,1\right) \tag{16}
\end{array}
$$

- how can we compare them from inside?
- we need a connection

1. General Relativity - connections
connections allow the definition of parallel transport on $T_{P}(M)$

- for $P_{0}, P_{1} \in M$ the affine connection relates $T_{P_{0}}$ and $T_{P_{1}}$
- so that tangent vector fields can be differentiated
* i.e. compared between the points P_{0} and P_{1}
* this comparison usually uses the concepts of pullback and pushforward
* these concepts become too mathematically abstract for this lecture ...
- for our example it means, that by using an affine connection
- we can effectively reduce the dimension of $T_{P}(M)$ back to T_{P} (or M)
- and the basis vectors in T_{P} are smooth functions of the point:

$$
\begin{equation*}
\vec{e}_{(1)}(\vartheta, \varphi) \quad \text { and } \quad \vec{e}_{(2)}(\vartheta, \varphi) \tag{17}
\end{equation*}
$$

- the Cartan connection uses the Lie group structure of M
- and transports (coordinate) frames without specifying a metric * uses the exterior derivative
- the Levi-Civita connection uses the additional structure of a metric \Rightarrow Riemannian manifolds ... will be assumed for the rest of this lecture

1. General Relativity

formalizes the known differential of a multiparametric function

$$
\begin{equation*}
d f(x, y, z)=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z \tag{18}
\end{equation*}
$$

- choosing coordinates $(x, y, z)=\left(x^{1}, x^{2}, x^{3}\right)$
- the quantities $d x, d y$, and $d z$ are understood as covectors or 1-forms
- forming a basis of T_{P}^{*} with $\vec{\theta}(\nu)=d x^{\nu}$
- the wegde product " \wedge " defines the multiplication of forms
- it is antisymmetric: $d x \wedge d y=-d y \wedge d x$
\Rightarrow it is nilpotent: $d x \wedge d x=0$
- for obvious differentials $d x$ the \wedge can be omitted: $d x d y:=d x \wedge d y$
- a one-form in this natural basis: $\omega=\omega_{\mu} d x^{\mu}$
- a p-form in this natural basis: $\Omega=\Omega_{\mu_{1} \ldots \mu_{p}} d x^{\mu_{1}} \wedge \cdots \wedge d x^{\mu_{p}}$
* obviously, $\Omega_{\mu_{1} \ldots \mu_{p}}$ is completely antisymmetric in its indices
* and $p \leq N$, the dimension of M

1. General Relativity - exterior derivative

features of the exterior derivative d

- increases the grade of a form
- defining the smooth functions f or x^{μ} as 0-forms
- we have 1-forms $d f$ or $d x^{\mu}$
- a 2-form $F=F_{\mu \nu} d x^{\mu} \wedge d x^{\nu}$ gives a 3-form $d F=\left(\partial_{\rho} F_{\mu \nu}\right) d x^{\rho} \wedge d x^{\mu} \wedge d x^{\nu}$
- for a N-form $I=I_{\mu_{1} \ldots \mu_{N}} d x^{\mu_{1}} \wedge \cdots \wedge d x^{\mu_{N}}$ we get $d I=0$
- defines the natural basis by

$$
\begin{equation*}
d f(V)=\left(\partial_{\mu} f\right) d x^{\mu}\left(V^{\nu} \partial_{\nu}\right)=V^{\nu}\left(\partial_{\mu} f\right) \delta_{\nu}^{\mu}=V^{\mu} \partial_{\mu}(f)=V(f) \tag{19}
\end{equation*}
$$

- follows the Leibnitz rule
- for a p-form α and a q-form β

$$
\begin{equation*}
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{p} \alpha \wedge d \beta \tag{20}
\end{equation*}
$$

- is useful for the discussion of fiber bundles $G(M)$
- with the Lie group G defined at every point of M
- the tangent bundle $T_{P}(M)$ is a fiber bundle with the tangent space T_{P} as the structure given at each point in M
- all forms on M form a vector space of dimension 2^{N}

1. General Relativity - Lie derivative

vector fields as derivatives of functions

- $d f(V)=V(f)$ is again a function on M for $V \in T_{P}$
- for $X, Y \in T_{P}$ we can define the Lie derivative or Lie bracket

$$
\begin{equation*}
\mathcal{L}_{X}(Y)(f)=[X, Y](f):=X(Y(f))-Y(X(f)) \quad \in \mathbf{R} \tag{21}
\end{equation*}
$$

- the Lie bracket
- is bilinear and antisymmetric
- fulfills the Jacobi identity

$$
\begin{equation*}
[X,[Y, Z]]+[Z,[X, Y]]+[Y,[Z, X]]=0 \tag{22}
\end{equation*}
$$

$-\mathcal{L}_{X}(Y)$ can be seen as the directional derivative of Y along X
\Rightarrow it allows to define a parallel transport

* for $[X, Y](f)=0, Y(f)$ stays constant along the flow of X
- the Lie bracket endows M with the algebraic structure of a Lie algebra

1. General Relativity

mathematical definition:

- a metric in M is a symmetric, bilinear, non-degenerate function

$$
\begin{equation*}
g_{P}: T_{P} \times T_{P} \rightarrow \mathbf{R} \tag{23}
\end{equation*}
$$

- the metric acts on (contravariant) vectors (tensor indices)
- symmetric means $g(X, Y)=g(Y, X) \in \mathbf{R}$ for $X, Y \in T_{P}$
- bilinear means for $X, Y, Z \in T_{P}$ and $a, b, c \in \mathbf{R}$

$$
\begin{equation*}
g(a X+b Y, c Z)=a c g(X, Z)+b c g(Y, Z) \in \mathbf{R} \tag{24}
\end{equation*}
$$

- non-degenerate: $g(X, Y)=0$ for all $Y \in T_{P}$ only if $X=0$
- acting on the basis vectors $\vec{e}_{(\mu)}$ gives the metric tensor

$$
\begin{equation*}
g_{\mu \nu}(P)=\left.g\left(\vec{e}_{(\mu)}, \vec{e}_{(\nu)}\right)\right|_{P} \tag{25}
\end{equation*}
$$

- the metric allows length and angle measurements

$$
\begin{equation*}
\|X\|:=\sqrt{|g(X, X)|} \quad \text { and } \quad \cos \varphi=\frac{g(X, Y)}{\|X\| *\|Y\|} \tag{26}
\end{equation*}
$$

1. General Relativity - the metric

examples for the metric

- in Euclidean space the metric is the normal dot-product:

$$
\begin{equation*}
\vec{a} \cdot \vec{b}=g_{j k} a^{j} b^{k}=\delta_{j k} a^{j} b^{k} \quad \text { so } \quad g_{j=k}=1 \quad \text { and } \quad g_{j \neq k}=0 \tag{27}
\end{equation*}
$$

- we can use this metric of the embedding to get the induced metric in S^{2}

$$
\begin{equation*}
g_{j k}=g\left(\vec{e}_{(j)}, \vec{e}_{(k)}\right)=\vec{e}_{(j)} \cdot \vec{e}_{(k)} \quad \text { so } \quad g_{11}=s_{\vartheta_{0}}^{2} \quad g_{12}=g_{21}=0 \quad g_{22}=1 \tag{28}
\end{equation*}
$$

\Rightarrow as we can see, the metric tensor depends on the position

- in Minkovsky space we had $g_{00}=1, g_{i i}=-1$, and $g_{\mu \neq \nu}=0$
- we can generalize the line element

$$
\begin{equation*}
\Delta s^{2}=(c \Delta t)^{2}-(\Delta x)^{2}-(\Delta y)^{2}-(\Delta z)^{2}=g_{\mu \nu} \Delta x^{\mu} \otimes \Delta x^{\nu} \tag{29}
\end{equation*}
$$

- the "differentials" Δx here are not multiplied with their "natural" wedge product
- one can define the inverse metric $g^{\mu \nu}$ by

$$
\begin{equation*}
g^{\mu \nu} g_{\mu \rho}=\delta_{\rho}^{\nu} \tag{30}
\end{equation*}
$$

- the inverse metric is the metric of the cotangent space

