
2. Special Relativity (SR) — explicit Lorentz transformations

Particles with m > 0 can always be seen as boosted from their rest frame

• in frame O we see the particle as pµ = (E, p⃗)
.
= (E, p,0,0)

• in its rest frame O′ the particle is seen as p′µ = (m, 0⃗)

• the Lorentz transformation (LT) for p′1 gives

0 = Λ1
0 E +Λ1

1 p = (− sinh η)E + (cosh η)p = cosh η(p− E tanh η)

• remembering tanh η = v/c := β

– and γ = [1− β2]−1/2 = [1− tanh2 η]−1/2 = cosh η

• we get the Lorentz transformation in conventional form

t′ = γ(t− βx) =
E

m

(
t−

p

E
x

)
= m−1 (E t− p x)

x′ = γ(x− βt) =
E

m

(
x−

p

E
t

)
= m−1 (E x− p t)

Thomas Gajdosik Cosmology 2023 / 09 / 01 1



2. Special Relativity (SR) — explicit Lorentz transformations

photons have m = 0 and cannot have a rest frame

• a particle emits a photon with frequency f in x̂ direction

• in frame O we see the particle as pµ = (E, p⃗)
.
= (E, p,0,0)

• in O′, the rest frame of the particle, the photon has

– the energy E′ = |k′| = ℏf
– and the four momentum k′µ = (k′, k′,0,0)

• in frame O we see this photon as kµ = (k, k,0,0)

• the Lorentz transformation from O to O′ gives

k′ = γ(k − βk) = kγ(1− β) = k

√√√√(1− β)2

1− β2
= k

√
1− β

1+ β
= k

√
E − p

E + p

• this is called the Doppler effect
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2. Special Relativity (SR) — addition of momenta and velocities, LTs

Lorentz transformations consist of

• boosts with t′ = γ(t− βx) x′ = γ(x− βt)

• and rotations with t′ = t x⃗′ = Rθ · x⃗

• since LTs form a group, we can make a general LT

– by performing consecutive ”elementary” boosts and rotations

• example 1, without rotations:
– a particle A of mass M , traveling in x̂-direction with velocity v

– decays into B1 and B2 of equal mass m, both traveling in x̂-direction

• in our frame O we have P µ = (E, p) with v = p/E

• in the restframe O′ of A we have P ′µ = (M,0) = (E1, p1) + (E2, p2)
– so 0 = p1 + p2 or p2 = −p1
– since B1 and B2 have equal mass E2 = E1 = M/2
– so the LTs into the restframes of B1,2 have

β1,2 = p1,2/E1,2 = ±
√

1− (2m
M

)2 =: ±β and γ1,2 = M
2m
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2. Special Relativity (SR) — addition of momenta and velocities, LTs

• the LT from O′ into the restframe of B1,2 is

Λ′
1,2 =

(
γ1,2 −γ1,2β1,2

−γ1,2β1,2 γ1,2

)
=

M

2m

(
1 ∓β

∓β 1

)
• the LT from our frame O into O′ is

Λ =

(
γ −γβ

−γβ γ

)
=

E

M

(
1 −v

−v 1

)
• so the LT from our frame O into the restframe of B1,2 is (Λ1,2)

µ
ν = (Λ)µ ρ (Λ′

1,2)
ρ
ν or

Λ1,2 =
E

M

M

2m

(
1 −v

−v 1

)
·
(

1 ∓β

∓β 1

)
=

E

2m

(
1± vβ −v ∓ β

−v ∓ β 1± vβ

)
• the four momenta of B1,2 in their respective rest frames are (m,0),

so in O they are pµ1,2 = (Λ1,2)
µ
ν (m,0)ν or p1,2 = E

2
(1± vβ,−v ∓ β)

– from this we can deduce their velocities: v1,2 = p1,2/E1,2 =
v±β
1±vβ

• this is the velocity addition rule of Special Relativity
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2. Special Relativity (SR) — LT in a general direction

• example 2, with rotations:
– the particle A of mass M , traveling in x̂-direction with velocity v

– decays into B1 and B2 of equal mass m

– in the restframe O′ of A, with x̂′||x̂ and ŷ′||ŷ
∗ B1 moves with angle θ′ to the x̂-direction in the x̂-ŷ-plane
∗ B2 moves with angle φ′ = π + θ′ to the x̂-direction in the x̂-ŷ-plane

• the LT from O′ into the restframe of B1,2 has to include an additional rotation Rθ′,φ′.
Ignoring ẑ:

Rθ′,φ′ =

 1 0 0

0 ±cθ′ ±sθ′

0 ∓sθ′ ±cθ′


– One has to rotate first the boost direction into the x̂′-axis
– then one performs the boost in the direction of the new x̂′-axis
– and then one has to rotate the axes back in O′

1,2:

Λ′
1,2 = R−1

θ′,φ′ · Λ′
x;1,2 ·Rθ′,φ′ where Λ′

x;1,2 =


M
2m

− M
2m

β 0

− M
2m

β M
2m

0

0 0 1
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2. Special Relativity (SR) — LT in general direction

• writing only a single angle for the rotation in the x̂-ŷ-plane

Λ = R−1
θ · Λ′ ·Rθ

=


1 0 0 0

0 cθ −sθ 0

0 sθ cθ 0

0 0 0 1




γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 cθ sθ 0

0 −sθ cθ 0

0 0 0 1



=


γ −γβcθ −γβsθ 0

−γβcθ γc2θ + s2θ (γ − 1)sθcθ 0

−γβsθ (γ − 1)sθcθ γs2θ + c2θ 0

0 0 0 1



=


γ −γβcθ −γβsθ 0

−γβcθ 1+ (γ − 1)c2θ (γ − 1)sθcθ 0

−γβsθ (γ − 1)sθcθ 1+ (γ − 1)s2θ 0

0 0 0 1
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2. Special Relativity (SR) — LT in general direction

Again ignoring ẑ:

• the LT from our frame O into O′ is

Λ =

 γ −γβ 0

−γβ γ 0

0 0 1

 =


E
M

− E
M
v 0

− E
M
v E

M
0

0 0 1


• the LT from O into the restframe of B1,2 is (Λ1,2)

µ
ν = Λµ

ρ (Λ′
1,2)

ρ
ν

. . . complicated, but straight forward to calculate

• it is much simpler to apply the LTs onto the fourvector we are interested:

p′µ1,2 = (Λ′
1,2)

µ
ν (m,0,0)ν = mγ(1,∓βcθ′,∓βsθ′)µ

and pµ1,2 = Λµ
ν p′ν1,2 or with γ = M

2m

p1,2 = m
M

2m


E
M

− E
M
v 0

− E
M
v E

M
0

0 0 1


 1

∓βcθ′

∓βsθ′

 =
M

2

 E
M
(1± vβcθ′)

− E
M
(v ± βcθ′)

∓βsθ′


– from this we can read off the angles tan θ = Mβsθ′

E(v+βcθ′)
and tanϕ = Mβsθ′

E(−v+βcθ′)
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2. Special Relativity (SR) — projection onto 2D

in astronomy we have a ”natural” coordinate system

• we see only the light that moves radially to us

⇒ we can only measure the angles of a spherical coordinate system

• for simplicity we can still use a Cartesian system,

– aligning one axes with our line of sight

∗ we will use the x̂-axis for our line of sight

⇒ light rays will always have the four vector kµ = (k, k,0,0)

• the general Lorentz transformation describes the motion to us

– for a movement away from us, we should take β → −β

∗ then we have the same convention as David Hogg, Chapter 7
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2. Special Relativity (SR) — Doppler shift, red shift

in order to compare our observation with the emission,
we have to Lorentz transform into the emitters system

• the general LT applied to the light ray kµ = k(1,1,0,0) gives

k′ = k

 γ +γβcθ +γβsθ

+γβcθ γc2θ + s2θ (γ − 1)sθcθ

+γβsθ (γ − 1)sθcθ γs2θ + c2θ


 1

1

0

 = k

 γ(1 + βcθ)

γcθ(cθ + β) + s2θ
γsθ(cθ + β)− sθcθ


– the energy emitted is (k′)0 = kγ(1 + βcθ)

• astronomers define the dimensionless redshift z by

1+ z ≡
∆tr

∆τe
=

emitted frequency
received frequency

=
emitted energy
received energy

= γ(1 + βcθ)

– which is nothing else, but the shift due to the Doppler effect

• when the object is moving to us, z is negative and called blueshift
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2. Special Relativity (SR) — stellar abberation

When charting the sky

• we know, that the earth is moving relative to the ”background”

– like circling the sun or with the sun the Milky Way

• for simplicity we again ignore the ẑ-direction

– then the ”position” of the star is described by the angle θ:

kµ = k(1, cθ, sθ)

– a non moving observer would see the star with the four vector

k′µ = Λµ
ν kν = k(γ(1 + βcθ), γ(cθ + β), sθ) = k′(1, cθ′, sθ′)

– the ratio k/k′ is the discussed Doppler shift

• the change in the angle θ → θ′ is called stellar abberation :

cθ′ = cos θ′ =
cos θ + β

1+ β cos θ
=

cθ + β

1+ βcθ
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2. Special Relativity (SR) — relativistic beaming

Brightness is defined as the observed radiation density: I = dE/dt∗(dΩ)−1

• I is independent of the distance R:

– the observed amount of light goes down with R−2

– but the angular size goes down with R−2, too.

• but I is not independent of the motion:

– the moving object emitts light isotropically: dE′/dt′

∗ we see the Doppler shift for the energy: dE′ = dE ∗ γ(1 + βcθ)

– 1/dt′ ≈ f ′ is the frequency of the emitted photons

– this frequency f ′ is proportional to the energy of the photons E′

∗ so a Doppler shifted frequency: (1/dt′) = (1/dt) ∗ γ(1 + βcθ)

– as seen from stellar abberation

∗ the perceived angle depends on the relative motion:

cos θ′ =
cos θ + β

1+ β cos θ
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2. Special Relativity (SR) — relativistic beaming

• the solid angle dΩ = dcos θ ∗ dϕ

– dϕ is orthogonal to the direction of the boost

– but dcos θ transforms:

dcos θ′ = d

(
cos θ + β

1+ β cos θ

)
=

dcos θ

1+ β cos θ
−

cos θ + β

(1 + β cos θ)2
βdcos θ

=
1+ β cos θ − β cos θ − β2

(1 + β cos θ)2
dcos θ =

dcos θ

γ2(1 + β cos θ)2

• the emitted brightness I ′ is

I ′ =
dE′/dt′

dcos θ′ ∗ dϕ′ =
dE ∗ γ(1 + βcθ) ∗ 1/dt ∗ γ(1 + βcθ)

dcos θ
γ2(1+β cos θ)2

∗ dϕ

=
dE/dt

dcos θ ∗ dϕ
∗ [γ(1 + βcθ)]

4 = I ∗ (1 + z)4

– when the object moves directly to us cθ = −1 and

I

I ′
= [γ(1− β)]−4 =

(
1+ β

1− β

)2
≫ 1 ⇒ ”beaming”

Thomas Gajdosik Cosmology 2023 / 09 / 01 12



2. Special Relativity (SR) — kinematic model — Milne universe

explosion in O′ at t′ = 0 and all fragments flying with constant velocity

• all positions are given by r⃗′ = v⃗′t′

– everything is moving away

– the velocity is proportional to the distance

⇒ Hubble flow

• our frame O is moving with one of the fragments

– our time starts at the explosion with t = 0

– each fragment came from the origin (0,0,0,0)

⇒ the worldline of each fragment goes through the origin

– each fragment has a constant velocity v⃗

⇒ r⃗ = v⃗t ⇒ also Hubble flow

∗ like we observe in our universe . . .
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2. Special Relativity (SR) — kinematic model — Milne universe

explosion in O′ at t′ = 0 and all fragments flying with constant velocity

• we see now, at t0, another fragment

– at the place, re away from us, where it emitted the light

• the fragment traveled the distance re from the Big Bang

– for this distance it needed the time te = re/v

• the light traveled this distance re to us, needing the time re/c

• we see the light now at t0 = te + re/c = re(1/v +1/c)

• an observer sitting on the fragment that emitted the light
would measure the fragments eigentime τ for the emission:

– just calculating the invariant ”distance” from the Big Bang
to the point of the emission (te, re)

c2τ2 = (c te)
2 − r2e or τ2 = (re/v)

2 − (re/c)
2
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2. Special Relativity (SR) — kinematic model — Milne universe

explosion in O′ at t′ = 0 and all fragments flying with constant velocity

• using the definition of the redshift 1+ z = t0/τ

we can define the angular diameter distance

dA = re = ct0
2z + z2

2(1 + z)2
<

1

2
ct0

– measured by the angular diameter, if the size is known

∗ we get this equation by combining the two equations on the previous slide

• knowing the intrinsic Luminosity L =
∫
IdΩ and measuring the Flux

– we can define the luminosity distance

dL = r =
√
L/(4πF )

⇒ as a prediction of this kinematic model we get the relation

dL = dA ∗ (1 + z)−4

– can be compared to measurements . . .
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