- 2. Special Relativity (SR) explicit Lorentz transformations Particles with m > 0 can always be seen as boosted from their rest frame
 - in frame O we see the particle as $p^{\mu} = (E, \vec{p}) \doteq (E, p, 0, 0)$
 - in its rest frame O' the particle is seen as $p'^{\mu} = (m, \vec{0})$
 - the Lorentz transformation (LT) for $p^{\prime 1}$ gives

 $0 = \Lambda_0^1 E + \Lambda_1^1 p = (-\sinh \eta)E + (\cosh \eta)p = \cosh \eta (p - E \tanh \eta)$

• remembering
$$\tanh \eta = v/c := \beta$$

- and $\gamma = [1 - \beta^2]^{-1/2} = [1 - \tanh^2 \eta]^{-1/2} = \cosh \eta$

• we get the Lorentz transformation in conventional form

$$t' = \gamma(t - \beta x) = \frac{E}{m} \left(t - \frac{p}{E} x \right) = m^{-1} \left(E t - p x \right)$$
$$x' = \gamma(x - \beta t) = \frac{E}{m} \left(x - \frac{p}{E} t \right) = m^{-1} \left(E x - p t \right)$$

- 2. Special Relativity (SR) explicit Lorentz transformations photons have m = 0 and cannot have a rest frame
 - a particle emits a photon with frequency f in \hat{x} direction
 - in frame O we see the particle as $p^{\mu} = (E, \vec{p}) \doteq (E, p, 0, 0)$
 - in O', the rest frame of the particle, the photon has
 - the energy $E' = |k'| = \hbar f$
 - and the four momentum $k'^{\mu} = (k', k', 0, 0)$
 - in frame O we see this photon as $k^{\mu} = (k, k, 0, 0)$
 - the Lorentz transformation from O to O' gives

$$k' = \gamma(k - \beta k) = k\gamma(1 - \beta) = k\sqrt{\frac{(1 - \beta)^2}{1 - \beta^2}} = k\sqrt{\frac{1 - \beta}{1 + \beta}} = k\sqrt{\frac{E - p}{E + p}}$$

• this is called the Doppler effect

2. Special Relativity (SR) — addition of momenta and velocities, LTs Lorentz transformations consist of

- boosts with $t' = \gamma(t \beta x)$ $x' = \gamma(x \beta t)$
- and rotations with t' = t $\vec{x}' = \mathbf{R}_{\theta} \cdot \vec{x}$
- since LTs form a group, we can make a general LT
 - by performing consecutive "elementary" boosts and rotations
- example 1, without rotations:
 - a particle A of mass M, traveling in \widehat{x} -direction with velocity v
 - decays into B_1 and B_2 of equal mass m, both traveling in \hat{x} -direction
- in our frame O we have $P^{\mu} = (E, p)$ with v = p/E
- in the restframe O' of A we have $P'^{\mu} = (M, 0) = (E_1, p_1) + (E_2, p_2)$
 - so $0 = p_1 + p_2$ or $p_2 = -p_1$
 - since B_1 and B_2 have equal mass $E_2 = E_1 = M/2$
 - so the LTs into the restframes of $B_{1,2}$ have

$$\beta_{1,2} = p_{1,2}/E_{1,2} = \pm \sqrt{1 - (\frac{2m}{M})^2} =: \pm \beta$$
 and $\gamma_{1,2} = \frac{M}{2m}$

2. Special Relativity (SR) — addition of momenta and velocities, LTs

• the LT from O' into the restframe of $B_{1,2}$ is

$$\Lambda_{1,2}' = \begin{pmatrix} \gamma_{1,2} & -\gamma_{1,2}\beta_{1,2} \\ -\gamma_{1,2}\beta_{1,2} & \gamma_{1,2} \end{pmatrix} = \frac{M}{2m} \begin{pmatrix} 1 & \mp\beta \\ \mp\beta & 1 \end{pmatrix}$$

• the LT from our frame O into O' is

$$\wedge = \left(\begin{array}{cc} \gamma & -\gamma\beta \\ -\gamma\beta & \gamma \end{array}\right) = \frac{E}{M} \left(\begin{array}{cc} 1 & -v \\ -v & 1 \end{array}\right)$$

• so the LT from our frame O into the restframe of $B_{1,2}$ is $(\Lambda_{1,2})^{\mu}{}_{\nu} = (\Lambda)^{\mu}{}_{\rho} (\Lambda'_{1,2})^{\rho}{}_{\nu}$ or

$$\Lambda_{1,2} = \frac{E}{M} \frac{M}{2m} \begin{pmatrix} 1 & -v \\ -v & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & \mp\beta \\ \mp\beta & 1 \end{pmatrix} = \frac{E}{2m} \begin{pmatrix} 1 \pm v\beta & -v \mp\beta \\ -v \mp\beta & 1 \pm v\beta \end{pmatrix}$$

the four momenta of B_{1,2} in their respective rest frames are (m,0), so in O they are p^μ_{1,2} = (Λ_{1,2})^μ_ν (m,0)^ν or p_{1,2} = E/2(1 ± vβ, -v ∓ β)
from this we can deduce their velocities: v_{1,2} = p_{1,2}/E_{1,2} = v±β/(1+vβ)

• this is the velocity addition rule of Special Relativity

2. Special Relativity (SR) - LT in a general direction

- example 2, with rotations:
 - the particle A of mass M, traveling in \hat{x} -direction with velocity v
 - decays into B_1 and B_2 of equal mass m
 - in the restframe O' of A, with $\widehat{x}'||\widehat{x}$ and $\widehat{y}'||\widehat{y}$
 - * B_1 moves with angle θ' to the \hat{x} -direction in the \hat{x} - \hat{y} -plane
 - * B_2 moves with angle $\varphi' = \pi + \theta'$ to the \hat{x} -direction in the \hat{x} - \hat{y} -plane
- the LT from O' into the restframe of $B_{1,2}$ has to include an additional rotation $\mathbf{R}_{\theta',\varphi'}$. Ignoring \hat{z} :

$$\mathbf{R}_{\theta',\varphi'} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \pm c_{\theta'} & \pm s_{\theta'} \\ 0 & \mp s_{\theta'} & \pm c_{\theta'} \end{pmatrix}$$

- One has to rotate first the boost direction into the \hat{x}' -axis
- then one performs the boost in the direction of the new \hat{x}' -axis
- and then one has to rotate the axes back in $O'_{1,2}$:

$$\Lambda_{1,2}' = \mathbf{R}_{\theta',\varphi'}^{-1} \cdot \Lambda_{x;1,2}' \cdot \mathbf{R}_{\theta',\varphi'} \quad \text{where} \quad \Lambda_{x;1,2}' = \begin{pmatrix} \frac{M}{2m} & -\frac{M}{2m}\beta & 0\\ -\frac{M}{2m}\beta & \frac{M}{2m} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

2. Special Relativity (SR) — LT in general direction

• writing only a single angle for the rotation in the \hat{x} - \hat{y} -plane

$$\begin{split} \Lambda &= \mathbf{R}_{\theta}^{-1} \cdot \Lambda' \cdot \mathbf{R}_{\theta} \\ &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\theta} & -s_{\theta} & 0 \\ 0 & s_{\theta} & c_{\theta} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\theta} & s_{\theta} & 0 \\ 0 & -s_{\theta} & c_{\theta} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \gamma & -\gamma\beta c_{\theta} & -\gamma\beta s_{\theta} & 0 \\ -\gamma\beta c_{\theta} & \gamma c_{\theta}^{2} + s_{\theta}^{2} & (\gamma - 1)s_{\theta} c_{\theta} & 0 \\ -\gamma\beta s_{\theta} & (\gamma - 1)s_{\theta} c_{\theta} & \gamma s_{\theta}^{2} + c_{\theta}^{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} \gamma & -\gamma\beta c_{\theta} & -\gamma\beta s_{\theta} & 0 \\ -\gamma\beta c_{\theta} & 1 + (\gamma - 1)c_{\theta}^{2} & (\gamma - 1)s_{\theta} c_{\theta} & 0 \\ -\gamma\beta s_{\theta} & (\gamma - 1)s_{\theta} c_{\theta} & 1 + (\gamma - 1)s_{\theta}^{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \end{split}$$

2. Special Relativity (SR) — LT in general direction Again ignoring \hat{z} :

• the LT from our frame O into O' is

$$\Lambda = \begin{pmatrix} \gamma & -\gamma\beta & 0\\ -\gamma\beta & \gamma & 0\\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{E}{M} & -\frac{E}{M}v & 0\\ -\frac{E}{M}v & \frac{E}{M} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

- the LT from *O* into the restframe of $B_{1,2}$ is $(\Lambda_{1,2})^{\mu}{}_{\nu} = \Lambda^{\mu}{}_{\rho} (\Lambda'_{1,2})^{\rho}{}_{\nu}$... complicated, but straight forward to calculate
- it is much simpler to apply the LTs onto the fourvector we are interested:

$$p_{1,2}^{\prime\mu} = (\Lambda_{1,2}^{\prime})^{\mu}{}_{\nu} (m,0,0)^{\nu} = m\gamma(1,\mp\beta c_{\theta^{\prime}},\mp\beta s_{\theta^{\prime}})^{\mu}$$

and $p_{1,2}^{\mu} = \Lambda^{\mu}{}_{\nu} p_{1,2}^{\prime\nu}$ or with $\gamma = \frac{M}{2m}$ $p_{1,2} = m \frac{M}{2m} \begin{pmatrix} \frac{E}{M} & -\frac{E}{M}v & 0\\ -\frac{E}{M}v & \frac{E}{M} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1\\ \mp\beta c_{\theta'}\\ \mp\beta s_{\theta'} \end{pmatrix} = \frac{M}{2} \begin{pmatrix} \frac{E}{M}(1 \pm v\beta c_{\theta'})\\ -\frac{E}{M}(v \pm \beta c_{\theta'})\\ \mp\beta s_{\theta'} \end{pmatrix}$

- from this we can read off the angles $\tan \theta = \frac{M\beta s_{\theta'}}{E(v+\beta c_{\theta'})}$ and $\tan \phi = \frac{M\beta s_{\theta'}}{E(-v+\beta c_{\theta'})}$

2. Special Relativity (SR) — projection onto 2D

in astronomy we have a "natural" coordinate system

- we see only the light that moves radially to us
 - \Rightarrow we can only measure the angles of a spherical coordinate system
- for simplicity we can still use a Cartesian system,
 - aligning one axes with our line of sight
 - * we will use the \hat{x} -axis for our line of sight
 - \Rightarrow light rays will always have the four vector $k^{\mu} = (k, k, 0, 0)$
- the general Lorentz transformation describes the motion to us
 - for a movement away from us, we should take $\beta \to -\beta$
 - \ast then we have the same convention as David Hogg, Chapter 7

2. Special Relativity (SR) — Doppler shift, red shift

in order to compare our observation with the emission, we have to Lorentz transform into the emitters system

• the general LT applied to the light ray $k^{\mu} = k(1, 1, 0, 0)$ gives

$$k' = k \begin{pmatrix} \gamma & +\gamma\beta c_{\theta} & +\gamma\beta s_{\theta} \\ +\gamma\beta c_{\theta} & \gamma c_{\theta}^{2} + s_{\theta}^{2} & (\gamma - 1)s_{\theta}c_{\theta} \\ +\gamma\beta s_{\theta} & (\gamma - 1)s_{\theta}c_{\theta} & \gamma s_{\theta}^{2} + c_{\theta}^{2} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = k \begin{pmatrix} \gamma(1 + \beta c_{\theta}) \\ \gamma c_{\theta}(c_{\theta} + \beta) + s_{\theta}^{2} \\ \gamma s_{\theta}(c_{\theta} + \beta) - s_{\theta}c_{\theta} \end{pmatrix}$$

- the energy emitted is $(k')^0 = k\gamma(1 + \beta c_\theta)$

• astronomers define the dimensionless redshift z by

$$1 + z \equiv \frac{\Delta t_r}{\Delta \tau_e} = \frac{\text{emitted frequency}}{\text{received frequency}} = \frac{\text{emitted energy}}{\text{received energy}} = \gamma (1 + \beta c_{\theta})$$

- which is nothing else, but the shift due to the Doppler effect

• when the object is moving to us, z is negative and called blueshift

2. Special Relativity (SR) — stellar abberation
When charting the sky

- we know, that the earth is moving relative to the "background"
 - like circling the sun or with the sun the Milky Way
- for simplicity we again ignore the \widehat{z} -direction
 - then the "position" of the star is described by the angle θ :

 $k^{\mu} = k(1, c_{\theta}, s_{\theta})$

- a non moving observer would see the star with the four vector

$$k'^{\mu} = \Lambda^{\mu}{}_{\nu} k^{\nu} = k(\gamma(1+\beta c_{\theta}), \gamma(c_{\theta}+\beta), s_{\theta}) = k'(1, c_{\theta'}, s_{\theta'})$$

– the ratio k/k' is the discussed Doppler shift

• the change in the angle $\theta \to \theta'$ is called stellar abberation :

$$c_{\theta'} = \cos \theta' = \frac{\cos \theta + \beta}{1 + \beta \cos \theta} = \frac{c_{\theta} + \beta}{1 + \beta c_{\theta}}$$

2. Special Relativity (SR) — relativistic beaming

Brightness is defined as the observed radiation density: $I = dE/dt * (d\Omega)^{-1}$

- I is independent of the distance R:
 - the observed amount of light goes down with R^{-2}
 - but the angular size goes down with R^{-2} , too.
- but *I* is not independent of the motion:
 - the moving object emitts light isotropically: ${\rm d}E'/{
 m d}t'$
 - * we see the Doppler shift for the energy: $dE' = dE * \gamma(1 + \beta c_{\theta})$
 - $1/dt' \approx f'$ is the frequency of the emitted photons
 - this frequency f' is proportional to the energy of the photons E'* so a Doppler shifted frequency: $(1/dt') = (1/dt) * \gamma(1 + \beta c_{\theta})$
 - as seen from stellar abberation
 - * the perceived angle depends on the relative motion:

$$\cos\theta' = \frac{\cos\theta + \beta}{1 + \beta\cos\theta}$$

2. Special Relativity (SR) — relativistic beaming

- the solid angle $\mathrm{d}\Omega = \mathrm{d}\cos\theta \ast \mathrm{d}\phi$
 - d ϕ is orthogonal to the direction of the boost
 - but $d\cos\theta$ transforms:

$$d\cos\theta' = d\left(\frac{\cos\theta + \beta}{1 + \beta\cos\theta}\right) = \frac{d\cos\theta}{1 + \beta\cos\theta} - \frac{\cos\theta + \beta}{(1 + \beta\cos\theta)^2}\beta d\cos\theta$$
$$= \frac{1 + \beta\cos\theta - \beta\cos\theta - \beta^2}{(1 + \beta\cos\theta)^2} d\cos\theta = \frac{d\cos\theta}{\gamma^2(1 + \beta\cos\theta)^2}$$

• the emitted brightness I' is

$$I' = \frac{dE'/dt'}{d\cos\theta' * d\phi'} = \frac{dE * \gamma(1 + \beta c_{\theta}) * 1/dt * \gamma(1 + \beta c_{\theta})}{\frac{d\cos\theta}{\gamma^{2}(1 + \beta\cos\theta)^{2}} * d\phi}$$
$$= \frac{dE/dt}{d\cos\theta * d\phi} * [\gamma(1 + \beta c_{\theta})]^{4} = I * (1 + z)^{4}$$

– when the object moves directly to us $c_{ heta} = -1$ and

$$\frac{I}{I'} = [\gamma(1-\beta)]^{-4} = \left(\frac{1+\beta}{1-\beta}\right)^2 \gg 1 \qquad \Rightarrow \quad \text{'beaming''}$$

2. Special Relativity (SR) — kinematic model — Milne universe explosion in O' at t' = 0 and all fragments flying with constant velocity

- all positions are given by $\vec{r'} = \vec{v}' t'$
 - everything is moving away
 - the velocity is proportional to the distance
 - \Rightarrow Hubble flow
- our frame O is moving with one of the fragments
 - our time starts at the explosion with t = 0
 - each fragment came from the origin (0,0,0,0)
 - \Rightarrow the worldline of each fragment goes through the origin
 - each fragment has a constant velocity \vec{v}

 \Rightarrow $\vec{r} = \vec{v}t$ \Rightarrow also Hubble flow

* like we observe in our universe ...

2. Special Relativity (SR) — kinematic model — Milne universe explosion in O' at t' = 0 and all fragments flying with constant velocity

- we see now, at t_0 , another fragment
 - at the place, r_e away from us, where it emitted the light
- the fragment traveled the distance r_e from the Big Bang
 - for this distance it needed the time $t_e = r_e/v$
- the light traveled this distance r_e to us, needing the time r_e/c
- we see the light now at $t_0 = t_e + r_e/c = r_e(1/v + 1/c)$
- an observer sitting on the fragment that emitted the light would measure the fragments eigentime τ for the emission:
 - just calculating the invariant "distance" from the Big Bang to the point of the emission (t_e, r_e)

$$c^{2}\tau^{2} = (c t_{e})^{2} - r_{e}^{2}$$
 or $\tau^{2} = (r_{e}/v)^{2} - (r_{e}/c)^{2}$

2. Special Relativity (SR) — kinematic model — Milne universe explosion in O' at t' = 0 and all fragments flying with constant velocity

• using the definition of the redshift $1 + z = t_0/\tau$ we can define the angular diameter distance

$$d_A = r_e = ct_0 \frac{2z + z^2}{2(1+z)^2} < \frac{1}{2}ct_0$$

- measured by the angular diameter, if the size is known

 $\ast\,$ we get this equation by combining the two equations on the previous slide

- knowing the intrinsic Luminosity $L = \int I d\Omega$ and measuring the Flux
 - we can define the luminosity distance

$$d_L = r = \sqrt{L/(4\pi F)}$$

 \Rightarrow as a prediction of this kinematic model we get the relation

$$d_L = d_A * (1+z)^{-4}$$

- can be compared to measurements ...