Particles with $m>0$ can always be seen as boosted from their rest frame

- in frame O we see the particle as $p^{\mu}=(E, \vec{p}) \doteq(E, p, 0,0)$
- in its rest frame O^{\prime} the particle is seen as $p^{\prime \mu}=(m, \overrightarrow{0})$
- the Lorentz transformation (LT) for p^{1} gives

$$
0=\wedge_{0}^{1} E+\Lambda_{1}^{1} p=(-\sinh \eta) E+(\cosh \eta) p=\cosh \eta(p-E \tanh \eta)
$$

- remembering tanh $\eta=v / c:=\beta$

$$
- \text { and } \gamma=\left[1-\beta^{2}\right]^{-1 / 2}=\left[1-\tanh ^{2} \eta\right]^{-1 / 2}=\cosh \eta
$$

- we get the Lorentz transformation in conventional form

$$
\begin{aligned}
t^{\prime} & =\gamma(t-\beta x) \\
x^{\prime} & =\gamma(x-\beta t)
\end{aligned} \quad=\frac{E}{m}\left(t-\frac{p}{E} x\right)=m^{-1}(E t-p x), ~\left(x-\frac{p}{E} t\right)=m^{-1}(E x-p t)
$$

2. Special Relativity (SR) - explicit Lorentz transformations

photons have $m=0$ and cannot have a rest frame

- a particle emits a photon with frequency f in \widehat{x} direction
- in frame O we see the particle as $p^{\mu}=(E, \vec{p}) \doteq(E, p, 0,0)$
- in O^{\prime}, the rest frame of the particle, the photon has
- the energy $E^{\prime}=\left|k^{\prime}\right|=\hbar f$
- and the four momentum $k^{\prime \mu}=\left(k^{\prime}, k^{\prime}, 0,0\right)$
- in frame O we see this photon as $k^{\mu}=(k, k, 0,0)$
- the Lorentz transformation from O to O^{\prime} gives

$$
k^{\prime}=\gamma(k-\beta k)=k \gamma(1-\beta)=k \sqrt{\frac{(1-\beta)^{2}}{1-\beta^{2}}}=k \sqrt{\frac{1-\beta}{1+\beta}}=k \sqrt{\frac{E-p}{E+p}}
$$

- this is called the Doppler effect

2. Special Relativity (SR) - addition of momenta and velocities, LTs

Lorentz transformations consist of

- boosts with $t^{\prime}=\gamma(t-\beta x) \quad x^{\prime}=\gamma(x-\beta t)$
- and rotations with $t^{\prime}=t \quad \vec{x}^{\prime}=\mathbf{R}_{\theta} \cdot \vec{x}$
- since LTs form a group, we can make a general LT
- by performing consecutive 'elementary" boosts and rotations
- example 1, without rotations:
- a particle A of mass M, traveling in \widehat{x}-direction with velocity v
- decays into B_{1} and B_{2} of equal mass m, both traveling in \widehat{x}-direction
- in our frame O we have $P^{\mu}=(E, p)$ with $v=p / E$
- in the restframe O^{\prime} of A we have $P^{\prime \mu}=(M, 0)=\left(E_{1}, p_{1}\right)+\left(E_{2}, p_{2}\right)$
- so $0=p_{1}+p_{2}$ or $p_{2}=-p_{1}$
- since B_{1} and B_{2} have equal mass $E_{2}=E_{1}=M / 2$
- so the LTs into the restframes of $B_{1,2}$ have

$$
\beta_{1,2}=p_{1,2} / E_{1,2}= \pm \sqrt{1-\left(\frac{2 m}{M}\right)^{2}}=: \pm \beta \quad \text { and } \quad \gamma_{1,2}=\frac{M}{2 m}
$$

2. Special Relativity (SR) - addition of momenta and velocities, LTs

- the LT from O^{\prime} into the restframe of $B_{1,2}$ is

$$
\Lambda_{1,2}^{\prime}=\left(\begin{array}{cc}
\gamma_{1,2} & -\gamma_{1,2} \beta_{1,2} \\
-\gamma_{1,2} \beta_{1,2} & \gamma_{1,2}
\end{array}\right)=\frac{M}{2 m}\left(\begin{array}{cc}
1 & \mp \beta \\
\mp \beta & 1
\end{array}\right)
$$

- the LT from our frame O into O^{\prime} is

$$
\wedge=\left(\begin{array}{cc}
\gamma & -\gamma \beta \\
-\gamma \beta & \gamma
\end{array}\right)=\frac{E}{M}\left(\begin{array}{cc}
1 & -v \\
-v & 1
\end{array}\right)
$$

- so the LT from our frame O into the restframe of $B_{1,2}$ is $\left(\Lambda_{1,2}\right)^{\mu}{ }_{\nu}=(\Lambda)^{\mu}{ }_{\rho}\left(\Lambda_{1,2}^{\prime}\right)^{\rho}{ }_{\nu}$ or

$$
\Lambda_{1,2}=\frac{E}{M} \frac{M}{2 m}\left(\begin{array}{cc}
1 & -v \\
-v & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & \mp \beta \\
\mp \beta & 1
\end{array}\right)=\frac{E}{2 m}\left(\begin{array}{cc}
1 \pm v \beta & -v \mp \beta \\
-v \mp \beta & 1 \pm v \beta
\end{array}\right)
$$

- the four momenta of $B_{1,2}$ in their respective rest frames are ($m, 0$), so in O they are $p_{1,2}^{\mu}=\left(\wedge_{1,2}\right)^{\mu}{ }_{\nu}(m, 0)^{\nu}$ or $p_{1,2}=\frac{E}{2}(1 \pm v \beta,-v \mp \beta)$
- from this we can deduce their velocities: $v_{1,2}=p_{1,2} / E_{1,2}=\frac{v \pm \beta}{1 \pm v \beta}$
- this is the velocity addition rule of Special Relativity
- example 2, with rotations:
- the particle A of mass M, traveling in \widehat{x}-direction with velocity v
- decays into B_{1} and B_{2} of equal mass m
- in the restframe O^{\prime} of A, with $\widehat{x}^{\prime} \| \widehat{x}$ and $\widehat{y}^{\prime} \| \widehat{y}$
* B_{1} moves with angle θ^{\prime} to the \widehat{x}-direction in the \widehat{x} - \widehat{y}-plane
* B_{2} moves with angle $\varphi^{\prime}=\pi+\theta^{\prime}$ to the \widehat{x}-direction in the \widehat{x} - \hat{y}-plane
- the LT from O^{\prime} into the restframe of $B_{1,2}$ has to include an additional rotation $\mathbf{R}_{\theta^{\prime}, \varphi^{\prime}}$. Ignoring \widehat{z} :

$$
\mathbf{R}_{\theta^{\prime}, \varphi^{\prime}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \pm c_{\theta^{\prime}} & \pm s_{\theta^{\prime}} \\
0 & \mp s_{\theta^{\prime}} & \pm c_{\theta^{\prime}}
\end{array}\right)
$$

- One has to rotate first the boost direction into the \widehat{x}^{\prime}-axis
- then one performs the boost in the direction of the new \widehat{x}^{\prime}-axis
- and then one has to rotate the axes back in $O_{1,2}^{\prime}$:

$$
\Lambda_{1,2}^{\prime}=\mathbf{R}_{\theta^{\prime}, \varphi^{\prime}}^{-1} \cdot \Lambda_{x ; 1,2}^{\prime} \cdot \mathbf{R}_{\theta^{\prime}, \varphi^{\prime}} \quad \text { where } \quad \Lambda_{x ; 1,2}^{\prime}=\left(\begin{array}{ccc}
\frac{M}{2 m} & -\frac{M}{2 m} \beta & 0 \\
-\frac{M}{2 m} \beta & \frac{M}{2 m} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

2. Special Relativity (SR) - LT in general direction

- writing only a single angle for the rotation in the $\hat{x}-\hat{y}$-plane

$$
\begin{aligned}
\Lambda & =\mathbf{R}_{\theta}^{-1} \cdot \Lambda^{\prime} \cdot \mathbf{R}_{\theta} \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & c_{\theta} & -s_{\theta} & 0 \\
0 & s_{\theta} & c_{\theta} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\gamma & -\gamma \beta & 0 \\
-\gamma \beta & 0 & 0 \\
0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & c_{\theta} & s_{\theta} & 0 \\
0 & -s_{\theta} & c_{\theta} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\gamma & -\gamma \beta c_{\theta} & -\gamma \beta s_{\theta} & 0 \\
-\gamma \beta c_{\theta} & \gamma c_{\theta}^{2}+s_{\theta}^{2} & (\gamma-1) s_{\theta} c_{\theta} & 0 \\
-\gamma \beta s_{\theta} & (\gamma-1) s_{\theta} c_{\theta} & \gamma s_{\theta}^{2}+c_{\theta}^{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\gamma & -\gamma \beta c_{\theta} & -\gamma \beta s_{\theta} & 0 \\
-\gamma \beta c_{\theta} & 1+(\gamma-1) c_{\theta}^{2} & (\gamma-1) s_{\theta} c_{\theta} & 0 \\
-\gamma \beta s_{\theta} & (\gamma-1) s_{\theta} c_{\theta} & 1+(\gamma-1) s_{\theta}^{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Again ignoring \hat{z} :

- the LT from our frame O into O^{\prime} is

$$
\Lambda=\left(\begin{array}{ccc}
\gamma & -\gamma \beta & 0 \\
-\gamma \beta & \gamma & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\frac{E}{M} & -\frac{E}{M} v & 0 \\
-\frac{E}{M} v & \frac{E}{M} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- the LT from O into the restframe of $B_{1,2}$ is $\left(\Lambda_{1,2}\right)^{\mu}{ }_{\nu}=\Lambda_{\rho}^{\mu}\left(\Lambda_{1,2}^{\prime}\right)^{\rho}{ }_{\nu}$... complicated, but straight forward to calculate
- it is much simpler to apply the LTs onto the fourvector we are interested:

$$
p_{1,2}^{\prime \mu}=\left(\Lambda_{1,2}^{\prime}\right)_{\nu}^{\mu}(m, 0,0)^{\nu}=m \gamma\left(1, \mp \beta c_{\theta^{\prime}}, \mp \beta s_{\theta^{\prime}}\right)^{\mu}
$$

and $p_{1,2}^{\mu}=\Lambda^{\mu}{ }_{\nu} p_{1,2}^{\prime \nu}$ or with $\gamma=\frac{M}{2 m}$

$$
p_{1,2}=m \frac{M}{2 m}\left(\begin{array}{ccc}
\frac{E}{M} & -\frac{E}{M} v & 0 \\
-\frac{E}{M} v & \frac{E}{M} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
\mp \beta c_{\theta^{\prime}} \\
\mp \beta s_{\theta^{\prime}}
\end{array}\right)=\frac{M}{2}\left(\begin{array}{c}
\frac{E}{M}\left(1 \pm v \beta c_{\theta^{\prime}}\right) \\
-\frac{E}{M}\left(v \pm \beta c_{\theta^{\prime}}\right) \\
\mp \beta s_{\theta^{\prime}}
\end{array}\right)
$$

- from this we can read off the angles $\tan \theta=\frac{M \beta s_{\theta^{\prime}}}{E\left(v+\beta c_{\theta^{\prime}}\right)}$ and $\tan \phi=\frac{M \beta s_{\theta^{\prime}}}{E\left(-v+\beta c_{\theta^{\prime}}\right)}$

2. Special Relativity (SR) - projection onto 2D
in astronomy we have a "natural" coordinate system

- we see only the light that moves radially to us
\Rightarrow we can only measure the angles of a spherical coordinate system
- for simplicity we can still use a Cartesian system,
- aligning one axes with our line of sight
* we will use the \widehat{x}-axis for our line of sight
\Rightarrow light rays will always have the four vector $k^{\mu}=(k, k, 0,0)$
- the general Lorentz transformation describes the motion to us
- for a movement away from us, we should take $\beta \rightarrow-\beta$
* then we have the same convention as David Hogg, Chapter 7

2. Special Relativity (SR) - Doppler shift, red shift

 in order to compare our observation with the emission, we have to Lorentz transform into the emitters system- the general LT applied to the light ray $k^{\mu}=k(1,1,0,0)$ gives

$$
k^{\prime}=k\left(\begin{array}{ccc}
\gamma & +\gamma \beta c_{\theta} & +\gamma \beta s_{\theta} \\
+\gamma \beta c_{\theta} & \gamma c_{\theta}^{2}+s_{\theta}^{2} & (\gamma-1) s_{\theta} c_{\theta} \\
+\gamma \beta s_{\theta} & (\gamma-1) s_{\theta} c_{\theta} & \gamma s_{\theta}^{2}+c_{\theta}^{2}
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=k\left(\begin{array}{c}
\gamma\left(1+\beta c_{\theta}\right) \\
\gamma c_{\theta}\left(c_{\theta}+\beta\right)+s_{\theta}^{2} \\
\gamma s_{\theta}\left(c_{\theta}+\beta\right)-s_{\theta} c_{\theta}
\end{array}\right)
$$

- the energy emitted is $\left(k^{\prime}\right)^{0}=k \gamma\left(1+\beta c_{\theta}\right)$
- astronomers define the dimensionless redshift z by

$$
1+z \equiv \frac{\Delta t_{r}}{\Delta \tau_{e}}=\frac{\text { emitted frequency }}{\text { received frequency }}=\frac{\text { emitted energy }}{\text { received energy }}=\gamma\left(1+\beta c_{\theta}\right)
$$

- which is nothing else, but the shift due to the Doppler effect
- when the object is moving to us, z is negative and called blueshift

When charting the sky

- we know, that the earth is moving relative to the "background"
- like circling the sun or with the sun the Milky Way
- for simplicity we again ignore the \bar{z}-direction
- then the "position" of the star is described by the angle θ :

$$
k^{\mu}=k\left(1, c_{\theta}, s_{\theta}\right)
$$

- a non moving observer would see the star with the four vector

$$
k^{\prime \mu}=\wedge_{\nu}^{\mu} k^{\nu}=k\left(\gamma\left(1+\beta c_{\theta}\right), \gamma\left(c_{\theta}+\beta\right), s_{\theta}\right)=k^{\prime}\left(1, c_{\theta^{\prime}}, s_{\theta^{\prime}}\right)
$$

- the ratio k / k^{\prime} is the discussed Doppler shift
- the change in the angle $\theta \rightarrow \theta^{\prime}$ is called stellar abberation :

$$
c_{\theta^{\prime}}=\cos \theta^{\prime}=\frac{\cos \theta+\beta}{1+\beta \cos \theta}=\frac{c_{\theta}+\beta}{1+\beta c_{\theta}}
$$

Brightness is defined as the observed radiation density: $I=\mathrm{d} E / \mathrm{d} t *(\mathrm{~d} \Omega)^{-1}$

- I is independent of the distance R :
- the observed amount of light goes down with R^{-2}
- but the angular size goes down with R^{-2}, too.
- but I is not independent of the motion:
- the moving object emitts light isotropically: $\mathrm{d} E^{\prime} / \mathrm{d} t^{\prime}$
* we see the Doppler shift for the energy: $\mathrm{d} E^{\prime}=\mathrm{d} E * \gamma\left(1+\beta c_{\theta}\right)$
$-1 / \mathrm{d} t^{\prime} \approx f^{\prime}$ is the frequency of the emitted photons
- this frequency f^{\prime} is proportional to the energy of the photons E^{\prime}
* so a Doppler shifted frequency: $\left(1 / \mathrm{d} t^{\prime}\right)=(1 / \mathrm{d} t) * \gamma\left(1+\beta c_{\theta}\right)$
- as seen from stellar abberation
* the perceived angle depends on the relative motion:

$$
\cos \theta^{\prime}=\frac{\cos \theta+\beta}{1+\beta \cos \theta}
$$

- the solid angle $\mathrm{d} \Omega=\mathrm{d} \cos \theta * \mathrm{~d} \phi$
- $\mathrm{d} \phi$ is orthogonal to the direction of the boost
- but d $\cos \theta$ transforms:

$$
\begin{aligned}
\mathrm{d} \cos \theta^{\prime} & =\mathrm{d}\left(\frac{\cos \theta+\beta}{1+\beta \cos \theta}\right)=\frac{\mathrm{d} \cos \theta}{1+\beta \cos \theta}-\frac{\cos \theta+\beta}{(1+\beta \cos \theta)^{2}} \beta \mathrm{~d} \cos \theta \\
& =\frac{1+\beta \cos \theta-\beta \cos \theta-\beta^{2}}{(1+\beta \cos \theta)^{2}} \mathrm{~d} \cos \theta=\frac{\mathrm{d} \cos \theta}{\gamma^{2}(1+\beta \cos \theta)^{2}}
\end{aligned}
$$

- the emitted brightness I^{\prime} is

$$
\begin{aligned}
I^{\prime} & =\frac{\mathrm{d} E^{\prime} / \mathrm{d} t^{\prime}}{\mathrm{d} \cos \theta^{\prime} * \mathrm{~d} \phi^{\prime}}=\frac{\mathrm{d} E * \gamma\left(1+\beta c_{\theta}\right) * 1 / \mathrm{d} t * \gamma\left(1+\beta c_{\theta}\right)}{\frac{\mathrm{d} \cos \theta}{\gamma^{2}(1+\beta \cos \theta)^{2}} * \mathrm{~d} \phi} \\
& =\frac{\mathrm{d} E / \mathrm{d} t}{\mathrm{~d} \cos \theta * \mathrm{~d} \phi} *\left[\gamma\left(1+\beta c_{\theta}\right)\right]^{4}=I *(1+z)^{4}
\end{aligned}
$$

- when the object moves directly to us $c_{\theta}=-1$ and

$$
\frac{I}{I^{\prime}}=[\gamma(1-\beta)]^{-4}=\left(\frac{1+\beta}{1-\beta}\right)^{2} \gg 1 \quad \Rightarrow \quad \text { 'beaming'' }
$$

2. Special Relativity (SR) - kinematic model - Milne universe explosion in O^{\prime} at $t^{\prime}=0$ and all fragments flying with constant velocity

- all positions are given by $\vec{r}^{\prime}=\vec{v}^{\prime} t^{\prime}$
- everything is moving away
- the velocity is proportional to the distance
\Rightarrow Hubble flow
- our frame O is moving with one of the fragments
- our time starts at the explosion with $t=0$
- each fragment came from the origin ($0,0,0,0$)
\Rightarrow the worldline of each fragment goes through the origin
- each fragment has a constant velocity \vec{v}
$\Rightarrow \quad \vec{r}=\vec{v} t \quad \Rightarrow \quad$ also Hubble flow
* like we observe in our universe ...

2. Special Relativity (SR) - kinematic model - Milne universe

explosion in O^{\prime} at $t^{\prime}=0$ and all fragments flying with constant velocity

- we see now, at t_{0}, another fragment
- at the place, r_{e} away from us, where it emitted the light
- the fragment traveled the distance r_{e} from the Big Bang
- for this distance it needed the time $t_{e}=r_{e} / v$
- the light traveled this distance r_{e} to us, needing the time r_{e} / c
- we see the light now at $t_{0}=t_{e}+r_{e} / c=r_{e}(1 / v+1 / c)$
- an observer sitting on the fragment that emitted the light would measure the fragments eigentime τ for the emission:
- just calculating the invariant 'distance' from the Big Bang to the point of the emission $\left(t_{e}, r_{e}\right)$

$$
c^{2} \tau^{2}=\left(c t_{e}\right)^{2}-r_{e}^{2} \quad \text { or } \quad \tau^{2}=\left(r_{e} / v\right)^{2}-\left(r_{e} / c\right)^{2}
$$

2. Special Relativity (SR) - kinematic model - Milne universe explosion in O^{\prime} at $t^{\prime}=0$ and all fragments flying with constant velocity

- using the definition of the redshift $1+z=t_{0} / \tau$ we can define the angular diameter distance

$$
d_{A}=r_{e}=c t_{0} \frac{2 z+z^{2}}{2(1+z)^{2}}<\frac{1}{2} c t_{0}
$$

- measured by the angular diameter, if the size is known
* we get this equation by combining the two equations on the previous slide
- knowing the intrinsic Luminosity $L=\int I \mathrm{~d} \Omega$ and measuring the Flux
- we can define the luminosity distance

$$
d_{L}=r=\sqrt{L /(4 \pi F)}
$$

\Rightarrow as a prediction of this kinematic model we get the relation

$$
d_{L}=d_{A} *(1+z)^{-4}
$$

- can be compared to measurements ...

