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1. Special Relativity (SR) — Introduction
Galilean Invariance / Galilean transformations: t - t/, ¥ — &
Two inertial observers, O and O/,

e measure the same absolute time (i.e.: 1 second = 1 second’).
— Time translations : ¢/ =t+71, @ =7

in index notation: ¢ =t 4+ T, :1:"7 = x;

e have at t = 0 a relative distance Ar.
— Spatial translations : t/ =t, @ =¥+ A7

in index notation: t' =t, z; = z; + Ar,

e have coordinate systems that are rotated by a relative rotation R.
— Rotations : ¢/ =t, & = R - Z, where R is an orthogonal matrix

. Ly
in index notation: ¢ =¢, zf =Rz, = S, Rz,

e have a constant relative velocity v, which can be zero, too.
— Boosts : t' =t, ¥ =2+ vt

in index notation: ¢’ = ¢, azj =z, + vt

Thomas Gajdosik Cosmology 2023 / 09 / 01



1. Special Relativity (SR) — Introduction

Galilean Group
e How Galilean transformations act on a quantum mechanical state.

e What is a group?
— a set with a binary operation:

— an example is the set of numbers {0, 1,2} with the addition
modulo 3 (i.e. taking only the remainder of the division by 3).

e Properties of a group
— different transformations in the group do not give something that is
outside the group.
— two transformations in different order give either zero or another
transformation.

e Each transformation depends on continuous parameters
— The Galilean Group is a Lie Group.
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1. Special Relativity (SR) — Introduction

What’'s wrong with Galilean Invariance?

Maxwell's equations describe the propagation of light depending on the
electric permittivity and the magnetic permeability of the vacuum.

If the vacuum is the same for every inertial observer, he has to measure
the same speed of light regardless, who emitted it.

— This is Einsteins second assumption!

But then the addition of velocities described by the Galilean transfor-
mations are wrong.

LLorentz transformations describe correctly the measurements done re-
garding the speed of light.

Lorentz transformations include a transformation of the time, that the
inertial observers measure.

Absolut time is a concept, that is not able to describe nature.
— That's wrong with the Galilean Invariance!
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1. Special Relativity (SR) — Introduction
Axioms of Special Relativity

e Every physical theory should look the same mathematically to every
inertial observer.

e T he speed of light in vacuum is independent from the movement of its
emmitting body.

Consequences
e T he speed of light in vacuum is maximum speed for any information.
e [ he world has to be described by a 4D space-time: Minovsky space.

e The simplest object is a scalar (field): ¢(x)
no structure except position and momentum.

e The next simplest object is a spinor (field): ¥*(x)
a vector (field) can be described as a double-spinor.
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1. Special Relativity (SR) — Vectors, Tensors, and notation
the plane — i.e. 2D (Euclidean) space

e Wwe can pick a coordinate system and describe points with coordinates
— Cartesian coordinates (z,vy)
— Polar coordinates (r,6)

e a vector can be understood as a difference of points
— position vector: difference between the position and the origin

e we can write the vector v

— as a row (vg,vy) ... or as a column ("f)
Yy

— in index notation v; or v, where we identify vy = v1 and vy, = v»

We can understand the plane as being generated by two vectors :
plane = point 4 ax + by with a,b € 'R

e r and y are said to span the plane, which is a vectorspace
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1. Special Relativity (SR) — Vectors, Tensors, and notation
multiplying vectors

e with a number, not a problem: cxad = (c* az,c * ay)

e with another vector: what do we want to get?

— a number =  scalar product: @-b:= a, * by + a, * by
— another vector: there is no unique prescription ...
— atensor =  tensor product: a®b

* in index notation: a; ® by = ajby, = (a ® b) i,

Geometric Algebra defines the geometric product of vectors :
for vectors a = @, b = b, etc.

e ab has a symmetric and an antisymmetric part: ab=a-b+a ADb

— aa=a-a,—I—a,/\OL=a2 IS a number
(the normal scalar product of the vector with itself)

—ba=b-a+bANa=a-b—aAbis a number plus a bivector

e (' = ab is called a multivector
e a multivector is NOT a tensor !
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1. Special Relativity (SR) — Vectors, Tensors, and notation
what is a tensor?
e an object that looks like the tensor product of vectors . ..

— it transforms like a tensor product of vectors would transform

e easiest imaginable in indexnotation:
— a tensor is an object with indices ¢, or /% or t7,

e sSpecial tensors
— a vector is a tensor of rank one: it has one index
— a matrix is a tensor of rank two: it has two indices

tensors form also a vectorspace

e Multiplying a tensor with a number gives again a tensor
— the resulting tensor is of the same dimensions as the initial one.

e adding tensors of the same dimension gives again a tensor
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1. Special Relativity (SR) — Vectors, Tensors, and notation
multiplying tensors

e one index of each can be treated like a scalar product
= matrix multiplication

— with a = ai, and b = bmn! (a-b)jn = Xk ajk * biy,
* here a and b can be understood as matrices

e in order to simplify the writing, we can omit the Y symbol
= Einsteins summation convention

— one sums over repeated indices: ajj * by, 1= >k ajk * by

index position can be used to distinguish objects

e example:
— columnvector 7 = vt = (g“f)
Yy
— rowvector ()" = v; = (vg, vy)

e then a matrix has to have upper and lower index: a’; # a’
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1. Special Relativity (SR) — Vectors, Tensors, and notation
in more dimensional space we just have more coordinates

e In 3D space (our 3D world):
— ¥ = (vg, vy, vz) = v; (in cartesian coordinates)

e In 4D Minkovsky space people do not write an arrow:
— momentum p = (E = p', p%,p¥,p*) = (@°,p*, p?, p°) = p#
x and the index is usually a greek letter: u, v, p, etc.
— position r = (ct,z,y,2) = (a9, 21, 22, 23) = r#
« time ct = 20 is measured like spacial distances in meter.

x T he constant speed of light ¢ is used as the conversion factor
between seconds and meters.

For the rest of the lecture we set ¢ = 1. (i.e.: 3:108m = 1)
e SO we measure time in seconds and distances in light-seconds

e Or distances in meters and time in ~ 3 ""nanoseconds’’.
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1. Special Relativity (SR) — Invariants

What are invariant objects?
e Objects that are the same for every inertial observer.

e Examples in 3D: rotations or translations
— the distances ¢ between points: 2 = (Az)? + (Ay)2 4+ (Az)2.
— the angle a between directions: cosa = (@ - b)/(|@| = |b]).

e In 4D Minkovsky space: (As)2 = (At)2 — (Ax)? — (Ay)? — (Az)2.

— The time t is measured like spacial distances in meter.

— The constant speed of light ¢ is used as the conversion factor
between seconds and meters.

e Any scalar product of four-vectors in Minkovsky space:

(p.q) = p*q” g = p°¢° — plgt — p2¢° — p3¢° .
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1. Special Relativity (SR) — Invariants

What is the use of scalar products?

e Scalars are the same in every inertial frame.
— If one knows its value in one frame, one knows it in every frame.
= Use the most comfortable frame to calculate the value of a scalar!

e Events A and B happen at a certain time in a certain place:
— In every frame they can be described by four-vectors
at = (a9, al,a?,a3) and b* = (b9, b1, 12, 13).
— Their relative position d* = a* — b* is frame dependent.
— But their "4-distance” d2 = (d - d) is invariant.
— d? classifies the causal connection of A and B.
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1. Special Relativity (SR) — Invariants
Classification of d?

o If d2 >0 they are time-like separated:
— one event happens before the other in every frame.
— there is a frame, where A and B happen at the same position.
— in this frame d* = (At,0,0,0) with At = Vd?.

o If d2 = 0 they are light-like related. If A # B:
— there is no frame, where A and B happen at the same time.

— there is no frame, where A and B happen at the same position.

— there is a frame, where d* = (n,n,0,0) with n arbitrary.

o If d2 < O they are space-like separated:
— there is a frame, where A and B happen at the same time.
— in this frame d* = (0, As,0,0), with As = \/—7d2
if the x-axis is oriented in the direction AB.
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1. Special Relativity (SR) — Invariants

A special scalar product

e Particles are usually described by their energy-momentum four-vector:

p'u — (p07p17p27p3> — (E7p$7pyapz) — (E7ﬁ)

— The mass of the particle is defined in its rest-frame: p = 0.
— There, the energy-momentum four-vector is p#* = (m,0).
— Since p2 = (p-p) is a scalar, it is the same in every frame.

— In the rest-frame p? = m?=.

— Therefore in every frame

e This can be applied to collisions, too: (p; +p2)2 is constant.
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1. Special Relativity (SR) — Lorentz transformations

Lorentz transformations

e relate the coordinate systems of two inertial observers.
e |leave the "4-distance” invariant.
e assuming linearity, they can be written as

o’ =N, 2V 4 ot .

— These are called inhomogeneous Lorentz transformations (A, a).

Homogeneous Lorentz transformations have a* = 0.

e They leave scalar products invariant: (p'.¢") = (p.q).

e [ hey describe 3 Rotations and 3 Boosts
(cf. the Galilean transformations).
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1. Special Relativity (SR) — Lorentz transformations
Rotations are the same as in the Galilean transformations.

For Boosts between O and O’ let us align the coordinate systems:
e The origins of O and O’ should be at the same place at t =t/ = 0.

e The constant relative velocity v between O and O’ should point in the
z-direction for both, O and O’.

e y and z should point in the same direction for both: v/ =y and 2/ = z.

e Only ¢t = zY and = = z! are affected by such a boost:

NM, = 6% for either u or v being 2 or 3.
e So with p’ = Ap and ¢’ = Aq we have (»'.¢') — (p.q) =0 .
e Since vy =y and z/ = z we can ignore § and z in the equation

0= (p'.¢)— (p.g) = % - p't¢'t) — (pO° — plql) .
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1. Special Relativity (SR) —

Determining Boosts

0 = (AYP” +AGpH) (AR + A

—(%° - p q)
= (AQAY — AFA
+(AIAQ — ALA

IS solved by

where n is the

AQ = A} = 4 coshy

Lorentz transformations

g) — (AN5p° + ALpH(Ae® + Algh)

— 1)p%° + (AQAY — ApAY )Pt
o)plqo + (AJAT — ASAY + 1)plet

AY = AL = Fsinhy |

"rapidity’” of the boost. The usual choice is the upper sign.

How can we relate n to the relative velocity v between O and O'?

e Let us take two events and describe them in O and O’:

— A: the origins of O and O’ overlap; set t =t = 0.
— B: at the origin of O’ after the time ¢/, where t = At.
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1. Special Relativity (SR) — Lorentz transformations

e The coordinates of A are a# = a'* = (0,0,0,0).

e T he coordinates of B
— in O are b* = (At,vAt,0,0) because O' was moving with the
constant relative velocity v for the time At.

— in O are ¥'* = (¢/,0,0,0) because B is at the origin of O’.

e But v'* = A", b¥ = (coshn At —sinhnvAt, —sinhn At 4+ coshnuvAt, 0,0).

T herefore
t' = coshnAt—sinhnuAt
O = —sinhnAt+ coshnvAt
or
sinhn
v = = tanhn ~n for n small.
coshn
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1. Special Relativity (SR) — Lorentz transformations
Lorentz transformations on vectors

e Each vector V# can be understood as the distance of two events.

e Its transformation is the same as for events in different inertial frames:

VIR =AF, VY

e Since (V.W) is a scalar, (VW) = (V.W) :

VIEW, = N, VIW), = VYW,

o So Ay W/, =W, or W, = (A",)~tw,

e What is now the inverse (A(v))~1 7
— Obviously it should be A(—v) .
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1. Special Relativity (SR) — Lorentz transformations
More on vectors, the metric, and Lorentz transformations
e We defined the scalar product of contravariant vectors:
(p-q) = p"q¢" g = p°¢° — prq* — p?¢® —p3¢> |
where g, = guy IS the metric with goo =1, g;; = —1, and g,,», = 0.
e We can define covariant vectors with the index down: V,, = g, V".

e The index can be raised again by VH = gHt"V,.

e This obviously gives g"’gu, = g"*gup = 9" g = 0y .
e T hat means for the Lorentz transformations:

VL/L — g,uAV/A — g,LL)\/\Afi VE = g,u)\/\Aﬁ; gmjvl/ — (/\'ul/ )_1VV
or

(/\,U,V )—1 — g,u)\/\Amgm/ — /\Ml/
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1. Special Relativity (SR) — Lorentz transformations
Lorentz transformations of fields

e Two observers, O and O/, can agree on a space-time point z
by calling it an event X.

— X might have different coordinates z# and z’* in O and O/,
but it is nevertheless the same point.

— O and O’ can compare the value of different fields at that point X.

e The simplest field is the scalar field ¢(x):
¢'(X) = ¢(X) .

e The vector fields a#(x) or a,(x) transform like vectors:
a*P(X) = A, a"(X) a;JJ(X) =N, " av(X)

e Tensor fields t’;,’;A(a:) transform like the product of vectors:

LX) = A A g AT A 5/\;15 (X) .
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