1. Special Relativity (SR) - Content

Content

- Introduction
- Galilean Transformations
- Axioms of Special Relativity
- Vectors, Tensors, and notation
- Invariants
- Lorentz transformations

Links

- Lecture notes by David Hogg: http://cosmo.nyu.edu/hogg/sr/sr.pdf
- or: http://web.vu.lt/ff/t.gajdosik/files/2014/02/sr.pdf

1. Special Relativity (SR) - Introduction

Galilean Invariance / Galilean transformations: $t \rightarrow t^{\prime}, \vec{x} \rightarrow \vec{x}^{\prime}$
Two inertial observers, O and O^{\prime},

- measure the same absolute time (i.e.: 1 second $=1$ second').
- Time translations : $t^{\prime}=t+\tau, \vec{x}^{\prime}=\vec{x}$
in index notation: $t^{\prime}=t+\tau, x_{j}^{\prime}=x_{j}$
- have at $t=0$ a relative distance $\Delta \vec{r}$.
- Spatial translations : $t^{\prime}=t, \vec{x}^{\prime}=\vec{x}+\Delta \vec{r}$
in index notation: $t^{\prime}=t, x_{j}^{\prime}=x_{j}+\Delta r_{j}$
- have coordinate systems that are rotated by a relative rotation \mathbf{R}.
- Rotations : $t^{\prime}=t, \vec{x}^{\prime}=\mathbf{R} \cdot \vec{x}$, where \mathbf{R} is an orthogonal matrix
in index notation: $t^{\prime}=t, x_{j}^{\prime}=\mathbf{R}_{j k} x_{k}=\sum_{k=1}^{3} \mathbf{R}_{j k} x_{k}$
- have a constant relative velocity \vec{v}, which can be zero, too.
- Boosts : $t^{\prime}=t, \vec{x}^{\prime}=\vec{x}+\vec{v} t$
in index notation: $t^{\prime}=t, x_{j}^{\prime}=x_{j}+v_{j} t$

1. Special Relativity (SR) - Introduction

Galilean Group

- How Galilean transformations act on a quantum mechanical state.
- What is a group?
- a set with a binary operation:
- an example is the set of numbers $\{0,1,2\}$ with the addition modulo 3 (i.e. taking only the remainder of the division by 3).
- Properties of a group
- different transformations in the group do not give something that is outside the group.
- two transformations in different order give either zero or another transformation.
- Each transformation depends on continuous parameters
- The Galilean Group is a Lie Group.

1. Special Relativity (SR) - Introduction

What's wrong with Galilean Invariance?

- Maxwell's equations describe the propagation of light depending on the electric permittivity and the magnetic permeability of the vacuum.
- If the vacuum is the same for every inertial observer, he has to measure the same speed of light regardless, who emitted it.
- This is Einsteins second assumption!
- But then the addition of velocities described by the Galilean transformations are wrong.
- Lorentz transformations describe correctly the measurements done regarding the speed of light.
- Lorentz transformations include a transformation of the time, that the inertial observers measure.
- Absolut time is a concept, that is not able to describe nature.
- That's wrong with the Galilean Invariance!

1. Special Relativity (SR) - Introduction

Axioms of Special Relativity

- Every physical theory should look the same mathematically to every inertial observer.
- The speed of light in vacuum is independent from the movement of its emmitting body.

Consequences

- The speed of light in vacuum is maximum speed for any information.
- The world has to be described by a 4D space-time: Minovsky space.
- The simplest object is a scalar (field): $\phi(x)$ no structure except position and momentum.
- The next simplest object is a spinor (field): $\psi^{\alpha}(x)$ a vector (field) can be described as a double-spinor.

1. Special Relativity (SR) - Vectors, Tensors, and notation
the plane - i.e. 2D (Euclidean) space

- we can pick a coordinate system and describe points with coordinates
- Cartesian coordinates (x, y)
- Polar coordinates (r, θ)
- a vector can be understood as a difference of points
- position vector: difference between the position and the origin
- we can write the vector \vec{v}
- as a row $\left(v_{x}, v_{y}\right) \quad \ldots \quad$ or as a column $\binom{v_{x}}{v_{y}}$
- in index notation v_{i} or v^{i}, where we identify $v_{x}=v_{1}$ and $v_{y}=v_{2}$

We can understand the plane as being generated by two vectors :

$$
\text { plane }=\text { point }+a \widehat{x}+b \widehat{y} \quad \text { with } a, b \in \mathcal{R}
$$

- \hat{x} and \hat{y} are said to span the plane, which is a vectorspace

1. Special Relativity (SR) - Vectors, Tensors, and notation

 multiplying vectors- with a number, not a problem: $c * \vec{a}=\left(c * a_{x}, c * a_{y}\right)$
- with another vector: what do we want to get?
- a number \Rightarrow scalar product: $\vec{a} \cdot \vec{b}:=a_{x} * b_{x}+a_{y} * b_{y}$
- another vector: there is no unique prescription ...
- a tensor \Rightarrow tensor product: $\vec{a} \otimes \vec{b}$
* in index notation: $a_{j} \otimes b_{k}=a_{j} b_{k}=(a \otimes b)_{j k}$

Geometric Algebra defines the geometric product of vectors :
for vectors $a=\vec{a}, b=\vec{b}$, etc.

- $a b$ has a symmetric and an antisymmetric part: $a b=a \cdot b+a \wedge b$
$-a a=a \cdot a+a \wedge a=a^{2}$ is a number
(the normal scalar product of the vector with itself)
$-b a=b \cdot a+b \wedge a=a \cdot b-a \wedge b$ is a number plus a bivector
- $C=a b$ is called a multivector
- a multivector is NOT a tensor ! what is a tensor?
- an object that looks like the tensor product of vectors...
- it transforms like a tensor product of vectors would transform
- easiest imaginable in indexnotation:
- a tensor is an object with indices $t_{j k \ell}$ or $t^{j k \ell}$ or $t^{j}{ }_{k \ell}$
- special tensors
- a vector is a tensor of rank one: it has one index
- a matrix is a tensor of rank two: it has two indices
tensors form also a vectorspace
- multiplying a tensor with a number gives again a tensor
- the resulting tensor is of the same dimensions as the initial one.
- adding tensors of the same dimension gives again a tensor

1. Special Relativity (SR) - Vectors, Tensors, and notation

 multiplying tensors- one index of each can be treated like a scalar product
\Rightarrow matrix multiplication
- with $a=a_{j k}$ and $b=b_{m n}:(a \cdot b)_{j n}=\sum_{k} a_{j k} * b_{k n}$
* here a and b can be understood as matrices
- in order to simplify the writing, we can omit the \sum symbol
\Rightarrow Einsteins summation convention
- one sums over repeated indices: $a_{j k} * b_{k n}:=\sum_{k} a_{j k} * b_{k n}$
index position can be used to distinguish objects
- example:
- columnvector $\vec{v}=v^{i}=\binom{v_{x}}{v_{y}}$
$-\operatorname{rowvector}(\vec{v})^{\top}=v_{i}=\left(v_{x}, v_{y}\right)$
- then a matrix has to have upper and lower index: $a^{j}{ }_{k} \neq a_{k}{ }^{j}$

1. Special Relativity (SR) - Vectors, Tensors, and notation

in more dimensional space we just have more coordinates

- In 3D space (our 3D world):
$-\vec{v}=\left(v_{x}, v_{y}, v_{z}\right)=v_{i}$ (in cartesian coordinates)
- In 4D Minkovsky space people do not write an arrow:
- momentum $p=\left(E=p^{t}, p^{x}, p^{y}, p^{z}\right)=\left(p^{0}, p^{1}, p^{2}, p^{3}\right)=p^{\mu}$
* and the index is usually a greek letter: μ, ν, ρ, etc.
- position $r=(c t, x, y, z)=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=r^{\mu}$
* time $c t=x^{0}$ is measured like spacial distances in meter.
* The constant speed of light c is used as the conversion factor between seconds and meters.

For the rest of the lecture we set $c=1$. (i.e.: $3 \cdot 10^{8} \mathrm{~m}=1 \mathrm{~s}$)

- so we measure time in seconds and distances in light-seconds
- or distances in meters and time in ~ 3 "nanoseconds".

1. Special Relativity (SR) - Invariants

What are invariant objects?

- Objects that are the same for every inertial observer.
- Examples in 3D: rotations or translations
- the distances ℓ between points: $\ell^{2}=(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}$.
- the angle α between directions: $\cos \alpha=(\vec{a} \cdot \vec{b}) /(|\vec{a}| *|\vec{b}|)$.
- In 4D Minkovsky space: $(\Delta s)^{2}=(\Delta t)^{2}-(\Delta x)^{2}-(\Delta y)^{2}-(\Delta z)^{2}$.
- The time t is measured like spacial distances in meter.
- The constant speed of light c is used as the conversion factor between seconds and meters.
- Any scalar product of four-vectors in Minkovsky space:

$$
(p . q)=p^{\mu} q^{\nu} g_{\mu \nu}=p^{0} q^{0}-p^{1} q^{1}-p^{2} q^{2}-p^{3} q^{3} .
$$

1. Special Relativity (SR) - Invariants

What is the use of scalar products?

- Scalars are the same in every inertial frame.
- If one knows its value in one frame, one knows it in every frame.
\Rightarrow Use the most comfortable frame to calculate the value of a scalar!
- Events A and B happen at a certain time in a certain place:
- In every frame they can be described by four-vectors

$$
a^{\mu}=\left(a^{0}, a^{1}, a^{2}, a^{3}\right) \text { and } b^{\mu}=\left(b^{0}, b^{1}, b^{2}, b^{3}\right)
$$

- Their relative position $d^{\mu}=a^{\mu}-b^{\mu}$ is frame dependent.
- But their "4-distance" $d^{2}=(d \cdot d)$ is invariant.
$-d^{2}$ classifies the causal connection of A and B.

1. Special Relativity (SR) - Invariants

Classification of d^{2}

- If $d^{2}>0$ they are time-like separated:
- one event happens before the other in every frame.
- there is a frame, where A and B happen at the same position.
- in this frame $d^{\mu}=(\Delta t, 0,0,0)$ with $\Delta t=\sqrt{d^{2}}$.
- If $d^{2}=0$ they are light-like related. If $A \neq B$:
- there is no frame, where A and B happen at the same time.
- there is no frame, where A and B happen at the same position.
- there is a frame, where $d^{\mu}=(\eta, \eta, 0,0)$ with η arbitrary.
- If $d^{2}<0$ they are space-like separated:
- there is a frame, where A and B happen at the same time.
- in this frame $d^{\mu}=(0, \Delta s, 0,0)$, with $\Delta s=\sqrt{-d^{2}}$, if the x-axis is oriented in the direction $\overline{A B}$.

1. Special Relativity (SR) - Invariants

A special scalar product

- Particles are usually described by their energy-momentum four-vector:

$$
p^{\mu}=\left(p^{0}, p^{1}, p^{2}, p^{3}\right)=\left(E, p_{x}, p_{y}, p_{z}\right)=(E, \vec{p})
$$

- The mass of the particle is defined in its rest-frame: $\vec{p}=0$.
- There, the energy-momentum four-vector is $p^{\mu}=(m, 0)$.
- Since $p^{2}=(p \cdot p)$ is a scalar, it is the same in every frame.
- In the rest-frame $p^{2}=m^{2}$.
- Therefore in every frame

$$
m^{2}=E^{2}-\vec{p}^{2}!
$$

- This can be applied to collisions, too: $\left(p_{1}+p_{2}\right)^{2}$ is constant.

1. Special Relativity (SR) - Lorentz transformations

Lorentz transformations

- relate the coordinate systems of two inertial observers.
- leave the "4-distance" invariant.
- assuming linearity, they can be written as

$$
x^{\prime \mu}=\wedge_{\nu}^{\mu} x^{\nu}+a^{\mu} .
$$

- These are called inhomogeneous Lorentz transformations ($\wedge, a)$.

Homogeneous Lorentz transformations have $a^{\mu}=0$.

- They leave scalar products invariant: $\left(p^{\prime} . q^{\prime}\right)=(p . q)$.
- They describe 3 Rotations and 3 Boosts (cf. the Galilean transformations).

1. Special Relativity (SR) - Lorentz transformations

Rotations are the same as in the Galilean transformations.
For Boosts between O and O^{\prime} let us align the coordinate systems:

- The origins of O and O^{\prime} should be at the same place at $t=t^{\prime}=0$.
- The constant relative velocity v between O and O^{\prime} should point in the \hat{x}-direction for both, O and O^{\prime}.
- \hat{y} and \hat{z} should point in the same direction for both: $y^{\prime}=y$ and $z^{\prime}=z$.
- Only $c t=x^{0}$ and $x=x^{1}$ are affected by such a boost: $\Lambda^{\mu}{ }_{\nu}=\delta_{\nu}^{\mu}$ for either μ or ν being 2 or 3.
- So with $p^{\prime}=\wedge p$ and $q^{\prime}=\wedge q$ we have $\left(p^{\prime} \cdot q^{\prime}\right)-(p . q)=0$.
- Since $y^{\prime}=y$ and $z^{\prime}=z$ we can ignore \hat{y} and \hat{z} in the equation

$$
0=\left(p^{\prime} . q^{\prime}\right)-(p . q)=\left(p^{0} q^{\prime 0}-p^{1} q^{1}\right)-\left(p^{0} q^{0}-p^{1} q^{1}\right) .
$$

1. Special Relativity (SR) - Lorentz transformations

Determining Boosts

$$
\begin{aligned}
& 0=\left(\wedge_{0}^{0} p^{0}+\wedge_{1}^{0} p^{1}\right)\left(\wedge_{0}^{0} q^{0}+\wedge_{1}^{0} q^{1}\right)-\left(\wedge_{0}^{1} p^{0}+\wedge_{1}^{1} p^{1}\right)\left(\wedge_{0}^{1} q^{0}+\wedge_{1}^{1} q^{1}\right) \\
& -\left(p^{0} q^{0}-p^{1} q^{1}\right) \\
& =\left(\wedge_{0}^{0} \Lambda_{0}^{0}-\Lambda_{0}^{1} \Lambda_{0}^{1}-1\right) p^{0} q^{0}+\left(\wedge_{0}^{0} \Lambda_{1}^{0}-\Lambda_{0}^{1} \Lambda_{1}^{1}\right) p^{0} q^{1} \\
& +\left(\wedge_{1}^{0} \wedge_{0}^{0}-\wedge_{1}^{1} \wedge_{0}^{1}\right) p^{1} q^{0}+\left(\wedge_{1}^{0} \wedge_{1}^{0}-\wedge_{1}^{1} \wedge_{1}^{1}+1\right) p^{1} q^{1}
\end{aligned}
$$

is solved by

$$
\Lambda_{0}^{0}=\Lambda_{1}^{1}= \pm \cosh \eta \quad \Lambda_{1}^{0}=\Lambda_{0}^{1}=\mp \sinh \eta
$$

where η is the "rapidity" of the boost. The usual choice is the upper sign.
How can we relate η to the relative velocity v between O and O^{\prime} ?

- Let us take two events and describe them in O and O^{\prime} :
$-A$: the origins of O and O^{\prime} overlap; set $t=t^{\prime}=0$.
$-B$: at the origin of O^{\prime} after the time t^{\prime}, where $t=\Delta t$.
- The coordinates of A are $a^{\mu}=a^{\mu}=(0,0,0,0)$.
- The coordinates of B
- in O are $b^{\mu}=(\Delta t, v \Delta t, 0,0)$ because O^{\prime} was moving with the constant relative velocity v for the time Δt.
- in O^{\prime} are $b^{\prime \mu}=\left(t^{\prime}, 0,0,0\right)$ because B is at the origin of O^{\prime}.
- But $b^{\prime \mu}=\wedge^{\mu}{ }_{\nu} b^{\nu}=(\cosh \eta \Delta t-\sinh \eta v \Delta t,-\sinh \eta \Delta t+\cosh \eta v \Delta t, 0,0)$. Therefore

$$
\begin{aligned}
t^{\prime} & =\cosh \eta \Delta t-\sinh \eta v \Delta t \\
0 & =-\sinh \eta \Delta t+\cosh \eta v \Delta t
\end{aligned}
$$

or

$$
v=\frac{\sinh \eta}{\cosh \eta}=\tanh \eta \sim \eta \quad \text { for } \eta \text { small. }
$$

1. Special Relativity (SR) - Lorentz transformations

Lorentz transformations on vectors

- Each vector V^{μ} can be understood as the distance of two events.
- Its transformation is the same as for events in different inertial frames:

$$
V^{\prime \mu}=\wedge^{\mu}{ }_{\nu} V^{\nu} .
$$

- Since $(V . W)$ is a scalar, $\left(V^{\prime} . W^{\prime}\right)=(V . W)$:

$$
V^{\prime \mu} W_{\mu}^{\prime}=\wedge_{\nu}^{\mu} V^{\nu} W_{\mu}^{\prime}=V^{\nu} W_{\nu} .
$$

- So $\wedge^{\mu}{ }_{\nu} W_{\mu}^{\prime}=W_{\nu}$ or $W_{\mu}^{\prime}=\left(\wedge^{\mu}{ }_{\nu}\right)^{-1} W_{\nu}$
- What is now the inverse $(\Lambda(v))^{-1}$?
- Obviously it should be $\Lambda(-v)$.

1. Special Relativity (SR) - Lorentz transformations

More on vectors, the metric, and Lorentz transformations

- We defined the scalar product of contravariant vectors:

$$
(p . q)=p^{\mu} q^{\nu} g_{\mu \nu}=p^{0} q^{0}-p^{1} q^{1}-p^{2} q^{2}-p^{3} q^{3}
$$

where $g_{\mu \nu}=g_{\nu \mu}$ is the metric with $g_{00}=1, g_{i i}=-1$, and $g_{\mu \neq \nu}=0$.

- We can define covariant vectors with the index down: $V_{\mu}=g_{\mu \nu} V^{\nu}$.
- The index can be raised again by $V^{\mu}=g^{\mu \nu} V_{\nu}$.
- This obviously gives $g^{\mu \nu} g_{\nu \rho}=g^{\nu \mu} g_{\nu \rho}=g^{\mu \nu} g_{\rho \nu}=\delta_{\rho}^{\mu}$.
- That means for the Lorentz transformations:

$$
V_{\mu}^{\prime}=g_{\mu \lambda} V^{\prime \lambda}=g_{\mu \lambda} \wedge_{\kappa}^{\lambda} V^{\kappa}=g_{\mu \lambda} \wedge_{\kappa}^{\lambda} g^{\kappa \nu} V_{\nu}=\left(\wedge_{\nu}^{\mu}\right)^{-1} V_{\nu}
$$

or

$$
\left(\wedge_{\nu}^{\mu}\right)^{-1}=g_{\mu \lambda} \wedge_{\kappa}^{\lambda} g^{\kappa \nu}=\Lambda_{\mu}^{\nu}
$$

1. Special Relativity (SR) - Lorentz transformations

Lorentz transformations of fields

- Two observers, O and O^{\prime}, can agree on a space-time point x by calling it an event X.
- X might have different coordinates x^{μ} and $x^{\prime \mu}$ in O and O^{\prime}, but it is nevertheless the same point.
- O and O^{\prime} can compare the value of different fields at that point X.
- The simplest field is the scalar field $\phi(x)$:

$$
\phi^{\prime}(X)=\phi(X)
$$

- The vector fields $a^{\mu}(x)$ or $a_{\mu}(x)$ transform like vectors:

$$
a^{\prime \mu}(X)=\wedge_{\nu}^{\mu} a^{\nu}(X) \quad a_{\mu}^{\prime}(X)=\wedge_{\mu}^{\nu} a_{\nu}(X)
$$

- Tensor fields $t_{\rho \kappa \lambda}^{\mu \nu}(x)$ transform like the product of vectors:

$$
t_{\rho \kappa \lambda}^{\prime \mu \nu}(X)=\wedge_{\alpha}^{\mu} \wedge_{\beta}^{\nu} \wedge_{\rho}{ }^{\gamma} \wedge_{\kappa}{ }^{\delta} \wedge_{\lambda}{ }^{\epsilon} t_{\gamma \delta \epsilon}^{\alpha \beta}(X)
$$

