Lorentz transformations

- relate the coordinate systems of two inertial observers
- leave the "4-distance" invariant
- assuming linearity, they can be written as

$$
x^{\prime \mu}=\wedge_{\nu}^{\mu} x^{\nu}+a^{\mu}
$$

- These are called inhomogeneous Lorentz transformations ($\wedge, a)$

Homogeneous Lorentz transformations have $a^{\mu}=0$

- They leave scalar products invariant: $\left(p^{\prime} . q^{\prime}\right)=(p . q)$
- They describe 3 Rotations and 3 Boosts
- compare with the Galilean transformations

Rotations are the same as in the Galilean transformations
For Boosts between O and O^{\prime} let us align the coordinate systems:

- The origins of O and O^{\prime} should be at the same place at $t=t^{\prime}=0$
- The constant relative velocity v between O and O^{\prime} should point in the \hat{x}-direction for both, O and O^{\prime}
- $\hat{y}(\widehat{z})$ should point in the same direction: $y^{\prime}=y\left(z^{\prime}=z\right)$
- Only $c t=x^{0}$ and $x=x^{1}$ are affected by such a boost: $\Lambda^{\mu}{ }_{\nu}=\delta_{\nu}^{\mu}$ for either μ or ν being 2 or 3
- So with $p^{\prime}=\wedge p$ and $q^{\prime}=\wedge q$ we have $\left(p^{\prime} . q^{\prime}\right)-(p . q)=0$
- Since $y^{\prime}=y$ and $z^{\prime}=z$ we can ignore \hat{y} and \hat{z} in the equation

$$
0=\left(p^{\prime} \cdot q^{\prime}\right)-(p \cdot q)=\left(p^{\prime 0} q^{\prime 0}-p^{11} q^{11}\right)-\left(p^{0} q^{0}-p^{1} q^{1}\right)
$$

Determining Boosts

$$
\begin{aligned}
0= & \left(\wedge_{0}^{0} p^{0}+\Lambda_{1}^{0} p^{1}\right)\left(\wedge_{0}^{0} q^{0}+\Lambda_{1}^{0} q^{1}\right)-\left(\wedge_{0}^{1} p^{0}+\Lambda_{1}^{1} p^{1}\right)\left(\wedge_{0}^{1} q^{0}+\wedge_{1}^{1} q^{1}\right) \\
& -\left(p^{0} q^{0}-p^{1} q^{1}\right) \\
= & \left(\wedge_{0}^{0} \wedge_{0}^{0}-\wedge_{0}^{1} \wedge_{0}^{1}-1\right) p^{0} q^{0}+\left(\wedge_{0}^{0} \wedge_{1}^{0}-\wedge_{0}^{1} \wedge_{1}^{1}\right) p^{0} q^{1} \\
& +\left(\wedge_{1}^{0} \wedge_{0}^{0}-\wedge_{1}^{1} \wedge_{0}^{1}\right) p^{1} q^{0}+\left(\wedge_{1}^{0} \wedge_{1}^{0}-\wedge_{1}^{1} \wedge_{1}^{1}+1\right) p^{1} q^{1}
\end{aligned}
$$

is solved by

$$
\Lambda_{0}^{0}=\Lambda_{1}^{1}= \pm \cosh \eta \quad \Lambda_{1}^{0}=\Lambda_{0}^{1}=\mp \sinh \eta
$$

where η is the "rapidity" of the boost. The usual choice is the upper sign.
How can we relate η to the relative velocity v between O and O^{\prime} ?

- Let us take two events and describe them in O and O^{\prime} :
- A: the origins of O and O^{\prime} overlap; set $t=t^{\prime}=0$
$-B$: at the origin of O^{\prime} after the time t^{\prime}, where $t=\Delta t$
- The coordinates of A are $a^{\mu}=a^{\prime \mu}=(0,0,0,0)$
- The coordinates of B
- in O are $b^{\mu}=(\Delta t, v \Delta t, 0,0)$ because O^{\prime} was moving with the constant relative velocity v for the time Δt
- in O^{\prime} are $b^{\prime \mu}=\left(t^{\prime}, 0,0,0\right)$ because B is at the origin of O^{\prime}
- But $b^{\prime \mu}=\wedge^{\mu}{ }_{\nu} b^{\nu}$

$$
=(\cosh \eta \Delta t-\sinh \eta v \Delta t,-\sinh \eta \Delta t+\cosh \eta v \Delta t, 0,0)
$$

Therefore

$$
\begin{aligned}
& t^{\prime}=\cosh \eta \Delta t-\sinh \eta v \Delta t \\
& 0=-\sinh \eta \Delta t+\cosh \eta v \Delta t
\end{aligned}
$$

or

$$
v=\frac{\sinh \eta}{\cosh \eta}=\tanh \eta \sim \eta \quad \text { for } \eta \text { small }
$$

Lorentz transformations on vectors

- A vector V^{μ} can be understood as the distance of two events \Rightarrow Its transformation is the same as for events
- We used already the coordinate representation of events

$$
\Rightarrow \quad V^{\prime \mu}=\Lambda_{\nu}^{\mu} V^{\nu}
$$

- If we want to write \wedge as a matrix
- we have to choose how we represent the vector V^{μ}.
- the usual representation is a column-vector:

$$
\begin{aligned}
& \text { itation is a column-vector: } \\
& V^{\mu}=\left(V^{0}, V^{1}, V^{2}, V^{3}\right)^{\top}=\left(\begin{array}{c}
V^{0} \\
V^{1} \\
V^{2} \\
V^{3}
\end{array}\right)
\end{aligned}
$$

connecting to "conventional' Lorentz transformations

- Lorentz transformations are usually written down using equations:

$$
\begin{aligned}
t^{\prime} & =\gamma\left(t-\frac{v \cdot x}{c^{2}}\right) \\
x^{\prime} & =\gamma(x-v \cdot t) \\
y^{\prime} & =y \\
z^{\prime} & =z
\end{aligned}
$$

$$
\begin{aligned}
c t^{\prime} & =\gamma\left(c t-\frac{v}{c} \cdot x\right) \\
x^{\prime} & =\gamma\left(x-\frac{v}{c} \cdot c t\right) \\
y^{\prime} & =y \\
z^{\prime} & =z
\end{aligned}
$$

- where $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}$
- defining $\beta=\frac{v}{c}$ we can easily connect to the matrix-form of \wedge
- suppressing the unchanged coordinates y and z :

$$
\begin{aligned}
c t^{\prime} & =\gamma(c t-\beta \cdot x) \\
x^{\prime} & =\gamma(-\beta \cdot t+x)
\end{aligned} \quad \Rightarrow \quad\binom{c t^{\prime}}{x^{\prime}}=\left(\begin{array}{cc}
\gamma & -\gamma \beta \\
-\gamma \beta & \gamma
\end{array}\right) \cdot\binom{c t}{x}
$$

- comparing to the matrix-form with the pseudo rapidity η
- we see: $\cosh \eta=\gamma$ and $\sinh \eta=\gamma \beta$, or $\beta=\tanh \eta$

More on vectors, the metric, and Lorentz transformations

- We defined the scalar product of contravariant* vectors:
* contravariant can be understood as: the vector has an upper index

$$
(p . q)=p^{\mu} q^{\nu} g_{\mu \nu}=p^{0} q^{0}-p^{1} q^{1}-p^{2} q^{2}-p^{3} q^{3}
$$

where $g_{\mu \nu}=g_{\nu \mu}$ is the metric with $g_{00}=1, g_{i i}=-1$, and $g_{\mu \neq \nu}=0$

- We can define covariant vectors with the index down: $V_{\mu}=g_{\mu \nu} V^{\nu}$
- The index can be raised again by $V^{\mu}=g^{\mu \nu} V_{\nu}$
- This obviously gives $g^{\mu \nu} g_{\nu \rho}=g^{\nu \mu} g_{\nu \rho}=g^{\mu \nu} g_{\rho \nu}=\delta_{\rho}^{\mu}$
- That means for the Lorentz transformations:

$$
V_{\mu}^{\prime}=g_{\mu \lambda} V^{\prime \lambda}=g_{\mu \lambda} \wedge_{\kappa}^{\lambda} V^{\kappa}=g_{\mu \lambda} \wedge_{\kappa}^{\lambda} g^{\kappa \nu} V_{\nu}=\left(\wedge_{\nu}^{\mu}\right)^{-1} V_{\nu}
$$

or

$$
\left(\wedge_{\nu}^{\mu}\right)^{-1}=g_{\mu \lambda} \wedge_{\kappa}^{\lambda} g^{\kappa \nu}=\Lambda_{\mu}^{\nu}
$$

More on the Matrix Representation for \wedge

- We can do the same trick (matrix representation) for covariant vectors
- just $\Lambda(v)$ will look differently:

$$
\Lambda(v)_{\mu}^{\nu}=g_{\mu \lambda} \Lambda(v)_{\kappa}^{\lambda} g^{\kappa \nu} \prime \prime="\left(\begin{array}{cc}
\cosh \eta & \sinh \eta \\
\sinh \eta & \cosh \eta
\end{array}\right)
$$

- here we represent the covariant vectors also as column vectors!
* in order to use the normal matrix multiplication: $\left(V_{\mu}^{\prime}\right)=\left(\Lambda(v)_{\mu}{ }^{\nu}\right) \cdot\left(V_{\nu}\right)$
- The matrix representation of $\Lambda(v)_{\mu}{ }^{\nu}$ has the same form as $\Lambda(-v)^{\mu}{ }_{\nu}$
- Both $g_{\mu \nu}$ and $g^{\mu \nu}$ can be written as $\operatorname{diag}(1,-1,-1,-1)$, but they are not matrices in the same way as $\Lambda(v)_{\mu}{ }^{\nu}$ or $\Lambda(-v)^{\mu}{ }_{\nu}$ are matrices:
$\wedge^{\mu}{ }_{\nu} \times$ contravariant vector \rightarrow contravariant vector
$\Lambda_{\mu}{ }^{\nu} \times$ covariant vector \rightarrow covariant vector
$g_{\mu \nu} \times$ contravariant vector \rightarrow covariant vector
$g^{\mu \nu} \times$ covariant vector \rightarrow contravariant vector

Lorentz transformations of fields

- Two observers, O and O^{\prime}, can agree on a space-time point x by calling it an event X
$-X$ might have different coordinates x^{μ} and $x^{\prime \mu}$ in O and O^{\prime}, but it is nevertheless the same point.
- O and O^{\prime} can compare the value of different fields at X
- The simplest field is the scalar field $\phi(x)$:

$$
\phi^{\prime}(X)=\phi(X)
$$

- The vector fields $v^{\mu}(x)$ or $v_{\mu}(x)$ transform like a vectors:

$$
v^{\prime \mu}(X)=\Lambda_{\nu}^{\mu} v^{\nu}(X) \quad v_{\mu}^{\prime}(X)=\Lambda_{\mu}^{\nu} v_{\nu}(X)
$$

- Tensor fields $t_{\rho \kappa \lambda}^{\mu \nu}(x)$ transform like the product of vectors:

$$
t_{\rho \kappa \lambda}^{\prime \mu \nu}(X)=\wedge_{\alpha}^{\mu} \wedge^{\nu}{ }_{\beta} \wedge_{\rho}{ }^{\gamma} \wedge_{\kappa}{ }^{\delta} \wedge_{\lambda}{ }^{\epsilon} t_{\gamma \delta \epsilon}^{\alpha \beta}(X)
$$

