Reminder: 1. Special Relativity (SR) - four-vectors - slide 8

Vectors, Tensors, and notation

in more dimensional space we just have more coordinates

- In 3D space (our 3D world):
$-\vec{v}=\left(v_{x}, v_{y}, v_{z}\right)=v_{i}$ (in cartesian coordinates)
- In 4D Minkovsky space people do not write an arrow:
- momentum $p=\left(E=p^{t}, p^{x}, p^{y}, p^{z}\right)=\left(p^{0}, p^{1}, p^{2}, p^{3}\right)=p^{\mu}$
* and the index is usually a greek letter: μ, ν, ρ, etc.
- position $r=(c t, x, y, z)=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=r^{\mu}$
* time $c t=x^{0}$ is measured like spacial distances in meters
* The constant speed of light c is used as the conversion factor between seconds and meters

For the rest of the lecture we set $c=1$. (i.e.: $3 \cdot 10^{8} \mathrm{~m}=1 \mathrm{~s}$)

- so we measure time in seconds and distances in light-seconds (=300.000km)
- or distances in meters and time in "3 nanoseconds" (the time light needs to travel 1 m)

What are invariant objects?

- Objects that are the same for every inertial observer
- Examples in 3D: rotations or translations
- the distances ℓ between points: $\ell^{2}=(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}$
- the angle α between directions: $\cos \alpha=(\vec{a} \cdot \vec{b}) /(|\vec{a}| *|\vec{b}|)$
- In 4D Minkovsky space: $(\Delta s)^{2}=(\Delta t)^{2}-(\Delta x)^{2}-(\Delta y)^{2}-(\Delta z)^{2}$
- The time t is measured like spacial distances in meters
- The constant speed of light c is used as the conversion factor between seconds and meters
- Any scalar product of four-vectors in Minkovsky space:

$$
\begin{equation*}
(p . q)=p^{\mu} q^{\nu} g_{\mu \nu}=p^{0} q^{0}-p^{1} q^{1}-p^{2} q^{2}-p^{3} q^{3} \tag{1}
\end{equation*}
$$

Special scalar products

- Particles are described by their energy-momentum four-vector:

$$
\begin{equation*}
p^{\mu}=\left(p^{0}, p^{1}, p^{2}, p^{3}\right)=\left(E, p_{x}, p_{y}, p_{z}\right)=(E, \vec{p}) \tag{2}
\end{equation*}
$$

- The mass of the particle is defined in its rest-frame: $\vec{p}=0$
- There, the energy-momentum four-vector is $p^{\mu}=(m, 0)$
- Since $p^{2}=(p \cdot p)$ is a scalar, it is the same in every frame
- In the rest-frame $p^{2}=m^{2}-\overrightarrow{0}^{2}=m^{2}$
- Therefore in every frame

$$
\begin{equation*}
m^{2}=E^{2}-\vec{p}^{2} \tag{3}
\end{equation*}
$$

- This can be applied to collisions, too: $\left(p_{1}+p_{2}\right)^{2}$ is constant
- In the rest-frame of $\left(p_{1}+p_{2}\right)$ we have $\vec{p}_{1}+\vec{p}_{2}=0 \Rightarrow\left(p_{1}+p_{2}\right)^{2}=\left(E_{1}+E_{2}\right)^{2}$ * E_{1} and E_{2} are the energy values of p_{1} and p_{2} in the rest-frame of $\left(p_{1}+p_{2}\right)$!

Reminder: 2. Special Relativity (SR) - raising and lowering indices - slide 7
The metric $g^{\mu \nu}$ (or $g_{\mu \nu}$) is used to raise (or lower) indices

- in flat Minkovsky space the components of the metric tensor are

$$
\begin{equation*}
g_{00}=g^{00}=1 \quad g_{i i}=g^{i i}=-1 \quad g_{j \neq k}=g^{j \neq k}=0 \tag{4}
\end{equation*}
$$

- that gives for the contravariant four vector $p^{\mu}=\left(E / c, p_{x}, p_{y}, p_{z}\right)$
- the covariant four vector

$$
\begin{equation*}
p_{\mu}=g_{\mu \nu} p^{\nu}=g_{\mu 0} E / c+g_{\mu 1} p_{x}+g_{\mu 2} p_{y}+g_{\mu 3} p_{z} \tag{5}
\end{equation*}
$$

so

$$
\begin{align*}
& p_{0}=g_{00} E / c+g_{01} p_{x}+g_{02} p_{y}+g_{03} p_{z}=1 \times E / c+0 \times p_{x}+0 \times p_{y}+0 \times p_{z}=E / c \tag{6}\\
& p_{1}=g_{10} E / c+g_{11} p_{x}+g_{12} p_{y}+g_{13} p_{z}=0 \times E / c+(-1) \times p_{x}+0 \times p_{y}+0 \times p_{z}=-p_{x} \tag{7}\\
& p_{2}=g_{20} E / c+g_{21} p_{x}+g_{22} p_{y}+g_{23} p_{z}=\cdots=-p_{y} \tag{8}\\
& p_{3}=g_{30} E / c+g_{31} p_{x}+g_{32} p_{y}+g_{33} p_{z}=\cdots=-p_{z} \tag{9}
\end{align*}
$$

- and hence

$$
\begin{equation*}
p_{\mu}=\left(E / c,-p_{x},-p_{y},-p_{z}\right) \tag{10}
\end{equation*}
$$

- an equation with four-vectors, eq.(5), are four equations, eqs.(6-9)
- four-vectors give naturally energy-momentum conservation

3. Special Relativity (SR) - Collisions

Classical mechanics requires energy and momentum conservation

- these are four separate equations
- one for energy
- three for the three components of the momentum
- in the energy-momentum four-vector $p^{\mu}=\left(p^{0}, \vec{p}\right)$ we have
- Energy (or mass) in the zero component $p^{0}=E / c$
- three momentum in the components >0

$$
\vec{p}=\left(p^{1}, p^{2}, p^{3}\right)=\left(p_{x}, p_{y}, p_{z}\right)
$$

- writing energy-momentum conservation for homework 3.16

$$
\begin{equation*}
p_{A}^{\mu}+p_{B}^{\mu}=q_{C_{1}}^{\mu}+q_{C_{2}}^{\mu}+\cdots+q_{C_{n}}^{\mu}=\sum_{i=1}^{n} q_{i}^{\mu} \tag{11}
\end{equation*}
$$

- These are four equations - the form is the same in every frame
- specifying a single of the four-vectors fixes the frame:
* in homework 3.16, B is at rest, meaning: $p_{B}^{\mu}=\left(m_{B}, \overrightarrow{0}\right)$

3. Special Relativity (SR) - collision frame examples

Homework problem 3.16 has two meaningful frames (coordinate systems)

- the Lab-frame with the given initial four-vectors:

$$
\begin{equation*}
p_{A}^{\mu}=\left(E_{A}, \vec{p}_{A}\right) \quad \text { and } \quad p_{B}^{\mu}=\left(m_{B}, \overrightarrow{0}\right) \tag{12}
\end{equation*}
$$

- the CM-frame (center-of-mass coordinate system)
- where the sum of initial (or final) 3-momenta is zero

$$
\begin{equation*}
\vec{p}_{A}^{\prime}+\vec{p}_{B}^{\prime}=0=\vec{q}_{C_{1}}^{\prime}+\vec{q}_{C_{2}}^{\prime}+\cdots+\vec{q}_{C_{n}}^{\prime}=\sum_{i=1}^{n} \vec{q}_{i}^{\prime} \tag{13}
\end{equation*}
$$

- the prime' on the vectors indicates the "different" frame
* the momenta were first given in the Lab-frame, but I kept the names
- the CM-frame is better suited to discuss properties of the final state
- but we do not know the final momenta, not even the inital ones! (in this frame)
- eq.(11) is still valid $\quad . . \quad \Rightarrow \quad$ use invariants

3. Special Relativity (SR) - collision frame examples

Homework problem 3.16 with invariants

- introducing an initial state four-vector P^{μ} in eq.(11)

$$
\begin{equation*}
p_{A}^{\mu}+p_{B}^{\mu}=P^{\mu}=q_{C_{1}}^{\mu}+q_{C_{2}}^{\mu}+\cdots+q_{C_{n}}^{\mu}=\sum_{i=1}^{n} q_{i}^{\mu} \tag{11a}
\end{equation*}
$$

- we know that the 'norm" of P^{μ} is the same in every frame:

$$
\begin{equation*}
P_{\mathrm{Lab}}^{2}=P^{\mu} P_{\mu}=P_{\mathrm{CM}}^{\prime 2}=P^{\prime \mu} P_{\mu}^{\prime}=\text { invariant } \tag{14}
\end{equation*}
$$

- we can use this invariant to determine E_{A} in the Lab-frame:

$$
\begin{align*}
\text { invariant } & =\left(E_{A}+m_{B}, \vec{p}_{A}\right)^{2}=\left(E_{A}+m_{B}\right)^{2}-\left(\vec{p}_{A}\right)^{2} \tag{15}\\
& =E_{A}^{2}+2 E_{A} m_{B}+m_{B}^{2}-\left(E_{A}^{2}-m_{A}^{2}\right)=2 E_{A} m_{B}+m_{B}^{2}+m_{A}^{2}
\end{align*}
$$

- or simplified:

$$
\begin{equation*}
E_{A}=\frac{\text { invariant }-m_{A}^{2}-m_{B}^{2}}{2 m_{B}} \tag{16}
\end{equation*}
$$

\Rightarrow the smaller the invariant the smaller also E_{A}

3. Special Relativity (SR) - collision frame examples

Homework problem 3.16 with invariants

- How can we minimize the invariant ?
- in the CM-frame

$$
\begin{equation*}
\text { invariant }=P_{\mathrm{CM}}^{\prime 2}=\left(\sum_{i=1}^{n} q_{i}^{\prime 0}\right)^{2}-\left(\sum_{i=1}^{n} \vec{q}_{i}^{\prime}\right)^{2}=\left(\sum_{i=1}^{n} E_{i}^{\prime}\right)^{2} \tag{17}
\end{equation*}
$$

- a particle has the minimal energy if it does not move:

$$
\begin{equation*}
E_{\min }=\lim _{|\vec{p}| \rightarrow 0} \sqrt{m^{2}+\vec{p}^{2}}=m \tag{18}
\end{equation*}
$$

\Rightarrow the minimal invariant for all particles at rest in the CM-frame !

$$
\begin{equation*}
\text { invariant }_{\min }=\left(\sum_{i=1}^{n} m_{i}\right)^{2}:=M^{2} \tag{19}
\end{equation*}
$$

- then

$$
\begin{equation*}
E_{A, \min }=\frac{M^{2}-m_{A}^{2}-m_{B}^{2}}{2 m_{B}} \tag{20}
\end{equation*}
$$

3. Special Relativity (SR) - collision frame examples

Homework problem 3.19 has two (three) meaningful frames

- the rest-frames of $A(=$ Lab-frame) or B (or $C)$

$$
\begin{equation*}
p_{A}^{\mu}=\left(m_{A}, \overrightarrow{0}\right) \quad \text { and } \quad p_{B}^{\mu}=\left(E_{B}, \vec{p}_{B}\right) \quad \text { and } \quad p_{C}^{\mu}=\left(E_{C}, \vec{p}_{C}\right) \tag{21}
\end{equation*}
$$

- taking eq.(11a) and renaming:

$$
\begin{equation*}
P^{\mu} \rightarrow p_{A}^{\mu} \quad \text { and } \quad p_{A}^{\mu} \rightarrow p_{C}^{\mu} \quad \text { and keeping } \quad p_{B}^{\mu} \tag{22}
\end{equation*}
$$

'solves' the setting of the frame

- the conservation equations are $p_{A}^{\mu}=p_{B}^{\mu}+p_{C}^{\mu}$, or

$$
\begin{equation*}
m_{A}=E_{B}+E_{C} \quad \text { and } \quad \vec{p}_{B}=-\vec{p}_{C}:=\vec{p} \tag{23}
\end{equation*}
$$

- calculating the invariants in the three frames gives

$$
\begin{aligned}
& p_{A}^{2}=m_{A}^{2}=\left(E_{B}+E_{C}\right)^{2}-\left(\vec{p}_{B}+\vec{p}_{C}\right)^{2}=\left(E_{B}+E_{C}\right)^{2} \\
& p_{B}^{2}=m_{B}^{2}=\left(m_{A}-E_{C}\right)^{2}-\left(\vec{p}_{C}\right)^{2}=m_{A}^{2}-2 m_{A} E_{C}+E_{C}^{2}-\left(\vec{p}_{C}\right)^{2}=m_{A}^{2}-2 m_{A} E_{C}+m_{C}^{2} \\
& p_{C}^{2}=m_{C}^{2}=\left(m_{A}-E_{B}\right)^{2}-\left(\vec{p}_{B}\right)^{2}=m_{A}^{2}-2 m_{A} E_{B}+E_{B}^{2}-\left(\vec{p}_{B}\right)^{2}=m_{A}^{2}-2 m_{A} E_{B}+m_{B}^{2}
\end{aligned}
$$

3. Special Relativity (SR) - collision frame examples

Homework problem 3.22 has two meaningful frames

- the rest-frame of A (= Lab-frame)
$p_{A}^{\mu}=\left(m_{A}, \overrightarrow{0}\right) \quad$ and $\quad p_{B}^{\mu}=\left(E_{B}, \vec{p}_{B}\right) \quad$ and $\quad p_{C_{i}}^{\mu}=\left(E_{C_{i}}, \vec{p}_{C_{i}}\right)$
- notation: C_{1} means C, C_{2} means D, etc. ..
- the rest-frame of the particles C_{i} :
- can be written more explicitely by

$$
\begin{equation*}
p_{A}^{\prime \mu}-p_{B}^{\prime \mu}=P^{\prime \mu}=q_{C_{1}}^{\prime \mu}+q_{C_{2}}^{\prime \mu}+\cdots+q_{C_{n}}^{\prime \mu}=\sum_{i=1}^{n} q_{i}^{\prime \mu} \tag{11b}
\end{equation*}
$$

- and then solved in analogy to problem 3.16
* just note, that the minumum of E_{A} in 3.16 will correspond to the minimum of $-E_{B}$ in 3.22 , which describes the maximum of E_{B}

3. Special Relativity (SR) - collision frame examples

Homework problem 3.25 has three meaningful frames
the energy-momentum conservation can be written in the

$$
\begin{array}{cc}
s \text {-channel } & S^{\mu}=p_{A}^{\mu}+p_{B}^{\mu}=p_{C}^{\mu}+p_{D}^{\mu} \\
t \text {-channel } & T^{\mu}=p_{A}^{\mu}-p_{C}^{\mu}=p_{D}^{\mu}-p_{B}^{\mu} \\
u \text {-channel } & U^{\mu}=p_{A}^{\mu}-p_{D}^{\mu}=p_{C}^{\mu}-p_{B}^{\mu} \tag{27}
\end{array}
$$

- the invariants

$$
\begin{equation*}
s=S^{2}, \quad t=T^{2}, \text { and } \quad u=U^{2} \tag{28}
\end{equation*}
$$

have the same value in every frame

- calculating the invariants in terms of energies E and momenta \vec{p}
- allows to compare the values of E and \vec{p} between different frames
* one frame for the initial input
* another frame for the requested output

3. Special Relativity (SR) - collision frame examples

Homework problem 3.18 has three meaningful frames

$$
\begin{align*}
p+p+(p) & \rightarrow p+p+K^{+}+K^{-}+(p) \tag{29}\\
& =\left[p+p+K^{+}\right]+K^{-}+p \rightarrow\left[p+p+K^{+}\right]+\Omega^{-}+K^{0}+K^{+}
\end{align*}
$$

- the Lab-frame with

$$
\begin{equation*}
p^{\mu}=\left(E_{p}, \vec{p}\right), \quad p^{\mu}=p^{\mu}=\left(m_{p}, \overrightarrow{0}\right), \text { and } \quad k^{-\mu}=\left(E_{K^{-}}, \vec{k}^{-}\right) \tag{30}
\end{equation*}
$$

- the rest-frame of $K^{0}+K^{+}$
- for the minimal needed value of $E_{K^{-}}$
- the rest-frame of $\left[p+p+K^{+}\right]$
- for the minimum value of E_{p}
* depending on the minimal needed value of $E_{K^{-}}$

