Vectors, Tensors, and notation

in the plane - i.e. in the 2D (Euclidean) space

- we can pick a coordinate system and describe points with coordinates
- Cartesian coordinates (x, y)
- Polar coordinates (r, θ)
- a vector can be understood as a difference of points
- position vector: difference between the position and the origin
- we can write the vector \vec{v}
- as a row $\left(v_{x}, v_{y}\right)$
- or as a column $\binom{v_{x}}{v_{y}}$
- or in index notation v_{i} or v^{i}, where we identify $v_{x}=v_{1}$ and $v_{y}=v_{2}$

Reminder: 1. Special Relativity (SR) - four-vectors - slide 8

Vectors, Tensors, and notation

in more dimensional space we just have more coordinates

- In 3D space (our 3D world):
$-\vec{v}=\left(v_{x}, v_{y}, v_{z}\right)=v_{i}$ (in cartesian coordinates)
- In 4D Minkovsky space people do not write an arrow:
- momentum $p=\left(E=p^{t}, p^{x}, p^{y}, p^{z}\right)=\left(p^{0}, p^{1}, p^{2}, p^{3}\right)=p^{\mu}$
* and the index is usually a greek letter: μ, ν, ρ, etc.
- position $r=(c t, x, y, z)=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=r^{\mu}$
* time $c t=x^{0}$ is measured like spacial distances in meters
* The constant speed of light c is used as the conversion factor between seconds and meters

For the rest of the lecture we set $c=1$. (i.e.: $3 \cdot 10^{8} \mathrm{~m}=1 \mathrm{~s}$)

- so we measure time in seconds and distances in light-seconds (=300.000km)
- or distances in meters and time in "3 nanoseconds" (the time light needs to travel 1 m)

What are invariant objects?

- Objects that are the same for every inertial observer
- Examples in 3D: rotations or translations
- the distances ℓ between points: $\ell^{2}=(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}$
- the angle α between directions: $\cos \alpha=(\vec{a} \cdot \vec{b}) /(|\vec{a}| *|\vec{b}|)$
- In 4D Minkovsky space: $(\Delta s)^{2}=(\Delta t)^{2}-(\Delta x)^{2}-(\Delta y)^{2}-(\Delta z)^{2}$
- The time t is measured like spacial distances in meters
- The constant speed of light c is used as the conversion factor between seconds and meters
- Any scalar product of four-vectors in Minkovsky space:

$$
\begin{equation*}
(p . q)=p^{\mu} q^{\nu} g_{\mu \nu}=p^{0} q^{0}-p^{1} q^{1}-p^{2} q^{2}-p^{3} q^{3} \tag{1}
\end{equation*}
$$

Classification of $d^{2}=(d \cdot d)=d^{\mu} d_{\mu}=d^{\mu} d^{\nu} g_{\mu \nu}$

- If $d^{2}>0$ they are time-like separated:
- one event happens before the other in every frame
- there is a frame, where A and B happen at the same position
- in this frame $d^{\mu}=(\Delta t, 0,0,0)$ with $\Delta t=\sqrt{d^{2}}$
- If $d^{2}=0$ they are light-like related. If $A \neq B$:
- there is no frame, where A and B happen at the same time
- there is no frame, where A and B happen at the same position
- there is a frame, where $d^{\mu}=(\eta, \eta, 0,0)$ with η arbitrary
- If $d^{2}<0$ they are space-like separated:
- there is a frame, where A and B happen at the same time
- in this frame $d^{\mu}=(0, \Delta s, 0,0)$, with $\Delta s=\sqrt{-d^{2}}$, if the x-axis is oriented in the direction $\overline{A B}$

Special scalar products

- Particles are described by their energy-momentum four-vector:

$$
\begin{equation*}
p^{\mu}=\left(p^{0}, p^{1}, p^{2}, p^{3}\right)=\left(E, p_{x}, p_{y}, p_{z}\right)=(E, \vec{p}) \tag{2}
\end{equation*}
$$

- The mass of the particle is defined in its rest-frame: $\vec{p}=0$
- There, the energy-momentum four-vector is $p^{\mu}=(m, 0)$
- Since $p^{2}=(p \cdot p)$ is a scalar, it is the same in every frame
- In the rest-frame $p^{2}=m^{2}-\overrightarrow{0}^{2}=m^{2}$
- Therefore in every frame

$$
\begin{equation*}
m^{2}=E^{2}-\vec{p}^{2} \tag{3}
\end{equation*}
$$

- This can be applied to collisions, too: $\left(p_{1}+p_{2}\right)^{2}$ is constant
- In the rest-frame of $\left(p_{1}+p_{2}\right)$ we have $\vec{p}_{1}+\vec{p}_{2}=0 \Rightarrow\left(p_{1}+p_{2}\right)^{2}=\left(E_{1}+E_{2}\right)^{2}$ * E_{1} and E_{2} are the energy values of p_{1} and p_{2} in the rest-frame of $\left(p_{1}+p_{2}\right)$!

2. Special Relativity (SR) - Summary of SR1

Space-time objects are described by four-vectors
for better space management on the slides
I write all vectors as row vectors

- position $r^{\mu}=(c t, x, y, z)=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$
- Time by the zero component $r^{0}=x^{0}=c t$
- Space by the components >0

$$
\vec{r}=r^{i}=x^{i}=\left(x^{1}, x^{2}, x^{3}\right)=(x, y, z)
$$

- momentum $p^{\mu}=\left(E / c, p_{x}, p_{y}, p_{z}\right)=\left(p^{0}, p^{1}, p^{2}, p^{3}\right)$
- Energy (or mass) by the zero component $p^{0}=E / c$
- three momentum by the components >0

$$
\vec{p}=\left(p^{1}, p^{2}, p^{3}\right)=\left(p_{x}, p_{y}, p_{z}\right)
$$

- mass is defined in the rest-frame: $\vec{p}=0$
- There, the energy-momentum four-vector is $p^{\mu}=(m, 0)$

2. Special Relativity (SR) - raising and lowering indices

The metric $g^{\mu \nu}$ (or $g_{\mu \nu}$) is used to raise (or lower) indices

- in flat Minkovsky space the components of the metric tensor are

$$
\begin{equation*}
g_{00}=g^{00}=1 \quad g_{i i}=g^{i i}=-1 \quad g_{j \neq k}=g^{j \neq k}=0 \tag{4}
\end{equation*}
$$

- that gives for the contravariant four vector $p^{\mu}=\left(E / c, p_{x}, p_{y}, p_{z}\right)$
- the covariant four vector

$$
\begin{equation*}
p_{\mu}=g_{\mu \nu} p^{\nu}=g_{\mu 0} E / c+g_{\mu 1} p_{x}+g_{\mu 2} p_{y}+g_{\mu 3} p_{z} \tag{5}
\end{equation*}
$$

so

$$
\begin{aligned}
& p_{0}=g_{00} E / c+g_{01} p_{x}+g_{02} p_{y}+g_{03} p_{z}=1 \times E / c+0 \times p_{x}+0 \times p_{y}+0 \times p_{z}=E / c \\
& p_{1}=g_{10} E / c+g_{11} p_{x}+g_{12} p_{y}+g_{13} p_{z}=0 \times E / c+(-1) \times p_{x}+0 \times p_{y}+0 \times p_{z}=-p_{x} \\
& p_{2}=g_{20} E / c+g_{21} p_{x}+g_{22} p_{y}+g_{23} p_{z}=\cdots=-p_{y} \\
& p_{3}=g_{30} E / c+g_{31} p_{x}+g_{32} p_{y}+g_{33} p_{z}=\cdots=-p_{z}
\end{aligned}
$$

- and hence

$$
\begin{equation*}
p_{\mu}=\left(E / c,-p_{x},-p_{y},-p_{z}\right) \tag{6}
\end{equation*}
$$

2. Special Relativity (SR) - raising and lowering indices

The metric $g^{\mu \nu}$ (or $g_{\mu \nu}$) is used to raise (or lower) indices

- check yourself that the invariant product, eq.(1), is really invariant

$$
\begin{equation*}
(p . q)=p^{\mu} q^{\nu} g_{\mu \nu}=p^{\mu} q_{\mu}=p_{\nu} q^{\nu}=p_{\mu} q_{\nu} g^{\mu \nu} \tag{7}
\end{equation*}
$$

- for tensors we have to operate on each index
- lowering both indices of a tensor $s^{\mu \nu}$

$$
\begin{equation*}
s_{\mu \nu}=g_{\mu \alpha} g_{\nu \beta} s^{\alpha \beta}=g_{\mu \mu^{\prime}} g_{\nu \nu^{\prime}} s^{\mu^{\prime} \nu^{\prime}} \tag{8}
\end{equation*}
$$

- what we cannot write:

- we would make several mistakes:
* the indices left and right do not match: $\mu \nu \neq{ }^{\mu \nu}$
* the summation is not defined: we have 4 appearances of μ or ν

2. Special Relativity (SR) - Lorentz γ-factor

Lorentz transformations
... will be derived in two weeks

$$
\begin{equation*}
c t^{\prime}=\gamma(c t-\beta x) \quad x^{\prime}=\gamma(x-\beta c t) \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
& \beta:=v / c \tag{11}\\
& \gamma:=\left[1-\beta^{2}\right]^{-1 / 2} \tag{12}
\end{align*}
$$

- Time dilation is described in chapter 2.1 of D.Hogg's notes
- by means of the thought experiment of a light clock
- it can be summarized by
moving clocks go slower by the factor γ
- that means: the decay time of a moving particle is longer: $t=\gamma \tau$
- Length contraction is discussed in a similar way in chapter 2.3:
a moving object seems shorter by the factor γ
- the length of a moving volume is shorter: $\ell_{\text {measured }}=\frac{1}{\gamma} \ell_{\text {rest-frame }}$

