
Reminder: 1. Special Relativity (SR) — four-vectors — slide 5

Vectors, Tensors, and notation

in the plane — i.e. in the 2D (Euclidean) space

• we can pick a coordinate system and describe points with coordinates

– Cartesian coordinates (x, y)

– Polar coordinates (r, θ)

• a vector can be understood as a difference of points

• position vector: difference between the position and the origin

• we can write the vector ~v

– as a row (vx, vy)

– or as a column
(
vx
vy

)
– or in index notation vi or vi, where we identify vx = v1 and vy = v2
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Reminder: 1. Special Relativity (SR) — four-vectors — slide 8

Vectors, Tensors, and notation

in more dimensional space we just have more coordinates

• In 3D space (our 3D world):

– ~v = (vx, vy, vz) = vi (in cartesian coordinates)

• In 4D Minkovsky space people do not write an arrow:

– momentum p = (E = pt, px, py, pz) = (p0, p1, p2, p3) = pµ

∗ and the index is usually a greek letter: µ, ν, ρ, etc.

– position r = (ct, x, y, z) = (x0, x1, x2, x3) = rµ

∗ time ct = x0 is measured like spacial distances in meters

∗ The constant speed of light c is used as the conversion factor
between seconds and meters

For the rest of the lecture we set c = 1. (i.e.: 3 · 108m = 1s)

• so we measure time in seconds and distances in light-seconds (=300.000km)

• or distances in meters and time in ”3 nanoseconds” (the time light needs to travel 1m)
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Reminder: 1. Special Relativity (SR) — Invariants — slide 9

What are invariant objects?

• Objects that are the same for every inertial observer

• Examples in 3D: rotations or translations
– the distances ` between points: `2 = (∆x)2 + (∆y)2 + (∆z)2

– the angle α between directions: cosα = (~a ·~b)/(|~a| ∗ |~b|)

• In 4D Minkovsky space: (∆s)2 = (∆t)2 − (∆x)2 − (∆y)2 − (∆z)2

– The time t is measured like spacial distances in meters
– The constant speed of light c is used as the conversion factor

between seconds and meters

• Any scalar product of four-vectors in Minkovsky space:

(p.q) = pµqνgµν = p0q0 − p1q1 − p2q2 − p3q3 (1)
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Reminder: 1. Special Relativity (SR) — characterisation — slide 11

Classification of d2 = (d · d) = dµdµ = dµdνgµν

• If d2 > 0 they are time-like separated:

– one event happens before the other in every frame

– there is a frame, where A and B happen at the same position

– in this frame dµ = (∆t,0,0,0) with ∆t =
√
d2

• If d2 = 0 they are light-like related. If A 6= B:

– there is no frame, where A and B happen at the same time

– there is no frame, where A and B happen at the same position

– there is a frame, where dµ = (η, η,0,0) with η arbitrary

• If d2 < 0 they are space-like separated:

– there is a frame, where A and B happen at the same time

– in this frame dµ = (0,∆s,0,0), with ∆s =
√
−d2,

if the x-axis is oriented in the direction AB
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Reminder: 1. Special Relativity (SR) — characterisation — slide 12

Special scalar products

• Particles are described by their energy-momentum four-vector:

pµ = (p0, p1, p2, p3) = (E, px, py, pz) = (E, ~p) (2)

– The mass of the particle is defined in its rest-frame: ~p = 0

– There, the energy-momentum four-vector is pµ = (m,0)

– Since p2 = (p · p) is a scalar, it is the same in every frame

– In the rest-frame p2 = m2 − ~02 = m2

– Therefore in every frame

m2 = E2 − ~p2 ! (3)
• This can be applied to collisions, too: (p1 + p2)2 is constant

– In the rest-frame of (p1 + p2) we have ~p1 + ~p2 = 0 ⇒ (p1 + p2)2 = (E1 + E2)2

∗ E1 and E2 are the energy values of p1 and p2 in the rest-frame of (p1 + p2)!
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2. Special Relativity (SR) — Summary of SR1

Space-time objects are described by four-vectors

for better space management on the slides
I write all vectors as row vectors

• position rµ = (ct, x, y, z) = (x0, x1, x2, x3)

– Time by the zero component r0 = x0 = ct

– Space by the components > 0

~r = ri = xi = (x1, x2, x3) = (x, y, z)

• momentum pµ = (E/c, px, py, pz) = (p0, p1, p2, p3)

– Energy (or mass) by the zero component p0 = E/c

– three momentum by the components > 0

~p = (p1, p2, p3) = (px, py, pz)

• mass is defined in the rest-frame: ~p = 0

– There, the energy-momentum four-vector is pµ = (m,0)
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2. Special Relativity (SR) — raising and lowering indices

The metric gµν (or gµν) is used to raise (or lower) indices

• in flat Minkovsky space the components of the metric tensor are

g00 = g00 = 1 gii = gii = −1 gj 6=k = gj 6=k = 0 (4)

• that gives for the contravariant four vector pµ = (E/c, px, py, pz)

– the covariant four vector

pµ = gµνp
ν = gµ0E/c+ gµ1px + gµ2py + gµ3pz (5)

so

p0 = g00E/c+ g01px + g02py + g03pz = 1× E/c+ 0× px + 0× py + 0× pz = E/c

p1 = g10E/c+ g11px + g12py + g13pz = 0× E/c+ (−1)× px + 0× py + 0× pz = −px
p2 = g20E/c+ g21px + g22py + g23pz = . . . = −py
p3 = g30E/c+ g31px + g32py + g33pz = · · · = −pz

– and hence

pµ = (E/c,−px,−py,−pz) (6)
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2. Special Relativity (SR) — raising and lowering indices

The metric gµν (or gµν) is used to raise (or lower) indices

• check yourself that the invariant product, eq.(1), is really invariant

(p.q) = pµqνgµν = pµqµ = pνq
ν = pµqνg

µν (7)

• for tensors we have to operate on each index

– lowering both indices of a tensor sµν

sµν = gµαgνβs
αβ = gµµ′gνν′s

µ′ν′ (8)

– what we cannot write:

.
.

sµν = gµµgννs
µν (9)

– we would make several mistakes:

∗ the indices left and right do not match: µν 6= µν

∗ the summation is not defined: we have 4 appearances of µ or ν
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2. Special Relativity (SR) — Lorentz γ-factor

Lorentz transformations . . . will be derived in two weeks

ct′ = γ(ct− β x) x′ = γ(x− β ct) (10)

where
β := v/c (11)

γ := [1− β2]−1/2 (12)

• Time dilation is described in chapter 2.1 of D.Hogg’s notes

– by means of the thought experiment of a light clock

– it can be summarized by

moving clocks go slower by the factor γ

– that means: the decay time of a moving particle is longer: t = γτ

• Length contraction is discussed in a similar way in chapter 2.3:

a moving object seems shorter by the factor γ

– the length of a moving volume is shorter: `measured = 1
γ `rest-frame
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