1. Special Relativity (SR) - Introduction

Lectures

- Introduction; four-vectors, invariants, characterisation
- energy, momentum, mass
- collisions
- Lorentz transformations

Links

- Lecture notes by David Hogg: http://cosmo.nyu.edu/hogg/sr/sr.pdf
- or: http://web.vu.lt/ff/t.gajdosik/wop/sr.pdf
- Tatsu Takeuchi: http://www.phys.vt.edu/~takeuchi/relativity/notes/
- 'Special Relativity for Particle Physics': http://web.vu.lt/ff/t.gajdosik/wop/sr4wop.pdf

1. Special Relativity (SR) - Introduction

History

- 1632: Galileo Galilei describes the principle of relativity:
- 'Dialogue concerning the Two Chief World Systems"'
- 1861: Maxwell's equations
- 1887: Michelson-Morley experiment
- 1889 / 1892: Lorentz - Fitzgerald transformation
- 1905: Albert Einstein publishes the Theory of Special Relativity:
- ''On the Electrodynamics of Moving Bodies"
- 1908: Hermann Minkovsky introduces 4D space-time

Galilean Invariance:

Every physical theory should mathematically

look the same to every inertial observer

- for Galileo it was the mechanics and kinematics:
- water dropping down - throwing a ball or a stone
- insects flying
- jumping around

1. Special Relativity (SR) - four-vectors

Galilean Invariance / Galilean transformations: $t \rightarrow t^{\prime}, \vec{x} \rightarrow \vec{x}^{\prime}$
Two inertial observers, O and O^{\prime},

- measure the same absolute time (i.e.: 1 second $=1$ second')
- Time translations : $t^{\prime}=t+\tau, \vec{x}^{\prime}=\vec{x}$
in index notation: $t^{\prime}=t+\tau, x_{j}^{\prime}=x_{j}$
- have at $t=0$ a relative distance $\Delta \vec{r}$
- Spatial translations : $t^{\prime}=t, \vec{x}^{\prime}=\vec{x}+\Delta \vec{r}$
in index notation: $t^{\prime}=t, x_{j}^{\prime}=x_{j}+\Delta r_{j}$
- have coordinate systems that are rotated by a relative rotation \mathbf{R}
- Rotations : $t^{\prime}=t, \vec{x}^{\prime}=\mathbf{R} \cdot \vec{x}$, where \mathbf{R} is an orthogonal matrix
in index notation: $t^{\prime}=t, x_{j}^{\prime}=\mathbf{R}_{j k} x_{k}=\sum_{k=1}^{3} \mathbf{R}_{j k} x_{k}$
- have a constant relative velocity \vec{v} (which can be zero, too)
- Boosts : $t^{\prime}=t, \vec{x}^{\prime}=\vec{x}+\vec{v} t$
in index notation: $t^{\prime}=t, x_{j}^{\prime}=x_{j}+v_{j} t$

1. Special Relativity (SR) - four-vectors

Vectors, Tensors, and notation
in the plane - i.e. in the 2D (Euclidean) space

- we can pick a coordinate system and describe points with coordinates
- Cartesian coordinates (x, y)
- Polar coordinates (r, θ)
- a vector can be understood as a difference of points
- position vector: difference between the position and the origin
- we can write the vector \vec{v}
- as a row (v_{x}, v_{y})
- or as a column $\binom{v_{x}}{v_{y}}$
- or in index notation v_{i} or v^{i}, where we identify $v_{x}=v_{1}$ and $v_{y}=v_{2}$

1. Special Relativity (SR) - four-vectors

Vectors, Tensors, and notation

multiplying vectors

- with a number, not a problem: $c * \vec{a}=\left(c * a_{x}, c * a_{y}\right)$
- with another vector: what do we want to get?
- a number \Rightarrow scalar product: $\vec{a} \cdot \vec{b}:=a_{x} * b_{x}+a_{y} * b_{y}$
- another vector: there is no unique prescription ...
- a tensor \Rightarrow tensor product: $\vec{a} \otimes \vec{b}$ * in index notation: $a_{j} \otimes b_{k}=a_{j} b_{k}=(a \otimes b)_{j k}$
what is a tensor?
- an object that looks like the tensor product of vectors...
- easiest imaginable in indexnotation:
- a tensor is an object with indices $t_{j k \ell}$ or $t^{j k \ell}$ or $t^{j}{ }_{k \ell}$
- special tensors
- a vector is a tensor of rank one: it has one index
- a matrix is a tensor of rank two: it has two indices

1. Special Relativity (SR) - four-vectors

Vectors, Tensors, and notation
multiplying tensors

- one index of each can be treated like a scalar product \Rightarrow matrix multiplication
- with $a=a_{j k}$ and $b=b_{m n}: a \cdot b=\sum_{k} a_{j k} * b_{k n}$
* here a and b can be understood as matrices
- in order to simplify the writing, we can omit the \sum symbol
\Rightarrow Einsteins summation convention
- one sums over repeated indices: $a_{j k} * b_{k n}:=\sum_{k} a_{j k} * b_{k n}$
index position can be used to distinguish objects
- example:
- columnvector $\vec{v}=v^{i}=\binom{v_{x}}{v_{y}}$
$-\operatorname{rowvector}(\vec{v})^{\top}=v_{i}=\left(v_{x}, v_{y}\right)$
* then a matrix has to have upper and lower index!

1. Special Relativity (SR) - four-vectors

Vectors, Tensors, and notation

in more dimensional space we just have more coordinates

- In 3D space (our 3D world):
$-\vec{v}=\left(v_{x}, v_{y}, v_{z}\right)=v_{i}$ (in cartesian coordinates)
- In 4D Minkovsky space people do not write an arrow:
- momentum $p=\left(E=p^{t}, p^{x}, p^{y}, p^{z}\right)=\left(p^{0}, p^{1}, p^{2}, p^{3}\right)=p^{\mu}$
* and the index is usually a greek letter: μ, ν, ρ, etc.
- position $r=(c t, x, y, z)=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=r^{\mu}$
* time $c t=x^{0}$ is measured like spacial distances in meters
* The constant speed of light c is used as the conversion factor between seconds and meters

For the rest of the lecture we set $c=1$. (i.e.: $3 \cdot 10^{8} \mathrm{~m}=1 \mathrm{~s}$)

- so we measure time in seconds and distances in light-seconds (=300.000km)
- or distances in meters and time in "3 nanoseconds" (the time light needs to travel 1 m)

1. Special Relativity (SR) - Invariants

What are invariant objects?

- Objects that are the same for every inertial observer
- Examples in 3D: rotations or translations
- the distances ℓ between points: $\ell^{2}=(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}$
- the angle α between directions: $\cos \alpha=(\vec{a} \cdot \vec{b}) /(|\vec{a}| *|\vec{b}|)$
- In 4D Minkovsky space: $(\Delta s)^{2}=(\Delta t)^{2}-(\Delta x)^{2}-(\Delta y)^{2}-(\Delta z)^{2}$
- The time t is measured like spacial distances in meters
- The constant speed of light c is used as the conversion factor between seconds and meters
- Any scalar product of four-vectors in Minkovsky space:

$$
(p . q)=p^{\mu} q^{\nu} g_{\mu \nu}=p^{0} q^{0}-p^{1} q^{1}-p^{2} q^{2}-p^{3} q^{3}
$$

1. Special Relativity (SR) - Invariants

What is the use of scalar products?

- Scalars are the same in every inertial frame
- If one knows its value in one frame, one knows it in every frame
- Use the most comfortable frame to calculate the value of a scalar!
- Events A and B happen at a certain time in a certain place:
- In every frame they can be described by four-vectors $a^{\mu}=\left(a^{0}, a^{1}, a^{2}, a^{3}\right)$ and $b^{\mu}=\left(b^{0}, b^{1}, b^{2}, b^{3}\right)$
- Their relative position $d^{\mu}=a^{\mu}-b^{\mu}$ is frame dependent
- But their "4-distance" $d^{2}=(d \cdot d)$ is invariant
$-d^{2}$ classifies the causal connection of A and B

1. Special Relativity (SR) - characterisation

Classification of d^{2}

- If $d^{2}>0$ they are time-like separated:
- one event happens before the other in every frame
- there is a frame, where A and B happen at the same position
- in this frame $d^{\mu}=(\Delta t, 0,0,0)$ with $\Delta t=\sqrt{d^{2}}$
- If $d^{2}=0$ they are light-like related. If $A \neq B$:
- there is no frame, where A and B happen at the same time
- there is no frame, where A and B happen at the same position
- there is a frame, where $d^{\mu}=(\eta, \eta, 0,0)$ with η arbitrary
- If $d^{2}<0$ they are space-like separated:
- there is a frame, where A and B happen at the same time
- in this frame $d^{\mu}=(0, \Delta s, 0,0)$, with $\Delta s=\sqrt{-d^{2}}$, if the x-axis is oriented in the direction $\overline{A B}$

1. Special Relativity (SR) - characterisation

Special scalar products

- Particles are described by their energy-momentum four-vector:

$$
p^{\mu}=\left(p^{0}, p^{1}, p^{2}, p^{3}\right)=\left(E, p_{x}, p_{y}, p_{z}\right)=(E, \vec{p})
$$

- The mass of the particle is defined in its rest-frame: $\vec{p}=0$
- There, the energy-momentum four-vector is $p^{\mu}=(m, 0)$
- Since $p^{2}=(p \cdot p)$ is a scalar, it is the same in every frame
- In the rest-frame $p^{2}=m^{2}-\overrightarrow{0}^{2}=m^{2}$
- Therefore in every frame

$$
m^{2}=E^{2}-\vec{p}^{2}!
$$

- This can be applied to collisions, too: $\left(p_{1}+p_{2}\right)^{2}$ is constant
- In the rest-frame of $\left(p_{1}+p_{2}\right)$ we have $\vec{p}_{1}+\vec{p}_{2}=0 \Rightarrow\left(p_{1}+p_{2}\right)^{2}=\left(E_{1}+E_{2}\right)^{2}$ * E_{1} and E_{2} are the energy values of p_{1} and p_{2} in the rest-frame of $\left(p_{1}+p_{2}\right)$!

