Symmetries — Groups

Groups — what is a group? (repetition)

e a set G together with a "multiplication o
— fora,be G = c=aob €G
— (aob)oc=ao(boc)
—VYaeG:deeGFwithaoe=ecoa=a
—VaeG:3dateGwithaoal=aloa=ce

with the properties:

e ifaob="boa Va,b € G : abelian group, otherwise non-abelian
— abelian: {R,+} or {RT, x}

— non-abelian: regular square matrices with the matrix multiplication

e continuous groups: the elements depend on a continuous parameter

— example: rotations around an axis R[] with 0 € [0,27)

e Lie group: a continuous group with an analytic multiplication

— glz] o gly] = glf(Z, )] with f(Z,¥) analytic in & and ¥
— the unit element is e = ¢[0]
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Symmetries — Lie Groups
Lie groups and Lie algebras

e The n x n (complex) matrices form representations of Lie groups

e group multiplication is analytic = expansion around unit element
— unit element e = 1,,«n,
— representation T'(g[a]) = explio; X;] = X, = —i%.f]”&:o
— generators {X.} span the representation of the Lie group

e the generators {X,} fulfill the Lie algebra [X;, X;] = Cj,fXg
— with the antisymmetric structure constants (Jj,f — —Ckf

— rank of the group: number of commuting generators
— a Casimir operator commutes with all generators = e

e the indices 1,3, k,¢ need not indicate single numbers!
— for the generators we will have X; = X, .1 = — X[,
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Symmetries — Lie Group representation
Representations of the Lie group

e using the Jacobi identity
0 = [A[BC]l+[B,[C,All + [C [A, B]]
— ABC - ACB— BCA+CBA + BCA—- BAC —CAB+ ACB + CAB— CBA— ABC + BAC

we get for the structure constants
0 = %A, D]+ C.AB,D]+ C,AC, D]
= Cp'Cof + Coi'Coff + Cil'Crof = —(CoCyf — Cu'Cyd) + Coi'Cf

e writing the structure constants as matrices (Mk)jﬁ = Cj,_f we have

0 = —[(Ma), U(Mp)g°® — (My). {(Ma) 4] + C il (My)..©

or
[MCM Mb] — Cabde

= structure constants form the adjoint representation of the Lie group
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Symmetries: Lie Groups — Operators as Representations

Translation and Rotation Operators

e [ he momentum operator P = —z‘a% = —id generates translations:
. . .9 .
— in index notation: P, = g = —zfok
-k k
N f(z) = " hf(z) =Y —(a"p)"f (=)
n=0 n:

F@) + a" 0 () + S0P 0,0 f (@) + ..

— the Taylorseries of f(x + a) is
fta) = f@)+a () + Hdd 00 () + - = T f ()

— the operator €@ moves the function f by the amount @

e The angular momentum operator L = X x P generates rotations
— in index notation: L; = ey x¥P) = —iejp %0,
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Symmetries — Rotationgroup
Translation and Rotation Operators

e [ he components of E do not commute:
— if you rotate around the x-axis and then around the y-axis, you get a different

result than rotating first around y and then z.
— mathematically:
[Ly, L) i2[(28; — 20z)(20y — y8y) — (20y — y2) (0 — 203)]
12[(a:8y + 20,0y — xy@? — zz&,ﬁy + 2y0:02)
_(zxayaz — ZQayaaz — yw@f + yOr + yz@zax)]
= ?[28y — yOz] = —iL;

— or in index notation: [L;, L] =ie;,0L, =  Rotationgroup
e but the square L2 =L - L = L;L;, does commute:
[L?,L;] = LglLk, L] + [Ly, Lj] Ly = LyiegjeLy + i€y oLoLy
— LhZEh]mLm —I— ’iEmthhLm — ’L(Eh]m —I— Emjh)LhLm =0

— use L2 and L, to describe quantum mechanical states (particles)
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Symmetries — Rotationgroup
Eigenstates of the Rotationgroup

e We write an eigenstate of the operators L2 and L. as |\, m)
L2\, m) = A\, m) and L.\, m) = m|\, m)

— |f) is called a ket and used to denote a quantum mechanical state.

e We define the ladder operators L4+ = Lg & iLy with
[L?, L4] (L2, Ly] +i[L?, Ly] =0 and

= L4|\,m) is also an eigenstate of L2 and L. :

L?(Lilh,m)) = ([L? L+] 4+ L+L?)|A\,m) =0+ LyL?|\, m)
= LiAA,m) = A(La|\,m))
and
Lz(L+|X,m))

([Lz, L£] + LiLz)|A\,m) = (£L+ + LiLz)|\,m)
(Lt + Lim)|A,m) = (m £ 1)(Li|\,m))
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Symmetries — Rotationgroup
Eigenstates of the Rotationgroup

e [ does not change the eigenvalue X\ of the state |\, m)
e L4+ changes the eigenvalue m of the state |\, m)

= the states |\, m 4+ n) with n € Z are related
= for each A\ there would be co many states unless there is
* a4 = Mmax with L_|_|>\,CL> = 0 and

« b= mmin With L_|\,b) =0

e uSing

LtLy = (LyFiLly)(Le£ily) = L34 iLyLyFiLyLy+ L
(L2+ L5+ L2) — L7 £i[Ls, Ly] = L% — LZ £4i(iLz)
L2 — L,(L,+1)

we can relate a and b
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Symmetries — Rotationgroup
Eigenstates of the Rotationgroup

e relating a and b:
—0=L_Li|\a)=(O\-(a®+a))|\a) = I=a’+a
—0=LyL_[\b)y=(A—=(b% =Db)I\b) = AX=b2-b

ala+1)=bb—-—1) or a=-b
e Applying (L_) n times on the state |\, a) gives |\,a — n)
e for some n we have to reach |\,b) = a—n=1b»

e With a=-bwedgeta—n= —a Of mmax = a =

NIS

e T he rotationgroup allows for half integer eigenstates

= Spinors

e used to describe fermions: electron, proton, neutron, neutrino, ...

Thomas Gajdosik — Introduction to Elementary Particle Physics 1 Symmetries — theoretical



Symmetries — Rotationgroup in 3D
Lie Algebra of the rotation group
e a rotation around the z-axis by the angle 6 is done by the matrix

cosfd —sind O 0L
R[@] — sinf cosf® O — Wiz
0] 0] 1

— in index notation: R[0)7), = cos0(815% + 6362) — sin 0(5]62 — 5461) + 5553

e SO the generator of the rotations, 2L, is

8R[9] —sinf® —cosh O 0O -1 O
1Ly, = ———— = cosf —sing O =1 0o 0O
90 |p—p 0 0 0 /lp=0 0 0 O
— and similar

0O O 0 0 -1
0 -1 z’Ly — | 0 0 O
1 0 1 0 O

e these rotations (incl. L, and Ly) act on 3d column vectors v = < J; )

Uz
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Lie Groups — What is a generator (in a Lie group) 7
the generator captures the "feature’”’ of the group element
e group elements from the same generator commute

e the generator X, is the abstract "direction’, as seen from

(9T
— X, = (9[04])|a 0
— or P, = —z% = —i0

— or (L)1}, = i(ydy — xdy)y, = 651 — 862
x (L) takes the value of y(—x) and puts it into z (y)

e X, creates the exponential representation: T'(g[a]) = exp[ia; X}]

— with the group elements g[«a]
— parametrized by a = a4 . i.e. the group parameter space

* example: (0,27) ® (0,7) ® (0,27) for 3D rotations with Euler axis and angle

— representing the group element g[la] as the matrix T'(g[a])
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Symmetries — Rotationgroup in 3D
Lie Algebra of the rotation group
e With simple matrix multiplication we can see:
[iLy,iLy] = —iL. [iLy,iL,] = —iL, [iL,iLz] = —iLy
— or in index notation with « =1, y =2, and z =3: [Lj, L] = i€ oLy

e but there is a smaller dimensional realisation of the rotation group!
— using the Pauli matrices

—_— (0 1 (0 —i (1 o0
Ux_(l o) Uy—(z' o) UZ_(O—l)
— one can define the Spin matrices S, = %ak , which give
(S, Skl = i€reSy
e these Spin matrices act on 2d complex column vectors s = ( g )
with |a]?2 4+ |82 =1 = Spinors

= fundamental representation of the rotation group SU(2)
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Symmetries — Rotationgroup in 3D

Rotations of Spinors

e With simple matrix multiplication we can see for the Pauli matrices:

2__ 2_ 2 _ (1 0\ __
O-:B_O'y_o-z—(o 1)—12><2

e S0 the finite rotation of a spinor around the y-axis is

0

RO = "=} J(ZH%%)”: D (22)"0”4— > (z2)“ n

n=0 """ n=2m " ! n=— 2m—|—1
o0 (_1)n(Q)2n . )n( )2n—|—1 .
= X Gy > Gt 1yt 71"

n n

0 9
cos¢ —sin
sin ¢ cosg

0 _
COS 3 *12X2—|—’LS|n20'y—(
2

— acting on the spinor s = < g )

— spinors rotate only with half of the rotation angle 6
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Symmetries —  Algebra of the Poincaré group (optional)

Lorentz transformations ( like Galilean transformations )
consist of Boosts and Rotations

e a boost in £ was done by

A(m*, = coshn(§69 + 6461) — sinh (86 + 64 69) + 64562 + 6463

e a rotation between y and z can be done by

AN, = 6159 + 6461 4 cos0(6%82 + 54453) — sin 05463 — §452)

e we obtain the generators for boosts with — 8/\(77) V=0 =

—isinh (%69 + §'61) + i cosh (8461, + 5‘{59)|n=0 = i(515 + 6+ 69)

e we obtain the generators for rotations with _Zﬁ/\(Q) Y g—

+isin 0(8507, + 8'363) + i cos 0(8507 — 9397 |p=0 = (6557, — 9303
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Symmetries —  Algebra of the Poincaré group (optional)

Boosts and Rotations ... continued

e The other boosts go in § or z direction: i(8/55%, + 6%59),
or with the indices 0i down: (Mg;)", = i(6'g(—giv) + 6% 90,)
e The other rotations go in &j or Zz direction: (66 — 51 6%,),
or with the indices jk down: (M;)", = 2(5?(—%”) — 6 (=g;1))
e both generators have now the same form:

(Maﬁ)ﬂ = —i(d% o996y — 5590w)
o with w® = —wBe we get
A, = expli(Mogw)H,] = expl(895, — 8" go )]
e How to understand / use this formula? ... How to get a matrix?

1. pick the indices of w®?: W% (wi*) for a boost (rotation) in - (jk-) direction
2. write the matrix §ags, — 5%9041/ with row-(column-) number u (v)
« 1t will only have two non-zero entries

3. squaring the matrix gives a diagonal matrix with only two equal entries
4. the powerseries expansion gives you the expected boost / rotation
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Symmetries —  Algebra of the Poincaré group (optional)
Generators for the Lorentz transformations

e these generators fulfill the Lie algebra of the Lorentz group:
[Maﬁa M'ycS]'uV — i(gOé’YMB(S - gﬁfyMoch — gaéMB'y + gﬂéMOé’Y)'uz/

e unifying time and spatial translations P, = (H, F;)
e we get the rest of the Poincaré algebra:
[P/M Pl/] =0 and [Mozﬁa P,U] — Z(gO{,LLPﬁ — gﬁlupa)

e the generators of the Poincaré group are: P, and Mg

— all rotations, boosts, and translations are elements of the Poincaré group

Invariants of the Poincaré group

e are objects that commute with all elements of the Poincaré group

— it is enough to check if they commute with the generators ...
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Symmetries —  Algebra of the Poincaré group (optional)

Invariants of the Poincaré group

e obviously [ab, c] = a[b, c] + [a, c]b = abc — acb + acb — cab = abc — cab

e so [P,,P? =[P, PJ)PY+ PY[P,,P,)] =0

o and [M,g, P?] = g"'[Myg, PulPy + g"" Pu[M,g, P,]
gﬂyi(gaupﬁ — QBMPQ)PI/ + QMVP,uJi(QaVPB — gﬁuPa)

= —2i[Pa,Pg] =0 .

2

— P2 = m?2 invariant is a consequence of the Poincaré algebra!

e Another invariant is W72
— with the Pauli-Lubanski vector WH = ZeVPAM,,, Py,
[P, WH] = 3P ([Pr, Myp] Py + Myp[Px, P2])
= LetPNi(goxPy — gunPp)Py =0 = [P, W?] =0

— 0 = [M,g,W?] is true, but checking is too difficult ...

— Particles can be characterised by the eigenvalues of P2 and W2
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Symmetries —  Algebra of the Poincaré group (optional)

Eigenvalues of P2 and W2

e the spin vector W# is orthogonal to P, :

(P.W) = Plie,, \M"PP* =0

e For a particle at rest: P, = (m,0)
— P? = m? = the eigenvalue of P? is m?
— Wy = 2meuwoM*? = m(0, J)
— 50 W2 =m2(0%2— J2) = —m2J2 > —m2s(s + 1)
= the eigenvalue of W?2 is m?s(s+ 1)

e For a massless particle P, = (n,n,0,0)
— we have P2 = (PW)=W?=0
— the eigenvalues of P2 and W?Z2 are 0
— we can construct the operator 0 = A\2P2 —2X(P.W) + W2 = (AP — W)?
+x where )\ depends on the representation (i.e. the spin) of the particle

— we get: W# = AP# with the helicity A = 0,+3,£1,...

— Particles are characterised by mass and spin !
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Symmetries —  Algebra of the Poincaré group (optional)

Investigating the Lorentz group
e distinguishing again boosts and rotations
K; = Mg; = — MY and Ji = Sej iM%
the Lorentz algebra gives
[, Jel = dejpede (K, Kil = —iejpede ,  [Jj, Kil = i€ Ky
e defining
Li= N; = 1(J; +iK;) and R; = N = 1(J; —iK;)
one gets

[L]7 Rk] =0 , [Lja Lk] — iejkaf ) [Rja Rkj] — iejkERf

= the Lorentz algebra is similar to SU(2); ® SU(2)p !

e it has two invariants: L;L; =n(n+ 1) and R,R; = m(m + 1)
— the angular momentum is J, = L, + R; = spin g =n—4+m
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Symmetries —  Algebra of the Poincaré group (optional)

Investigating the Lorentz group

e Parity leaves rotations invariant J; i> J;, but flips boosts K; L — K,

—~ I, <5 R, (n,m) < (m,n), SU(2); <2 SU(2)

e Charge conjugation also interchanges SU(2); < SU(2)g
— like Parity

= the combined transformation CP leaves SU(2); and SU(2)p invariant
— but it still includes mathematically a complex conjugation

e Time reversal T is an antiunitary transformation
— it includes a complex conjugation

= any quantum field theory
built from the representations of the Poincaré algebra
— that means: scalars, spinors, vectors, . ..

has to be invariant under CPT
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Symmetries —  Algebra of the Poincaré group (optional)

classifying particles
according to the eigenstates (n,m) of SU(2);, ® SU(2)gr

e (0,0) is a scalar

o (2,0) is the xq left-handed Weyl- splnor
— transforms with A(w),? = [iaB” ]a

e (O, 2) is the 77 right-handed Weyl-spinor

— transforms with /\(w)“b = [ewaﬁ5a6]ab

o (%,O) T (O,%) is W = (j;g) the Dirac-spinor

— transforms with A(w)%, = [ei“aﬂ(_%ha’vﬁ])]ab, with +# = ( o )

a* 0
«* a and b go from 1 to 4, (3 and 4 representing the dotted indices)

o (2,0) ® (O, 2) = (2, 2) is (xoln) = x aaana the spin-1 four-vector
= in that sense is the spinor the square root of the vector

Thomas Gajdosik — Introduction to Elementary Particle Physics 1 Symmetries — theoretical 20



