Symmetries — Groups

Groups — what is a group? (repetition)

- a set G together with a "multiplication \circ " with the properties:
 - for $a, b \in G \Rightarrow c = a \circ b \in G$

$$-(a \circ b) \circ c = a \circ (b \circ c)$$

- $\forall a \in G : \exists e \in G \text{ with } a \circ e = e \circ a = a$
- $\forall a \in G$: $\exists a^{-1} \in G$ with $a \circ a^{-1} = a^{-1} \circ a = e$
- if $a \circ b = b \circ a \ \forall a, b \in G$: abelian group, otherwise non-abelian

– abelian: $\{\mathcal{R},+\}$ or $\{\mathcal{R}^+,\times\}$

- non-abelian: regular square matrices with the matrix multiplication
- continuous groups: the elements depend on a continuous parameter
 - example: rotations around an axis $R[\theta]$ with $\theta \in [0, 2\pi)$
- Lie group: a continuous group with an analytic multiplication
 - $g[\vec{x}] \circ g[\vec{y}] = g[f(\vec{x}, \vec{y})]$ with $f(\vec{x}, \vec{y})$ analytic in \vec{x} and \vec{y}
 - the unit element is $e = g[\vec{0}]$

Symmetries — Lie Groups

Lie groups and Lie algebras

- The $n \times n$ (complex) matrices form representations of Lie groups
- group multiplication is analytic \Rightarrow expansion around unit element
 - unit element $e = 1_{n \times n}$
 - representation $T(g[\alpha]) = \exp[i\alpha_i X_i] \quad \Rightarrow \quad X_k = -i\frac{\partial T(g[\alpha])}{\partial \alpha_k}|_{\vec{\alpha}=0}$
 - generators $\{X_k\}$ span the representation of the Lie group
- the generators $\{X_k\}$ fulfill the Lie algebra $[X_j, X_k] = C_{ik}^{\ell} X_{\ell}$
 - with the antisymmetric structure constants $C_{ik}^{\ \ell} = -C_{ki}^{\ \ell}$
 - rank of the group: number of commuting generators
 - a Casimir operator commutes with all generators $\Rightarrow \propto e$
- the indices i, j, k, ℓ need not indicate single numbers!

- for the generators we will have
$$X_i = X_{[mn]} = -X_{[nm]}$$

Symmetries — Lie Group representation

Representations of the Lie group

- using the Jacobi identity
 - 0 = [A, [B, C]] + [B, [C, A]] + [C, [A, B]]

= ABC - ACB - BCA + CBA + BCA - BAC - CAB + ACB + CAB - CBA - ABC + BAC

we get for the structure constants

$$0 = C_{bc}^{\ d}[A,D] + C_{ca}^{\ d}[B,D] + C_{ab}^{\ d}[C,D]$$

= $C_{bc}^{\ d}C_{ad}^{\ e} + C_{ca}^{\ d}C_{bd}^{\ e} + C_{ab}^{\ d}C_{cd}^{\ e} = -(C_{ca}^{\ d}C_{db}^{\ e} - C_{cb}^{\ d}C_{da}^{\ e}) + C_{ab}^{\ d}C_{cd}^{\ e}$

• writing the structure constants as matrices $(M_k)_j^{\ell} = C_{jk}^{\ell}$ we have

$$D = -[(M_a)_c {}^d (M_b)_d {}^e - (M_b)_c {}^d (M_a)_d {}^e] + C_{ab} {}^d (M_d)_c {}^e$$

or

$$[M_a, M_b] = C_{ab}^{\ \ d} M_d$$

⇒ structure constants form the adjoint representation of the Lie group

Symmetries: Lie Groups—Operators as RepresentationsTranslation and Rotation Operators

- The momentum operator $\vec{P} = -i\frac{\partial}{\partial \vec{x}} = -i\vec{\partial}$ generates translations:
 - in index notation: $P_k = -i \frac{\partial}{\partial x^k} = -i \partial_k$

$$e^{ia^k P_k} f(x) = e^{a^k \partial_k} f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} (a^k \partial_k)^n f(x)$$
$$= f(x) + a^k \partial_k f(x) + \frac{1}{2} a^j a^k \partial_j \partial_k f(x) + \dots$$

- the Taylorseries of f(x + a) is $f(x + a) = f(x) + a^k \partial_k f(x) + \frac{1}{2} a^j a^k \partial_j \partial_k f(x) + \dots = e^{i\vec{a}\vec{P}} f(x)$ $\Rightarrow \text{ the operator } e^{i\vec{a}\vec{P}} \text{ moves the function } f \text{ by the amount } \vec{a}$
- The angular momentum operator $\vec{L} = \vec{X} \times \vec{P}$ generates rotations
 - in index notation: $L_j = \epsilon_{jk\ell} x^k P_\ell = -i \epsilon_{jk\ell} x^k \partial_\ell$
 - or $L_x = i(z\partial_y y\partial_z)$, $L_y = i(x\partial_z z\partial_x)$, $L_z = i(y\partial_x x\partial_y)$

Translation and Rotation Operators

- The components of \vec{L} do not commute:
 - if you rotate around the \hat{x} -axis and then around the \hat{y} -axis, you get a different result than rotating first around \hat{y} and then \hat{x} .
 - mathematically:

$$[L_y, L_x] = i^2 [(x\partial_z - z\partial_x)(z\partial_y - y\partial_z) - (z\partial_y - y\partial_z)(x\partial_z - z\partial_x)]$$

= $i^2 [(x\partial_y + xz\partial_z\partial_y - xy\partial_z^2 - z^2\partial_x\partial_y + zy\partial_x\partial_z)$
 $-(zx\partial_y\partial_z - z^2\partial_y\partial_x - yx\partial_z^2 + y\partial_x + yz\partial_z\partial_x)]$
= $i^2 [x\partial_y - y\partial_x] = -iL_z$

- or in index notation: $[L_j, L_k] = i\epsilon_{jk\ell}L_\ell \Rightarrow Rotationgroup$

• but the square $L^2 = \vec{L} \cdot \vec{L} = L_k L_k$ does commute:

$$[L^{2}, L_{j}] = L_{k}[L_{k}, L_{j}] + [L_{k}, L_{j}]L_{k} = L_{k}i\epsilon_{kj\ell}L_{\ell} + i\epsilon_{kj\ell}L_{\ell}L_{k}$$
$$= L_{h}i\epsilon_{hjm}L_{m} + i\epsilon_{mjh}L_{h}L_{m} = i(\epsilon_{hjm} + \epsilon_{mjh})L_{h}L_{m} = 0$$

 \Rightarrow use L^2 and L_z to describe quantum mechanical states (particles)

Eigenstates of the Rotationgroup

• We write an eigenstate of the operators L^2 and L_z as $|\lambda, m\rangle$ $L^2|\lambda, m\rangle = \lambda |\lambda, m\rangle$ and $L_z|\lambda, m\rangle = m|\lambda, m\rangle$

- $|f\rangle$ is called a ket and used to denote a quantum mechanical state.

• We define the ladder operators $L_{\pm} = L_x \pm iL_y$ with $[L^2, L_{\pm}] = [L^2, L_x] \pm i[L^2, L_y] = 0$ and $[L_z, L_{\pm}] = [L_z, L_x] \pm i[L_z, L_y] = iL_y \pm i(-iL_x) = \pm (L_x \pm iL_y) = \pm L_{\pm}$ $\Rightarrow L_{\pm} |\lambda, m\rangle$ is also an eigenstate of L^2 and L_z :

$$L^{2}(L_{\pm}|\lambda,m\rangle) = ([L^{2},L_{\pm}] + L_{\pm}L^{2})|\lambda,m\rangle = 0 + L_{\pm}L^{2}|\lambda,m\rangle$$
$$= L_{\pm}\lambda|\lambda,m\rangle = \lambda(L_{\pm}|\lambda,m\rangle)$$

and

$$L_{z}(L_{\pm}|\lambda,m\rangle) = ([L_{z},L_{\pm}] + L_{\pm}L_{z})|\lambda,m\rangle = (\pm L_{\pm} + L_{\pm}L_{z})|\lambda,m\rangle$$
$$= (\pm L_{\pm} + L_{\pm}m)|\lambda,m\rangle = (m \pm 1)(L_{\pm}|\lambda,m\rangle)$$

Eigenstates of the Rotationgroup

- L_{\pm} does not change the eigenvalue λ of the state $|\lambda,m
 angle$
- L_{\pm} changes the eigenvalue m of the state $|\lambda,m
 angle$
- \Rightarrow the states $|\lambda, m + n\rangle$ with $n \in \mathbb{Z}$ are related
 - ⇒ for each λ there would be ∞ many states unless there is * $a = m_{\max}$ with $L_+ |\lambda, a\rangle = 0$ and

$$* b = m_{\min}$$
 with $L_{-}|\lambda,b
angle = 0$

• using

$$L_{\mp}L_{\pm} = (L_x \mp iL_y)(L_x \pm iL_y) = L_x^2 \pm iL_xL_y \mp iL_yL_x + L_y^2$$

= $(L_x^2 + L_y^2 + L_z^2) - L_z^2 \pm i[L_x, L_y] = L^2 - L_z^2 \pm i(iL_z)$
= $L^2 - L_z(L_z \pm 1)$

we can relate a and b

Eigenstates of the Rotationgroup

• relating *a* and *b*:

$$-0 = L_{-}L_{+}|\lambda, a\rangle = (\lambda - (a^{2} + a))|\lambda, a\rangle \implies \lambda = a^{2} + a$$
$$-0 = L_{+}L_{-}|\lambda, b\rangle = (\lambda - (b^{2} - b))|\lambda, b\rangle \implies \lambda = b^{2} - b$$
$$a(a+1) = b(b-1) \quad \text{or} \quad a = -b$$

- Applying (*L*₋) *n* times on the state $|\lambda, a\rangle$ gives $|\lambda, a n\rangle$
- for some *n* we have to reach $|\lambda, b\rangle \Rightarrow a n = b$
- with a = -b we get a n = -a or $m_{\text{max}} = a = \frac{n}{2}$
- The rotationgroup allows for half integer eigenstates

⇒ Spinors

• used to describe fermions: electron, proton, neutron, neutrino, ...

Symmetries — Rotationgroup in 3D

Lie Algebra of the rotation group

• a rotation around the \hat{z} -axis by the angle θ is done by the matrix

$$R[\theta] = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix} = e^{i\theta L_z}$$

- in index notation: $R[\theta]_k^j = \cos\theta(\delta_1^j\delta_k^1 + \delta_2^j\delta_k^2) - \sin\theta(\delta_1^j\delta_k^2 - \delta_2^j\delta_k^1) + \delta_3^j\delta_k^3$

• so the generator of the rotations, iL_z , is

$$iL_z = \frac{\partial R[\theta]}{\partial \theta} \bigg|_{\theta=0} = \begin{pmatrix} -\sin\theta & -\cos\theta & 0\\ \cos\theta & -\sin\theta & 0\\ 0 & 0 & 0 \end{pmatrix} \bigg|_{\theta=0} = \begin{pmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

- and similar

$$iL_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \qquad iL_y = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

• these rotations (incl. L_x and L_y) act on 3d column vectors $\vec{v} = \begin{pmatrix} v_x \\ v_y \\ v_y \end{pmatrix}$

Lie Groups — What is a generator (in a Lie group) ? the generator captures the ''feature'' of the group element

- group elements from the same generator commute
- the generator X_k is the abstract "direction", as seen from

$$- X_{k} = -i \frac{\partial T(g[\alpha])}{\partial \alpha_{k}} |_{\vec{\alpha}=0}$$

- or $P_{k} = -i \frac{\partial}{\partial x^{k}} = -i \partial_{k}$
- or $(L_{z})^{j}{}_{k} = i (y \partial_{x} - x \partial_{y})^{j}{}_{k} = \delta_{2}^{j} \delta_{k}^{1} - \delta_{1}^{j} \delta_{k}^{2}$
* (L_{z}) takes the value of $y(-x)$ and puts it into $x(y)$

- X_k creates the exponential representation: $T(g[\alpha]) = \exp[i\alpha_k X_k]$
 - with the group elements $g[\alpha]$
 - parametrized by $\vec{lpha} = lpha_k$... i.e. the group parameter space

* example: $(0, 2\pi) \otimes (0, \pi) \otimes (0, 2\pi)$ for 3D rotations with Euler axis and angle

- representing the group element $g[\alpha]$ as the matrix $T(g[\alpha])$

Symmetries — Rotationgroup in 3D

Lie Algebra of the rotation group

• with simple matrix multiplication we can see:

$$[iL_x, iL_y] = -iL_z \qquad [iL_y, iL_z] = -iL_x \qquad [iL_z, iL_x] = -iL_y$$

- or in index notation with x = 1, y = 2, and z = 3: $[L_j, L_k] = i\epsilon_{jk\ell}L_\ell$

but there is a smaller dimensional realisation of the rotation group!
 using the Pauli matrices

$$\sigma_x = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \qquad \sigma_y = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right) \qquad \sigma_z = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

– one can define the Spin matrices $S_k=\frac{1}{2}\sigma_k$, which give

$$[S_j, S_k] = i\epsilon_{jk\ell}S_\ell$$

• these Spin matrices act on 2d complex column vectors $\vec{s} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ with $|\alpha|^2 + |\beta|^2 = 1 \implies \text{Spinors}$

\Rightarrow fundamental representation of the rotation group SU(2)

Symmetries — Rotationgroup in 3D

Rotations of Spinors

• with simple matrix multiplication we can see for the Pauli matrices:

$$\sigma_x^2 = \sigma_y^2 = \sigma_z^2 = \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) = \mathbf{1}_{2 \times 2}$$

• So the finite rotation of a spinor around the $\hat{y}\text{-}\mathsf{axis}$ is

$$\begin{split} R[\theta] &= e^{i\theta S_y} = \sum_{n=0}^{\infty} \frac{1}{n!} (i\theta \frac{1}{2}\sigma_y)^n = \sum_{n=2m} \frac{1}{n!} (i\frac{\theta}{2})^n \sigma_y^n + \sum_{n=2m+1} \frac{1}{n!} (i\frac{\theta}{2})^n \sigma_y^n \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{\theta}{2})^{2n}}{(2n)!} (\sigma_y^2)^n + i \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{\theta}{2})^{2n+1}}{(2n+1)!} (\sigma_y^2)^n \sigma_y \\ &= \cos \frac{\theta}{2} * 1_{2\times 2} + i \sin \frac{\theta}{2} \sigma_y = \begin{pmatrix} \cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{pmatrix} \\ &- \text{ acting on the spinor } \vec{s} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \end{split}$$

 \Rightarrow spinors rotate only with half of the rotation angle θ

Lorentz transformations (like Galilean transformations) consist of Boosts and Rotations

 \bullet a boost in \widehat{x} was done by

 $\Lambda(\eta)^{\mu}{}_{\nu} = \cosh \eta (\delta^{\mu}_{0} \delta^{0}_{\nu} + \delta^{\mu}_{1} \delta^{1}_{\nu}) - \sinh \eta (\delta^{\mu}_{0} \delta^{1}_{\nu} + \delta^{\mu}_{1} \delta^{0}_{\nu}) + \delta^{\mu}_{2} \delta^{2}_{\nu} + \delta^{\mu}_{3} \delta^{3}_{\nu}$

• a rotation between \hat{y} and \hat{z} can be done by

$$\Lambda(\theta)^{\mu}{}_{\nu} = \delta^{\mu}_{0}\delta^{0}_{\nu} + \delta^{\mu}_{1}\delta^{1}_{\nu} + \cos\theta(\delta^{\mu}_{2}\delta^{2}_{\nu} + \delta^{\mu}_{3}\delta^{3}_{\nu}) - \sin\theta(\delta^{\mu}_{2}\delta^{3}_{\nu} - \delta^{\mu}_{3}\delta^{2}_{\nu})$$

- we obtain the generators for boosts with $-i\frac{\partial \Lambda(\eta)^{\mu}}{\partial \eta}|_{\eta=0} =$
- $-i\sinh\eta(\delta_{0}^{\mu}\delta_{\nu}^{0}+\delta_{1}^{\mu}\delta_{\nu}^{1})+i\cosh\eta(\delta_{0}^{\mu}\delta_{\nu}^{1}+\delta_{1}^{\mu}\delta_{\nu}^{0})|_{\eta=0}=i(\delta_{0}^{\mu}\delta_{\nu}^{1}+\delta_{1}^{\mu}\delta_{\nu}^{0})$
- we obtain the generators for rotations with $-i\frac{\partial \Lambda(\theta)^{\mu}}{\partial \theta}|_{\theta=0} =$ $+i\sin\theta(\delta_{2}^{\mu}\delta_{\nu}^{2}+\delta_{3}^{\mu}\delta_{\nu}^{3})+i\cos\theta(\delta_{2}^{\mu}\delta_{\nu}^{3}-\delta_{3}^{\mu}\delta_{\nu}^{2})|_{\theta=0}=i(\delta_{2}^{\mu}\delta_{\nu}^{3}-\delta_{3}^{\mu}\delta_{\nu}^{2})$

Boosts and Rotations ... continued

- The other boosts go in \hat{y} or \hat{z} direction: $i(\delta^{\mu}_{0}\delta^{i}_{\nu} + \delta^{\mu}_{i}\delta^{0}_{\nu})$, or with the indices 0i down: $(M_{0i})^{\mu}_{\nu} = i(\delta^{\mu}_{0}(-g_{i\nu}) + \delta^{\mu}_{i}g_{0\nu})$
- The other rotations go in $\hat{x}\hat{y}$ or $\hat{x}\hat{z}$ direction: $i(\delta^{\mu}_{j}\delta^{k}_{\nu} \delta^{\mu}_{k}\delta^{j}_{\nu})$, or with the indices jk down: $(M_{jk})^{\mu}_{\nu} = i(\delta^{\mu}_{j}(-g_{k\nu}) - \delta^{\mu}_{k}(-g_{j\nu}))$
- both generators have now the same form:

$$(M_{\alpha\beta})^{\mu}{}_{\nu} = -i(\delta^{\mu}{}_{\alpha}g_{\beta\nu} - \delta^{\mu}{}_{\beta}g_{\alpha\nu})$$

• with $\omega^{\alpha\beta}=-\omega^{\beta\alpha}$ we get

$$\Lambda(\omega)^{\mu}{}_{\nu} = \exp[i(M_{\alpha\beta}\omega^{\alpha\beta})^{\mu}{}_{\nu}] = \exp[(\delta^{\mu}_{\alpha}g_{\beta\nu} - \delta^{\mu}_{\beta}g_{\alpha\nu})\omega^{\alpha\beta}]$$

- How to understand / use this formula? How to get a matrix?
 1. pick the indices of ω^{αβ}: ω⁰ⁱ (ω^{jk}) for a boost (rotation) in î- (ĵk-) direction
 2. write the matrix δ^μ_αg_{βν} δ^μ_βg_{αν} with row-(column-) number μ (ν)
 * it will only have two non-zero entries
 - 3. squaring the matrix gives a diagonal matrix with only two equal entries
 - 4. the powerseries expansion gives you the expected boost / rotation

Generators for the Lorentz transformations

• these generators fulfill the Lie algebra of the Lorentz group:

$$[M_{\alpha\beta}, M_{\gamma\delta}]^{\mu}{}_{\nu} = i(g_{\alpha\gamma}M_{\beta\delta} - g_{\beta\gamma}M_{\alpha\delta} - g_{\alpha\delta}M_{\beta\gamma} + g_{\beta\delta}M_{\alpha\gamma})^{\mu}{}_{\nu}$$

- unifying time and spatial translations $P_{\mu} = (H, P_i)$
- we get the rest of the Poincaré algebra:

 $[P_{\mu}, P_{\nu}] = 0$ and $[M_{\alpha\beta}, P_{\mu}] = i(g_{\alpha\mu}P_{\beta} - g_{\beta\mu}P_{\alpha})$

- the generators of the Poincaré group are: P_{μ} and $M_{\alpha\beta}$
 - all rotations, boosts, and translations are elements of the Poincaré group

Invariants of the Poincaré group

- are objects that commute with all elements of the Poincaré group
 - it is enough to check if they commute with the generators ...

(optional)

Invariants of the Poincaré group

• obviously [ab, c] = a[b, c] + [a, c]b = abc - acb + acb - cab = abc - cab

• so
$$[P_{\mu}, P^2] = [P_{\mu}, P_{\nu}]P^{\nu} + P^{\nu}[P_{\mu}, P_{\nu}] = 0$$

• and
$$[M_{\alpha\beta}, P^2] = g^{\mu\nu}[M_{\alpha\beta}, P_{\mu}]P_{\nu} + g^{\mu\nu}P_{\mu}[M_{\alpha\beta}, P_{\nu}]$$

 $= g^{\mu\nu}i(g_{\alpha\mu}P_{\beta} - g_{\beta\mu}P_{\alpha})P_{\nu} + g^{\mu\nu}P_{\mu}i(g_{\alpha\nu}P_{\beta} - g_{\beta\nu}P_{\alpha})$
 $= -2i[P_{\alpha}, P_{\beta}] = 0$.

 $\Rightarrow P^2 = m^2$ invariant is a consequence of the Poincaré algebra!

- Another invariant is W^2
 - with the Pauli-Lubanski vector $W^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\rho\lambda} M_{\nu\rho} P_{\lambda}$ $[P_{\kappa}, W^{\mu}] = \frac{1}{2} \epsilon^{\mu\nu\rho\lambda} ([P_{\kappa}, M_{\nu\rho}] P_{\lambda} + M_{\nu\rho} [P_{\kappa}, P_{\lambda}])$ $= \frac{1}{2} \epsilon^{\mu\nu\rho\lambda} i (g_{\rho\kappa} P_{\nu} - g_{\nu\kappa} P_{\rho}) P_{\lambda} = 0 \implies [P_{\kappa}, W^2] = 0$

- 0 = $[M_{\alpha\beta}, W^2]$ is true, but checking is too difficult . . .

 \Rightarrow Particles can be characterised by the eigenvalues of P^2 and W^2

Symmetries — Algebra of the Poincaré group Eigenvalues of P^2 and W^2

• the spin vector W^{μ} is orthogonal to P_{μ} :

$$(P.W) = P^{\mu} \frac{1}{2} \epsilon_{\mu\nu\rho\lambda} M^{\nu\rho} P^{\lambda} = 0$$

(optional)

- For a particle at rest: $P_{\mu} = (m, 0)$
 - $P^2 = m^2 \Rightarrow$ the eigenvalue of P^2 is m^2

$$- W_{\mu} = \frac{1}{2} m \epsilon_{\mu\nu\rho0} M^{\nu\rho} = m(0, \vec{J})$$

- so $W^2 = m^2(0^2 \vec{J}^2) = -m^2\vec{J}^2 \to -m^2s(s+1)$
- \Rightarrow the eigenvalue of W^2 is $m^2s(s+1)$
- For a massless particle $P_{\mu} = (\eta, \eta, 0, 0)$
 - we have $P^2 = (P.W) = W^2 = 0$
 - \Rightarrow the eigenvalues of P^2 and W^2 are 0
 - we can construct the operator $0 = \lambda^2 P^2 2\lambda(P.W) + W^2 = (\lambda P W)^2$ * where λ depends on the representation (i.e. the spin) of the particle
 - we get: $W^{\mu} = \lambda P^{\mu}$ with the helicity $\lambda = 0, \pm \frac{1}{2}, \pm 1, \ldots$
- \Rightarrow Particles are characterised by mass and spin !

Symmetries — Algebra of the Poincaré group Investigating the Lorentz group

distinguishing again boosts and rotations

$$K_i = M_{0i} = -M^{0i}$$
 and $J_i = \frac{1}{2} \epsilon_{ijk} M^{jk}$,

(optional)

the Lorentz algebra gives

$$[J_j, J_k] = i\epsilon_{jk\ell}J_\ell \quad , \quad [K_j, K_k] = -i\epsilon_{jk\ell}J_\ell \quad , \quad [J_j, K_k] = i\epsilon_{jk\ell}K_\ell$$

• defining

$$L_i = N_i = \frac{1}{2}(J_i + iK_i)$$
 and $R_i = N_i^{\dagger} = \frac{1}{2}(J_i - iK_i)$

one gets

$$[L_j, R_k] = 0 \quad , \quad [L_j, L_k] = i\epsilon_{jk\ell}L_\ell \quad , \quad [R_j, R_k] = i\epsilon_{jk\ell}R_\ell$$

 \Rightarrow the Lorentz algebra is similar to $SU(2)_L \otimes SU(2)_R$!

- it has two invariants: $L_i L_i = n(n+1)$ and $R_i R_i = m(m+1)$
 - the angular momentum is $J_i = L_i + R_i \implies \text{spin } j = n + m$

(optional)

Investigating the Lorentz group

- Parity leaves rotations invariant $J_i \xrightarrow{\mathsf{P}} J_i$, but flips boosts $K_i \xrightarrow{\mathsf{P}} -K_i$, $\Rightarrow L_i \xleftarrow{\mathsf{P}} R_i$, $(n,m) \xleftarrow{\mathsf{P}} (m,n)$, $SU(2)_L \xleftarrow{\mathsf{P}} SU(2)_R$
- Charge conjugation also interchanges $SU(2)_L \Leftrightarrow SU(2)_R$
 - like Parity
- \Rightarrow the combined transformation CP leaves $SU(2)_L$ and $SU(2)_R$ invariant
 - but it still includes mathematically a complex conjugation
 - Time reversal T is an antiunitary transformation
 - it includes a complex conjugation
- \Rightarrow any quantum field theory

built from the representations of the Poincaré algebra

- that means: scalars, spinors, vectors, ...

has to be invariant under CPT

classifying particles

according to the eigenstates (n,m) of $SU(2)_L \otimes SU(2)_R$

- (0,0) is a scalar
- $(\frac{1}{2}, 0)$ is the χ_a left-handed Weyl-spinor - transforms with $\Lambda(\omega)_a{}^b = [e^{i\omega_{\alpha\beta}\sigma^{\alpha\beta}}]_a{}^b$
- $(0, \frac{1}{2})$ is the $\bar{\eta}^{\dot{a}}$ right-handed Weyl-spinor - transforms with $\Lambda(\omega)^{\dot{a}}{}_{\dot{b}} = [e^{i\omega_{\alpha\beta}\bar{\sigma}^{\alpha\beta}}]^{\dot{a}}{}_{\dot{b}}$
- $(\frac{1}{2}, 0) \oplus (0, \frac{1}{2})$ is $\Psi = \begin{pmatrix} \chi_a \\ \bar{\eta}^{\dot{a}} \end{pmatrix}$, the Dirac-spinor - transforms with $\Lambda(\omega)^a{}_b = [e^{i\omega_{\alpha\beta}(-\frac{i}{4}[\gamma^{\alpha},\gamma^{\beta}])}]^a{}_b$, with $\gamma^{\mu} = \begin{pmatrix} 0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0 \end{pmatrix}$ * *a* and *b* go from 1 to 4, (3 and 4 representing the dotted indices)

(optional)

• $(\frac{1}{2},0) \otimes (0,\frac{1}{2}) = (\frac{1}{2},\frac{1}{2})$ is $(\chi \sigma^{\mu} \overline{\eta}) = \chi^{\alpha} \sigma^{\mu}_{\alpha \dot{\alpha}} \overline{\eta}^{\dot{\alpha}}$, the spin-1 four-vector \Rightarrow in that sense is the spinor the square root of the vector