
Symmetries — Groups

Groups — what is a group? (repetition)

• a set G together with a ”multiplication ◦” with the properties:

– for a, b ∈ G ⇒ c = a ◦ b ∈ G
– (a ◦ b) ◦ c = a ◦ (b ◦ c)
– ∀a ∈ G : ∃e ∈ G with a ◦ e = e ◦ a = a

– ∀a ∈ G : ∃a−1 ∈ G with a ◦ a−1 = a−1 ◦ a = e

• if a ◦ b = b ◦ a ∀a, b ∈ G : abelian group, otherwise non-abelian
– abelian: {R,+} or {R+,×}
– non-abelian: regular square matrices with the matrix multiplication

• continuous groups: the elements depend on a continuous parameter
– example: rotations around an axis R[θ] with θ ∈ [0,2π)

• Lie group: a continuous group with an analytic multiplication

– g[~x] ◦ g[~y] = g[f(~x, ~y)] with f(~x, ~y) analytic in ~x and ~y

– the unit element is e = g[~0]
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Symmetries — Lie Groups

Lie groups and Lie algebras

• The n× n (complex) matrices form representations of Lie groups

• group multiplication is analytic ⇒ expansion around unit element

– unit element e = 1n×n
– representation T (g[α]) = exp[iαiXi] ⇒ Xk = −i∂T (g[α])

∂αk
|~α=0

– generators {Xk} span the representation of the Lie group

• the generators {Xk} fulfill the Lie algebra [Xj, Xk] = C `
jkX`

– with the antisymmetric structure constants C `
jk = −C `

kj

– rank of the group: number of commuting generators

– a Casimir operator commutes with all generators ⇒ ∝ e

• the indices i, j, k, ` need not indicate single numbers!

– for the generators we will have Xi = X[mn] = −X[nm]
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Symmetries — Lie Group representation

Representations of the Lie group

• using the Jacobi identity

0 = [A, [B,C]] + [B, [C,A]] + [C, [A,B]]

= ABC −ACB −BCA+ CBA + BCA−BAC − CAB +ACB + CAB − CBA−ABC +BAC

we get for the structure constants

0 = C d
bc [A,D] + C d

ca [B,D] + C d
ab [C,D]

= C d
bc C

e
ad + C d

ca C
e

bd + C d
ab C

e
cd = −(C d

ca C
e

db − C
d

cb C
e

da ) + C d
ab C

e
cd

• writing the structure constants as matrices (Mk) `
j = C `

jk we have

0 = −[(Ma) d
c (Mb)

e
d − (Mb)

d
c (Ma) e

d ] + C d
ab (Md)

e
c

or
[Ma,Mb] = C d

ab Md

⇒ structure constants form the adjoint representation of the Lie group
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Symmetries: Lie Groups — Operators as Representations

Translation and Rotation Operators

• The momentum operator ~P = −i ∂∂~x = −i~∂ generates translations:

– in index notation: Pk = −i ∂
∂xk

= −i∂k

eia
kPkf(x) = ea

k∂kf(x) =
∞∑
n=0

1

n!
(ak∂k)nf(x)

= f(x) + ak∂kf(x) +
1

2
ajak∂j∂kf(x) + . . .

– the Taylorseries of f(x+ a) is

f(x+ a) = f(x) + ak∂kf(x) +
1

2
ajak∂j∂kf(x) + · · · = ei~a

~Pf(x)

⇒ the operator ei~a ~P moves the function f by the amount ~a

• The angular momentum operator ~L = ~X × ~P generates rotations

– in index notation: Lj = εjk` x
kP` = −iεjk` xk∂`

– or Lx = i(z∂y − y∂z), Ly = i(x∂z − z∂x), Lz = i(y∂x − x∂y)
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Symmetries — Rotationgroup

Translation and Rotation Operators

• The components of ~L do not commute:
– if you rotate around the x̂-axis and then around the ŷ-axis, you get a different

result than rotating first around ŷ and then x̂.

– mathematically:

[Ly, Lx] = i2[(x∂z − z∂x)(z∂y − y∂z)− (z∂y − y∂z)(x∂z − z∂x)]

= i2[(x∂y + xz∂z∂y − xy∂2
z − z2∂x∂y + zy∂x∂z)

−(zx∂y∂z − z2∂y∂x − yx∂2
z + y∂x + yz∂z∂x)]

= i2[x∂y − y∂x] = −iLz

– or in index notation: [Lj, Lk] = iεjk`L` ⇒ Rotationgroup

• but the square L2 = ~L · ~L = LkLk does commute:

[L2, Lj] = Lk[Lk, Lj] + [Lk, Lj]Lk = Lkiεkj`L` + iεkj`L`Lk

= LhiεhjmLm + iεmjhLhLm = i(εhjm + εmjh)LhLm = 0

⇒ use L2 and Lz to describe quantum mechanical states (particles)
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Symmetries — Rotationgroup

Eigenstates of the Rotationgroup

• We write an eigenstate of the operators L2 and Lz as |λ,m〉
L2|λ,m〉 = λ|λ,m〉 and Lz|λ,m〉 = m|λ,m〉

– |f〉 is called a ket and used to denote a quantum mechanical state.

• We define the ladder operators L± = Lx ± iLy with
[L2, L±] = [L2, Lx]± i[L2, Ly] = 0 and

[Lz, L±] = [Lz, Lx]± i[Lz, Ly] = iLy ± i(−iLx) = ±(Lx ± iLy) = ±L±

⇒ L±|λ,m〉 is also an eigenstate of L2 and Lz :

L2(L±|λ,m〉) = ([L2, L±] + L±L
2)|λ,m〉 = 0 + L±L

2|λ,m〉
= L±λ|λ,m〉 = λ(L±|λ,m〉)

and

Lz(L±|λ,m〉) = ([Lz, L±] + L±Lz)|λ,m〉 = (±L±+ L±Lz)|λ,m〉
= (±L±+ L±m)|λ,m〉 = (m± 1)(L±|λ,m〉)
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Symmetries — Rotationgroup

Eigenstates of the Rotationgroup

• L± does not change the eigenvalue λ of the state |λ,m〉

• L± changes the eigenvalue m of the state |λ,m〉

⇒ the states |λ,m+ n〉 with n ∈ Z are related

⇒ for each λ there would be ∞ many states unless there is

∗ a = mmax with L+|λ, a〉 = 0 and

∗ b = mmin with L−|λ, b〉 = 0

• using
L∓L± = (Lx ∓ iLy)(Lx ± iLy) = L2

x ± iLxLy ∓ iLyLx + L2
y

= (L2
x + L2

y + L2
z)− L2

z ± i[Lx, Ly] = L2 − L2
z ± i(iLz)

= L2 − Lz(Lz ± 1)

we can relate a and b
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Symmetries — Rotationgroup

Eigenstates of the Rotationgroup

• relating a and b:

– 0 = L−L+|λ, a〉 = (λ− (a2 + a))|λ, a〉 ⇒ λ = a2 + a

– 0 = L+L−|λ, b 〉 = (λ− (b2 − b))|λ, b〉 ⇒ λ = b2 − b

a(a+ 1) = b(b− 1) or a = −b

• Applying (L−) n times on the state |λ, a〉 gives |λ, a− n〉

• for some n we have to reach |λ, b〉 ⇒ a− n = b

• with a = −b we get a− n = −a or mmax = a = n
2

• The rotationgroup allows for half integer eigenstates

⇒ Spinors
• used to describe fermions: electron, proton, neutron, neutrino, . . .
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Symmetries — Rotationgroup in 3D

Lie Algebra of the rotation group

• a rotation around the ẑ-axis by the angle θ is done by the matrix

R[θ] =

(
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

)
= eiθLz

– in index notation: R[θ]jk = cos θ(δj1δ
1
k + δj2δ

2
k)− sin θ(δj1δ

2
k − δ

j
2δ

1
k) + δj3δ

3
k

• so the generator of the rotations, iLz, is

iLz =
∂R[θ]

∂θ

∣∣∣∣∣
θ=0

=

(
− sin θ − cos θ 0
cos θ − sin θ 0

0 0 0

)∣∣∣∣∣
θ=0

=

(
0 −1 0
1 0 0
0 0 0

)
– and similar

iLx =

(
0 0 0
0 0 −1
0 1 0

)
iLy =

(
0 0 −1
0 0 0
1 0 0

)

• these rotations (incl. Lx and Ly) act on 3d column vectors ~v =

(
vx
vy
vz

)
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Lie Groups — What is a generator (in a Lie group) ?

the generator captures the ”feature” of the group element

• group elements from the same generator commute

• the generator Xk is the abstract ”direction”, as seen from

– Xk = −i∂T (g[α])
∂αk

|~α=0

– or Pk = −i ∂
∂xk

= −i∂k
– or (Lz)jk = i(y∂x − x∂y)jk = δ

j
2δ

1
k − δ

j
1δ

2
k

∗ (Lz) takes the value of y (−x) and puts it into x (y)

• Xk creates the exponential representation: T (g[α]) = exp[iαkXk]

– with the group elements g[α]

– parametrized by ~α = αk . . . i.e. the group parameter space

∗ example: (0,2π)⊗ (0, π)⊗ (0,2π) for 3D rotations with Euler axis and angle

– representing the group element g[α] as the matrix T (g[α])
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Symmetries — Rotationgroup in 3D

Lie Algebra of the rotation group

• with simple matrix multiplication we can see:

[iLx, iLy] = −iLz [iLy, iLz] = −iLx [iLz, iLx] = −iLy

– or in index notation with x = 1, y = 2, and z = 3: [Lj, Lk] = iεjk`L`

• but there is a smaller dimensional realisation of the rotation group!

– using the Pauli matrices

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
– one can define the Spin matrices Sk = 1

2σk , which give

[Sj, Sk] = iεjk`S`

• these Spin matrices act on 2d complex column vectors ~s =
(
α
β

)
with |α|2 + |β|2 = 1 ⇒ Spinors

⇒ fundamental representation of the rotation group SU(2)

Thomas Gajdosik – Introduction to Elementary Particle Physics 1 Symmetries – theoretical 11



Symmetries — Rotationgroup in 3D

Rotations of Spinors

• with simple matrix multiplication we can see for the Pauli matrices:

σ2
x = σ2

y = σ2
z =

(
1 0
0 1

)
= 12×2

• So the finite rotation of a spinor around the ŷ-axis is

R[θ] = eiθSy =
∞∑
n=0

1

n!
(iθ1

2σy)n =
∑

n=2m

1

n!
(iθ2)nσny +

∑
n=2m+1

1

n!
(iθ2)nσny

=
∞∑
n

(−1)n(θ2)2n

(2n)!
(σ2
y)n + i

∞∑
n

(−1)n(θ2)2n+1

(2n+ 1)!
(σ2
y)nσy

= cos θ2 ∗ 12×2 + i sin θ
2σy =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
– acting on the spinor ~s =

(
α
β

)
⇒ spinors rotate only with half of the rotation angle θ
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Symmetries — Algebra of the Poincaré group (optional)

Lorentz transformations ( like Galilean transformations )
consist of Boosts and Rotations

• a boost in x̂ was done by

Λ(η)µν = cosh η(δµ0δ
0
ν + δ

µ
1δ

1
ν)− sinh η(δµ0δ

1
ν + δ

µ
1δ

0
ν) + δ

µ
2δ

2
ν + δ

µ
3δ

3
ν

• a rotation between ŷ and ẑ can be done by

Λ(θ)µν = δ
µ
0δ

0
ν + δ

µ
1δ

1
ν + cos θ(δµ2δ

2
ν + δ

µ
3δ

3
ν)− sin θ(δµ2δ

3
ν − δ

µ
3δ

2
ν)

• we obtain the generators for boosts with −i∂Λ(η)µ ν
∂η |η=0 =

−i sinh η(δµ0δ
0
ν + δ

µ
1δ

1
ν) + i cosh η(δµ0δ

1
ν + δ

µ
1δ

0
ν)|η=0 = i(δµ0δ

1
ν + δ

µ
1δ

0
ν)

• we obtain the generators for rotations with −i∂Λ(θ)µ ν
∂θ |θ=0 =

+i sin θ(δµ2δ
2
ν + δ

µ
3δ

3
ν) + i cos θ(δµ2δ

3
ν − δ

µ
3δ

2
ν)|θ=0 = i(δµ2δ

3
ν − δ

µ
3δ

2
ν)
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Symmetries — Algebra of the Poincaré group (optional)

Boosts and Rotations . . . continued

• The other boosts go in ŷ or ẑ direction: i(δµ0δ
i
ν + δ

µ
i δ

0
ν),

or with the indices 0i down: (M0i)
µ
ν = i(δµ0(−giν) + δ

µ
ig0ν)

• The other rotations go in x̂ŷ or x̂ẑ direction: i(δµjδ
k
ν − δ

µ
kδ
j
ν),

or with the indices jk down: (Mjk)µν = i(δµj(−gkν)− δµk(−gjν))

• both generators have now the same form:

(Mαβ)µν = −i(δµαgβν − δ
µ
βgαν)

• with ωαβ = −ωβα we get

Λ(ω)µν = exp[i(Mαβω
αβ)µν] = exp[(δµαgβν − δ

µ
βgαν)ωαβ]

• How to understand / use this formula? . . . How to get a matrix?
1. pick the indices of ωαβ: ω0i (ωjk) for a boost (rotation) in î- (ĵk̂-) direction
2. write the matrix δµαgβν − δµβgαν with row-(column-) number µ (ν)
∗ it will only have two non-zero entries

3. squaring the matrix gives a diagonal matrix with only two equal entries
4. the powerseries expansion gives you the expected boost / rotation
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Symmetries — Algebra of the Poincaré group (optional)

Generators for the Lorentz transformations

• these generators fulfill the Lie algebra of the Lorentz group:

[Mαβ,Mγδ]
µ
ν = i(gαγMβδ − gβγMαδ − gαδMβγ + gβδMαγ)µν

• unifying time and spatial translations Pµ = (H,Pi)

• we get the rest of the Poincaré algebra:

[Pµ, Pν] = 0 and [Mαβ, Pµ] = i(gαµPβ − gβµPα)

• the generators of the Poincaré group are: Pµ and Mαβ

– all rotations, boosts, and translations are elements of the Poincaré group

Invariants of the Poincaré group

• are objects that commute with all elements of the Poincaré group

– it is enough to check if they commute with the generators . . .
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Symmetries — Algebra of the Poincaré group (optional)

Invariants of the Poincaré group

• obviously [ab, c] = a[b, c] + [a, c]b = abc− acb+ acb− cab = abc− cab

• so [Pµ, P2] = [Pµ, Pν]P ν + P ν[Pµ, Pν] = 0

• and [Mαβ, P
2] = gµν[Mαβ, Pµ]Pν + gµνPµ[Mαβ, Pν]

= gµνi(gαµPβ − gβµPα)Pν + gµνPµi(gανPβ − gβνPα)

= −2i[Pα, Pβ] = 0 .

⇒ P2 = m2 invariant is a consequence of the Poincaré algebra!

• Another invariant is W2

– with the Pauli-Lubanski vector Wµ = 1
2ε
µνρλMνρPλ

[Pκ,W
µ] = 1

2ε
µνρλ([Pκ,Mνρ]Pλ +Mνρ[Pκ, Pλ])

= 1
2ε
µνρλ i(gρκPν − gνκPρ)Pλ = 0 ⇒ [Pκ,W

2] = 0

– 0 = [Mαβ,W
2] is true, but checking is too difficult . . .

⇒ Particles can be characterised by the eigenvalues of P2 and W2
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Symmetries — Algebra of the Poincaré group (optional)

Eigenvalues of P2 and W2

• the spin vector Wµ is orthogonal to Pµ :

(P.W ) = Pµ1
2εµνρλM

νρPλ = 0

• For a particle at rest: Pµ = (m,0)
– P 2 = m2 ⇒ the eigenvalue of P 2 is m2

– Wµ = 1
2
mεµνρ0Mνρ = m(0, ~J)

– so W 2 = m2(02 − ~J2) = −m2 ~J2 → −m2s(s+ 1)

⇒ the eigenvalue of W 2 is m2s(s+ 1)

• For a massless particle Pµ = (η, η,0,0)
– we have P 2 = (P.W ) = W 2 = 0

⇒ the eigenvalues of P 2 and W 2 are 0

– we can construct the operator 0 = λ2P 2 − 2λ(P.W ) +W 2 = (λP −W )2

∗ where λ depends on the representation (i.e. the spin) of the particle

– we get: W µ = λP µ with the helicity λ = 0,±1
2
,±1, . . .

⇒ Particles are characterised by mass and spin !
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Symmetries — Algebra of the Poincaré group (optional)

Investigating the Lorentz group

• distinguishing again boosts and rotations

Ki = M0i = −M0i and Ji = 1
2εijkM

jk ,

the Lorentz algebra gives

[Jj, Jk] = iεjk`J` , [Kj,Kk] = −iεjk`J` , [Jj,Kk] = iεjk`K`

• defining
Li = Ni = 1

2(Ji + iKi) and Ri = N
†
i = 1

2(Ji − iKi)

one gets

[Lj, Rk] = 0 , [Lj, Lk] = iεjk`L` , [Rj, Rk] = iεjk`R`

⇒ the Lorentz algebra is similar to SU(2)L ⊗ SU(2)R !

• it has two invariants: LiLi = n(n+ 1) and RiRi = m(m+ 1)

– the angular momentum is Ji = Li +Ri ⇒ spin j = n+m
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Symmetries — Algebra of the Poincaré group (optional)

Investigating the Lorentz group

• Parity leaves rotations invariant Ji
P−→ Ji, but flips boosts Ki

P−→ −Ki,
⇒ Li

P←→ Ri, (n,m)
P←→ (m,n), SU(2)L

P←→ SU(2)R

• Charge conjugation also interchanges SU(2)L ⇔ SU(2)R
– like Parity

⇒ the combined transformation CP leaves SU(2)L and SU(2)R invariant

– but it still includes mathematically a complex conjugation

• Time reversal T is an antiunitary transformation

– it includes a complex conjugation

⇒ any quantum field theory

built from the representations of the Poincaré algebra

– that means: scalars, spinors, vectors, . . .

has to be invariant under CPT
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Symmetries — Algebra of the Poincaré group (optional)

classifying particles
according to the eigenstates (n,m) of SU(2)L ⊗ SU(2)R

• (0,0) is a scalar

• (1
2,0) is the χa left-handed Weyl-spinor

– transforms with Λ(ω) b
a = [eiωαβσ

αβ
] b
a

• (0, 1
2) is the η̄ȧ right-handed Weyl-spinor

– transforms with Λ(ω)ȧ
ḃ

= [eiωαβσ̄
αβ

]ȧ
ḃ

• (1
2,0)⊕ (0, 1

2) is Ψ =
(
χa
η̄ȧ

)
, the Dirac-spinor

– transforms with Λ(ω)a b = [eiωαβ(− i
4[γα,γβ])]a b, with γµ =

(
0 σµ

σ̄µ 0

)
∗ a and b go from 1 to 4, (3 and 4 representing the dotted indices)

• (1
2,0)⊗ (0, 1

2) = (1
2,

1
2) is (χσµη̄) = χασ

µ
αα̇η̄

α̇, the spin-1 four-vector

⇒ in that sense is the spinor the square root of the vector
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