"What is essential for calculating in Special Relativity"

1 Notation

The most important step is to get used to the notation !

- Usually the speed of light is set to one: c = 1
 - \Rightarrow so I will do it for the rest of the notes (opposite to Griffiths)
 - but that means, you have to know the physical dimensions of your quantities!
- the most important quantity is the fourvector, especially the four-momentum:

$$p^{\mu} = \begin{pmatrix} p^{0} \\ \vec{p} \end{pmatrix} = (p^{0}, \vec{p})$$
(1)

• the scalar product of fourvectors can be written as

$$(p.q) = p^{\mu}q_{\mu} = p_{\mu}q^{\mu} = g_{\mu\nu}p^{\mu}q^{\nu} = \eta_{\mu\nu}p^{\mu}q^{\nu} = p^{0}q^{0} - \vec{p}\cdot\vec{q}$$
(2)

- where the metric $g_{\mu\nu} = \eta_{\mu\nu}$ defines the scalar product
 - * $g_{\mu\nu}$ for a general space and $\eta_{\mu\nu}$ for Minkovsky space
 - * since our general space is Minkovsky space, both are equal in SR

 $-\vec{p}\cdot\vec{q}$ is the "normal" scalar product in 3D

2 important concepts

inertial frame is a coordinate system that is not accelerated

• that does not feel an external force

Lorentz transformation (LT) is the linear transformation between inertial frames

• parametrized by the relative velocity \vec{v} or the rapidity η

CM-frame is the coordinate system where the sum of all 3-momenta is zero: $0 = \sum_{i} \vec{p}_{i}$

rest-frame is the coordinate system where the object A (that defines the rest-frame) does not move: $\vec{p}_A = 0$

mass is the energy content of an object in its rest-frame

Lab-frame is the coordinate system of the Laboratory;

- usually all measured quantities are understood to be given in the Lab-frame
- it is the usual starting point of a calculation

time dilation and length contraction are effects of the LT between frames

- decaying objects that move last longer
- length measurements on moving objects seem shorter