Lorentz transformations

- relate the coordinate systems of two inertial observers
- leave the '4-distance' invariant
- assuming linearity, they can be written as

$$x'^{\mu} = \bigwedge^{\mu}_{\nu} x^{\nu} + a^{\mu}$$

- These are called inhomogeneous Lorentz transformations (Λ, a)

Homogeneous Lorentz transformations have $a^{\mu} = 0$

- They leave scalar products invariant: (p'.q') = (p.q)
- They describe 3 Rotations and 3 Boosts
 - compare with the Galilean transformations

Rotations are the same as in the Galilean transformations For Boosts between O and O' let us align the coordinate systems:

- The origins of O and O' should be at the same place at t=t'=0
- The constant relative velocity v between O and O' should point in the \widehat{x} -direction for both, O and O'
- \hat{y} (\hat{z}) should point in the same direction: y'=y (z'=z)
- Only $ct=x^0$ and $x=x^1$ are affected by such a boost: $\Lambda^\mu_{\ \nu}=\delta^\mu_{\ \nu}$ for either μ or ν being 2 or 3
- So with $p' = \Lambda p$ and $q' = \Lambda q$ we have (p'.q') (p.q) = 0
- Since y'=y and z'=z we can ignore \hat{y} and \hat{z} in the equation

$$0 = (p'.q') - (p.q) = (p'^0q'^0 - p'^1q'^1) - (p^0q^0 - p^1q^1)$$

Determining Boosts

$$0 = (\Lambda_0^0 p^0 + \Lambda_1^0 p^1)(\Lambda_0^0 q^0 + \Lambda_1^0 q^1) - (\Lambda_0^1 p^0 + \Lambda_1^1 p^1)(\Lambda_0^1 q^0 + \Lambda_1^1 q^1)$$

$$-(p^0 q^0 - p^1 q^1)$$

$$= (\Lambda_0^0 \Lambda_0^0 - \Lambda_0^1 \Lambda_0^1 - 1)p^0 q^0 + (\Lambda_0^0 \Lambda_1^0 - \Lambda_0^1 \Lambda_1^1)p^0 q^1$$

$$+(\Lambda_1^0 \Lambda_0^0 - \Lambda_1^1 \Lambda_0^1)p^1 q^0 + (\Lambda_1^0 \Lambda_1^0 - \Lambda_1^1 \Lambda_1^1 + 1)p^1 q^1$$

is solved by

$$\Lambda_0^0 = \Lambda_1^1 = \pm \cosh \eta \qquad \Lambda_1^0 = \Lambda_0^1 = \mp \sinh \eta ,$$

where η is the "rapidity" of the boost. The usual choice is the upper sign.

How can we relate η to the relative velocity v between O and O'?

- Let us take two events and describe them in O and O':
 - A: the origins of O and O' overlap; set t = t' = 0
 - B: at the origin of O' after the time t', where $t = \Delta t$

determining Boosts

. . . continued

- The coordinates of A are $a^{\mu} = a'^{\mu} = (0, 0, 0, 0)$
- The coordinates of B
 - in O are $b^{\mu}=(\Delta t,v\Delta t,0,0)$ because O' was moving with the constant relative velocity v for the time Δt
 - in O' are $b'^{\mu}=(t',0,0,0)$ because B is at the origin of O'
- But $b'^{\mu} = \Lambda^{\mu}{}_{\nu}b^{\nu}$ = $(\cosh \eta \, \Delta t - \sinh \eta \, v \Delta t \,, \, -\sinh \eta \, \Delta t + \cosh \eta \, v \Delta t \,, \, 0 \,, \, 0)$

Therefore

$$t' = \cosh \eta \, \Delta t - \sinh \eta \, v \Delta t$$
$$0 = -\sinh \eta \, \Delta t + \cosh \eta \, v \Delta t$$

or

$$v = \frac{\sinh \eta}{\cosh \eta} = \tanh \eta \sim \eta \quad \text{ for } \eta \text{ small }$$

Lorentz transformations on vectors

- A vector V^{μ} can be understood as the distance of two events
 - ⇒ Its transformation is the same as for events
- We used already the coordinate representation of events

$$\Rightarrow$$
 $V'^{\mu} = \Lambda^{\mu}_{\ \nu} V^{\nu}$

- If we want to write Λ as a matrix
 - we have to choose how we represent the vector V^{μ} .
 - the usual representation is a column-vector:

tation is a column-vector:
$$V^{\mu} = (V^0, V^1, V^2, V^3)^{\top} = \begin{pmatrix} V^3 \\ V^1 \\ V^2 \end{pmatrix}$$
 the Lorentz transformation as

then we can write the Lorentz transformation as

$$\begin{pmatrix} V'^0 \\ V'^1 \\ V'^2 \\ V'^3 \end{pmatrix} = \begin{pmatrix} \Lambda^0_{0} & \Lambda^0_{1} & \Lambda^0_{2} & \Lambda^0_{3} \\ \Lambda^1_{0} & \Lambda^1_{1} & \Lambda^1_{2} & \Lambda^1_{3} \\ \Lambda^2_{0} & \Lambda^2_{1} & \Lambda^2_{2} & \Lambda^2_{3} \\ \Lambda^3_{0} & \Lambda^3_{1} & \Lambda^3_{2} & \Lambda^3_{3} \end{pmatrix} \begin{pmatrix} V^0 \\ V^1 \\ V^2 \\ V^3 \end{pmatrix} \\ \dot{=} \begin{pmatrix} \cosh \eta & -\sinh \eta & 0 & 0 \\ -\sinh \eta & \cosh \eta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} V^0 \\ V^1 \\ V^2 \\ V^3 \end{pmatrix}$$

connecting to "conventional" Lorentz transformations

Lorentz transformations are usually written down using equations:

$$t' = \gamma(t - \frac{v \cdot x}{c^2})$$

$$x' = \gamma(x - v \cdot t)$$

$$y' = y$$

$$z' = z$$

$$ct' = \gamma(ct - \frac{v}{c} \cdot x)$$

$$x' = \gamma(x - \frac{v}{c} \cdot ct)$$

$$y' = y$$

$$z' = z$$

- where
$$\gamma = \frac{1}{\sqrt{1-\beta^2}}$$

- defining $\beta = \frac{v}{c}$ we can easily connect to the matrix-form of Λ
 - suppressing the unchanged coordinates y and z:

$$\begin{array}{cccc} ct' & = & \gamma(& ct - \beta \cdot x) \\ x' & = & \gamma(-\beta \cdot t + x) \end{array} \Rightarrow \begin{pmatrix} ct' \\ x' \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma\beta \\ -\gamma\beta & \gamma \end{pmatrix} \cdot \begin{pmatrix} ct \\ x \end{pmatrix}$$

- ullet comparing to the matrix-form with the pseudo rapidity η
 - we see: $\cosh \eta = \gamma$ and $\sinh \eta = \gamma \beta$, or $\beta = \tanh \eta$

More on vectors, the metric, and Lorentz transformations

- We defined the scalar product of contravariant* vectors:
 - * contravariant can be understood as: the vector has an upper index

$$(p.q) = p^{\mu}q^{\nu}g_{\mu\nu} = p^{0}q^{0} - p^{1}q^{1} - p^{2}q^{2} - p^{3}q^{3} ,$$

where $g_{\mu\nu}=g_{\nu\mu}$ is the metric with $g_{00}=1$, $g_{ii}=-1$, and $g_{\mu\neq\nu}=0$

- We can define covariant vectors with the index down: $V_{\mu} = g_{\mu\nu}V^{\nu}$
- The index can be raised again by $V^{\mu}=g^{\mu\nu}V_{\nu}$
- This obviously gives $g^{\mu\nu}g_{\nu\rho}=g^{\nu\mu}g_{\nu\rho}=g^{\mu\nu}g_{\rho\nu}=\delta^{\mu}_{\rho}$
- That means for the Lorentz transformations:

$$V'_{\mu} = g_{\mu\lambda} V'^{\lambda} = g_{\mu\lambda} \Lambda^{\lambda}_{\kappa} V^{\kappa} = g_{\mu\lambda} \Lambda^{\lambda}_{\kappa} g^{\kappa\nu} V_{\nu} = (\Lambda^{\mu}_{\nu})^{-1} V_{\nu}$$

or

$$(\Lambda^{\mu}_{\ \nu})^{-1} = g_{\mu\lambda} \Lambda^{\lambda}_{\ \kappa} g^{\kappa\nu} = \Lambda_{\mu}^{\ \nu}$$

More on the Matrix Representation for Λ

- We can do the same trick (matrix representation) for covariant vectors
 - just $\Lambda(v)$ will look differently:

$$\Lambda(v)_{\mu}{}^{\nu} = g_{\mu\lambda}\Lambda(v)^{\lambda}{}_{\kappa} g^{\kappa\nu} \quad "=" \left(\begin{array}{ccc} \cosh \eta & \sinh \eta \\ \sinh \eta & \cosh \eta \end{array} \right)$$

- here we represent the covariant vectors also as column vectors!
 - * in order to use the normal matrix multiplication: $(V'_{\mu}) = (\Lambda(v)_{\mu}{}^{\nu}) \cdot (V_{\nu})$
- The matrix representation of $\Lambda(v)_{\mu}{}^{\nu}$ has the same form as $\Lambda(-v)^{\mu}{}_{\nu}$
- Both $g_{\mu\nu}$ and $g^{\mu\nu}$ can be written as diag(1,-1,-1,-1), but they are not matrices in the same way as $\Lambda(v)_{\mu}{}^{\nu}$ or $\Lambda(-v)^{\mu}{}_{\nu}$ are matrices:

$$\Lambda^{\mu}_{\ \nu} \times \text{contravariant vector} \rightarrow \text{contravariant vector}$$

$$\Lambda_{\mu}^{\nu}$$
 × covariant vector \rightarrow covariant vector

$$g_{\mu\nu}$$
 × contravariant vector $ightarrow$ covariant vector

$$q^{\mu\nu}$$
 × covariant vector \rightarrow contravariant vector

Lorentz transformations of fields

- Two observers, O and O', can agree on a space-time point x by calling it an event X
 - X might have different coordinates x^{μ} and x'^{μ} in O and O', but it is nevertheless the same point.
 - O and O' can compare the value of different fields at X
- The simplest field is the scalar field $\phi(x)$:

$$\phi'(X) = \phi(X)$$

• The vector fields $v^{\mu}(x)$ or $v_{\mu}(x)$ transform like a vectors:

$$v'^{\mu}(X) = \Lambda^{\mu}{}_{\nu} v^{\nu}(X) \qquad v'_{\mu}(X) = \Lambda_{\mu}{}^{\nu} v_{\nu}(X)$$

• Tensor fields $t^{\mu\nu}_{\rho\kappa\lambda}(x)$ transform like the product of vectors:

$$t'^{\mu\nu}_{\rho\kappa\lambda}(X) = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} \Lambda_{\rho}^{\gamma} \Lambda_{\kappa}^{\delta} \Lambda_{\lambda}^{\epsilon} t^{\alpha\beta}_{\gamma\delta\epsilon}(X)$$