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Abbreviations and Notations

2HDM - Two Higgs Doublet Model
2HDMC - Two Higgs Doublet Model Calculator
BSM - Physics Beyond the Standard Model
CKM - Cabibbo–Kobayashi–Maskawa Matrix
EW - Electroweak
FCNC - Flavour Changing Neutral Currents
HB - Higgs Bounds
LH - Left-Handed
PMNS - Pontecorvo–Maki–Nakagawa–Sakata Matrix
QCD - Quantum Chromodynamics
QED - Quantum Electrodynamics
RH - Right-Handed
SM - Standard Model
SSB - Spontaneous Symmetry Breaking
VEV - Vacuum Expectation Value

sξ ≡ sin ξ

cξ ≡ cos ξ

tξ ≡ tan ξ

Note:
Lagrangian ≡ Lagrangian density
Natural units are used: ~ = c = 1
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Introduction

In the following thesis basic concepts of the two Higgs doublet model (2HDM) are discussed.
During our research we performed both theoretical and numerical analyses of the CP -conserving
2HDM.

A lot of experimental data was accumulated, during the past few decades, confirming validi-
ty of the Standard Model (SM). In 2012 the last missing piece of the SM, the Higgs boson-like
particle, was observed by ATLAS [1] and CMS [2] collaborations. Based on quantum pro-
perties of the new boson, it was later confirmed that in the frame of the SM, it is indeed
the Higgs boson. The combined mass measurement, based on the data from LHC Run 1 is
mH = 125.09± 0.21(stat.)±0.11(syst.) GeV [3].

There is still no experimental verification that there exists the only Higgs boson, therefore
it is assumed that the Higgs sector of the electroweak (EW) theory might be extended. One of
the simplest possible extensions of the SM Higgs sector is the 2HDM. In the 2HDM a second
complex SU(2) doublet is added, which leads to eight scalar fields in total. Out of these fields,
five different physical Higgs bosons are generated: two neutral CP -even Higgs bosons h and H,
a neutral CP -odd Higgs boson A and a pair of charged Higgs bosons H±.

There is a lot of research going on. A list of restrictions on mass terms can be found in
ref. [4]. Currently the most sought and promising channels are H± and H±±. The second
channel H±± is not a part of the 2HDM. We cover only the minimal extension of the Higgs
sector. We assume that the found Higgs boson is the SM-like and not the heavy one.

The purpose of this thesis is to discuss phenomenological aspects of the CP -conserving
2HDM. The generic basis and the physical mass eigenstates basis were scrutinized. For the
numerical analysis we modified the two Higgs doublet model calculator (2HDMC) [5]. Also
by the means of Mathematica computation program we performed a check of possible models.
In order to get a 2HDM potential, satisfying our needs, we performed both theoretical and
numerical analysis. In our research we mainly rely on the following theoretical constraints of
the 2HDM:

• stability of the potential

• S matrix tree-level unitarity

• quartic Higgs boson perturbativity
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The thesis is organised as follows.
In Sec.1 we briefly introduce the SM. We cover the mathematical aspects of the SM, which

are needed for the understanding of the Higgs sector, presented in the next section. In this
chapter we emphasis that the extension of the SM Higgs sector might be the solution to some
of the SM problems. The textbooks ref. [6–9] were used for this section.

In Sec.2 we derive basic principles of the SM Higgs sector. We also discuss the idea of the
spontaneous symmetry breaking (SSB) and the Higgs mechanism. We show how the SM Higgs
boson interacts with other bosons and fermions. Decay rates of the SM Higgs boson at the
minimal order are presented. We also introduce to the theoretical constraints of the SM Higgs
sector. For this section we used the textbooks ref. [9, 10].

In Sec.3 we describe the 2HDM. We cover the most commonly used conversions. These
are: the generic basis, Higgs bases and the mass eigenstates basis or the physical one. Due
to complexity of mathematics, we only managed to derive transformations between possible
2HDM when vacuum is neutral and the 2HDM potential is CP -conserving. We show these
transformations. Next we analyse interactions with other fundamental particles: Higgs-self
interactions, interactions with gauge bosons and interactions with fermions. For this section
ref. [11] was an invaluable help.

In Sec.4 we derive several constraints of the 2HDM. Due to complexity of mathematics we
cover only the CP -conserving case. In this section we discuss stability of the 2HDM scalar
potential, S matrix tree-level unitarity, and quartic Higgs bosons perturbativity conditions.
Also we cover the Peskin-Takeuchi parameters. We take into account all these constraints in
order to analyse the CP -conserving 2HDM potential.

In Sec.5 we present and analyse our results of the CP -conserving 2HDM potential. We use
both 2HDMC and our own code for this part. We present our approach and discuss what was
done to improve the computing of our Monte-Carlo sampling.
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1 The Standard Model

Up till these days the SM is in perfect agreement with experimental data. It proved to
be a useful tool in describing particle interactions: electromagnetic, weak, strong as well as
classifying all of the known elementary particles. The first step was done by the S. Glashow
in 1961, when he succeeded in describing the combined model of the electromagnetic and weak
interactions [12]. The second step was to understand how particles acquire mass.

In 1964 three independent groups proposed different approaches on how mass terms can
arise in gauge invariant models as a result of spontaneous symmetry breaking (SSB) models.
These groups are: F. Englert and R. Brout [13], P. Higgs [14] and G. Guralnik, C. R. Hagen, T.
Kibble [15]. Later the Higgs mechanism was incorporated into EW theory by S. Weinberg [16]
and A. Salam [17].

In the following chapter a brief introduction to the SM is presented. A more detailed
overview can be found in the following textbooks ref. [6–9], which this chapter is based on.

1.1 A Brief Introduction to the Standard Model

The SM describes 17 elementary particles and for this description 19 input parameters are
required. These parameters are: 9 fermion masses without neutrinos and the Higgs boson mass,
4 parameters to describe Cabibbo-Kobayashi-Maskawa matrix (CKM), 3 gauge couplings and
the vacuum expectation value (VEV). Origin of the most of these parameters is unknown and
the SM does not give the answer. Technically saying, the SM describes interactions between
the fundamental forces, except for gravity, and elementary particles. This theory is based on
quantum field theory.

All of the matter consists of 12 fundamental quantum fields with spin s = 1/2, which are
elementary particles, called fermions, and 12 corresponding anti-particles. It turns out that
these elementary particles can be divided into 2 equal groups, flavours, forming 3 different
generations, which are shown in tab.1. The SM fermions are classified according to how they
interact.

Table 1: Fermions of the SM.

Gen. I Gen. II Gen. III

Leptons e µ τ
νe νµ ντ

Quarks d s b
u c t

Leptons can be split into 2 different groups: charged leptons or electron-like leptons (ele-
ctron e, muon µ, tau τ) and neutrinos (electron neutrino νe, muon neutrino νµ, tau neutrino
ντ ). Charged leptons participate in EW interactions. Neutrinos do not posses a charge and
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therefore participate only in weak interaction. The first generation charged particles do not
decay. Neutrinos can oscillate between different flavours.

Quarks can be split into 2 different groups: up (up u, charm c, top t) and down (down d,
strange s, bottom b) quarks. Quarks in comparison to leptons have a colour charge and parti-
cipate in strong interactions. Due to colour confinement quarks are strongly bound together.
In nature quarks are bound together to form composite particles, called hadrons. Quarks carry
electric charge and weak isospin, therefore they participate in EW interactions.

Another group of particles are bosons. Bosons are split into 2 groups based on their spin.
If spin is not equal to zero, such bosons are called gauge bosons (γ,W±, Z, g), if spin is equal
to zero, then it is a scalar boson. Only one scalar elementary boson was found so far and it is
the Higgs boson h. Gauge bosons are defined as force carriers.

Photons γ are responsible for the electromagnetic interactions between electrically charged
particles. Photons are described by the theory of quantum electrodynamics (QED).

W± and Z bosons are responsible for the weak interactions between different flavour par-
ticles. While W± interact only with left-handed (LH) particles and right-handed (RH) antipar-
ticles, Z interacts with LH particles and antiparticles.

In total there are 8 gluons g, which are responsible for the strong interaction. The strong
interaction is only possible between particles with colour charge. The theory of strong interac-
tions based on the gauge symmetry SU(3)C is quantum chromodynamics (QCD).

The Standard Model is described by an internal gauge symmetry SU(3)C⊗SU(2)L⊗U(1)Y .
In general, these mathematical objects can be thought of as transformations in space-time, under
which they retain physical quantities. For example, volume of a sphere does not change if it is
rotated by an arbitrary angle or shifted in one of the planes.

There are two types of symmetries: local and global. Under global symmetry object is
transformed in the same way at every point in space-time. Conservation laws are required
by global symmetries. In contrast, local symmetries depend smoothly on points of the base
manifold. This means, that local transformations act on quantity differently but smoothly at
every space-time point.

Of particular interest are gauge symmetries. Gauge symmetry is not a physical one. Gauge
transformations give rise to gauge fields. Introduction of these fields is the requirement to keep
the symmetry and it leads to particle states.

1.2 Quantum Electrodynamics

Electromagnetism is a well-known example of a gauge theory. Moreover, the first interaction
which utilized a gauge theory was QED. In QED the invariance of the Lagrangian under the
local transformations plays a fundamental role. Photon exchange mediates the electromagnetic
interactions. Lagrangian, describing the electromagnetism, is invariant under the gauge group
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U(1). The U(n) group is a subgroup of the general linear group GL(n,C). The group U(1)

corresponds to the circle group, consisting of all complex numbers with absolute value of one
under multiplication.

The Lagrangian for Maxwell’s equations in the absence of any sources is:

LM = −1

4
FµνF

µν (1.1)

where Fµν is the field strength tensor:

Fµν = ∂µAν − ∂νAµ (1.2)

and Aµ is a four-vector.
Equation of motion for complex fields ψ:

(iγµ∂µ −m)ψ = 0, ψ (iγµ∂µ +m) = 0 (1.3)

which are relativistic Dirac equations for fermions and ψ is Dirac adjoint:

ψ = ψ†γ0 (1.4)

ψ† is the Hermitian adjoint of the spinor ψ. Introduction of the Dirac adjoint is needed to
conserve the Lorentz symmetry. One get these equations (1.3) by plugging the Lagrangian for
a free Dirac field ψ into the Euler-Lagrange equation. Lagrangian for the Dirac field ψ with
mass m is:

LD = ψ (iγµ∂µ −m)ψ (1.5)

or in a matrix notation:
LD = ψα (iγµ∂µ −m)αβ ψβ (1.6)

where ψ is a 4-component column vector. The Dirac Lagrangian(1.5) is invariant under the
global U(1) gauge transformation:

ψ → eiQξψ (1.7)

where Q is the charge operator, such that:

Q

(
ψ

ψ

)
=

(
+ψ

−ψ

)
(1.8)

ξ is an arbitrary real parameter independent of the space-time. Let us consider infinitesimal
rotations:

e−iξ = 1− iξ +O(ξ2) (1.9)
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Therefore fields ψ change under such transformation:

ψ → ψ + iξψ,

ψ → ψ − iξψ
(1.10)

What happens if the parameter ξ is space-time dependent? As we are interested in gauge
transformations it is obvious to ask such question. Under infinitesimal transformation the field
ψ transforms as:

ψ(xµ)→ ψ(xµ) + iξ(xµ)ψ(xµ),

ψ(xµ)→ ψ(xµ)− iξ(xµ)ψ(xµ)
(1.11)

Dirac Lagrangian (1.5) is not invariant under these transformations due to terms:

{
ψ(xµ)− iξ(xµ)ψ(xµ)

}
iγµ∂µ {ψ(xµ) + iξ(xµ)ψ(xµ)} (1.12)

and infinitesimal Lagrangian transformation is:

δLD = −ψ(xµ)γµ∂µ (Qξ(xµ))ψ(xµ) (1.13)

As for now it might seem that the symmetry is broken however this might be fixed by introducing
a gauge fixing field Aµ. Under a gauge transformation:

− eQAµ → −eQAµ +Q∂µξ(x
µ) (1.14)

so that:
δ
(
−eψγµAµψ

)
= δLD (1.15)

Hence, the Dirac Lagrangian (1.5) can be written down as:

LD = ψ (iγµ (∂µ + ieQAµ)−m)ψ (1.16)

where e is the electric charge and Aµ is the photon field. By introducing the covariant derivative:

Dµ = ∂µ + ieQAµ (1.17)

one can simplify the Dirac equation to the form:

LD = ψ (iγµDµ −m)ψ (1.18)

The Maxwell Lagrangian (1.1) and the Dirac Lagrangian (1.18) can be combined in order
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to describe how light and matter interact. The QED Lagrangian is:

LQED = −1

4
FµνF

µν + ψ (iγµDµ −m)ψ (1.19)

From the QED Lagrangian (1.19) one can note that photon couples directly only to the
electrically charged particles. This means, that in the frame of the SM, photons interact directly
only with charged leptons, quarks and W± bosons.

1.3 The Weak Interaction

The weak interaction is one of the fundamental interactions of Nature. This force is res-
ponsible for the stochastic radioactive decay. This process can happen when 2 particles, either
elementary or composite, exchange the weak bosons. The weak interaction is responsible for
flavour changes of fermions.

Following the success of QED efforts were made to derive a theory for the weak interactions.
In 1964 Yang and Mills tried to further extended the QED sector to include local non-Abelian
transformations. Three massless vector fields were introduced. This theory was criticized
as it required massless particles. Later this problem was solved by implementing the Higgs
mechanism.

Considering the group theory it is interesting to study this theory as it violates parity
symmetry P and also charge parity symmetry CP . In the mid-1950’s Chen Ning Yang and
Tsung-Dao Lee suggested that the weak interaction might violate spatial symmetry and in 1957
Chien Shiung Wu and collaborators discovered such violation.

The weak interaction is mediated by the weak bosons, or also called intermediate vector
bosons, W± and Z0. As it can be seen, there are 2 differently charged W+ with q = +e and
W− with q = −e bosons. These bosons are each other’s antiparticles. Another boson Z0 is
electrically neutral and is also its own antiparticle. All of the weak bosons are spin-1 particles.
Up to date masses are: mW± ≈ 80.37GeV [18] and mZ ≈ 91.19 GeV [19]. Such high masses
limit the the range of the weak force.

Considering spatial symmetry violations and experimental proof, only LH particles are able
to interact with charged currents. To describe how particles interact under the weak force a
quantum number, weak isospin T3, was introduced. Under the weak force quarks never decay
into the state with the same weak isospin quantum number.

All RH fermions and LH antiparticles have a zero weak isospin value, while LH particles
and RH antiparticles have a half-integer weak isospin value. Values of the LH fermions can
be found in tab.2. In order to get weak isospin for RH antiparticles one needs to multiple the
values in tab.2 by minus one.
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Table 2: The weak isospin of the left-handed fermions in the SM.

Generation 1 Generation 2 Generation 3
e −1/2 µ −1/2 τ −1/2
νe +1/2 νµ +1/2 ντ +1/2
d −1/2 s −1/2 b −1/2
u +1/2 c +1/2 t +1/2

Taking into consideration the weak interaction, particles from tab.1 can be written as LH
SU(2) isospin doublets:

LIL =

(
νe

e

)
L

, LIIL =

(
νµ

µ

)
L

, LIIIL =

(
ντ

τ

)
L

QI
L =

(
u

d

)
L

, QII
L =

(
c

s

)
L

, QIII
L =

(
t

b

)
L

(1.20)

and RH singlets:
eR, µR, τR, (νeR, νµR, ντR)

dR, sR, bR, uR, cR, tR
(1.21)

RH neutrinos are included just to show that there is a space for them in the SM, although there
is no experimental proof of their existence. One should note that introduced fields above in
general are not mass eigenstates. In order to get mass eigenstates one has to diagonalize mass
states. Conjugated fields of (1.20) are:

Ψi
L =

(
ψαi ψβi

)
L

(1.22)

where ψαi = {νi, ui} and ψβi = {li, di}. We use the following notation for different generations
of fermions:

νi = {νe, νµ, ντ} ,

li = {e, µ, τ} ,

ui = {u, c, t} ,

di = {d, s, b}

(1.23)

1.4 The Electroweak Theory

Taking a look back at the Universe formation time all of the fundamental forces once
were unified. The EW force split into the electromagnetic and the weak force during the so-
called quark epoch. The EW theory describes the unified interaction of the electromagnetic
and the weak forces. There exists the so-called vacuum expectation value (VEV), which is
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v ≈ 246.22 GeV. Unification energy of the EW force is of order of VEV.
From the mathematical point of view it turned out that it is not that simple to unify

both the electromagnetic and the weak forces. The hugest obstacle was that while photons are
massless, the weak bosons are not. This had to be somehow implemented.

The EW theory is described by the SU(2)L ⊗ U(1)Y gauge group. The U(1) group was
presented earlier, while the other one SU(n) is a special unitary group of degree n. The special
unitary group is a subgroup of the unitary group U(n):

SU(n) ⊂ U(n) ⊂ GL(n,C) (1.24)

SU(2)group has the following properties:

SU(2) =

{(
α −β̄
β ᾱ

)
α, β ∈ C; , |α|2 + |β|2 = 1

}
(1.25)

The Lie algebra is generated by the following matrices:

u1 =

(
0 i

i 0

)
, u2 =

(
0 −1

1 0

)
, u3 =

(
i 0

0 −i

)
(1.26)

These generators are related to the Pauli matrices by u1 = iσ1, u2 = −iσ2 and u3 = iσ3.
A quantum number describing the EW interactions is the weak hypercharge YW . This

quantum numer relates the electric charge and the weak isospin. The weak hypercharge is the
generator of the U(1) component of the EW gauge group. There exists a specific combination
which is conserved:

Q = T3 +
YW
2

(1.27)

Considering this relation we get the following possible values of the weak hypercharge, which
are given in tab.3.

Table 3: The weak hypercharge in the SM.

Generation 1 Generation 2 Generation 3
eL −1 µL −1 τL −1
eR −2 µR −2 τR −2
νeL −1 νµ −1 ντ −1
dL +1/3 sL +1/3 bL +1/3
dR −2/3 sR −2/3 bR −2/3
uL +1/3 cL +1/3 tL +1/3
uR +4/3 cR +4/3 tR +4/3
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The SM EW Lagrangian is:

LSU(2)⊗U(1)Y = Lgauge + Lfermions + (LY ukawa + LHiggs) (1.28)

where the part in the brackets will be covered later. As for now we are interested only in the
gauge interactions Lgauge and fermionic interactions Lfermions.

The gauge term is:
Lgauge = −1

4
W µν
i W i

µν −
1

4
BµνBµν (1.29)

where
W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkW j
µW

k
ν ,

Bµν = ∂µBν − ∂νBµ

(1.30)

This Lagrangian describes interaction between the three W fields and B field. Three W fields
correspond to particles W±and Z which form the weak triplet and the single hypercharge B
field, corresponding to γ.

The fermions kinetic term is:

Lfermions = Lleptons + Lquarks (1.31)

where
Lleptons = iL0

i γ
µDL

µL
0
i + il0i γ

µDR
µ l

0
i +

(
iν0
i γ

µDR
µ ν

0
i

)
(1.32)

and
Lquarks = iQ0

i γ
µDL

µQ
0
i + iu0

i γ
µDR

µ u
0
i + id0

i γ
µDR

µ d
0
i (1.33)

where subscript 0 indicates that fermions are in the weak basis and that those are not the mass
eigenstates. The covariant derivatives are:

DL
µL

0
i =

(
∂µ −

ig

2
σiW

i
µ −

ig′

2
Bµ

)
L0
i ,

DL
µQ

0
i =

(
∂µ −

ig

2
σiW

i
µ +

ig′

6
Bµ

)
Q0
i ,

DR
µ l

0
i = (∂µ − ig′Bµ) l0i ,

DR
µ ν

0
i = ∂µν

0
i ,

DR
µ u

0
i =

(
∂µ +

ig′2

3
Bµ

)
u0
i ,

DR
µ d

0
i =

(
∂µ −

ig′

3
Bµ

)
d0
i

(1.34)

where g, g′ are SU(2) and U(1) couplings respectively.
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Possible interactions of the first generation of leptons and the EW bosons at the tree-level
are presented in fig.1.

e

ν

W−
e

ē

Z
ν

ν

Z
e

e

γ

Figure 1: Interactions between leptons and vector bosons.

1.5 A Chiral Theory

The Dirac γ matrices are widely used in the chiral theory. In terms of the Pauli spin
matrices, the Dirac matrices are:

γ0 =

(
I2×2 0

0 −I2×2

)
, γµ =

(
0 σi

−σi 0

)

γ5 = iγ0γ1γ2γ3 =

(
0 I2×2

I2×2 0

) (1.35)

where I2×2 are identity matrices and σi are Pauli spin matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(1.36)

Some of the Dirac γ matrices properties are:

(γ0)† = γ0, (γ5)† = γ5,

(γ5)2 = 1,
{
γ5, γµ

}
= 0,

(γµ)† = γ0γµγ0 = −γ when µ 6= 0

(1.37)

The Dirac matrix γ5 is also called the chirality matrix. The γ5 matrix is diagonalizable by
a unitary matrix U :

Uγ5U † = γ̂5 (1.38)

Taking into account that, it is easy to find that the eigenvalues of γ5 are ±1. Let us make an
assumption that LH ψL and RH ψR fields, which are eigenfunctions of γ5, so that:

γ5

(
ψL

ψR

)
=

(
−ψL
+ψR

)
(1.39)
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A spinor can be separated into the LH and RH chiral components:

ψ = ψL + ψR (1.40)

Now assume that there exist such chirality projection operators that:

ψ = (PL + PR)ψ = PLψ + PRψ = ψL + ψR (1.41)

It follows that:
ψL = PLψ, and ψR = PRψ (1.42)

It is obvious that the next step would be to find how these projection operators PL and PR
look like. First of all, from (1.41) we can see that PL + PR = 1. Secondly, using (1.42) and
(1.39):

ψL =
1

2
(ψL + ψL + ψR − ψR) =

1

2
ψ − 1

2

(
γ5ψL + γ5ψR

)
=

1− γ5

2
ψ,

ψR =
1

2
(ψL − ψL + ψR + ψR) =

1

2
ψ +

1

2

(
γ5ψL + γ5ψR

)
=

1 + γ5

2
ψ

(1.43)

we find that PL,R projection operators are:

PR =
1 + γ5

2
and PL =

1− γ5

2
(1.44)

The projection operators satisfy the following properties:

P †L,R = PL,R,

PL + PR =
1− γ5 + 1 + γ5

2
= 1,

P 2
L,R =

1± 2γ5 + (γ5)
2

4
=

1± γ5

2
= PL,R,

[PL, RR] =
1

4

(
1−

(
γ5
)2 − 1 +

(
γ5
)2
)

= 0,

{PL, RR} =
1

4

(
1−

(
γ5
)2

+ 1−
(
γ5
)2
)

= 0

(1.45)

Let us take a look what happens with the Dirac Lagrangian (1.5) by writing down the
different chiral states of the field ψ. We start with this decomposition of ψ:

LD =
(
ψL + ψR

)
(iγµ∂µ −m) (ψL + ψR)

= ψL (iγµ∂µ −m)ψL + ψL (iγµ∂µ −m)ψR

+ ψR (iγµ∂µ −m)ψL + ψR (iγµ∂µ −m)ψR

(1.46)

14



where LH and RH Dirac adjoint states can be written down as:

ψL = ψ†Lγ
0 = ψ†PLγ

0 = ψ†γ0PR = ψPR,

ψR = ψ†Rγ
0 = ψ†PRγ

0 = ψ†γ0PL = ψPL
(1.47)

Therefore transformations are as following:

ψL = PLψ = ψPR, ψR = PRψ = ψPL (1.48)

Taking into consideration properties of γ matrices (1.37) we get:

ψ(LR)γ
µψ(RL) = 0 (1.49)

The Dirac Lagrangian (1.5) in terms of the chiral fields ψL and ψR is therefore:

LD = ψL (iγµ∂µ −m)ψL + ψR (iγµ∂µ −m)ψR (1.50)

Hence the LH chiral fields couple only to the LH chiral fields, and the RH chiral fields
couple only to the RH chiral fields. Although it does not follow that there are LH and RH
distinct particles. Moreover chirality state is a space-time dependent state as fields can fluctuate
between chiral states. On the other hand, the conserved quantity is helicity.

The chiral fields ψL and ψR are also known as Weyl spinors. The Weyl spinor is constructed
from 2 independent components. One of the possible options for Weyl spinors is:

PL =

(
1 0

0 0

)
, and PR =

(
0 0

0 1

)
(1.51)

Thus the 4-component spinor ψ can be written as:

ψ =

(
χR

χL

)
, ψL =

(
0

χL

)
, ψR =

(
χR

0

)
(1.52)

where χL,R are the Weyl 2-component fields.
The Dirac Lagrangian (1.5) in terms of the Weyl fields is:

LD = χ†Liσ
µ∂µχL + χ†Riσ

µ∂µχR −m
(
χ†LχR + χ†RχL

)
(1.53)

where
σµ = (I , σ) , σµ = (I ,−σ) (1.54)
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The free field Dirac equations of motion are:

iσµ∂µχL −mχR = 0, iσµ∂µχR −mχL = 0 (1.55)

1.6 Motivation for Extending the Standard Model

Although it might sound that the SM successfully describes Nature, this is far from being the
truth. Indeed the SM is a great mathematical tool, which is capable of answering many of the
questions. Acknowledging the fact that the SM is the theory, which describes an approximate
observable world it is worth taking a note that there is physics beyond the SM (BSM). There
are a lot of physical phenomena in Nature, which the SM can not explain. Some of the problems
are:

• theory of gravity

• dark matter and dark energy

• asymmetry of matter-antimatter

• neutrino masses

• anomalous magnetic moment of muon

• strong CP problem

One of the hugest drawbacks of the theory is that it does not explain gravity. A simple
addition of the graviton to the SM Lagrangian does not fully correspond to the observable
world. Up till now the most popular theories are string theory and loop quantum gravity.

Another drawback is that the SM explains roughly only 5% of the observed energy. The
other part of the energy corresponds to dark matter and dark energy, 26% and 69% correspon-
dingly. One of the dark matter candidates can be the 2HDM [20].

The 2HDM might also be the answer to several more SM problems. For example, introduc-
tion of the second Higgs doublet leads to several options how fermions can couple to the Higgs
doublet. This might be a hint to hierarchy problem, quantum triviality etc.

As it can be seen it is obvious that the SM needs to be extended in order to take into
account some of the described problems. We are interested in the Higgs sector of the SM and
therefore accept the idea that some of the mentioned problems can be solved by extending the
Higgs sector.

16



2 The Standard Model Higgs Sector

Basic principles of the SM Higgs are presented in this chapter. In order to describe the
Higgs mechanism a complex scalar doublet is needed. We start with mathematical formulation
of the scalar field theory. Also basic ideas of the SSS and the Higgs mechanism are presented.
SSB is one of the fundamental SM ideas, without which there would be several issues. Finally
we take a look at how the Higgs boson interact with other particles. This chapter is based on
ref. [9, 10].

Gauge boson must be massless in order for the gauge theory to stay unbroken. This is
the requirement for the QED and QCD. In order to implement massive gauge bosons W±, Z

the theory should be extended to introduce symmetry breaking. A simple solution would
be to introduce mass terms for the gauge bosons but on the other hand this would violate
renormalizability of the theory. Obviously renormalizable theories are more attractive as they
solve some infinite problems.

2.1 Scalar Field Theory

Scalar field is such that at every space-time point a scalar value, a physical quantity, is
associated. This physical quantity should be Lorentz invariant. Therefore, in terms of the
quantum field theory, this should be a spin-zero 1 quantum field. The Higgs field is the only
fundamental scalar quantum field which has been observed so far.

Assume that there exists such a field function ϕ(xµ), which satisfies ϕ(xµ) = ϕ(xµ)†. This
is a real or Hermitian field. The Hermitian scalar field Lagrangian is:

L =
1

2
(∂µϕ) (∂µϕ)− 1

2
m2ϕ2 − V (ϕ) (2.1)

This Lagrangian is invariant under the global U(1) symmetry. The field equation should satisfy
the Klein-Gordon equation in a potential:

(
∂µ∂

µ +m2
)
ϕ+

∂V

∂ϕ
= 0 (2.2)

Let us now take a look at a complex scalar field ϕ 6= ϕ†. The Lagrangian of a complex
scalar field is:

L = (∂µϕ)†(∂µϕ)−m2ϕ†ϕ− V (ϕ, ϕ†) (2.3)

where the interaction term is:

V (ϕ, ϕ†) =
λ

4

(
ϕ†ϕ

)2
+ non− renormalizable (2.4)

1A review of whether the Higgs boson is a spin-zero particle can be found in ref. [21].
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In general, it is possible to express a complex scalar field ϕ in terms of two real fields:

ϕ =
1√
2

(ϕ1 + iϕ2) (2.5)

Hermitian conjugate of the field ϕ is:

ϕ† =
1√
2

(ϕ1 − iϕ2) (2.6)

One could note that this complex scalar field ϕ can be treated as two independent scalar fields
ϕ1 and ϕ2. These fields can be viewed as components of a two-dimensional vector:

ϕ = ϕ1i+ ϕ2j (2.7)

Under the global U(1) transformation:(
ϕ′1
ϕ′2

)
=

(
cθ sθ

−sθ cθ

)(
ϕ1

ϕ2

)
(2.8)

which describes rotation by an angle θ in the 1 − 2 plane. The Lagrangian is invariant under
such transformations.

The most general renormalizable Lagrangian is therefore:

L =
1

2

[
(∂µϕ1)2 + (∂µϕ2)2]− 1

2
m2
(
ϕ2

1 + ϕ2
2

)
− λ

16

(
ϕ2

1 + ϕ2
2

)2 (2.9)

2.2 Spontaneous Symmetry Breaking

A symmetry is spontaneously broken if the Lagrangian is not continuously invariant under
a symmetry. The lowest energy state, vacuum, does not possess the same symmetry as its
Lagrangian. The SSB enables the existence of several vacua states.

Mass terms are not allowed in the Lagrangian for the gauge bosons and fermions as such
Lagrangian is not gauge invariant. On the other hand the weak bosons are not massless,
therefore there should be some sort of mechanism through which bosons and fermions can
acquire mass terms [13–15]. During this spontaneous breaking the renormalizability should be
preserved [22].

Let us start with a simple example. Assume that the Higgs field is a real scalar field. Then
the Lagrangian is:

L =
1

2
(∂µφ)(∂µφ)− V (φ) (2.10)
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where the potential is given by:

V (φ) =
1

2
µ2φ2 +

1

4
λφ4 (2.11)

This Lagrangian is invariant under φ→ −φ. In order to bound the potential from below value
of the coupling coefficient λ should be positive 2. There are two different possibilities for the
sign of µ2.

In case of µ2 > 0 everything is trivial. When the vacuum of the potential satisfies
v = φ0 = Const, the minimum condition can be written as:

v
(
µ2 + λv2

)
= 0 (2.12)

Vacuum of such states corresponds to φ0 = 0. In this case SU(2)⊗U(1) symmetry is unbroken
at the minimum. Such Lagrangian describes a free particle with a mass parameter µ.

In case of µ2 < 0 the previously mentioned point v = 0 is no longer stable. Now we get two
vacuum conditions:

φ1,2
0 = ±

√
−µ

2

λ
(2.13)

Lagrangian is invariant under φ → −φ, therefore there should be no difference between the
choice of the vacuum state φ1

0 or φ2
0. This non-zero vacuum value breaks the SU(2) ⊗ U(1)

symmetry. Turns out that we are interested in this case.
Let us consider fluctuations around the minimum:

φ = v + φ′ (2.14)

By requiring this, we introduce an excitation of the field, which is the physical particle. The
Lagrangian in terms of these fluctuations is:

L =
1

2
(∂µ(v + φ′)) (∂µ(v + φ′))− µ2

2
(v + φ′)− λ

4
(v + φ′)

=
1

2
(∂µφ

′) (∂µφ′)− λv2φ′2 − λvφ′3 +
1

4
λv4 − 1

4
λφ′4

(2.15)

This Lagrangian describes a particle φ′ with mass:

mφ′ =
√

2λv2 (2.16)
2In other words this is requirement for the vacuum stability.
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In reality the SM Higgs sector is described by a weak isospin doublet:

Φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
(2.17)

The SM Higgs scalar potential is:

V =
1

2
µ2

(
4∑
i=1

φ2
i

)
+

1

4
λ

(
4∑
i=1

φ2
i

)2

(2.18)

The same procedure can be taken for the complex scalar potential as for the real scalar
potential. We are now dealing with the four-dimensional space. It is possible to rotate the VEV
so that only one component of φi is aligned with the direction of the VEV 3. Let us assume
that there exists a non-zero VEV:

v = 〈0|φ3|0〉 = Const (2.19)

such that:

φ0 =
1√
2

(
0

v

)
(2.20)

With this choice we get the following quantum numbers for the vacuum:
By introducing fluctuations around the VEV we get 4 different fields: one massive and

three massless. The massive scalar particle corresponds to the SM Higgs boson. Three massless
particles are the so-called Nambu-Goldstone bosons [23,24] or simply Goldstone bosons.

Goldstone’s theorem states that if a generic continuous symmetry is spontaneously broken,
then for each broken generator a new massless scalar particle appears. During the spontaneous
symmetry breaking of the SU(2) ⊗ U(1) group, 3 generators are broken. These 3 Goldstone
bosons correspond to the longitudinal polarization components of the weak bosons W± and Z.
These Goldstone bosons are eaten to give mass terms to the weak bosons.

2.3 The Higgs Mechanism

The main task of the Higgs mechanism is to explain why some particles acquire mass terms
and others do not. Without this mechanism no bosons would acquire masses. This mechanism
assumes that there exists the Higgs field at every point of the space.

The SM Lagrangian for the Higgs field is:

LH = (DµΦ)† (DµΦ)− V (Φ) (2.21)
3Natural choice would be to choose either φ1 or φ3.
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where covariant derivative Dµ is:

Dµ = ∂µ + ig
σi
2
W i
µ +

ig′

2
Bµ (2.22)

We do not cover the QCD theory here and thus no mathematical approach is provided. In
reality one would need to add another term to the (2.22):

+i
gs
2
Gµ
aLa

where La are Gell-Mann matrices and gs is the strong SU(3)C coupling.
The SM Higgs doublet can be parametrised:

Φ = exp

(
i

v
Giσi

)(
0

1√
2

(v + h)

)
(2.23)

where G are the Goldstone bosons. The Goldstone fields are unphysical and thus can be
removed by an appropriate SU(2) transformation. In a U -gauge the SM Higgs doublet is:

ΦU =

(
0

1√
2

(v + h)

)
(2.24)

During the spontaneous breaking, the SU(3)C⊗SU(2)L⊗U(1)Y gauge group is broken down
to the gauge group SU(3)C ⊗ U(1)Y . This EW breaking mechanism is the Higgs mechanism,
due to which particles obtain masses.

Let us take a look how the gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y is broken. First of we
start with SU(2)L generators:

σ1Φ =

(
0 1

1 0

)(
0

1√
2

(v + h)

)
=

(
1√
2

(v + h)

0

)
,

σ2Φ =

(
0 −i
i 0

)(
0

1√
2

(v + h)

)
= −i

(
1√
2

(v + h)

0

)
,

σ3Φ =

(
1 0

0 −1

)(
0

1√
2

(v + h)

)
= −

(
0

1√
2

(v + h)

) (2.25)

and U(1)Y generator:

Y Φ = +1×

(
0

1√
2

(v + h)

)
=

(
0

1√
2

(v + h)

)
(2.26)
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As it can be seen SU(2)L⊗U(1)Y group is broken4. Taking this into consideration it turns out
that gauge bosons Wi and B acquire a mass term through the Higgs mechanism. The VEV was
chosen so that it carries nor electric charge nor colour charge. Therefore a straight conclusion
can be made that the U(1)EM and SU(3)C generators are not broken. Therefore under the
Higgs mechanism generators are broken to the form:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y → SU(3)C ⊗ U(1)EM (2.27)

2.4 Interactions with Bosons

First of all we start from the generation of masses. Let us take a look at photons. The
U(1)EM generator, corresponding to the electric charge leaves the vacuum invariant:

Qφ0 =
1

2
(σ3 + Y )φ0 =

(
1 0

0 0

)(
0

v/
√

2

)
(2.28)

Therefore the photon remains massless. As stated earlier the same procedure can be applied
and for gluons. It turns out that gluons are also massless.

The procedure of getting masses of the gauge bosons is straightforward. They are identified
by substituting the VEV into the kinetic part of the Higgs Lagrangian:

(DµΦ)† (DµΦ) = |
(
∂µ + ig

σi
2
W i
µ +

ig′

2
Bµ

)(
0

v/
√

2

)
|2

=
v2

8
|
(
gσiW i

µ + g′Bµ

)(0

1

)
|2

=
v2

8
|

(
gW 1

µ − igW 2
µ

−gW 3
µ + g′Bµ

)
|2

=
v2

8

[
g2
((
W 1
µ

)2
+
(
W 2
µ

)2
)

+
(
gW 3

µ − g′Bµ

)2
]

(2.29)

To be more precisely the Higgs Lagrangian is:

LHiggs =− 1

2
µ2h2 +

v2

8

[
2g2
(
W+
µ W

−
µ

)
+
(
g′2 + g2

)
Z2
µ

]
+ Lother interactions + Lfermions

(2.30)

4This can be seen as from the fact that all generators are not invariant; product is not equal to zero.
Alternation of the quantum numbers T, T3 and Y conserves some of the generators.
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where
W±
µ =

W 1
µ ∓ iW 2

µ√
2

,

Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

,

Aµ =
g′W 3

µ + gBµ√
g2 + g′2

(2.31)

The mass terms can be obtained from the eq.(2.30). The Higgs boson acquires mass through
the self-interaction and from: (vg

2

)2

W+
µ W

−
µ (2.32)

it easy to identify the mass term of the W±:

mW =
gv

2
(2.33)

The remaining gauge term of eq.(2.30) is:

v2

8

(
W 3
µ bµ

)( g2 −gg′

−gg′ g′2

)(
W 3µ

Bµ

)
(2.34)

and one of the eigenvalues is zero. In terms of the physical fields Zµ and Aµ, after the mass
matrix diagonalization, we get:

1

2
M2

ZZ
2
µ +

1

2
M2

AA
2
µ (2.35)

Therefore the remaining mass terms are:

mZ =
v

2

√
g2 + g′2,

mA = 0
(2.36)

On the other hand one can introduce the mixing angle, the Weinberg angle θW , which is
defined as follows:

cw =
g√

g2 + g′2
,

sw =
g′√

g2 + g′2
,

tw =
g′

g

(2.37)

In terms of the Weinberg angle θW , relation between W± and Z bosons masses is:

mW

mZ

= cw (2.38)
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and also between W,B,Z,A states:(
Z

Aµ

)
=

(
cw −sw
sw cw

)(
W 3
µ

Bµ

)
(2.39)

at the tree-level.
Let us take a look at what the other terms in eq. (2.30) are. We start from the Higgs boson

self interactions:
Lhhh = −λvh3,

Lhhhh = −λ
4
h4

(2.40)

Interactions with W± and Z vector bosons are:

LWWh = gmWW
−
µ W

µ+h,

LWWhh =
1

4
g2W−

µ W
µ+hh,

LZZhh =
1

8

(
g2 + g′2

)
ZµZ

µhh

(2.41)

2.5 Interactions with Fermions

So far we have seen how gauge bosons acquire their mass in the SM . The next step is to
take a look at the fermion sector. Everything would be trivial if term mψ̄ψ was gauge invariant.
We will take a look how the Higgs mechanism generates fermions mass terms. We start with
the decomposition of the Dirac mass term:

−LDirac =mDψψ

=mD

(
ψL + ψR

)
(ψL + ψR)

=mD

(
ψPR + ψPL

)
(PLψ + PRψ)

=mDψ
(
P 2
L + 2PLPR + P 2

R

)
ψ

=mD

(
ψPLψ + ψPRψ

)
=mD

(
ψLψR + ψRψL

)
(2.42)

It turns out that such a decomposition is not gauge invariant as gauge transformations of left-
handed and right-handed fields are different. Therefore there should be a way to construct an
invariant SU(3) ⊗ SU(2)L ⊗ U(1)Y term for fermions. This can we achieved with help of the
Higgs mechanism. Fermions acquire masses through the Higgs mechanism then and only then
when the Higgs doublet has a non-zero vacuum value.

There exists such Lagrangian, which describes interactions between the Higgs field and the
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fermion field. It is called the Yukawa Lagrangian:

−LY = Yijψiφψj

= YijψLiφψRj + Y †ijψRiφ
†ψRJ

= YijψLiφψRj + h.c.

(2.43)

where Yij are the so-called Yukawa couplings. In total there are 4 particular ones for every
fermion type:

Y u, Y d, Y l, Y ν (2.44)

where u stands for up-type quarks, d for down-type quarks, l for leptons, ν for neutrinos.
Let us demonstrate how the down-type quarks interact with the Higgs doublet 5 in one

generation model:

−LdφdY = Y dQLφdR + Y d †QLφ
†dR

= Y d

[
(u d)L

(
G+

1√
2

(v + h+ iG0)

)
dR

+dR

(
G−

1√
2

(
v + h− iG0

))(u
d

)
L

] (2.45)

As for now we are interested only in interactions between the Higgs field and the fermion
field and thus we can drop down terms proportional to G+ and G0 6:

−LdφdY =
Y d (v + h)√

2

[
dLdR + dRdL

]
=
Y dv√

2
dd+

Y d

√
2
hdd

=mddd+
md

v
hdd

(2.46)

where the first term is mass of a fermion and the second is the Higgs boson coupling to fermions
in the SM:

ghff = −imf

v
(2.47)

It follows that Yukawa couplings can be expressed in the following way:

Y f =
√

2
mf

v
(2.48)

From eq.(2.46) one could only get mass terms for down-type quarks and charged leptons.
In order to generate masses for up-type quarks and neutrinos another term in the Lagrangian

5For simplicity we assume that Yukawa couplings are real.
6This is equivalent to the U -gauge.
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should be introduced. By intuition term should be proportional to the inverse of the Higgs
doublet. The charge-conjugated Higgs doublet:

φ̃ ≡ −i
[
φ†iσ2

]T
= iσ2φ

∗ =

(
1√
2

(v + h− iG0)

G−

)
(2.49)

It is now straightforward we construct the Yukawa Lagrangian for up-type quarks:

− LuφuY = Y uQLφ̃uR + Y u †QRφ̃
†uL (2.50)

Combining both parts of the Lagrangian for down-type quarks eq.(2.46) and up-type quarks
eq.(2.50) we get the full Lagrangian for quarks sector:

−LquarksY =Y dQLφdR + Y d †QRφ
†dL

+ Y uQLφ̃uR + Y u †QRφ̃
†uL

(2.51)

Note that in the SM the Higgs boson decay into two different generations of fermions at
the tree-level is prohibited and thus Yukawa couplings are diagonal. Masses of fermions are not
predicted since Yukawa couplings are free parameters. It is still unknown why fermions have
such masses. The Higgs mechanism only gives an answer how masses of fermions are generated.

In reality it turns out that the model is not that simple. There are at least 3 generations
of fermions. In general, Yukawa couplings are 3× 3 complex matrices. Taking this into consi-
deration there arises mixing between different generations. This implies that Yukawa matrices
are indeed non diagonal and in principle can be complex. The Yukawa Lagrangian is:

− LY = Yijψ0
Li
φψ0

Rj
+ Y †ijψ

0
Ri
φ†ψ0

RJ
(2.52)

where superscript 0 indicates the weak eigenstates. This means that fields transform according
to SU(2) representation. Let us take a look at the U -gauge :

− LY = u0
Li

(
Mu

ij +
Mu

ij

v
h

)
u0
Rj

+ h.c.+ {d, e, ν} terms (2.53)

where fermion mass matrix Mξ
ij =

Y ξijv√
2

is not diagonal provided that Yukawa matrix Y ξ
ij got

off-diagonal elements. Moreover it is nor Hermitian nor symmetric. In order to get definite
particles masses one needs to diagonalize the mass matrixMξ

ij. This can be done by introducing
unitary transformations VL and VR:

V ξ†
{L,R}V

ξ
{L,R} = I3×3 (2.54)
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Therefore the mass matrix diagonalization is:

V ξ†
L M

ξ
ijV

ξ
R = M̂ξ =

m1 0 0

0 m2 0

0 0 m3

 (2.55)

Fermion weak eigenstates can also be expressed as mass eigenstates:

ψ{L,R}i = V ψ†
{L,R}ij

ψ0
{L,R}j (2.56)

Due to the mismatch of unitarity transformations between the weak and mass eigenstates of
different fermion families there exists a mixing 7. These mixing matrices arise between quarks
or leptons. When talking about quarks sector such matrix is called the Cabbibo-Kobayashi-
Maskawa (CKM) matrix [25]:

VCKM = V u
L V

d†
L =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (2.57)

It can be parametrized in terms of Euler angles and a single phase [26]:

VCKM =

 cθ12cθ13 sθ12cθ13 sθ13e
−iδ

−sθ12cθ23 − cθ12sθ23sθ13eiδ cθ12cθ23 − sθ12sθ23sθ13eiδ sθ23cθ13

sθ12sθ23 − cθ12cθ23sθ13eiδ −cθ12sθ23 − sθ12cθ23sθ13eiδ cθ23cθ13

 (2.58)

Unitary matrix describing mixing between leptons is called the Pontecorvo–Maki–Nakagawa–
Sakata (PMNS) matrix [27,28]:

VPMNS = V ν
LV

l†
L =

Ve1 Ve2 Ve3

Vµ1 Vµ2 Vµ3

Vτ1 Vτ2 Vτ3

 (2.59)

Due to the lack of information on neutrino sector the PMNS matrix is still a mystery. It might
turn out that the PMNS matrix in not unitary. This depends on the neutrino mass model. It is
also possible to parametrize the PMNS matrix as the CKM. There are several approaches and
are entirely based on the choice of the neutrino sector. In case of Dirac neutrinos, the PMNS
parametrization is mathematically identical to the eq. (2.58). In terms of Majorana neutrinos

7In other words, Yukawa matrices cannot be diagonalized simultaneously.
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it changes to the form ref. [29]:

VPMNS =

 cθ12cθ13 sθ12cθ13 sθ13e
−iδ

−sθ12cθ23 − cθ12sθ23sθ13eiδ cθ12cθ23 − sθ12sθ23sθ13eiδ sθ23cθ13

sθ12sθ23 − cθ12cθ23sθ13eiδ −cθ12sθ23 − sθ12cθ23sθ13eiδ cθ23cθ13



×

e
iα1/2 0 0

0 e
iα2/2 0

0 0 1


(2.60)

where αi are Majorana phases.

2.6 Decay Rates

The Higgs boson cannot be detected directly in the particle detectors. One of the possible
solutions is to detect other particles and compare decay widths to get idea about processes
happening right after the collision. There are many possible decay processes as the Higgs
boson interacts with most of the SM particles.

When talking about decay rates there are several parameters used [30]. First of all there
is the decay rate Γ. It shows the probability per unite time that particle will decay. The total
decay rate is the sum of all possible decay channels. Lifetime of the particle is proportional to
the total decay:

τ =
1

Γtotal
(2.61)

Another critical parameter when talking about particle decay is the branching ration. Branching
ration shows the ratio between different decay modes and the total decay of the particle:

Bri =
Γi

Γtotal
(2.62)

Result of the Higgs boson decay into two particles is presented in fig.2.
Now let us take a closer look at the two body Higgs boson decay rates. Mathematical

derivation of some of the lowest order decay is presented in ref. [32]. We start with the Higgs
decay at the tree-level.

One of the possible Higgs boson decays is into a pair of fermions. The Feynman diagram
for the Higgs boson decay into a pair of fermions at the tree-level is presented in fig.3.

The decay width of such process is:

Γh→ff̄ =
NCm

2
fmh

8πv2

(
1−

4m2
f

m2
h

)3/2

(2.63)

where Nc = 1 for leptons and NC = 3 for quarks. One should always be careful about in
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Figure 2: The SM Higgs boson decay branching ratios and the total width [31].

Figure 3: The Feynman diagram of the Standard Model Higgs decay into fermion and antifer-
mion pair.

what renormalization scheme they are. The higher order radiative corrections are also known
ref. [33, 34].

Another possible Higgs decay is into a pair of EW bosons. The Feynman diagram for the
decay to a pair of weak gauge bosons is shown in fig.4.

Then the decay width is:

Γh→V V =
m4
V

4πmhv2

√
1− 4m2

V

m2
h

(
3 +

m4
h

4m4
V

− m2
h

m2
V

)
(2.64)

In case of the decay H → Z Z there are two indistinguishable outgoing fields. Therefore the
decay width should be multiplied by a factor of 1/2. The Higgs boson is less heavier than two
EW bosons. Thus the Higgs boson cannot directly decay into two EW bosons. This problem
is solved by introducing the off-shell conditions. Recent analysis can be found in ref. [35].

The Higgs boson can also decay into other massless particles through loop interactions.
Gluons and photons do not couple directly to the Higgs boson and thus there are some additional
mathematical complications.
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Figure 4: The Feynman diagram of the SM Higgs decay into EW bosons.

First of all we start from the Higgs boson decay into a pair of gluons. The Feynman
diagrams can be found in fig. 5.

Figure 5: The Feynman diagram of the SM Higgs boson decay into a gluon-gluon pair.

The decay width is:

Γh→gg =
αα2

sm
4

8π2mh sin2 θWm2
W

|∆|2 (2.65)

Higher order corrections up to O(α3
sGFm

2
t ) can be found in ref. [36].

The decay of the Higgs boson into a pair of photons is a little bit more complicated. In total
there are 26 possible Feynman diagrams. Some of them are presented in fig. 6,7. Contributing
amplitudes can be found in ref. [37–39].

Figure 6: The Feynman diagram of the Standard Model Higgs boson decay into photon-photon
pair via a fermion loop.
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Figure 7: The Feynman diagram of the Standard Model possible Higgs boson decay into a
photon-photon pair via W loops.

The total decay rate is:

Γ (h→ γγ) = |F|2
( α

4π

)2 GFm
3
h

8
√

2π
(2.66)

where
F = FW (βW ) +

∑
fermions

NCQ
2Ff (βf ) (2.67)

and corresponding contributions from loops are:

FW (β) = 2 + 3β + 3β (2− β) f(β),

Ff (β) = −2β [1 + (1− β) f(β)] ,

f(β) =

arcsin2
(
β−1/2

)
, β ≥ 1

−1
4

[
ln
(

1+
√

1−β
1−√1−β

)]
, β < 1

(2.68)

βW,f are W boson and fermion mass relations to the Higgs boson mass:

βW =
4m2

W

m2
h

, βf =
4m2

f

m2
h

(2.69)

2.7 Theoretical Constraints

Although the SM Higgs boson mass is a free parameter in the theory, there are several
theoretical constraints for the upper and lower bounds on the mass of the Higgs boson. These
constraints can be applied if and only if there is no new physics between the EW scale and the
higher scale Λ.

When contribution from the lowest order Feynman diagrams are small perturbative methods
can be used. The idea of unitarity comes from the elastic scattering [40]:

W+
LW

−
L → W+

LW
−
L (2.70)
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Amplitude for this process at the tree-level gets contribution from 7 diagrams:

M = − g2

2m2
W

(
m2
H +

t

s
+
s

t
+m2

Z

)
+O(E−2) (2.71)

If there was no Higgs field, then such process would diverge quadratically. Therefore due
to the Higgs boson it is possible to cancel high energy divergence. Introduction of the scalar
field is a must to fix divergence and for theory to remain unitary and renormalisable.

Let us take a closer look at the unitarity bound. We start from the Jacob-Wick expansion
for the Lorentz invariant amplitude [41]:

M = 16π
∑
j

(2j + 1)Mj(s)Pj(cθ) (2.72)

whereMj is a partial wave amplitude with the total angular momentum j. Pj is the Legendre
polynomial. The partial wave amplitude in terms of Mandelstam variables [42]:

Mj(s) =

√
2

4i|p|
(
Sj − 1

)
(2.73)

where Sj is a unitarity matrix element and p is the momentum of colliding particles in the
centre of mass. In the high energy limit:

|p| → 1

2

√
s (2.74)

The partial wave amplitude is therefore:

|Im(Mj)| ≥ |Mj|2 =
(
Im(Mj)

)2
+
(
Re(Mj)

)2 (2.75)

This leads to the following relation:
|Mj| ≤ 1 (2.76)

There also exists the stronger constraint [43]:

|Re(Mj)| ≤ 1

2
(2.77)

The partial wave amplitude Mj is related to the scattering matrix S. Let us now take a
look at the upper mass bound of the Higgs boson in the SM. The partial wave amplitude (2.71)
can be written as:

M = −g2 m2
h

2m2
W

(2.78)
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From the condition (2.76) we get:

m2
h ≤

4π
√

2

gF
(2.79)

The leading high energy terms:

L = −g
2

32

m2
h

m2
W

(
2W−W+ + Z2 + h2

)2 (2.80)

The scattering matrix of such physical process is:
4

√
2

√
2 0√

2 3 1 0√
2 1 3 0

0 0 0 2

 (2.81)

Eigenvalues of this matrix are: {6, 2, 2, 2}. There is no angular dependence in this process.
Only the first partial wave amplitude is present. Taking that into consideration:

mh <

√
8π
√

2

3GF

≈ 1008 GeV (2.82)

and the stronger restriction is:

mh <

√
4π
√

2

3GF

≈ 713 GeV (2.83)

In case the mass of the Higgs boson would be over these values, this would mean that pertur-
bation theory is not valid and in such model the theory is not renormalisable.

Another constraint comes from the Veltman parameter ρ, which shows the relative strength
of the neutral and charged current weak interactions [44]:

ρ =
m2
W

m2
ZcθW

(2.84)

Experimentally ρ ≈ 1 in the SM at the tree-level [4]. Taking a step forward, the general
expression for the tree-level ρ with N multiplets is [45]:

ρ =

∑N
i=1

[
Ti (Ti + 1)− Y 2

i

4

]
vi

1
2

∑N
i=1 Y

2
i vi

(2.85)

Also there exist the Peskin–Takeuchi parameters [46,47]. In total there are three measurable
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parameters 8: S, T and U . These parameters show possible new physics contribution to
EW radiative corrections; the vacuum polarization diagrams that contribute to four fermion
scattering processes.

There are several restrictions. First of all, there should be no EW gauge bosons apart from
W±, Z, γ. Secondly, the energy scale at which the new physics appears is assumed to be larger
than the EW scale. Finally, it is assumed that the new physics couplings to light fermions are
suppressed.

The Peskin-Takeuchi parameters are defined in a such way that at a reference point, that
is in the SM, they are zero. Parameters of the oblique corrections are the self energies of
W±, Z, γ. Self energy of the vacuum polarisation amplitude:

Πij(q
2) = Πij(0) + q2Π′ij(0) (2.86)

where {i, j} ∈ {W±, Z, γ}. There are 4 possible options for self energies: ΠWW , ΠZZ , Πγγ and
ΠZγ.

The Peskin-Takeuchin parameters are defined in the following way:

αS = 4s2
wc

2
w

[
Π′ZZ(0)− c2

w − s2
w

swcw
Π′Zγ(0)− Π′γγ(0)

]
,

αT =
ΠWW (0)

m2
W

− ΠZZ(0)

m2
Z

,

αU = 4s2
w

[
Π′WW (0)− c2

wΠ′ZZ(0)− 2swcwΠ′Zγ(0)− s2
wΠ′γγ(0)

]
(2.87)

If the scale of new physics is close to the EW one then above equations are no longer valid.
Let us take a closer look at what is the physical meaning of these S, T and U parameters.

The S parameter shows the possible extension of the fermion sector. It measures the symmetry
between the number of different chirality fermions that carry weak isospin. The T parameter is
dependant on the difference between the loop corrections of the W vacuum polarisation function
and the Z vacuum polarisation function. Therefore it measures discrepancy of the total weak
isospin of a new model. Both S and T parameters are really sensitive to the mass of the Higgs
boson 9. The last discussed parameter U gets a really small contribution from new physics.
This is because U parameter is a dimension-eight operator.

8There exist more parameters but they are very rarely used.
9Provided there is no new physics close to the EW scale, the SM is a good description up to energies around

1 TeV
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3 The Two Higgs Doublet Model

In this chapter we move on from the SM Higgs sector to the simplest gauge invariant 2HDM.
The Higgs sector is still covered in mysteries and thus it is assumed to be non minimal.

In the 2HDM a second Higgs doublet with the same quantum numbers as the first one
is added. There are no restrictions between possible choice of SU(2)L doublet scalar fields
Φa(a = 1, 2). The only restriction is that this combination should be orthonormal. Due
to multiple possibilities of basis choices there arises a problem of invariant parameters. All
physically observable parameters must be basis independent.

In the following section, the main tool for the analysis is ref. [11]. It is a great guide to the
extended Higgs sector.

3.1 Different Two Higgs Doublet Models

We start by introducing the second Higgs doublet. In the two-Higgs-doublet model there
are two identical complex doublets of SU(2)L symmetry with the same quantum numbers:

Φi =

(
φ+
i

φ0
i

)
(3.1)

for i = 1, 2 which is the Higgs flavour index. The corresponding conjugated fields also obey
SU(2)L:

Φ̃i = iσ2Φ∗i =

(
φ0∗
i

−φi

)
(3.2)

In the 2HDM there are two VEV. The second Higgs doublet can also acquire the VEV:

〈Φ1〉 =
v1√

2
, 〈Φ2〉 =

v2√
2
eiθ (3.3)

and the total VEV should be a combination of both:

v =
√
v2

1 + v2
2 (3.4)

where v ≈ 246.22 GeV.
The two-Higgs-doublet model Lagrangian is

L = Lscalar + Lkinetic + LGF + LY (3.5)

Unlike the SM Higgs sector there are different possible combinations when talking about
the 2HDM. Let us construct the most general renormalizable 2HDM potential. For this talk
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we will be using the gauge invariant operators:

Φ11 ≡ Φ†1Φ1, Φ22 ≡ Φ†2Φ2,

ΦRe ≡
1

2

(
Φ†1Φ2 + Φ†2Φ1

)
,

ΦIm ≡ −
i

2

(
Φ†1Φ2 − Φ†2Φ1

) (3.6)

It was explained earlier that in order to have gauge invariant renormalizable scalar potential
it needs to be of form:

L2HDM = L φ2

2HDM + L φ4

2HDM (3.7)

By permuting operators (3.6) it is possible to get the following combinations for cubic potential:

− L φ2

2HDM = µ1Φ11 + µ2Φ22 + µ3ΦRe + µ4ΦIm (3.8)

and quartic potential:

L φ4

2HDM =ξ1Φ2
11 + ξ2Φ2

22 + ξ3Φ2
Re + ξ4Φ2

Im

+ ξ5Φ11Φ22 + ξ6Φ11ΦRe + ξ7Φ11ΦIm

+ ξ8Φ22ΦRe + ξ9Φ22ΦIm + ξ10ΦReΦIm

(3.9)

where µi and ξi are coupling coefficients 10. As it can be seen this Lagrangian is more complex
than the SM Higgs Lagrangian. In total there are fourteen free parameters.

Assuming that the potential is invariant under a charge conjugation then doublets transform
in the following way:

Φ†iΦj → ei(αj−αi)Φ†jΦi (3.10)

choosing αi = αj results in:

−L φ2

2HDM =µ1Φ11 + µ2Φ22 + µ3ΦRe,

L φ4

2HDM =ξ1Φ2
11 + ξ2Φ2

22 + ξ3Φ2
Re + ξ4Φ2

Im

+ ξ5Φ11Φ22 + ξ6Φ11ΦRe + ξ8Φ22ΦRe

(3.11)

A CP -invariant Lagrangian can be achieved under the Z2 symmetry. This implies that:

Φ1 → Φ1, Φ2 → −Φ2 (3.12)
10Possible choice of these couplings will be discussed in the next chapter.
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Therefore the 2HDM Lagrangian is:

−L φ2

2HDM =µ1Φ11 + µ2Φ22,

L φ4

2HDM =ξ1Φ2
11 + ξ2Φ2

22 + ξ3Φ2
Re + ξ4Φ2

Im + ξ5Φ11Φ22

(3.13)

The Higgs bosons masses depend on the parameters µi, ξi and also two angles. Theses
angles are α and β. α is the mixing angle between CP -even Higgs bosons and depends on the
potential choice. This mixing angle is found from the diagonalization process:(

m2
H 0

0 m2
h

)
=

(
cα sα

−sα cα

)(
M2

11 M2
12

M2
21 M2

22

)(
cα −sα
sα cα

)

=

(
M2

11c
2
α + 2M2

12cαsα +M2
22s

2
α M2

12 (c2
α − s2

α) + (M2
22 −M2

11) sαcα

M2
12 (c2

α − s2
α) + (M2

22 −M2
11) sαcα M2

11s
2
α − 2M2

12cαsα +M2
22c

2
α

)
(3.14)

Squared masses of the CP -even Higgs bosons are:

m2
H,h =

1

2

[
M2

11 +M2
22 ±

√
(M2

11 −M2
22)

2
+ 4 (M2

12)
2

]
(3.15)

The mixing angle α can acquire values:

|α| ≤ 1

2
π (3.16)

It is defined by setting off-diagonal elements of the squared mass matrix to zero. If mH = mh

then there is no mixing between CP -even Higgs bosons and thus α cannot be defined.
β relates the two VEV values:

tβ =
〈Φ2〉
〈Φ1〉

(3.17)

It follows that VEVs are related:
v2

v1

=
sβv

cβv
(3.18)

In turns out that β is not a physical parameter:

t′β =
1
2
〈2Φ′2〉

1
2
〈2Φ′1〉

=
〈 U21Φ1 + U22Φ2〉
〈 U11Φ1 + U12Φ2〉

=
U21〈Φ1〉+ U22〈Φ2〉
U11〈Φ1〉+ U12〈Φ2〉

=
U21 + U22tβ
U11 + U12tβ

(3.19)

In case when both VEV values are real, this is the CP -conserving case, the Higgs sector
consists of the following particles, two CP -even scalars h and H, CP -odd pseudo-scalar A,
two charged Higgs bosons H± and the Goldstone bosons G± and G. Gauge eigenstates are
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transformed into the mass eigenstates in the following way:(
cβ sβ

−sβ cβ

)(
φ+

1

φ+
2

)
=

(
G+

H+

)
,

(
G−

H−

)
=

(
(G+)

†

(H+)
†

)
,(

cβ sβ

−sβ cβ

)(√
2Im (φ0

1)√
2Im (φ0

2)

)
=

(
G

A

)
,(

cα sα

−sα cα

)(√
2Re (φ0

1 − v1)√
2Re (φ0

2 − v2)

)
=

(
H

h

) (3.20)

3.2 Generic Basis

One of the main features of the two-Higgs-doublet model is the choice of the Higgs scalar
potential. We start with the generic basis. Following ref. [48] in the generic basis the most
general gauge-invariant Higgs scalar potential can be written down in the following form:

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −m2
12Φ†1Φ2 −m2 ∗

12 Φ†2Φ1

+
1

2
λ1

(
Φ†1Φ1

)2

+
1

2
λ2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

{
1

2
λ5

(
Φ†1Φ2

)2

+
[
λ6Φ†1Φ1 + λ7Φ†2Φ2

]
Φ†1Φ2 + h.c.

} (3.21)

where m2
11,m2

22 and λ1, λ2, λ3, λ4 are real parameters and m2
12, λ5, λ6, λ7 are complex.

It is always possible to redefine the fields by an arbitrary transformation Φi → BijΦj.
Matrix Bij consists of eight real parameters which corresponds to eight possible fields.

Applying a global U(2) transformation to doublets yields:

Φi → Uij̄Φi, Φ†
ī
→ Φ†

j̄
U †
jī

(3.22)

From the definition of the unitary group the following properties arise:

U †
jī
Uik̄ = δjk̄, det(U) = eiχ (3.23)

In this index convention Uij̄ ≡ U j
i . Summation is only allowed over barred and unbarred

index pairs. Complex conjugation is equivalent to replacing indexes with barred ones. U(2)

invariant quantities are basis independent. They do not depend on the possible choice of the
Φ1 − Φ2 basis.
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Applying U(2) transformations we get:

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −m2
12Φ†1Φ2 −m2 ∗

12 Φ†2Φ1 + f(λ)

= m2
11

(
Φ†2U

†
21U12Φ2

)
+m2

22

(
Φ†1U

†
12U21Φ1

)
−m2

12

(
Φ†2U

†
21U21Φ1

)
−m2 ∗

12

(
Φ†1U

†
12U12Φ2

)
+ f(λ)

≡ Y11

(
Φ†1Φ1

)
+ Y22

(
Φ†2Φ2

)
+ Y12

(
Φ†1Φ2

)
+ Y21

(
Φ†2Φ1

)
+ f ′(λ)

(3.24)

Hermicity of V implies that:

Yij̄ =
(
Yjī
)∗
, Zij̄kl̄ =

(
Zjīlk̄

)∗ (3.25)

After applying the corresponding transformations the scalar Higgs potential can be written
in a U(2) covariant form:

V = Yij̄Φ
†
ī
Φj +

1

2
Zij̄kl̄

(
Φ†
ī
Φj

)(
Φ†
k̄
Φl

)
(3.26)

where coupling coefficients are:

Y11 = m2
11,

Y21 = −m2 ∗
12 ,

Z1111 = λ1,

Z1122 = Z2211 = λ3,

Z1212 = λ5,

Z1112 = Z1211 = λ6,

Z2212 = Z1222 = λ7,

Y12 = −m2
12,

Y22 = m2
22,

Z2222 = λ2,

Z1212 = Z2112 = λ4,

Z2121 = λ ∗5 ,

Z1121 = Z2111 = λ ∗6 ,

Z2221 = Z2122 = λ ∗7

(3.27)

Yij̄ has dimension of mass squared while Zij̄kl̄ is dimensionless. This can be seen from looking
at the generic potential eq.(3.21).

The Higgs potential tensors transform covariantly under a U(2) transformation:

Yij̄ → Uik̄Ykl̄U
†
lj̄
,

Zij̄kl̄ → Uim̄U
†
nl̄
UkōU

†
pl̄
Zmn̄op̄

(3.28)

Also it is possible to change indexes with help of the Kronecker delta:

δjīZij̄kl̄ = Zīikl̄ (3.29)

Global transformations of Φi leaves the functional form of V invariant, while only coefficients

39



depend on the ones choice of the 2HDM.
EW symmetry is broken as the minimum of the Higgs scalar potential occurs non zero

vacuum expectation value. Minimum conditions of the scalar potential can be written as:

∂V

∂Φi

∣∣∣∣
Φj=〈Φj〉

= 0 (3.30)

This condition yields the vacuum expectation values of the two doublets 〈Φ1〉 , 〈Φ2〉. If the mass
matrix constructed from the Higgs scalar potential squared mass parameters m2

ij got at least
one negative eigenvalue then the scalar fields vacuum expectation value becomes non zero. It
is possible to write the VEV:

〈Φ1〉 =
v√
2

(
0

v̂1

)
, 〈Φ2〉 =

v√
2

(
u

v̂2e
iξ

)
(3.31)

where both vacuum expectation values v1, v2 are real and positive, the arbitrary angle acquires
values 0 ≤ ξ < 2π.

In case of u 6= 0 vacuum is called charged. Depending on the parameters of the Higgs
scalar potential it describes minimum of the potential or saddle point. U(1)EM symmetry is
spontaneously broken. In case of u = 0, U(1)EM symmetry is preserved. Only this condition is
treated here.

Both scalar doublets preserve vacuum invariance under the electromagnetic gauge symmetry
U(1)EM . Therefore the vacuum expectation values of the Higgs fields Φ1 and Φ2 must be aligned:

〈Φa〉 =
v√
2

(
0

v̂a

)
,

v̂1 = eiη cos β,

v̂2 = eiη sin βeiξ,

v2 = v2
1 + v2

2

(3.32)

where 0 ≤ β ≤ π/2, v ≡ 2mW/g = 246 GeV, v̂a
(
va = vv̂a/

√
2, v̂†a = (v̂†)ā

)
is a unit norm vector

and phase η is arbitrary which can be removed with help of U(1)Y group transformation.
In the generic potential eq.(3.21) coefficients m and λ are all U(1)Y group invariants but

not under SU(2) symmetry while v̂ preserves invariance under U(2). Also it is always possible
to rephase Φ2 in a such way that ξ = 0.

In order to get the minimum condition for the scalar potential we take the derivative of
potential V with respect to Φj [49]:

∂V

∂Φj

∣∣∣∣
〈Φ0
i 〉=vi/

√
2

= 0 (3.33)
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The minimum condition is:

∂V

∂Φm

= Yij̄

(
∂Φ†

ī

∂Φm

Φj + Φ†
ī

∂Φj

∂Φm

)

+
1

2
Zij̄kl̄

∂
(

Φ†
ī
Φj

)
∂Φm

Φ†
k̄
Φl + Φ†

ī
Φj

∂
(

Φ†
k̄
Φl

)
∂Φm


=

[
∂Φ†

ī

∂Φm

= 0,
∂Φi

∂Φm

= δim̄

]
=Yij̄Φ

†
ī
δjm̄ +

1

2
Zij̄kl̄

(
Φ†
ī
δjm̄Φ†

k̄
Φl + Φ†

ī
ΦjΦ

†
k̄
δlm̄

)
(3.34)

After inserting the corresponding vacuum expectation values (〈Φi〉 = 1√
2

(
0

v̂i

)
) and using

the following equations:
YaēΦ

†
ā

∣∣
Φa=0

→ v̂∗ā, Zab̄cd̄ = Zcd̄ab̄ (3.35)

we get the minimum condition:

vv̂∗ī Yij̄ +
1

2
v3Zij̄kl̄v̂

∗
ī v̂
∗
k̄v̂l = 0 (3.36)

The gauge transformations SU(2)L ⊗ U(1)Y leaves the scalar potential invariant, therefore
Y and Z are also invariant under U(1) transformations, although v̂ changes by an overall
phase. Only SU(2) transformations are the ones responsible for a change of basis and all U(2)

transformations change basis. Considering eq.(3.22) we can straightforward transform v̂ under
U(2) group:

v̂i → Uij̄ v̂j (3.37)

It is also possible to construct a hermitian matrix Vij̄:

Vij̄ = v̂iv̂
∗
j̄ (3.38)

The matrix Vij̄ is hermitian and therefore it possesses two eigenvectors of unit norm. It is also
possible to rewrite the minimum condition eq.(3.36) with help of eq.(3.38):

tr(V Y ) +
1

2
v2Zij̄kl̄VjīVlk̄ = 0 (3.39)

It is crucial to note that considering the above minimum condition we go from two degrees
of freedom to only one. Looking at the picture of the Higgs potential this implies that from
explicitly describing the whole potential we simplify to finding only the vacuum value.
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From the minimum conditions it is possible to derive:

m2
11 = m2

12e
iξtβ −

1

2
v2
[
λ1c

2
β +

(
λ3 + λ4 + λ5e

2iξ
)
s2
β

+
(
2λ6e

iξ + λ∗6e
−iξ) sβcβ + λ7s

2
βtβe

iξ
]
,

m2
22 =

(
m2

12e
iξ
)∗
t−1
β −

1

2
v2
[
λ2s

2
β +

(
λ3 + λ4 + λ∗5e

−2iξ
)
c2
β

+λ∗6c
2
βt
−1
β e−iξ +

(
λ7e

iξ + 2λ∗7e
−iξ) sβcβ]

(3.40)

Both mass squared parameters m2
11,m

2
22 are real and therefore:

Im(m2
12e

iξ) =
1

2
v2
[
Im(λ5e

2iξ)sβcβ + Im(λ6e
iξ)c2

β + Im(λ7e
iξ)s2

β

]
(3.41)

which can be used to determine phase ξ.
Let us introduce a second vector of unit norm orthogonal to v̂i. Orthogonality implies that:

v̂∗j̄wj = 0 (3.42)

The second unit form vector is:

ŵj = v̂∗ī εij,

ŵ1 = −e−iηsβe−iξ, ŵ2 = e−iηcβ
(3.43)

Applying a U(2) transformation to the ŵ yields:

ŵi = det(U)−1Uij̄ŵj = e−iχUij̄ŵj (3.44)

where ŵi is pseudo-vector with respect to U(2) transformation. Inverting eq.(3.43) results in:

ŵi = −εij v̂∗j̄ or v̂∗ī = εīj̄wj (3.45)

We made an assumption that v̂ = (1, 0) and due to orthogonality ŵ = (0,±1) is also known
up to the direction phase. Therefore it follows that v̂v̂T + ŵŵT = I2. It is possible to write
down a proper second-rank tensor Wab̄ as:

Wab̄ = δab̄ − Vab̄ (3.46)

We are interested in the CP -conserving potential. Thus all of the parameters are real.
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After rotating Φ2 and setting ξ = 0:

m2
11 = m2

12tβ −
1

2
v2
[
λ1c

2
β + λ345s

2
β + 3λ6sβcβ + λ7s

2
βtβ
]
,

m2
22 = m2

12t
−1
β −

1

2
v2
[
λ2s

2
β + λ345c

2
β + λ6c

2
βt
−1
β + 3λ7sβcβ

] (3.47)

where λ345 = λ3 + λ4 + λ5.
Now let us take a look at how Higgs boson masses look like in terms of the generic basis.

mH± and mA are:

m2
A =

m2
12

sβcβ
− v2

2
(2λ5 + λ6tβ + λ7tβ) when tβ > 0,

m2
A = m2

22 +
1

2
v2 (λ3 + λ4 − λ5) otherwise,

m2
H± = m2

A +
v2

2
(λ5 − λ4)

(3.48)

The CP-even states mix and therefore the mass matrixM is given by:

M2 =m2
A

(
s2
β −sβcβ

−sβcβ c2
β

)
+

v2

(
λ1c

2
β + 2λ6sβcβ + λ5s

2
β (λ3 + λ4) sβcβ + λ6c

2
β + λ7s

2
β

(λ3 + λ4) sβcβ + λ6c
2
β + λ7s

2
β λ2s

2
β + 2λ7sβcβ + λ5c

2
β

) (3.49)

from where we get:

M2
11 = m2

As
2
β + v2

(
λ1c

2
β + 2λ6sβcβ + λ5s

2
β

)
,

M2
12 = −m2

Asβcβ + v2
(
(λ3 + λ4) sβcβ + λ6c

2
β + λ7s

2
β

)
,

M2
22 = m2

Ac
2
β + v2

(
λ2s

2
β + 2λ7sβcβ + λ5c

2
β

) (3.50)

Diagonalization of the mass matrixM is possible, as stated earlier, by performing a rotation:(
m2
H 0

0 m2
h

)
= R(α)M2RT (α) (3.51)

The mass eigenvalues are:

m2
H,h =

1

2

[
M2

11 +M2
22 ±

√
(M2

11 −M2
22)

2
+ 4 (M2

12)
2

]
(3.52)
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3.3 Higgs Bases

One of the possible uniquely selected basis are Higgs bases. In this basis only one neutral
component gets VEV. By applying a U(1)Y × U(1) transformations it is possible to preserve
the vacuum conditions. Under U(1) group the Higgs doublets are rotated in the following way:

Φ′1 → eiχΦ′1, Φ′2 → e−iχΦ′2 (3.53)

which is parametrized by χ.
We begin in a generic Φ1 − Φ2 basis. This one is not uniquely defined. The newly defined

Higgs-doublet fields are:

H1 =

(
H+

1

H0
1

)
= v̂∗ī Φi = cβΦ1 + sβe

−iξΦ2,

H2 =

(
H+

2

H0
2

)
= ŵ∗īΦi = −sβeiξΦ1 + cβΦ2

(3.54)

or in a matrix form: (
H1

H2

)
=

(
cβ sβe

−iξ

−sβeiξ cβ

)(
Φ1

Φ2

)
(3.55)

In order to transform from the generic basis to Higgs bases, we introduce the following
matrix:

Û =

(
v̂∗1 v̂∗2
ŵ∗1 ŵ∗2

)
=

(
v̂∗1 v̂∗2
−v̂2 v̂1

)
(3.56)

Note that in the above matrix we used ŵ∗ī = εj̄īv̂j, which can be derived from eq.(3.45). On the
other hand it is possible to rewrite the newly defined fields as:

Φi = H1v̂i +H2v̂
∗
j εji,(

Φ1

Φ2

)
=

(
cβ −sβe−iξ

sβe
iξ cβ

)(
H1

H2

)
(3.57)

Considering that v̂∗ī v̂i = 1 and v̂∗ī ŵi = 1, vacuum expectation values in Higgs bases are:

〈H0
1 〉 =

v√
2
, 〈H0

2 〉 = 0 (3.58)

The field H1 is invariant, while H2 is pseudo-invariant under U(2) group transformation:

H ′2 = eiχH2 (3.59)
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It is possible to construct a unitary matrix UD with respect to which Higgs bases transforms
from Hi to H ′i:

UD =

(
1 0

0 eiχ

)
(3.60)

To get the scalar potential in Higgs bases we simply insert eq.(3.57) into the generic potential
eq.(3.26):

V = Y1H
†
1H1 + Y2H

†
2H2 + Y3H

∗
1H2 + Y †3 H

†
2H1

+
1

2
Z1

(
H†1H1

)2

+
1

2
Z2

(
H†2H2

)2

+ Z3

(
H†1H1

)(
H†2H2

)
+ Z4

(
H†1H2

)(
H†2H1

)
+

{
1

2
Z5

(
H†1H2

)2

+

[
Z6

(
H†1H1

)2

+ Z7

(
H†2H2

)2 ](
H†1H2

)
+ h.c.

}
(3.61)

In Higgs bases scalar potential Y1, Y2 and Z1,2,3,4 are all U(2) invariants and real, while Y3

and Z5,6,7 are pseudo-invariants 11 and are complex. It is possible to express coefficients Y and
Z in terms of the previously defined second rank tensors Vij̄, Wij̄ and unit norms v̂,ŵ:

Y1 = Yij̄Vjī,

Z1 = Zij̄kl̄VjīVlk̄,

Z3 = Zij̄kl̄VjīWlk̄,

Y3 = Yij̄ v̂
∗
ī ŵj,

Z6 = Zij̄kl̄v̂
∗
ī v̂j v̂

∗
k̄ŵl,

Y2 = Yij̄Wjī,

Z2 = Zij̄kl̄WjīWkl̄,

Z4 = Zij̄kl̄Vjk̄Wl̄i,

Z5 = Zij̄kl̄v̂
∗
ī ŵj v̂

∗
k̄ŵl,

Z7 = Zij̄kl̄v̂
∗
ī ŵjŵ

∗
k̄ŵl

(3.62)

Using eq.(3.44) it is possible to transform pseudo-invariants as:

[Y3, Z6, Z7]→ e−iχ [Y3, Z6, Z7] ,

Z5 → e−2iχZ5

(3.63)

As an example, let us write down the coefficient Y1 in terms of v̂:

Y1 = Yij̄ v̂j v̂
∗
ī = Y11v̂1v̂

∗
1 + Y22v̂2v̂

∗
2 + Y12 {v̂1v̂

∗
2 + v̂2v̂

∗
1}

= m2
11c

2
β +m2

22s
2
β − Re

(
m2

12e
iξ
)
s2β

(3.64)

Following the same procedure in the generic basis invariant and pseudo-invariant coefficients
11invariant under SU(2) but not under U(2)
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can be written down as:

Y1 = m2
11c

2
β +m2

22s
2
β − Re

(
m2

12e
iξ
)
s2β,

Y2 = m2
11s

2
β +m2

22c
2
β + Re

(
m2

12e
iξ
)
s2β,

Y3e
iξ =

1

2

(
m2

22 −m2
11

)
s2β − Re

(
m2

12e
iξ
)
c2β − iIm

(
m2

12e
iξ
) (3.65)

and
Z1 = λ1c

4
β + λ2s

4
β +

1

2
λ345s

2
2β + 2s2β

[
c2
βRe(λ6e

iξ) + s2
βRe(λ7e

iξ)
]
,

Z2 = λ1s
4
β + λ2c

4
β +

1

2
λ345s

2
2β − 2s2β

[
s2
βRe(λ6e

iξ) + c2
βRe(λ7e

iξ)
]
,

Z3 =
1

4
s2

2β [λ1 + λ2 − 2λ345] + λ3 − s2βc2βRe
[
(λ6 − λ7)eiξ

]
,

Z4 =
1

4
s2

2β [λ1 + λ2 − 2λ345] + λ4 − s2βc2βRe
[
(λ6 − λ7)eiξ

]
,

Z5e
2iξ =

1

4
s2

2β [λ1 + λ2 − 2λ345] + Re(λ5e
2iξ) + ic2βIm(λ5e

2iξ),

− s2βc2βRe
[
(λ6 − λ7)eiξ

]
− is2βIm

[
(λ6 − λ7)eiξ

]
Z6e

iξ = −1

2
s2β

[
λ1c

2
β − λ2s

2
β − λ345c2β − iIm(λ5e

2iξ)
]

+ cβc3βRe(λ6e
iξ)

+ sβs3βRe(λ7e
iξ) + ic2

βIm(λ6e
iξ) + is2

βIm(λ7e
iξ),

Z7e
iξ = −1

2
s2β

[
λ1s

2
β − λ2c

2
β + λ345c2β + iIm(λ5e

2iξ)
]

+ sβs3βRe(λ6e
iξ)

+ cβc3βRe(λ7e
iξ) + is2

βIm(λ6e
iξ) + ic2

βIm(λ7e
iξ)

(3.66)

where λ345 = λ3 + λ4 + Re(λ5e
2iξ).

With help of the minimum conditions eq.(3.47) and not forgetting that in Higgs bases tβ = 0

it is possible to transform real parameters in the following way:

Y1 = −1

2
v2Z1,

Y2 = m2
12s2β −

1

2
v2

[
(λ1 + λ2)c2

βs
2
β + λ345(s4

β + c4
β) + (λ6 + λ7)

1

2
s4β

]
,

Y3 = −1

2
v2Z6

(3.67)
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and
Z1 = λ1c

4
β + λ2s

4
β +

1

2
λ345s

2
2β + 2s2β

[
c2
βλ6 + s2

βλ7

]
,

Z2 = λ1s
4
β + λ2c

4
β +

1

2
λ345s

2
2β − 2s2β

[
s2
βλ6 + c2

βλ7

]
,

Z3 =
1

4
s2

2β [λ1 + λ2 − 2λ345] + λ3 − s2βc2β(λ6 − λ7),

Z4 =
1

4
s2

2β [λ1 + λ2 − 2λ345] + λ4 − s2βc2β(λ6 − λ7),

Z5 =
1

4
s2

2β [λ1 + λ2 − 2λ345] + λ5 − s2βc2β(λ6 − λ7),

Z6 = −1

2
s2β

[
λ1c

2
β − λ2s

2
β − λ345c2β

]
+ cβc3βλ6 + sβs3βλ7,

Z7 = −1

2
s2β

[
λ1s

2
β − λ2c

2
β + λ345c2β

]
+ sβs3βλ6 + cβc3βλ7

(3.68)

where λ345 = λ3 + λ4 + λ5.
In case of the CP -conserving case, that is when:{

m2
12, λ5

}
∈ Re,

λ6 = λ7 = 0
(3.69)

It is possible to relate the tβ parameter:

t2β =
2 (Z6 + Z7)

Z2 − Z1

(3.70)

The Higgs bosons masses are:

m2
h =

(
Z1 + Z6t

−1
β−α
)
v2,

m2
H = Y2 +

(
1

2
Z345 − Z6t

−1
β−α

)
v2,

m2
A = Y2 +

1

2
(Z3 + Z4 − Z5) v2,

m2
H± = Y2 +

1

2
Z3v

2

(3.71)

Derivation of the Higgs boson masses is presented in the next section.
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3.4 The Mass Eigenstates Basis

In Higgs bases it is possible to write down the doublets in terms of the physical fields:

H1 =

(
G±

1√
2

(v + ϕ0
1 + iG0)

)
,

H2 =

(
H±

1√
2

(ϕ0
2 + ia0)

) (3.72)

where G± are the charged Goldstone fields, G0 is a CP -odd neutral one and H± are the charged
Higgs fields, ϕ0

1 is a CP -even neutral Higgs scalar field, ϕ0
2 and a0 are indefinite CP states. In

case of the CP violation all Higgs scalar fields are mixed together in order to produce three
possible neutral physical Higgs bosons h,H,A of indefinite CP quantum numbers. In case of
non CP -violation three scalar fields are absorbed to form non-distinguishable Higgs bosons.
The neutral Goldstone boson is always CP definite.

After writing down explicitly the Higgs potential it is possible to split it into several parts
V = Vconst + Vlinear + Vquadratic + V3,4. Earlier we have seen that linear scalar potential part
Vlinear determines the vacuum conditions. As for now we are interested in the generation of
masses. The quadratic scalar potential terms Vquadratic should be looked into to determine the
mass eigenstates.

It is possible to split G± and H± parts into real and imaginary:

G± =
1√
2

(
G+
r ∓ iG+

i

)
,

H± =
1√
2

(
H+
r ∓ iH+

i

) (3.73)

Rewriting eq.(3.72) in terms of eq.(3.73) and re expressing scalar terms yields:

H1 =
1√
2

(
G+
r ∓ iG+

i

v + ϕ0
1 + iG0

)
,

H2 =
1√
2

(
H+
r ∓ iH+

i

ϕ0
2 + ia0

) (3.74)

The Higgs scalar potential is now expressed in terms of eight real variables. Inserting
eq.(3.74) into the minimum conditions eq.(3.36) we get the mass matrix. In case of the minimum
condition all fields are set to zero. The scalar potential minimum conditions eq.(3.67) are also
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considered. After the minimization we get the following results:

∂V

∂G+
r

∣∣∣∣ =
∂V

∂G+
i

∣∣∣∣ =
∂V

∂G0

∣∣∣∣ = 0,

∂V

∂H+
r

∣∣∣∣ =
∂V

∂H+
i

∣∣∣∣ = 0,

∂V

∂ϕ0
1

∣∣∣∣ = v

(
Y1 +

v2

2
Z1

)
= 0,

∂V

∂ϕ0
2

∣∣∣∣ = v

(
Re(Y3) +

v2

2
Re(Z6)

)
= 0,

∂V

∂a0

∣∣∣∣ = v

(
Im(Y3) +

v2

2
Im(Z6)

)
= 0

(3.75)

The Higgs boson squared mass matrix is obtained by applying the second derivative to the
scalar potential minimization conditions eq.(3.75):

M2
G,H =

M
2
G 0 0

0 M2
ϕ0
1,ϕ

0
2,a

0 0

0 0 M2
H±

 (3.76)

M2
G is a three by three matrix in which all of the elements are zeroes due to the fact that the

Goldstone bosons are massless. Three neutral scalar fields mix together to form the neutral
Higgs squared mass matrixM2

ϕ0
1,ϕ

0
2,a

0 :

v2

 Z1 Re(Z6) −Im(Z6)

Re(Z6) 1
2

[Z3 + Z4 + Re(Z5)] + Y2
v2

−1
2
Im(Z5)

−Im(Z6) −1
2
Im(Z5) 1

2
[Z3 + Z4 − Re(Z5)] + Y2

v2

 (3.77)

The last component of matrix (3.76) is the charged Higgs squared mass matrixM2
H± :(

Y2 + 1
2
v2Z3 0

0 Y2 + 1
2
v2Z3

)
(3.78)

Therefore the charged Higgs boson mass is given by:

m2
H± = Y2 +

1

2
Z3v

2 (3.79)

One of the possibilities to diagonalize the Higgs square mass matrix M is by the mean of
orthogonal transformation:

RMRT =MD = diag
(
m2

1,m
2
2,m

2
3

)
(3.80)
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where RRT = I and the corresponding mass eigenvalues are m2
i . R are Euler’s rotation

matrices:
R = R12R13R23

=

c12 −s12 0

s12 c12 0

0 0 1


c13 0 −s13

0 1 0

s13 0 c13


1 0 0

0 c23 −s23

0 s23 c23



=

c12c13 −s12c23 − c12s13s23 s12s23 − c12c23s13

s12c13 c12c23 − s12s13s23 −c12s23 − s12s13c23

s13 c13s23 c13c23


(3.81)

Applying the corresponding limitations on the angles −π ≤ θ12, θ23 < π and |θ13| ≤ π/2 covers
the whole SO(3) group.

Three neutral fields ϕ0
1, ϕ

0
2, a

0 are mixed together to produce three possible neutral Higgs
bosons. Using the introduced parametrization the neutral Higgs bosons mass eigenstates can
be written in terms of: h1

h2

h3

 = R

ϕ
0
1

ϕ0
2

a0

 (3.82)

In this convention, for simplicity, it is worth denoting masses in the following way mi ≤ mi+1.
The mass eigenstates are U(2) invariants.

Following ref. [50] the following unitary matrix is introduced:

W =

1 0 0

0 1/
√

2 1/
√

2

0 −i/√2 i/
√

2

 (3.83)

Considering the fact that W is unitary, it possible to rewrite the diagonalized squared mass
matrixMD in the following way:

(RW)(W†MW)(RW)† =MD (3.84)

Explicitly writing down the transformations:

W†MW = v2


Z1

1√
2
Z6

1√
2
Z∗6

1√
2
Z∗6

1
2

(Z3 + Z4) + Y2/v2 1
2
Z∗5

1√
2
Z6

1
2
Z5

1
2
(Z3 + Z4) + Y2/v2

 (3.85)
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RW =


q11

1√
2
q∗12e

iθ23 1√
2
q12e

−iθ23

q21
1√
2
q∗22e

iθ23 1√
2
q22e

−iθ23

q31
1√
2
q∗32e

iθ23 1√
2
q32e

−iθ23

 ,

(RW)† =

 q11 q21 q31

1√
2
q12e

−iθ23 1√
2
q22e

−iθ23 1√
2
q32e

−iθ23

1√
2
q∗12e

iθ23 1√
2
q∗22e

iθ23 1√
2
q∗32e

iθ23


(3.86)

where coefficients qij are:

q11 = c13c12,

q21 = c13s12,

q31 = s13,

q12 = −s12 − ic12s13,

q22 = c12 − is12s13,

q32 = ic13

(3.87)

The determinant of RW can be evaluated:

detRW =
1

2
{q11 (q∗22q32 − q22q

∗
32) + q21 (q∗12q32 − q12q

∗
32)

+q31 (q∗12q22 − q12q
∗
22)}

=
1

2

3∑
j,k,l=1

εjklqj1Im (q∗k2ql2) = 1

(3.88)

Therefore the following properties arise:

Re (qk1q
∗
l1 + qk2q

∗
l2) = δkl (3.89)

3∑
k=1

|qk1|2 =
1

2

3∑
k=1

|qk2|2 = 1,

3∑
k=1

q2
k2 =

3∑
k=1

qk1qk2 = 0

(3.90)

As one can see, the matrix (RW)† consists only of coefficients Y and Z. The following U(2)

transformations are applied:

qkl → qkl, eiθ23 → e−iχeiθ23 (3.91)

It is possible to introduce another diagonalizing matrix R̃ = R12R13 which only depends
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on angles θ12 and θ13 by setting θ23 = 0. This matrix is:

R̃ = R12R13R23

=

c12 −s12 0

s12 c12 0

0 0 1


c13 0 −s13

0 1 0

s13 0 c13


1 0 0

0 1 0

0 0 1



=

c12c13 −s12 −c12s13

c13s12 c12 −s12s13

s13 0 c13


(3.92)

The diagonal neutral Higgs squared-mass matrix is then:

R̃ diag
(
m2

1,m
2
2,m

2
3

)
R̃T = m2

3s
2
13 + (m2

2s
2
12 +m2

1c
2
12)c2

13 (m2
2 −m2

1)s12c12c13 (m2
3 − (m2

2s
2
12 +m2

1c
2
12))s13c13

(m2
2 −m2

1)s12c12c13 m2
2c

2
12 +m2

1s
2
12 −(m2

2 −m2
1)s12c12s13

(m2
3 − (m2

2s
2
12 +m2

1c
2
12))s13c13 −(m2

2 −m2
1)s12c12s13 m2

3c
2
13 − (m2

2s
2
12 +m2

1c
2
12)s2

13


(3.93)

By comparing eq.(3.77) and eq.(3.93) we get the following equations:

v2Re(Z5) = (m2
2c

2
12 +m2

1s
2
12)−m2

3c
2
13 + (m2

2s
2
12 +m2

1c
2
12)s2

13,

v2Im(Z5) = 2(m2
2 −m2

1)s12c12s13,

v2Re(Z6) = (m2
2 −m2

1)s12c12c13,

v2Im(Z6) = −(m2
3 − (m2

2s
2
12 +m2

1c
2
12))s13c13,

v2Z1 = m2
3s

2
13 + (m2

2s
2
12 +m2

1c
2
12)c2

13,

v2Z4 = (m2
2c

2
12 +m2

1s
2
12) +m2

3c
2
13 − (m2

2s
2
12 +m2

1c
2
12)s2

13 − 2m2
H±

(3.94)

In our case we are interested in the real parameters only. Therefore Im(Z5) and Im(Z6)

are zero. This is possible by setting s13 = 0. By assumption the following limits were set
−π ≤ θ13 < π. This yields the only possible result: θ13 = −π. The diagonal neutral Higgs
squared-mass matrix in the real basis becomes:(m2

2s
2
12 +m2

1c
2
12) (m2

1 −m2
2)s12c12 0

(m2
1 −m2

2)s12c12 (m2
2c

2
12 +m2

1s
2
12) 0

0 0 m2
3

 (3.95)

where only m1 and m2 are now mixed.
Another possibility is to write down mass eigenstates in terms of the generic fields [50].
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First of all neutral fields are shifted by:

Φ̄0
i ≡ Φ0

i −
vv̂i√

2
(3.96)

Therefore the mixing between non charged sector is:

hk =
1√
2

[
Φ̄0†
ī

(
qk1v̂i + qk2ŵie

−iθ23)+
(
q∗k1v̂

∗
ī + q∗k2ŵ

∗
ī e
iθ23
)

Φ̄0
i

]
(3.97)

here coefficients qkj are the neutral angles θ12 and θ13 mixing parameters. They are presented
in tab.4.

Table 4: The U(2) invariants qkl as functions of mixing angles θ12 and θ23

k qk1 qk2

1 c12c13 −s12 − ic12s13

2 s12c13 c12 − is12s13

3 s13 ic13

4 i 0

Inverting eq.(3.97) yields the doublet:

Φi =

(
G+v̂i +H+ŵi

1√
2

(
v̂i + qk1v̂i + qk2e

−iθ23ŵi
)
hk

)
(3.98)

This is U(2)-covariant form in terms of the Higgs mass eigenstate.
Also we include transformations from the Higgs mass eigenstates basis to the generic. In

case of the CP -conserving 2HDM:

λ1 =
(
m2
Hc

2
α +m2

hs
2
α −m2

12tβ
) 1

v2c2
β

− 3

2
λ6tβ +

1

2
λ7t

3
β,

λ2 =
(
m2
Hs

2
α +m2

hc
2
α −m2

12t
−1
β

) 1

v2s2
β

+
1

2
λ6t
−3
β −

3

2
λ7t
−3
β ,

λ3 =
(
(m2

H −m2
h)sαcα + 2m2

H±sβcβ −m2
12

) 1

v2sβcβ
− 1

2
λ6t
−1
β −

1

2
λ7tβ,

λ4 =
(
(m2

A − 2m2
H±)sβcβ +m2

12

) 1

v2sβcβ
− 1

2
λ6t
−1
β −

1

2
λ7tβ,

λ5 =
(
m2

12 −m2
Asβcβ

) 1

v2sβcβ
− 1

2
λ6t
−1
β −

1

2
λ7tβ,

m2
22 = −1

2

(
m2
hcαsβα +m2

Hcαcβα
)

+m2
12t
−1
β

(3.99)

In case of the non CP -conserving case we would get several additional parameters, which cannot
be uniquely defined: λ6 and λ7.
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3.5 Interactions with Bosons

We use Haber notation [50] eq. (3.98) to construct the Lagrangian. The product of two
Higgs doublets is:

Φ†
ī
Φj =

1

2
v2Vjī + vhk

[
VjīRe(qk1) +

1

2

(
v̂jŵ

∗
ī q
∗
k2e

iθ23 + v̂∗ī ŵjqk2e
−iθ23)]

+
1

2
hjhk

[
VjīRe(q∗j1qk1) +WjīRe(q∗j2qk2) +v̂jŵ

∗
ī q
∗
j2qk1e

iθ23 + v̂∗ī ŵjq
∗
j1qk2e

−iθ23]
+G+G−Vjī +H+H−Wjī +G−H+v̂∗ī ŵj +G+H−ŵ∗ī v̂j

(3.100)

Of particular interest are cubic couplings:

V3 =
1

2
vhjhkhl

[
qj1q

∗
k1Re(ql1)Z1 + qj2q

∗
k2Re(ql1)(Z3 + Z4) + Re(q∗j1qk2ql2Z2e

−2iθ23)

Re
([

2qj1 + q∗j1
]
q∗k1ql2Z6e

−iθ23)+ Re
(
q∗j2qk2ql2Z7e

−iθ23)]
+ vhkG

+G−
[
Re(qk1)Z1 + Re

(
qk2Z6e

−iθ23)]
+ vhkH

+H−
[
Re(qk1)Z3 + Re

(
qk2Z7e

−iθ23)]
+

1

2
vhk

[
G−H+eiθ23

(
q∗k2Z4 + qk2e

−2iθ23Z5 + 2Re(qk1)Z6e
−iθ23)+ h.c.

]
(3.101)

and quartic:

V4 =
1

8
hjhkhlhm

[
qj1qk1q

∗
l1q
∗
m1Z1 + qj2qk2q

∗
l2q
∗
m2Z2

+ 2qj1q
∗
k1ql2q

∗
m2 (Z3 + Z4) + 2Re

(
q∗j1q

∗
k1ql2qm2Z5e

−2iθ23
)

+ 4Re
(
qj1q

∗
k1q
∗
l1qm2Z6e

−iθ23)+ 4Re
(
q∗j1qk2ql2q

∗
m2Z7e

−iθ23) ]
+

1

2
hjhkG

+G−
[
qj1q

∗
k1Z1 + qj2q

∗
k2Z3 + 2Re

(
qj1qk2Z6e

−iθ23) ]
+

1

2
hjhkH

+H−
[
qj2q

∗
k2Z2 + qj1q

∗
k1Z3 + 2Re

(
qj1qk2Z7e

−iθ23) ]
+

1

2
hjhk

{
G−H+eiθ23

[
qj1q

∗
k2Z4 + q∗j1qk2Z5e

−2iθ23 + qj1q
∗
k1Z6e

−iθ23

+ qj2q
∗
k2Z7e

−iθ23
]

+ h.c.
}

+
1

2
Z1G

+G−G+G− +
1

2
Z2H

+H−H+H−

+ (Z3 + Z4)G+G−H+H− +
1

2
Z5H

+H+G−G− +
1

2
Z∗5H

−H−G+G+

+G+G−
(
Z6H

+G− + Z∗6H
−G+

)
+H+H−

(
Z7H

+G− + Z∗7H
−G+

)

(3.102)

From eq. (3.101) and eq. (3.102) one can easily identify the Higgs boson interactions in Higgs
bases. Although interactions are more simple in Higgs bases but most of the time one is expected
to work in the generic basis 12. Therefore we calculated the Higgs bosons interaction terms in

12The simple answer is that in Higgs bases, the second 2HDM doublet does not acquire VEV.
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the generic basis. WE dropped down terms proportional to the Goldstone bosons as in our case
they carry no interest. We start from the trilinear couplings. First of all, the CP -even Higgs
bosons are:

ghhh = 3v

(
−cβs3

αλ1 + sβc
3
αλ2 −

1

2
s2αcβ+αλ345

)
,

gHhh = v
(
3cβcαs

2
αλ1 + 2sβsαc

2
αλ2 +

[(
1− 3s2

α

)
cβ+α − sβsα

]
λ345

)
,

gHHh = v
(
−3cβsαc

2
αλ1 + 2sβcαs

2
αλ2 +

[(
1− 3s2

α

)
sβ+α + cβsα

]
λ345

)
,

gHHH = 3v

(
cβc

3
αλ1 + sβs

3
αλ2 +

1

2
s2αsβ+αλ345

) (3.103)

Secondly, the CP -odd involving coupling are:

gAAh = v
(
−cβs2

βsαλ1 + sβc
2
βcαλ2 +

[
s3
βcα − c3

βsα
]
λ345 − 2sβ−αλ5

)
,

gAAH = v
(
cβs

2
βcαλ1 + sβc

2
βsαλ2 +

[
c3
βcα + s3

βsα
]
λ345 − 2cβ−αλ5

) (3.104)

Finally, the charged sector yields the following result:

ghH±H∓ =
s2βv

2
(sβsαλ1 − cβcαλ2 + cβ+αλ345)− sβ−αλ3,

gHH±H∓ =
s2βv

2
(sβcαλ1 + cβsαλ2 − sβ+αλ345) + cβ−αλ3

(3.105)

The following interactions are forbidden:

gAAA = gAhh = gAHH = gAHh = gaH±H∓ = 0 (3.106)

Now we turn to quartic interactions. From the CP -even sector we get:

ghhhh = 3

(
s4
αλ1 + c4

αλ2 +
1

2
s2

2αλ345

)
,

ghhhH =
3

2
s2α

(
−s2

αλ1 + c2
αλ2 − c2αλ345

)
,

ghhHH =
3

4
s2

2α (λ1 + λ2) +

(
1− 3

2
s2

2α

)
λ345,

ghHHH =
3

2
s2α

(
−c2

αλ1 + s2
αλ2 + c2αλ345

)
,

gHHHH = 3

(
c4
αλ1 + s4

αλ2 +
1

2
s2

2αλ345

)
(3.107)
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CP -odd quartic couplings:

ghhAA = s2
βs

2
αλ1 + c2

βc
2
αλ2 +

(
c2
βs

2
α + s2

βc
2
α

)
λ345 −

(
1− c2(β−α)

)
λ5,

ghHAA =
1

2
s2α

(
−s2

βλ1 + c2
βλ2 − c2βλ345

)
− s2(β−α)λ5,

gHHAA = s2
βc

2
αλ1 + c2

βs
2
αλ2 +

(
c2
βc

2
α + s2

βs
2
α

)
λ345 −

(
1 + c2(β−α)

)
λ5,

gAAAA = 3

(
s4
βλ1 + c4

βλ2 +
1

2
s2

2βλ345

) (3.108)

Charged Higgs quartic couplings:

ghhH±H∓ = s2
βs

2
αλ1 + c2

βc
2
αλ2 +

1

2

(
1− c2(β−α)

)
λ3 +

1

2
s2βs2αλ345,

ghHH±H∓ =
1

2
s2α

(
−s2

βλ1 + c2
βλ2

)
+

1

2
s2(β−α)λ3 −

1

2
s2βc2αλ345,

gHHH±H∓ = s2
βc

2
αλ1 + c2

βs
2
αλ2 +

1

2

(
1 + c2(β−α)

)
λ3 −

1

2
s2βs2αλ345,

gAAH±H∓ = s4
βλ1 + c4

βλ2 +
1

2
s2

2βλ345,

gH±H∓H±H∓ = 2

(
s4
βλ1 + c4

βλ2 +
1

2
s2

2βλ345

)
(3.109)

The following interactions are forbidden:

ghAAA = gHAAA = ghhhA = ghhHA = ghHHA = gHHHA = ghAH±H∓ = gHAH±H∓ = 0 (3.110)

Finally we discuss interactions between Higgs bosons and gauge bosons. The procedure is
the same as for the SM Higgs sector. These type of couplings arise from the kinematic terms.
The covariant derivative in the 2HDM is:

DµΦi =

∂µΦ+
i +

[
ig
cW

(
1
2
− s2

W

)
Zµ + ieAµ

]
Φ+
i + ig√

2
W+
µ Φ0

i

∂µΦ0
i −

ig
2cW

ZµΦ0
i + ig√

2
W−
µ Φ+

i

 (3.111)

By inserting this into the kinematic part of the 2HDM Lagrangian we get the following inte-
raction terms:

LV V H =

(
gmWW

+
µ W

µ− +
g

2cW
mZZµZ

µ

)
Re (qk1)hk

+ emWA
µ
(
W+
µ G

− +W−
µ G

+
)
− gmZs

2
WZ

µ
(
W+
µ G

− +W−
µ G

+
) (3.112)
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LV V HH =

[
1

4
g2W+

µ W
µ− +

g2

8c2
W

ZµZ
µ

]
Re
(
q∗j1qk1 + q∗j2qk2

)
hjhk

+
[1

2
g2W+

µ W
µ− + e2AµA

µ +
g2

c2
W

(
1

2
− s2

W

)2

ZµZ
µ

+
2ge

cW

(
1

2
− s2

W

)
AµZ

µ
] (
G+G− +H+H−

)
+

{(
1

2
egAµW+

µ −
g2s2

W

2cW
ZµW+

µ

)(
qk1G

− + qk2e
−iθ23H−

)
hk + h.c.

}
(3.113)

LV HH =
g

4cW
Im (qj1q

∗
k1 + qj2q

∗
k2)Zµhj

↔
∂µhk

− 1

2
d
{
iW+

µ

[
qk1G

−↔∂µhk + qk2e
−iθ23H−

↔
∂µhk

]
+ h.c.

}
+

[
ieAµ +

ig

cW

(
1

2
− s2

W

)
Zµ

](
G+

↔
∂µG

− +H+
↔
∂µH

−
) (3.114)

3.6 Interactions with Fermions

In contrast to the SM Yukawa Lagrangian, the 2HDM Yukawa Lagrangian brings some
interesting properties. The main difference is that in the most general Yukawa Lagrangian the
flavour changing neutral currents arise (FCNC) at the tree-level [51–53]. Not much is know
about FCNC from experimental point of view and thus in most theories there are restrictions
on the Higgs-fermions couplings. Nevertheless FCNC effects are phenomenologically accepted.

Another interesting property of the 2HDM is that both doublets can acquire the VEV. This
would be the key to the problem of fermion masses. It is still unknown why there are three
generations and masses of different families do not coincide: mt/mb ≈ 41. One of the possible
solutions is that up quarks couple to one doublet while the down type quarks couple to another
doublet.

The most general gauge invariant 2HDM Yukawa Lagrangian without the neutrino sector
is [54]:

−LY =κU,0ij Q
0
iLΦ̃1U

0
jR + κD,0ij Q0

ilΦ1D
0
jR + κE,0ij l

0
ilΦ1E

0
jR

+ ρU,0ij Q
0
iLΦ̃1U

0
jR + ρD,0ij Q0

ilΦ2D
0
jR + ρE,0ij l

0
ilΦ2E

0
jR + h.c.

(3.115)

where Φ̃i = iσ2Φi and κ, ρ are Yukawa matrices, which are arbitrary. As in the SM Yukawa
Lagrangian, the superscript 0 shows that the fermion fields are in the weak basis. We restrict
the further talk only to the quarks sector. One can get the lepton sector straightforward from
the quark sector.

There are several mechanisms which can suppress FCNC. The most widely accepted one
is by Glashow and Weinberg [51]. They implemented a discrete symmetry that automatically
forbids FCNC processes. Another mechanism was proposed by Cheng and Sher [55]. This
mechanism fixes the values of Yukawa matrices by squares of corresponding masses. We will
treat only the first mechanism, proposed by Glashow and Weinberg.
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Yukawa matrices κ, ρ cannot be diagonalized simultaneously. In order to suppress the
FCNC there should be a way to get rid of one of the Yukawa matrices. This can be achieved
by the following discrete symmetry:

Φ1 → Φ1 and Φ2 → −Φ2,

DjR → ±DjR and UjR → −UjR
(3.116)

By demanding this we get two cases. If we add the leptonic sector to the model then there are
four cases. Let us take a look at this two cases. The first one is the 2HDM type I. In this case
Φ1 decouples from the Yukawa sector. This implies that only one doublet gives masses to up
and down quarks. In contrast, in the Type II 2HDM Φ1 couples to the down sector while Φ2

couples to the up sector.
The corresponding 2HDM Type I sector is:

− LY = ξU,0ij Q
0
iLΦ̃2U

0
jR + ξD,0ij Q0

iLΦ2DjR + leptonic sector + h.c. (3.117)

In terms of the mass eigenstates:

−LY =
g

2mW sβ
DM̂DD (sαH + cαh) +

ig

2mW tβ
DM̂Dγ5DA

+
g

2mW sβ
UM̂UU (sαH + cαh)− ig

2mW tβ
UM̂Uγ5UA

+
g√

2mW tβ
U
(
VCKMM̂DPR − M̂UVCKMPL

)
DH+

+ leptonic sector + h.c.

(3.118)

In the case of 2HDM Type II:

− LY = κD,0ij Q0
iLΦ1D

0
jR + ξU,0ij Q

0
iLΦ̃2UjR + leptonic sector + h.c. (3.119)

In terms of the mass eigenstates:

−LY =
g

2mW cβ
DM̂DD (cαH − sαh)− igtβ

2mW

DM̂Dγ5DA

+
g

2mW sβ
UM̂UU (sαH + cαh)− ig

2mW tβ
UM̂Uγ5UA

− g√
2mW

U
(
tβVCKMM̂DPR + t−1

β M̂UVCKMPL

)
DH+

+ leptonic sector + h.c.

(3.120)

This type of Yukawa Lagrangian is required in the MSSM.
In case of the most general type of the 2HDM, the type III Yukawa Lagrangian eq. (3.115),
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all fermions can couple to both doublets unless some of the Yukawa matrices elements are zero.
It is convenient to make a rotation of the doublets in such a way that only one of the doublets
acquire VEV. Therefore we assume that only Φ1 acquires non zero VEV. In terms of the mass
eigenstates it is:

−LY =
g

2mW

DM̂DD (cαH − sαh) +
1√
2
DρDD (sαH + cαh)

+
g

2mW

UM̂UU (cαH − sαh) +
1√
2
UρUU (sαH + cαh)

+
i√
2
DρDγ5DA−

i√
2
UρUγ5UA

+ U
(
VCKMρ

DPR − ρUVCKMPL
)
DH+ + leptonic sector + h.c.

(3.121)

To be more precisely, the 2HDM Yukawa Lagrangian in the Higgs mass eigenstates basis, in
the basis independent form is [49]:

−LY =
1√
2
D
(
κDsβ−α + ρDcβ−α

)
Dh+

1√
2
D
(
κDcβ−α − ρDsβ−α

)
DH

+
1√
2
U
(
κUsβ−α + ρUcβ−α

)
Uh+

1√
2
U
(
κUcβ−α − ρUsβ−α

)
UH

+
i√
2
DρDγ5DA−

i√
2
UρUγ5UA

+ U
(
VCKMρ

DPR − ρUVCKMPL
)
DH+ + leptonic sector + h.c.

(3.122)

On the other hand, if both doublets acquire VEV the type III 2HDM Yukawa Lagrangian
changes. Assume that in order to convert this Lagrangian from the weak basis into the mass
eigenstates basis the following transformations are needed:

DL,R = (V D
L,R)D0

L,R,

UL,R = (V U
L,R)U0

L,R

(3.123)

After the parametrization the mass matrices are:

M̂D = V D
L

(
v1√

2
κ̃D,0 +

v2√
2
ρ̃D,0

)
V D†
R ,

M̂U = V U
L

(
v1√

2
κ̃U,0 +

v2√
2
ρ̃U,0
)
V U†
R

(3.124)

There are two ways of getting the Yukawa Lagrangian. Either expressing κ̃ or ρ̃.
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4 Constraints of the Two Higgs Doublet Model

So far we have discussed possible choices of the 2HDM basis and interactions terms with
bosons and fermions. In order for model to be valid there are several theoretical constraints.
In the following section the 2HDM scalar potential constraints are described. We cover only
several of them, the ones we used to perform analysis of the CP -conversing 2HDM. We cover
stability of the potential, S-matrix unitarity and quartic Higgs bosons perturbativity. Also we
take a look at how Peskin-Takeuchi parameters are formulated in the 2HDM.

4.1 Stability of the Potential

First of all potential needs to be stable. For a stable vacuum, the 2HDM scalar potential has
to be bounded from below. To fulfil this condition, the potential must be positive in field space
along large values of the fields. Therefore the scalar potential has to be bounded from below.
The Higgs potential (3.21) must be positive in all field space directions for asymptotically large
values of the fields ref. [56]. The perform derivation of the stability condition in the generic
basis.

It is possible to rewrite the 2HDM scalar potential (3.21) by applying the following para-
metrisation:

|Φ1| = rcγ, |Φ2| = rsγ,
Φ†2Φ1

|Φ1||Φ2|
= ρeiθ (4.1)

where γ ∈ [0, π/2], ρ ∈ [0, 1], θ ∈ [0, 2π). After the parametrisation the scalar potential (3.21)
can be written as:

V = r4V4 + r2V2 (4.2)

where the quartic part with respect to (4.1) is:

V4 =
1

2
λ1c

4
γ +

1

2
λ2s

4
γ + λ3c

2
γs

2
γ + λ4ρ

2c2
γs

2
γ

+ λ5ρ
2c2
γs

2
γc2θ +

[
λ6c

2
γ + λ7s

2
γ

]
2ρcγsγcθ

(4.3)

V4 is positive in all directions when the following requirements are met:

λ1 > 0, λ2 > 0, λ3 > −
√
λ1λ2 (4.4)

In the CP -conserving case there is an additional condition:

λ3 + λ4 − |λ5| > −
√
λ1λ2 (4.5)

These conditions can be derived by sending some of the directions of the potential to infinity.
For example, in order to get constraint of λ1, r2cγsγ value is set to ∞. The above conditions
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are sufficient to ensure the EW vacuum stability.

4.2 S-Matrix Tree-Level Unitarity and Perturbativity Conditions

The unitarity constraint comes from the idea, that the scalar-scalar scattering amplitudes at
the tree-level must respect unitarity. This leads to an upper bound of the potential parameters
[57].

There are several possible ξ1ξ2 → ξ3ξ4 scattering processes in the high energy limit. Only
the scalar interactions contribute to the S matrix partial wave amplitude. There are several
different possible channels. For simplicity the S matrix is split into several components as most
elements are zeros. This splitting is based on a total charge of the scattering process. There
are 14 neutral weak eigenstate channels:

|w+
i w
−
i 〉 , |w+

1 w
−
2 〉 , |w+

2 w
−
1 〉 ,

1√
2
|zizi 〉 ,

1√
2
|hihi 〉 ,

|hizi 〉 , |z1z2 〉 , |h1h2 〉 , |h1z2 〉 , |h2z1 〉
(4.6)

8 singly charged scattering processes:

|w+
i zi 〉 , |w+

1 z2 〉 , |w+
2 z1 〉 ,

|w+
i hi 〉 , |w+

1 h2 〉 , |w+
2 h1 〉

(4.7)

3 doubly charged scattering processes:

1√
2
|w+

1 w
+
1 〉 ,

1√
2
|w+

2 w
+
2 〉 , |w+

1 w
+
2 〉 (4.8)

It turns out that all of these scattering processes can be written down with only 4 S matrices.
We get the following S matrices:

S(0,0) =


3λ1 2λ3 + λ4 3λ6 3λ∗6

2λ3 + λ4 3λ2 3λ7 3λ∗7
3λ∗6 3λ∗7 λ3 + 2λ4 3λ∗5
3λ6 3λ7 3λ5 λ3 + 2λ4

 , S(2,0) = λ3 − λ4,

S(0,1) =


λ1 λ4 λ6 λ∗6
λ4 λ2 λ7 λ∗7
λ∗6 λ∗7 λ3 λ∗5
λ6 λ7 λ5 λ3

 , S(2,1) =

 λ1 λ5

√
2λ6

λ∗5 λ2

√
2λ∗7√

2λ∗6
√

2λ7 λ3 + λ4


(4.9)
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In a CP -conserving case they are simplified to:

S(2,1) =

λ1 λ5 0

λ5 λ2 0

0 0 λ3 + λ4

 ,

S(2,0) = λ3 − λ4,

S(0,1) =


λ1 λ4 0 0

λ4 λ2 0 0

0 0 λ3 λ5

0 0 λ5 λ3

 ,

S(0,0) =


3λ1 2λ3 + λ4 0 0

2λ3 + λ4 3λ2 0 0

0 0 λ3 + 2λ4 3λ5

0 0 3λ5 λ3 + 2λ4



(4.10)

Eigenvalues of the corresponding S matrices are:

Λeven
21± =

1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4|λ5|2

)
, Λodd

21 = λ3 + λ4,

Λodd
20 = λ3 − λ4,

Λeven
01± =

1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ2

4

)
, Λodd

01± = λ3 ± |λ5|,

Λeven
00± =

1

2

(
3λ1 + 3λ2 ±

√
9 (λ1 − λ2)2 + 4 (2λ3 + λ4)2

)
, Λodd

00± = λ3 + 2λ4 ± 3|λ5|

(4.11)

In a non partial-wave expansion we limited the eigenvalues of the scattering matrices by
16π. A note should be taken that if the 2HDM tree-level amplitude grows with energy then
unitarity condition is violated at higher energies.

Also there exist quartic Higgs perturbativity constraints. These constraints can be applied
by demanding that quartic Higgs couplings fulfil:

|ghihjhkhl | ≤ 4π (4.12)

where quartic Higgs couplings are determined in eq. (3.107-3.109). By applying the perturba-
tivity conditions we restrict the value of tβ.

4.3 Peskin-Takeuchi Parameters

In this section we cover 2HDM scalar potential constraints by applying Peskin-Takeuchi
parameters. We only check S, T and U parameters. We inspect these values directly without
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correlation coefficients between these parameters. Analysis was performed in the following
linear approximation form [58]:

αT ≡ AWW (0)

m2
W

− AZZ(0)

m2
Z

,

g2

16π
S ≡ c2

W

[
FZZ

(
m2
Z

)
− Fγγ

(
m2
Z

)
+

(
2s2

W − 1

sW cW

)
FZγ

(
m2
Z

)]
,

g2

16π
(S + U) ≡ FWW (m2

W )− Fγγ(m2
W )− cW

sW
FZγ(m

2
W )

(4.13)

Due to interactions of the 2HDM Higgs bosons with gauge bosons there arise additional cont-
ribution. For simplicity we use the following two-point loop functions [59]:

B22(q2; m2
1, m

2
2) ≡ B22(q2; m2

1, m
2)−B22(0; m2

1, m
2),

B0(q2; m2
1, m

2
2) ≡ B0(q2; m2

1, m
2)−B0(0; m2

1, m
2)

(4.14)

where

B22(q2; m2
1, m

2
2) =

1

4
(∆ + 1)

[
m2

1 +m2
2 −

1

3
q2
]
− 1

2

∫ 1

0

dxX ln(X − iε),

B0(q2; m2
1, m

2
2) = ∆−

∫ 1

0

dx ln(X − iε)
(4.15)

In d space time dimension coefficients X and ∆ are:

X ≡ m2
1x+m2

2(1− x)− q2x(1− x),

∆ ≡ 2

4− d
+ ln(4π)− γ

(4.16)

We skip the derivation of the Peskin-Takeuchi parameters. Explicit derivation of S, T and U

parameters is presented in ref. [54].
Next we discuss contribution from the 2HDM CP -conserving case to the Peskin-Takeuchi

parameters. The 2HDM contribution to T is:

T =
1

16πm2
W s

2
W

{
|qk2|2F (m2

H± , m
2
k)− q2

21F (m2
1, m

2
3)

− q2
11F (m2

2, m
2
3)− q2

31F (m2
1, m

2
2)

+ q2
k1

[
F (m2

W , m
2
k)− F (m2

Z , m
2
k)
]

+ 4m2
WB0(0; m2

W , m
2
φ)− 4m2

ZB0(0; m2
Z , m

2
φ)

− 4q2
k1

[
m2
WB0(0; m2

W , m
2
k)−m2

ZB0(0; m2
Z , m

2
k)
]

+ F (m2
Z , m

2
φ)− F (m2

W , m
2
φ)
}

(4.17)
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where
F (m2

1, m
2
2) ≡ 1

2
(m2

1 +m2
2)− m2

1m
2
2

m2
1 −m2

2

ln(
m2

1

m2
2

) (4.18)

In case of mi = mj we get F (m2, m2) = 0. This can be simplified to:

T =
g2

64π2m2
W

{ 3∑
k=1

|Ck|2F (m2
H± ,m

2
Hk

)−
2∑

k=1

|Ck|2F (m2
Hk
,m2

A)

+ 3
2∑

k=1

|C3−k|2
[
F (m2

Z ,m
2
Hk

)− F (m2
W ,m

2
Hk

)
]

− 3
[
F (m2

Z ,m
2
h)− F (m2

W ,m
2
h)
]}

(4.19)

where
C = {cβ−α, sβ−α, 1} (4.20)

The 2HDM contribution to S is:

S =
1

πm2
Z

[
q2
k1B22(m2

Z ; m2
Z , m

2
k)− B22(m2

Z ; m2
Z , m

2
φ)

−m2
Zq

2
k1B0(m2

Z ; m2
Z , m

2
k) +m2

ZB0(m2
Z ; m2

Z , m
2
φ)

+ q2
11B22(m2

Z ; m2
2, m

2
3) + q2

21B22(m2
Z ; m2

1, m
2
3)

+ q2
31B22(m2

Z ; m2
1, m

2
2)− B22(m2

Z ; m2
H± , m

2
H±)

(4.21)

In the 2HDM U is defined in the following way:

S + U =
1

πm2
W

[
− q2

k1m
2
WB0(m2

W ; m2
W , m

2
k) +m2

WB0(m2
W ; m2

W , m
2
φ)

− B22(m2
W ; m2

W , m
2
φ) + q2

k1B22(m2
W ; m2

W , m
2
k)

+ |qk2|2B22(m2
W ; m2

H± , m
2
k)− 2B22(m2

W ; m2
H± , m

2
H±)
] (4.22)

S and U parameters can also be simplified. Before that additional functions should be intro-
duced. This functions relates masses of two Higgs bosons above the scale Q, which corresponds
to masses mW or mZ :

G(x, y,Q) =− 16

3
+ 5

x+ y

Q
− 2

(x− y)2

Q2

+
3

Q

[
x2 + y2

x− y
− x2 − y2

Q
+

(x− y)3

3Q2

]
ln
x

y
+

r

Q3
f(t, r)

(4.23)
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where t ≡ x+ y −Q, r ≡ Q2 − 2Q(x+ y) + (x− y)2 and f(t, r) is:

f(t, r) =


√
r ln | t−

√
r

t+
√
r
| r > 0

0 r = 0

2
√
−r arctan

√−r
t

r < 0

(4.24)

Another function is:

Ĝ(x,Q) = G(x,Q,Q) +

[
x

Q
− x+Q

x−Q
− 1

]
ln
x

Q
+

1

Q
f(t, r)− 24 (4.25)

In terms of functions G(x, y,Q) and Ĝ(x,Q), the S parameter is:

S =
g2

384π2c2
W

{
[s2
W − c2

W ]2G(m2
H± ,m

2
H± ,m

2
Z) +

2∑
k=1

|Ck|2G(m2
k,m

2
A,m

2
Z)

− 2 lnm2
H± +

3∑
k=1

lnm2
Hk
− lnm2

h

+
2∑

k=1

|C3−k|2Ĝ(m2
Hk
,m2

Z)− Ĝ(m2
h,m

2
Z)

}
(4.26)

and U is:

U =
g2

384π2

{ 3∑
k=1

|Ck|2G(m2
H± ,m

2
Hk
,m2

W )− [s2
W − c2

W ]2G(m2
H± ,m

2
H± ,m

2
Z)

−
2∑

k=1

|Ck|2G(m2
Hk
,m2

A,m
2
Z)

+
2∑

k=1

|C3−k|2
[
Ĝ(m2

Hk
,m2

W )− Ĝ(m2
Hk
,m2

Z)
]

− Ĝ(m2
h,m

2
W ) + Ĝ(m2

h,m
2
Z)

}
(4.27)

In our research we used the limits presented by the Gfitter group [60]. At the reference
point mh = 126 GeV and mt = 173 GeV they get:

S = 0.05± 0.11,

T = 0.09± 0.13,

U = 0.01± 0.11

(4.28)
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5 Analysis of the CP -Conserving 2HDM Potential

By taking into consideration everything written in the last two chapters we performed a
numerical analyses of the CP -conserving 2HDM. For the research we used the 2HDMC. Also by
the means of Mathematica computation program we performed a check of possible models. First
of all, we performed a test run of the 2HDMC in the generic basis. For this task we modified
the 2HDMC. A random number generator (RNG) was implemented along with changing the
input format to a convenient form and fixing several bugs. Theoretical and numerical results
were compared to get an idea of possible limits of the 2HDM, which afterwards were used to
improve the efficiency of computing and reduce the number of input parameters. We discuss
our approach to numerical analyses of the CP -conserving 2HDM and check theoretical and
numerical results.

5.1 Our Approach to the Analysis of the CP -Conserving 2HDM
Potential

As stated earlier, the main tool for the analysis of the CP -conserving 2HDM potential was
the 2HDMC. First of all we performed a test run by generating 107 random CP -Conserving
2HDM scalar potentials. It turned out that only 3 427 points were valid in terms of the 2HDM
potential stability, tree-level unitarity and quartic Higgs perturbativity. We call this test the
UPS check.

This test brought up several problems. First of all, such research is time consuming. On
average we managed to get around 7 points per hour 13 after the UPS check. Another problem is
that data takes a lot of space. A default single output is 360 bytes long. Therefore modifications
of the 2HDMC were a must.

First of all, the 2HDMC code was modified to check the model only if parameters satisfy
the UPS check. Prior to that all possible parameters were calculated at once. This simple
modification reduced computing time by a lot. Secondly, if all of the UPS check conditions are
satisfied result is saved.

At this point a possible further reduction is possible. From the theoretical analysis of
13For the relevance all computing was CPU based and performed on i7-6700k 4.6 GHZ under full load.
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eq.(4.4, 4.5, 4.11, 4.12) we found that:

0 <λ1 < 4π,

0 <λ2 < 4π,

−4π <λ3 < 8π,

−32

3
π <λ4 <

32

3
π,

−24

5
π <λ5 <

24

5
π

(5.1)

Due to mathematical complexity we failed to perform a more in-depth analysis. One of the
possible solutions is to fix λ5 = 0 and therefore it becomes possible to analyse both 2HDM
potential stability and S matrix unitarity. On the other hand, if we account for the pertur-
bativity condition, we get two additional parameters and therefore this implies that there are
two additional degrees of freedom. Obviously this arises even more problems. We compared
theoretical λ1−5 values eq.(5.1) with the ones we got from the numerical analysis fig.8:

0.01 <λ1 < 12.13,

0.01 <λ2 < 10.91,

−6.95 <λ3 < 24.73,

−23.8 <λ4 < 11.75,

−12.1 <λ5 < 8.61

(5.2)

Which are in consistency with the theoretical eq.(5.1) ones. Also we include coupling values in
Higgs bases:

0.26 <Z1 < 4.23,

0.01 <Z2 < 4.19,

−1.16 <Z3 < 24.68,

−23.71 <Z4 < 11.37,

−12.33 <Z5 < 7.42,

−4.34 <Z6 < 4.25,

−4.42 <Z7 < 4.37

(5.3)
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At this point we switched from using the generic basis as an input to the mass eigenstates
basis. The input is the following:

3 physical masses : mH [130; 1200] GeV,

mA [92; 1200] GeV,

mH± [300; 1200] GeV.

2 mixing angles : α [−π/2; π/2] ,

tβ (0; 100]

We assume that CP -even 2HDM sector is degenerate and thus the lower mass limit for the
CP -even heavy Higgs is at least mH = 130 GeV. Current experimental combined lower mass
limits for mA and mH± were taken from ref. [4]. We set the upper limit for all of the Higgs
bosons to 1200 GeV. We assume that this interval is enough for searches at the LHC in the
following years.

We chose the mass eigenstates basis as it is the only basis where one of the parameters is
fixed. It is the SM Higgs boson mass. Value of the SM Higgs is randomly generated based on
a ref. [3]. The mass of the SM Higgs boson turned out to be uniformly distributed. This can
be seen by taking a look at fig.9.

Figure 9: Frequency distribution of the SM-like Higgs boson h mass after the UPS check.
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Based on determination of couplings λ1−5 and our choice of the possible Higgs boson mass
values, the range for the value of the coupling coefficient m2

12 is determined to give a valid
parameter point. Afterwards m2

12 is randomly chosen in the allowed range. Result is presented
in fig.10.

Figure 10: Result of generating m2
12 parameter after applying the UPS check. Scatter plot of

m2
12 as a parameter tβ (top). Frequency distribution of m2

12 (bottom).

70



At this point, after applying all of the mentioned tweaks we performed a 500 hour run. We
managed to get 224 619 valid points in the mass eigenstates basis. This results in around 450
points per hour. That is 64 times more effective computing compared with the default 2HDMC.
Size was reduced from 360 bytes to 244 bytes. That is more than 30 per cent reduction.

Further we analyse the Peskin-Takeuchi parameters by comparing them with values from the
Gfitter group. In our analysis we inspect these values directly without correlation coefficients
between the S, T and U parameters. As expected, the most severe constraints came from the
T parameter, which is a good sign. The valid region of the model after applying the Gfitter
group results is presented in fig. 11. After applying constraints on Peskin-Takeuchi parameters,
224 619 points were reduced to 23 822.

Figure 11: S-T plane. The shaded area is the allowed contribution from the new physics based
on Gfitter values.

Finally, the decay rates are checked. For this check the program Higgs Bounds (HB) [61]
is used. We check the fermiophobic model where the Yukawa couplings of the second Higgs
doublet are zero. This way we get the minimal constraint on the Higgs bosons decay rates. After
applying the HB check, the number of parameters is reduced from 23 822 to 2 977. Afterwards
we check if such model is possible in the Type III 2HDM by randomly generating 10 000 Yukawa
couplings. It turned out that all 2 977 model points are possible.
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5.2 Results of Our Analysis of the CP -Conserving 2HDM Potential

In this section we discuss the possible values of the Higgs bosons masses in the CP -
conserving 2HDM potential. We think that in the upcoming years LHC will be able to cover
the mass interval of the Higgs sector up to 1200 GeV. Although the results are based on the
CP -conserving 2HDM potential, nevertheless they can be achieved in the general model. We
provide the frequency distribution of possible mass values at different 2HDM check steps in
fig.(12, 13, 14). The maximum values are presented in tab.5.

Table 5: The maximum mass values, in GeV, of the additional 2HDM Higgs bosons at different
check steps.

UPS UPS+STU UPS+STU+HB
mH 1178.31 1178.31 1178.31
mA 1126.57 1098.43 1098.43
mH± 1162.94 1162.94 1162.94

Figure 12: Frequency distribution of the mass of the CP -even Higgs boson H at various 2HDM
potential check steps.
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Figure 13: Frequency distribution of the mass of the CP -odd Higgs boson A at various 2HDM
potential check steps.

Figure 14: Frequency distribution of the mass of the charged Higgs boson H± at various 2HDM
potential check steps.
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From the plot fig.12 it can be seen that there is a steep at the value of mH = 500 GeV.
We analysed this region and it turns out that this is due to the quartic Higgs perturbation
condition. In the plot fig.13 the peak after all three checks corresponds to the value mA = 2mt.
This is an undistinguishable decay process by HB.

Also we provide more detailed results after applying all of the three discussed 2HDM const-
raints. For convenience, frequency distribution of all three Higgs bosons is presented on one
plot. The result can be seen in fig.15.

Figure 15: Frequency distribution of the 2HDM additional Higgs bosons after applying all three
check steps.

A useful value for the determination of couplings between the 2HDM is the physical mixing
angle sβ−α. Possible values of sβ−α are presented in fig.16. It can be seen that the most
favourable values are around sβ−α = ±1. This indicates that the 2HDM sector is SM-like.

We also present relation between α and β in fig.17. An interesting conclusion can be made
about the value of the CP -even Higgs mixing α. The most probable value of α corresponds to
the non-degenerate case. This explains the peak at minimum values of the plot fig.12.
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Figure 16: Frequency distribution of the 2HDM mixing sβ−α after applying all three constraints.

Figure 17: Scatter plot of two 2HDM angles α and β after applying all three check steps.
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It turns out that in our model the most possible value of tβ is around one. This corresponds
to the of the maximal mixing between Higgs doublets. This can be seen in fig.18.

Figure 18: Frequency distribution of the ratio of VEVs relation after applying all three check
steps.

We face the fact that in most articles generic bases and Higgs bases are used for the analysis.
Therefore we show our results in terms of couplings λ and Z. The generic basis is presented in
fig.19 and Higgs bases in fig.20. We found that possible values of coupling coefficients lay in
the following intervals:

0.01 < λ1 < 12.13,

0.01 < λ2 < 10.53,

−5.54 < λ3 < 19.27,

−13.66 < λ4 < 7.5,

−8.67 < λ5 < 6.5,

0.26 < Z1 < 4.14,

0.01 < Z2 < 4.17,

−0.01 < Z3 < 19.27,

−9.16 < Z4 < 6.34,

−8.67 < Z5 < 6.64,

−3.9 < Z6 < 3.93,

−4.42 < Z7 < 4.04

(5.4)
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Figure 19: Distribution of coupling coefficients λ as a function of tβ in the generic basis after
applying all three check steps.
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Figure 20: Distribution of coupling coefficients Z as a function of tβ in Higgs bases after applying
all three check steps.
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6 Results and Conclusions

In the process of the research we obtained several results:

• We worked out possible transformations of the 2HDM CP -conserving potential between
the generic basis, Higgs bases and the mass eigenstates basis

• We derived and applied theoretical constraints of the 2HDM CP -conserving potential:

– Stability of the potential

– S matrix tree-level unitarity

– Quartic Higgs bosons perturbativity

– Peskin-Takeuchi parameters

• Using the 2HDMC and our own code we managed to get stable 2HDM CP -conserving
potential

By performing multiple transformations of the 2HDM CP -conserving potential we managed
to get to the original values. Therefore the derived transformations during the research are
correct. Numerical results of both 2HDMC and our code coincide. This implies that theoretical
constraints were derived correctly. After applying all of the constraints on the 2HDM CP -
conserving potential we got the following maximum values of the Higgs bosons masses:

• mH = 1178.31 GeV

• mA = 1098.43 GeV

• mH± = 1162.94 GeV

All of these conditions are in the interval 0.9 ≤ tβ ≤ 1.2. This might point out that the generic
basis is more preferable in the CP -conserving 2HDM.

We managed to improve computing results of our Monte-Carlo sampling by at least 60 times.
After applying all possible 2HDM check steps we got 2 977 valid CP -conserving parameter
points in the 2HDM parameter-space.
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