Taxonomie of Particles

angular momentum

Bosons

Spin 0,1,2, ...

Bose-Einstein statistic

Fermions

Spin $\frac{1}{2}$, $1\frac{1}{2}$, $2\frac{1}{2}$, . . .

Fermi-Dirac statistic

Pauli exclusion principle

photon

electron

divisible into smaller parts

elementary

if one collides elementary particles, only elementary particles come out

it is impossible to "split" elementary particles!

(i.e.: to separate and isolate the parts of an elementary particle)

but elementary
particles can have
a (sub)structure

extended Hadrons

fundamental ~ pointlike

in fundamental particles, scientists could not find any substructure.

They appear point-like even to our best microscopes

(which are particle accelerators)

Hadrons

Baryons

- are fermions
 - ightharpoonup Spin $\frac{1}{2}$ and $1\frac{1}{2}$
- made of 3 quarks (or antiquarks)

Mesons

- are bosons
 - ► Spin 0 (pseudoscalar)
 - ► Spin 1 (vector)
- quark and antiquark

Spin $1\frac{1}{2}$

Spin 0

Spin 1

Taxonomie of Particles

macroscopic matter

molecule

- follows the laws of classical physics: the quantum mechanical description brings understanding of the properties of the material, but is not suited to classify the macroscopic object.
- There is no Bose-Einstein or Fermi-Dirac statistics, only Maxwell-Boltzman
- is a borderline case:
 - large molecules behave more or less like classical objects
 - ullet small molecules, like H_2 can form quantum mechanical coherent states:
 - $lacktriangleright H_2$ is a boson
- ightharpoonup HD is a fermion

they are neither point-like nor elementary!

Taxonomie of Particles

- the atom is a quantum mechanical object
- it has definite spin and parity
 - → it can be a boson or a fermion
- it is extended
- it can be split into electrons and nucleus:
 - plasma (only a few eV are needed)

- the nucleus is a quantum mechanical object
- it has definite spin and parity
 - → it can be a boson or a fermion
- it is extended
- it can be split into nucleons:
 - protons and neutrons(a few MeV are needed)

they are neither point-like nor elementary!

the electron

Spin $\frac{1}{2}$ \rightarrow Fermion

Mass: 511 keV

Charge: -1

stable

the electron is point-like and elementary!

the photon

Spin 1 → Boson

Mass: 0

Charge: 0

stable

the proton is not point-like but elementary!

the neutron is not point-like but elementary!

Spin $\frac{1}{2}$ \rightarrow Fermion

Mass: 105 MeV

Co Ra Charge: -1

 τ : 2.2 μ s \rightarrow unstable

the neutrino - theory prediction

strange particles

- are Hadrons
- are unstable

K: Rochester and Butler (Univ. of Manchester)

Λ: Hopper and Biswas(Univ. of Melbourne)

and the second second second second

the antiproton is not point-like but elementary!

World of Particles Taxonomie Thomas Gajdosik

Spin $\frac{1}{2}$ → Fermion

Mass: 1.29 GeV

Charge: $+\frac{2}{3}$

unstable

BNL: NSLS-II under construction

Burt Richter (SLAC)
Samuel Ting (BNL)
1974

all leptons are point-like and elementary!

Spin $\frac{1}{2}$ → Fermion

Mass: 4.18 GeV

Charge: $-\frac{1}{3}$ unstable

background suppression and computer aided statistical analysis lets the Fermilab E288 experiment discover the Upsilon meson 1974

the gluon is point-like but not an asymptotic state!

hints for W^{\pm} - and Z-boson

W^{\pm} -bosons:

Spin 1 → Boson

Mass: 80.385 GeV

Charge: ±1

unstable

 $\Gamma_W = 2.085 \; \text{GeV}$

arged currents were known from detection.

CERN announced the experimental observation of **weak neutral currents**, shortly after they were predicted by the electroweak theory of Abdus Salam, Sheldon Glashow and Steven Weinberg.

even Z^0 -boson:

Spin 1 → Boson

Mass: 91.1876 GeV

Charge: 0

Ja unstable

Ri $\Gamma_W=$ 2.4952 GeV

feer like vvs, they smell like Ws, they must be Ws''.

4 Z-events by end of June 1983

JA1

they

UA1 detector (parking)

all quarks are point-like but not asymptotic states!

Higgs boson

2012 CMS & ATLAS (CERN)

Prec Spin 0 → Boson

Mass: 125.09 GeV

Charge: 0

unstable

predicted τ : 1.5×10^{-22} s

Nobel prize 2013

