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Are symmetries perfect?
F the small imperfections make it more interesting . . .

is physics really perfectly symmetric?

• obviously, many things in our macroscopic
world are not symmetric
• but is this also true for the fundamental
laws of physics?

F Originally it seemed that nature does not only exhibit
the previously discussed continuous symmetries, but
the discrete symmetries as well:

• P (parity transformation = mirror symmetry)
• T (time reversal)
• C (charge conjugation)
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Are symmetries perfect?
F the Wu experiment

• originally, all experiments indi-
cated that the microcosmic world
is perfectly mirror-symmetric
• 1956 Tsung-Dao Lee and Chen
Ning Yang postulated a violation
of parity for the weak interaction
• in the same year, Chien-Shiung
Wu demonstrated the violation
experimentally

I nature is not mirror-symmetric,

P-symmetry (parity) is violated
Wu Yang Lee
1958 1957
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Are symmetries perfect?
F a deeper understanding of the Wu experiment
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• also (undetected) anti-neutrinos are emitted
• anti-neutrinos have a spin that is always orientated in the
direction of movement (they are ”right-handed”)
• since a P-transformation changes the direction of movement,
but not the spin, it produces a ”left-handed” anti-neutrino
• as it turns out, we do not see a left-handed anti-neutrino in
nature at all!
• therefore, Parity is said to be maximally violated



World of Particles Symmetries Thomas Gajdosik

Are symmetries perfect?
F Parity violation – but maybe a CP symmetry?
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• there is no left-handed anti-neutrino, but there is a left-
handed neutrino (and only a such-handed!)
• obviously, this violates C-symmetry (Charge conjugation, the
symmetrie between matter and anti-matter)
• BUT: the combined symmetry transformation CP (exchange
matter/anti-matter plus mirroring) works:

ν̄
.

.

ν
.

.

u
u

u
u

right-handed
anti-neutrino

left-handed
neutrino

⇐ CP ⇒



World of Particles Symmetries Thomas Gajdosik

Are symmetries perfect?
F the kaon experiment of 1964
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• if there is a CP-symmetry in nature, by Noether’s theorem there
is also a corresponding conserved quantum number ”CP”
• kaons and pions are pseudo-scalars
⇒ PK = −K and Pπ = −π
• therefore, CP is conserved for the decay of the long-lived kaon
into three pions, but not for the decay into two

I CP is (slightly) violated

J. Cronin Val Fitch
1980



World of Particles Symmetries Thomas Gajdosik

Are symmetries perfect?
F ”last hope” CPT ?

the CPT-theorem states:
• under very general conditions
i.e.: transformations of the Poincaré group

are symmetries of microscopic physics

• quantum field theories (the ”language” of particle physics)
always have CPT as a symmetry

. . . also experimentally, no violations have been observed so far

I CPT is (as far as we know today) not violated

interesting side remark:

• CPT-symmetry together with CP-violation, gives also T-violation

• that means: the fundamental laws of nature are not time-symmetric,
there is a special direction of time even at the microscopic level

”the future IS different from the past, after all!”
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Overview
discrete symmetries

symmetry valid in the
universe?

P (parity: ”mirroring”) 8

C (charge conjugation) 8

T (time reversal) 8

CP (combination of C and P) 8

CPT (combination of C, P, & T) 4
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How symmetries make theories
F QED, the quantum theory of light

remember:
• physics is invariant under a global
U(1)-transformation of the field Ψ:

U(1)Ψ(t, x, y, z) = eiαΨ(t, x, y, z)

• global means a synchronous phase
transformation of all particles in the
whole universe!

the idea:

• replace the global transformation by a local one:

U(1)Ψ(t, x, y, z) = eiα(t,x,y,z)Ψ(t, x, y, z)

( different particles at different positions get transformed independently)
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How symmetries make theories
F QED, the quantum theory of light

result of a local U(1) transformation:
• if only particles are transformed

F not changing the electromagnetic
interaction

I the theory is not invariant under
local U(1) transformations!

• if the electromagnetic interaction is
included in the transformation
I the theory becomes invariant under

local U(1) transformations!

• this works only, because the electromagnetic interaction

has ”just the right form”
”coincidence or deeper truth?”
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How symmetries make theories
F QED, the quantum theory of light

the modern viewpoint
(”gauge principle”):
• a non-interacting theory,
– invariant under a global symmetry
can be made locally symmetric
– by introducing

F additional fields
F and interactions

I the full theory is now for QED:

F locally symmetric invariant under local phase transformations

F and interacting the electro-magnetic gauge field Aµ, describing photons

each local symmetry produces an interaction
plus new particles which mediate it
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How symmetries make theories
F Quantum-Chromo-Dynamics (QCD)

the theory of the strong force

• experiments show that protons (and
neutrons) have an inner structure

• observations suggest the existence of

F fermions (quarks) with

F 3 inner degrees of freedom (color)

inside the nucleon

there are three color states:

red, green, blue
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How symmetries make theories
F Quantum-Chromo-Dynamics (QCD)

the theory of the strong force

• we do not see ”color”
• color states can be redefined

F without changing the theory!

”new colors” = mixture of old colors

= Arr +Arg +Arb

= Agr +Agg +Agb

= Abr +Abg +Abb

• mathematically, this corresponds to a unitary 3× 3 matrix A
• the symmetry group is called SU(3)
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How symmetries make theories
F Quantum-Chromo-Dynamics (QCD)

the theory of the strong force
gauge principle:
• making the SU(3)color-symmetry local
we get
F the strong force with
F the gluon as the force carrier

• the strong force binds the quarks into
mesons and baryons
• it is also (indirectly) responsible for the
stability of nuclei
(binding of proton and neutron, the nuclear force)

the color symmetry of quarks
enables the existence of atoms!
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How symmetries make theories
F sketch of electro-weak interaction

• proton and neutron behave similar
inside the nucleus
F iso-spin symmetry

• extending this iso-spin symmetry
to all left-handed fermions
F groups them in pairs (doublets)
F is a symmetry of the free theory
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”new flavor” = mixture of old flavors

′ = Auu +Aud

′ = Adu +Add

′ = Auu +Aud

′ = Adu +Add
gauge principle:
• making the SU(2)L-symmetry local
(and ”mixing” it with a local U(1)Y -symmetry) we get
F the electro-weak force
F with W - and Z-bosons (and photons) as force carriers
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Overview

Symmetries and Interactions

symmetry interaction

U(1)

SU(2)

SU(3)

?

symmetry of all leptons
and quarks

symmetry of left-handed
leptons and quarks

symmetry of quarks alone

is it a symmetry of space-time
geometry itself, or something
qualitatively different?

U(1)Y

weak

strong

(quantum-) gravity


electro-
weak


