Particles of the Standard Model: Gauge Bosons

- **1. Gauge Theory**
- 2. screening in QED
 - Vacuum polarization
 - running coupling constant
- 3. anti-screening in QCD
 - asymptotic freedom
 - confinement
- 4. massive vector bosons

Electro Magnetism (EM) as a gauge theory

- classic EM is described with $\vec{E}=\vec{\nabla}V$ and $\vec{B}=\vec{\nabla}\times\vec{A}$
 - the change $V \to V' = V + const.$ and $\vec{A} \to \vec{A'} = \vec{A} + \vec{\nabla} \Lambda$ does not change $\vec{E'} = \vec{E}$ and $\vec{B'} = \vec{B}$
- in SR \vec{E} and \vec{B} are unified to $F_{\mu\nu}$ with $E_i = -F_{0i}$ and $B_i = -\frac{1}{2}e_{ijk}F_{jk}$ - with $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ and $A^{\mu} = (V, \vec{A})$
- a change of the type $A_{\mu} \to A'_{\mu} = A_{\mu} + \partial_{\mu} \Lambda$ does not change anything
 - \Rightarrow gauge transformation

a gauge transformation describes the redundant parametrisation of a system but nature is described most exactly by gauge theories

Making global symmetries local: "gauge-principle"

- The U(1) symmetry transformation is just the change of a phase.
 - for instance of the normal Dirac spinor, describing a charged fermion:

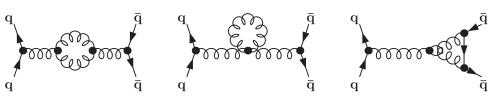
$$\Psi \to \Psi' = e^{i\alpha} \Psi$$

– if we make the global phase transformation $e^{i\alpha}$ local:

$$\Psi \to \Psi' = e^{i\alpha(x)}\Psi$$

- the derivatives spoil the invariance of the theory
- solution:
 - changing the normal derivative to a covariant derivative

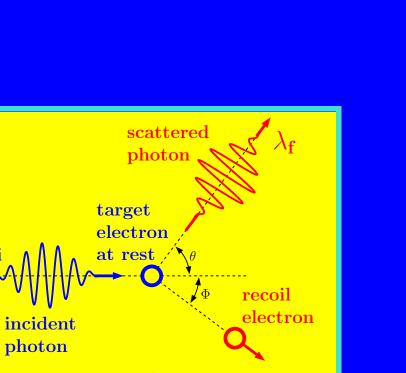
$$\partial_{\mu} \to D_{\mu} = \partial_{\mu} - igA_{\mu}$$

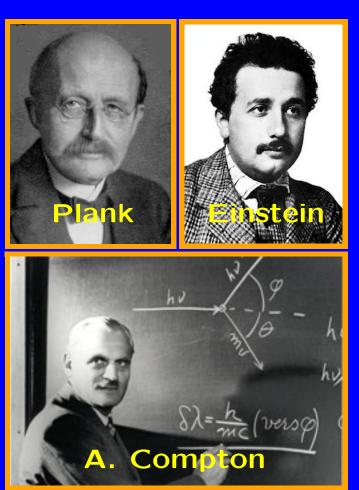

- that $D_{\mu}\Psi$ has the same transformation as Ψ :

$$D_{\mu}\psi \rightarrow (D_{\mu}\psi)' = D'_{\mu}\psi' = e^{i\alpha}D_{\mu}\psi$$

– and we get the gauge transformation for A_{μ} with $\Lambda = (1/g)\alpha$

General features of gauge fields

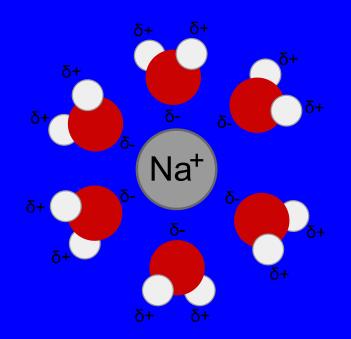

- They are real, massless (if the gauge group is unbroken) vector fields
 - \Rightarrow they carry 2 (if massive 3) degrees of freedom
- They couple to fields that are charged under the gauge group:
 - electrons are charged under U(1) electro-magnetic
 - quarks are charged under color SU(3) and U(1)
- Abelian gauge fields are not charged
 - photons are electrically neutral
 - they do not couple to themselves (at tree level)
- non Abelian gauge fields are charged under their own gauge group
 - gluons carry color themselves
 - they couple to themselves
 - \Rightarrow asymptotic freedom
 - ⇒ confinement

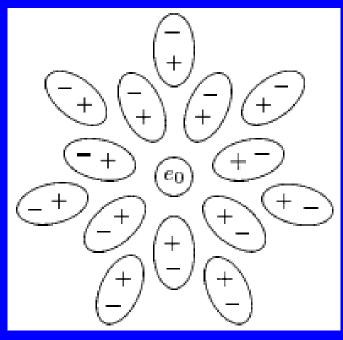

different gauge groups

- The simple phase transformation has the group structure of U(1):
 - U(1) is represented by the complex unitary 1 imes 1 matrix e^{ilpha}
 - in nature it appears as the gauge group of QED
- The simplest non Abelian group is SU(2)
 - it's fundamental representation (t_r) : complex 2-vector = spinor
 - it's adjoint representation (t_G) : the 3 Pauli matrices $\{\frac{1}{2}\sigma^j\}$
 - in nature it appears as part of the electro-weak gauge group
 - note, that (t_r) and $(-t_r^*)$ are equivalent for SU(2)
- The next simple non Abelian group is SU(3)
 - it's fundamental representation (t_r) : complex 3-vector
 - it's adjoint representation (t_G) : the 8 Gellman matrices $\{\frac{1}{2}\lambda^j\}$
 - in nature it appears as the gauge group of QCD
 - note, that (t_r) and $(-t_r^*)$ are not equivalent for SU(3)

1900 - 1924

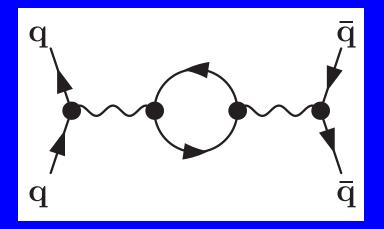
e⁻

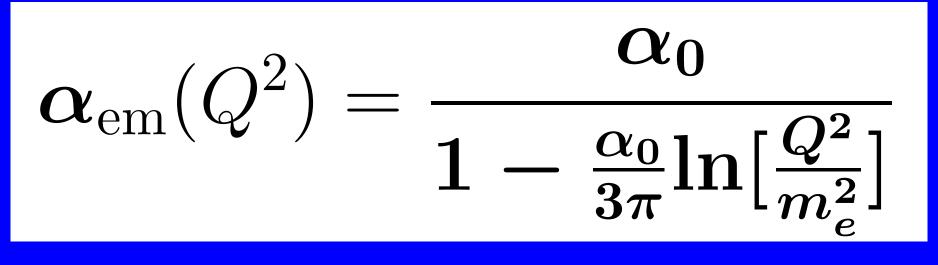

1897


 $\lambda_{\mathbf{i}}$

screening

- the effective charge of an ion in a dielectric medium is reduced by the dielectric molecules surrounding the charge
- the same happens in the vacuum:
 if one looks at the charge with sufficient energy to see virtual electron-positron pairs



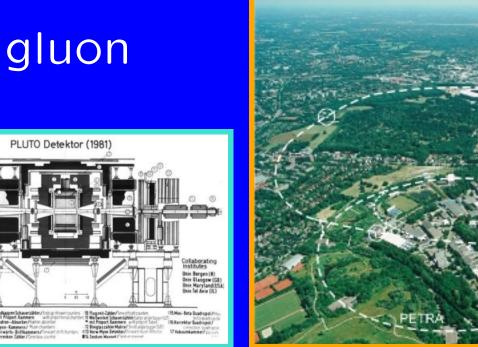


screening

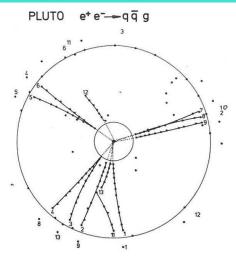
 the energy dependence of the effective charge in the vacuum due to the Vacuum polarization is described by the

★ running coupling

 \boldsymbol{g}


Particles

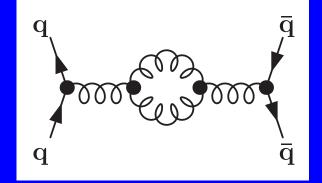
 e^{-}


U

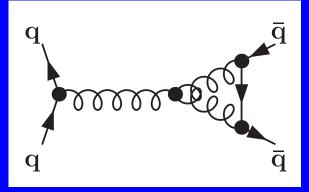
d

 \boldsymbol{g}

the consistent interpretation of **3-jet events** as **gluon bremsstrahlung** in the framework of QCD, done in PLUTO, TASSO, MARK-J, and JADE (experiments at PETRA, DESY), marks the discovery of the gluon **1979**

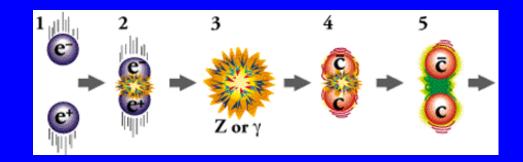

1955

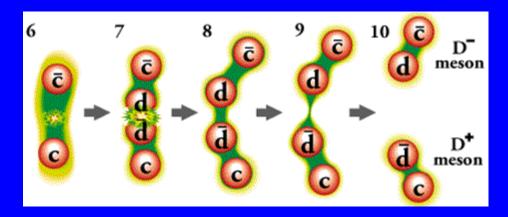

1979


anti-screening

- the self couplings in QCD have the opposite effect for the color charges
 - the closer one looks, the weaker the charges seem to become

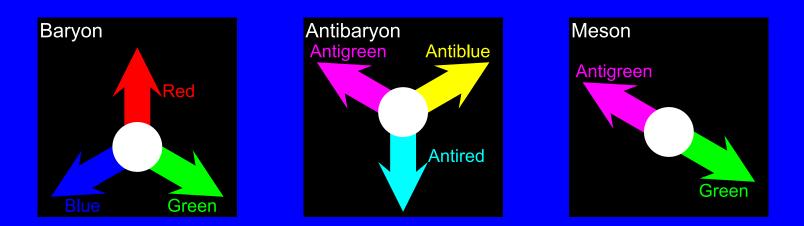
asymptotic freedom !





anti-screening

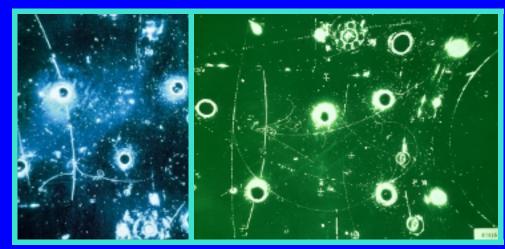
- at high energies (colliders)
 we have no problem to separate color charges
- at lower energies
 - the force connecting the charges seems to become stronger



strong enough that the potential (= force * distance)
 creates a quark-antiquark pair, that restores
 color neutrality
 Color confinement !

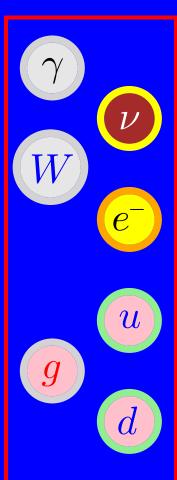
color confinement

- low energy states have to be color neutral
- → we can only observe color neutral particles
- the strong force hides inside the nucleons
- the nuclear force is more like a van der Waals force:
 - mediated by mesons (quark antiquark pairs)
 - Baryons and Mesons are color singlets



Z

Particles


hints for W^{\pm} - and Z-boson

Weak charged currents were known from neutrino detection.

CERN announced the experimental observation of **weak neutral currents**, shortly after they were predicted by the electroweak theory of Abdus Salam, Sheldon Glashow and Steven Weinberg.

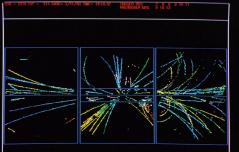
1973

Particles

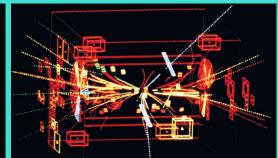
 \mathcal{V}

 e^{-}

U

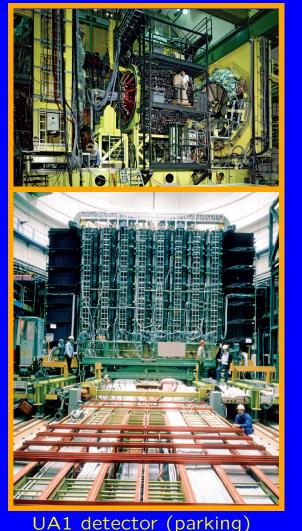

d

W


 \boldsymbol{g}

event in the UA1 detector

Z-event in UA1

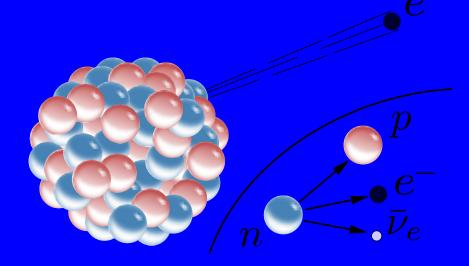

January 1983:

Rubbia: "They look like Ws, they feel like Ws, they smell like Ws, they must be Ws".

4 Z-events by end of June 1983

UA2 detector

Particles


Weak Interactions

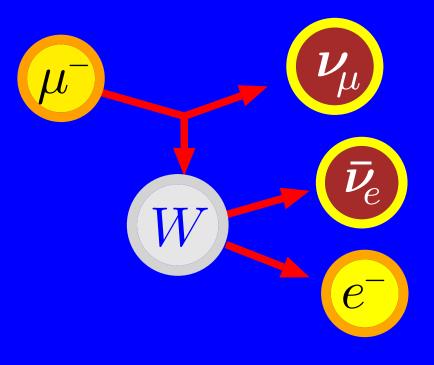
- 1933 Enrico Fermi explained the radioactive beta decay
 - by coupling four fermions
- the same coupling constant $G_F = \frac{1.16637 \times 10^{-5}}{{\rm GeV}^2} \ {\rm describes}$
 - radioactive beta-decay
 - muon decay
 - charged pion decay
 - neutrino interactions

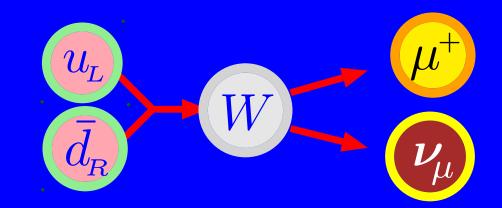
 \star but it cannot work for energies bigger than ~ 100 GeV

 π^+

 ν_{μ}

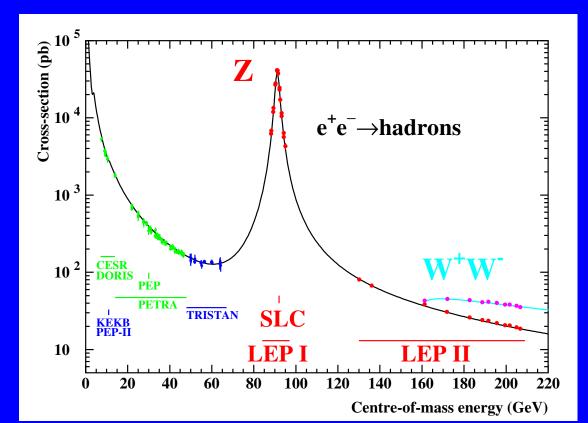
 u_{μ}


Particles


Weak Interactions: modern explanation

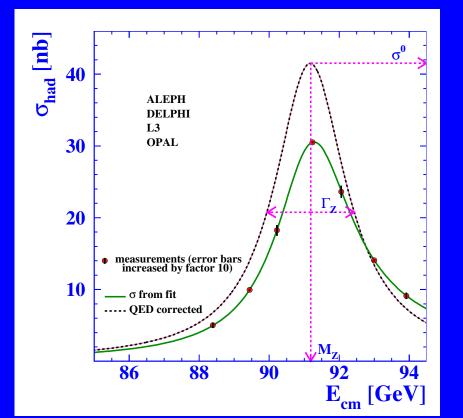
- weak interactions couple a pair of fermions with another pair
 - via vector bosons
- the Fermi coupling constant

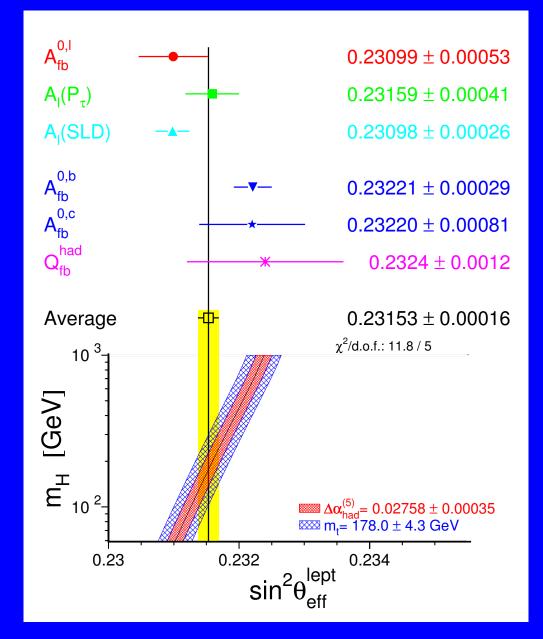
$$G_F=rac{\sqrt{2}}{8}rac{g^2}{m_W^2}$$


 is independent of energy
 only if the energy is (much) smaller than the mass of the W-boson (80 GeV)

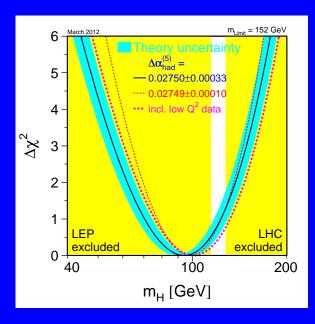
Weak Interactions: LEP

- electron-positron colliders can produce Z-bosons or pairs of W-bosons
 - ★ which decay to hadrons and leptons




LEP

Weak Interactions: LEP


 electron-positron colliders determine the energy of collisions very accurately
 precision measurements

Weak Interactions: LEP

- measuring more predictions than there are parameters in a theory
 consistency check
 - for the Standard Model

	Measurement	Fit	$0^{\text{meas}} - 0^{\text{fit}} \sigma^{\text{meas}}$ 0 1 2 3
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02750 ± 0.00033	0.02759	
m _z [GeV]	91.1875 ± 0.0021	91.1874	
	2.4952 ± 0.0023	2.4959	-
σ_{had}^{0} [nb]	41.540 ± 0.037	41.478	
R _I	20.767 ± 0.025	20.742	
A ^{0,I} _{fb}	0.01714 ± 0.00095	0.01645	
Α _I (Ρ _τ)	0.1465 ± 0.0032	0.1481	
R _b	0.21629 ± 0.00066	0.21579	
R _c	0.1721 ± 0.0030	0.1723	
A ^{0,b} _{fb} A ^{0,c} _{fb}	0.0992 ± 0.0016	0.1038	
A ^{0,c} _{fb}	0.0707 ± 0.0035	0.0742	
A _b	0.923 ± 0.020	0.935	
A _c	0.670 ± 0.027	0.668	
A _l (SLD)	0.1513 ± 0.0021	0.1481	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314	
m _w [GeV]	80.385 ± 0.015	80.377	
Г _w [GeV]	2.085 ± 0.042	2.092	•
m _t [GeV]	173.20 ± 0.90	173.26	
March 2012			0 1 2 3