Important concepts and formulas
of Aitchison and Hay
"Gauge Field Theories in Particle Physics

1. Quarks and Leptons
Introduction
e how to come to leptons and quarks historically

e Table 1: Properties of Quarks and Leptons, p. 27

Leptons Quarks
Particle Mass (MeV/c?) Qe Particle Mass (GeV/c?) Qe
Ve <3x10°° 0 u 1-5x10"3 2/3
e 0.511 —-1 d 3—-9x1073 -1/3
vy <0.19 0 c 1.15 - 1.35 2/3
o 105.66 —1 s 75—-170 x 1073 -1/3
Ur < 18.2 0 t 174.3+5.1 2/3
T 1777.0 —1 b 4 — 4.4 —-1/3
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2. Particle Interactions in the Standard Model
gz e "/

The Yukawa potential U(r) = — (1)

4 r

e can be understood as coming from the exchange of a massive particle

232
2 4 C h h
~ 5 or mpy =~ — (2)
a ac

e the Fourier transform of U(r) gives

2
2 — 3= _1(q7) — 9s
@ = [ Erdiuem = - (3)

e Electromagnetic interactions: range a — oo or myy — O

e Weak interactions: myy ~ 80GeV — range a < fm
= "point-like’” interaction, but similar coupling strength as EM

e Strong interactions: mg — O from scattering angles . ..
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3. Electromagnetism as a Gauge Theory
Fourvector notation A = (V, A)
e (Four-)current j* = (p,j) with current conservation 9,j* = 0
e Maxwells equations
OuFH = 0, (0 AY — 0V AF) = 5" (4)
e the gauge transformations
AP 5 AP = AP — 9y (5)
leaves the fieldstrength FH*Y (and Maxwells equations) invariant
e the covariant derivative (3.29)
D, = 0y +iqAy, (6)
e gauge transformations also for electrons (3.40)

v W = Xy (7)
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4. Relativistic Quantum Mechanics

5 9 5
E~i— ,p~—i— , Or ~ j—— = 10
ot 7 o Pr="g.u H

e Mmass-shell condition

2 2 D 2
p* =pupt' =E°—p-=m

e solution to the Klein-Gordon equation
(04 m?)¢ = (9ud" +m?)¢ =0

as plain waves: ¢ = Ne~ P-T = Ne tbt+ip@

e Dirac equation as the "square root” of the KG equation:
(9 +id -V — fm)W =0
or more covarant looking (with 82 = 14.4)
ﬁ(zﬁ% +iB8&-V —m)WV = 'yo(i'y'“(% —m)V =0
with the definitions 9 = 8 and ~% = Ba!

(8)

(9)

(10)

(11)

(12)
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4. Relativistic Quantum Mechanics
The v-matrices

e are defined by the Clifford algebra

{¥#, 4"} = g"" X 1444 (13)
e Oone choice is
1owo  0Ooyo - 0 o’
fyo — X X f)/] = ] (14)
Ooxo —1oxo2 —o/ 0
e a Dirac spinor has four components
(]
w=| ¥ | = ( ¢ ) (15)
Y3 X
(I
and the (Weyl-)spinors ¢ and x have two components
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4. Relativistic Quantum Mechanics
Spinors

e a basis for the spinors ¢ (or x) can be chosen as

(é):T and (2)=¢ (16)

e Lorentz transformation are defined on (Dirac) spinors, too ...

e the Dirac current jH = WAy™m%W with ¥ = wy0 (17)

is conserved: 93" =0

e using the gauge principle Oy — Dy, (18)

in the Dirac equation allows the discussion of atoms
— splitting the Dirac spinor into
big (¢, "particle’”) and small (x ~ E_i_m , "antiparticle’”) components

IS convenient

Thomas Gajdosik — Gauge Theories in Particles Physics: important concepts 6



5. QFT I: — free scalar field

Quantum Oscillator (algebra)
e from [H,al=-wa , [H,a']=4wa' ,and Hin)= Enln) (19)
follows
H(a'n)) = (Bn 4+ w)(@'|n)) and  H(aln)) = (Bn—w)(@ln))  (20)
e for the spectrum to be bounded from below:
= 3 a minimum ng = 0 with a|0) =0
— |0) is called vacuum: no exitation present

e a field is a set of quantum oscillators at each point
= canhonical quantisation

[p(2), ()] = [7(2), 7(y)] =0 and  [¢(z),7(y)] = i6(z — y) (21)

e Fourier expansion = wave expansion
= creation and annihilation operators as expansion coefficients

action principle S =0 = minimizing the action
— leads to the pathintegral quantisation

Thomas Gajdosik — Gauge Theories in Particles Physics: important concepts 7



6. QFT II: — interacting scalar field
Interaction picture !

e Dyson expansion ~ free Hamiltonian Hgy + interaction Hamiltonian Hjnt
— expansion in powers of the interaction strength

e scattering matrix Sy; = (f|S]3) with § = Tetintt
— the projection of the final state onto the time-evolved initial state
— interaction picture is crucial herel

e Wick contraction — assumption: q3 ~ a -+ al
— not more than one creation or annhiliation operator

~~

(0|JABCD...|0) = (AB)o(CD)g{...)o + permutations (22)

o since we have Sy; = (f|3]i) = (TaetHintlal)o = 52, T(as [1} dpa) o
— we get as the primary element the propagator

- — R . d4k ie—ik.(aj—y)

(23)
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6. QFT II: — interacting scalar field

plane wave expansion

3(2) = [ 5Bz [ae he 4 at(kyel ]

possibilities for connecting operators in (a[[} qska;.f)O

° <afa;f>o gives not connected diagrams

1Pp.T

* @A®da(@)0 = A=

o (Ba@)a} ()0 = (@a(P)Fa@))0) = A—eipe

e and finally the propagator

je—tk.(z—y)

7 7 A A _ d*k
OIT[6c ()0 W)][0) = (CaCy)r = [ s GO P

(24)

(25)
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6. QFT II: — interacting scalar field
Matrixelements and Transitionrate

e the scattering matrix is split into non-interaction and interaction
St =08p +i(2m)*6% (py — pi) My (26)

e the transitionrate uses only the interaction part

Pr = (2m)* 6% (ps — pi) | M g2 (27)
e the cross section is a transition rate
tryfact
do — symmetryrtac Or/dl_lps |Mf@|2 (28)
fluxfactor

— the symmetryfactor = 1/(njgentical!) accounts for identical final state particles
— the fluxfactor accounts for density of initial states and probability of interaction

* one-particle fluxfactor = 2F

* two-particle fluxfactor = 2E42Eg|vrel| = 41/ (pa.pp)2 — (mamp)?
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6. QFT II: — interacting scalar field

Lorentz invariant phase space

d3pg
dLips(s = p2:pa,pR,...) = (21)46%(p; — ...(29
e in the center-of-momentum frame (CI\/I-frame) P =prf=0 (30)
e for only two particles in the final state dLips(s;pa,PB)cM
_ (2m)*6(\/s — Ea — EB)63>(Pa + PB)d>pad’pp _ p* dpd*Q5(\/s — Ex — Ep)
= = (31)
(27)32FE4(27)32E (47)2E4EpR
— with the abbreviations p = |p4| and W = E4 + Ep we get dW = pgf + %15 — Vgﬁg
dLips(s; pa, pp)em = G2 zhy AWS(V/s — W) (32)
— solving /s =W = E, + Ep for p we get
\/_—EAZ\/Ei—mi—I—m% = 2y/sEs=s+m% —m% (33)

p=+/E3—-m3= ﬁ\/[s +m3 —m3]? — 4sm3 = ﬁg\/s2 + m4 +m% — 2sm? — 2sm% — 2mamy (34)
— and % of the fluxfactor
2\/(PA-pB)2 — (mamp)? = \/(QPA-pB)2 — (2mamg)? = \/[(pA + pp)? —m3 —m3]? — (2mamp)?
\/[s—m%—mé]Q— (2mamp)? = \/ + m% + m% — 2sm3 — 2sm% — 2mim% = 2pv/s  (35)

— and the total cross section 22 e = % (36)
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7. QFT III: — complex scalar, Dirac, Maxwell, EM interactions
conservation laws

e for the real scalar, the conserved quantity was the Hamiltonian
A =w(N+3) itself
e only for two (or more) real scalars (or a complex scalar) one can construct

different conserved quantities
— of course, one has to have a symmetry of the Lagrangian (action)

Example: phase invariance ¢’ = e_mcﬁ

-~

e we get a conserved current Ng i[T (O 3) — (0Md1) ] (37)
— conserved means 0 = 9, N} = 2 Ag + 8]-]%

— with the definition N, := [d3z N

</5
5] 3 3 J o
— we get N—/d NO = _ /d o-N =_ [ as;, N 0 (38
9 xat b T OjING e (38)
— conserved charge N¢ = [H, N¢] =0

— can be checked explicitely, too
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7. QFT III: — complex scalar, Dirac, Maxwell, EM interactions
conservation laws

e using the plane wave expansion, eq.(24), for a complex field

7 3k ~ —1k.x 7 tk.x
W) = | rtarap [ak)e 5 + B (ke ] (39)
— we get the operator expression for N¢
Ny = [ L [af(atk) — 5 (k)b(k)) (40)

— giving us the operator algebra for the fields themselves

[Ny, ] = —¢ [Ny, 611 = +¢! (41)
— with exponentiating o
U(a) = e*NVs (42)
we get R 4 L
U(a)pU™ (a) =e "Yp=¢ (43)
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7. QFT III: — complex scalar, Dirac, Maxwell, EM interactions
conservation laws
e with the counting of states Ny|ng) = nylng) (44)

and the operator algebra of the fields we get
Ny(dlng)) = (ng = 1)(9Ing))  Ny(8'lng)) = (ng + 1)(6'Ing))  (45)
— ¢ destroys a particle or creates an antiparticle
e definition of the vacuum: a|0) = 5|0) =0 (46)

e the propagator is now

Cl4k ie—ikz.(m—y)

(OIT[3(2)3! (1)]10) = (OITIF (2)BWI0) = [ (dkyieo") (47)

— ¢ and qu have to have the same mass
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7. QFT III: — complex scalar, Dirac, Maxwell, EM interactions
Dirac fields
e the Dirac Lagrangianis Lp=W(\d—m)WV (48)
with @ := 9, and «* defined by the Clifford algebra, eq.(13)

e the Dirac fields W are still superpositions of plande waves:

~ d3k
Wa(x) :/(2703@821

2
— u(k,s) and v(k,s) are commuting spinor wave functions

es(k)ualk, s)e " 4+ dl(k)va(k, s)e' | (49)

— W anticommute because of the anticommutation of ¢ and d:
(s Csp} = {8y Elp} = {dppr diop} = {dl, dl} = (&) diPr =0 (50)
and  {&-(k),el(p)} = {dr(k),dl(p)} = (2m)363(k — £)drs (51)
e u(k,s) and v(k, s) fulfill the completeness relations

> ualk,s)ug(k,s) = (k+m)ag Y valk,s)vg(k,s) = (k—m)as (52)

1 1
S_:tj S_:ti
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7. QFT III: — complex scalar, Dirac, Maxwell, EM interactions

Dirac fields

e canonical momentum 7w = a/iD = 8/:12 = Wiy = Wl (53)
ow  0(0W)
gives the canonical commutation relations
{Walx), Wiy} = 63(F — §)dag (54)

e the phase transformation W/ = e W ~ W — jaW
— gives the conserved current N{; = WAyHW

— and the number operator Nw = fd%\lﬁw

e in terms of creation and annihilation operators we get

-
Ap = [ oryafe X [El020) + al()a ) (55)
s=:l:§
and ~ A3k -~ ~ ~
Ny = | Gny3 Zi el(1)zs (k) — dl(k)ds(k)| (56)
S==3
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7. QFT III: — complex scalar, Dirac, Maxwell, EM interactions
Dirac fields

e the momentum space (i.e. Fourier transformed) Dirac propagator
/ d*z ¢ (O[T [Wa(2) U 5(0)]0) = i(k — m + ic),

i(k+m)a i )
k2 — m2 —I—fe — k2 — m2 _I_ i€ ;’U,(k’, S)a’u,(k, 8)5 (57)
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7. QFT III: — complex scalar, Dirac, Maxwell, EM interactions

Maxwell field
is a gauge field with A* — A'H = AF — My
e a plane wave solution to Maxwells equations 9, F* = 0

e giving the Maxwell Lagrangian Lem = —z Fj, FH

d3k
AR (x =/
(@) (27)3V2E 5

e & (al) are the annihilation (creation) operators

e ¢/ are the polarisation vectors (polariation wave functions)
fulfilling the conditions

3 [a(k, NeH(k, e 5% o a1 (k, M) e (k, /\)e“f-ﬂ (58)

2=ke=0, e2=—-1 . |and| &* =cl+ BE! ~ et (59)
— when k# = (k,0,0, k) the polarisations are only transverse:
By — — _ 1 - By — 1) — L .
et(A=+1) @(O, 1,4,0) el (A 1) ﬁ(O, 1,—14,0) (60)
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7. QFT III: — complex scalar, Dirac, Maxwell, EM interactions
Maxwell field

e Quantizing A* is possible, but difficult
— conditions not as operator equations, but as "weak’ equations
* only valid when evaluated on physical states

e the general propagator ( in R¢ gauge ) is

[ dta e OITIAM@) AT (O)]0) = 5 |~ + 1 - 0" 2| (6D)
k2 4+ ie k2
e Electromagnetic interaction with the gauge principle
Ou — Dy = 0y + iqA, (62)
giving Hint = —Lint = jtmAu (63)
with b = @ WV + q4i[dT (0 P) — (8101l — g5 A TP (64)

or  Lint = —qp VAV — q4i[37(8"9) — (019N PlAu + g3 AL A TG (65)
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8. Elementary Processes in Scalar and Spinor Electrodynamics
Coulomb scattering: st on static potential
e amplitude A_; = zfd4:cj€m 8+($)A,u($)
— with A0 = ,Z¢,, A=0, and j*  (z)= NN'(p + p')re—ilp—p)x

47 ||
/ / Ze? / /
A4 = —iNN'2m6(E — E )| /|2(E + E') = —i2nd(E - ENV4  (66)
p—p _
e the transitionrate, eq.(28), becomes P_ = 2md(E — E’)|VS+|2p(E’)
— with the density of final states p(E)dE = (25523 = 'ﬁfg?'ﬁgg? = 'f”'l‘grfgz

* there is no three-momentum conservation, as the static potential can absorb any recoil ...

) P lr7 212 =/11—2 /
e the cross section becomes do = =55 = 21|NN'Ze?|p —p'|"22E|?|p'|dQ2
2|p]| 2|p|167r

— since E'=E = |p'|=|p| and [P —p'|? = 2|F|?(1 — cosf) = 4|p|?sin 4

— and taking N=N'=1
do (Za)?E?
dS2 4|ﬁ|25in4%

— Rutherford cross section (67)

Thomas Gajdosik — Gauge Theories in Particles Physics: important concepts 20



8. Elementary Processes in Scalar and Spinor Electrodynamics
Coulomb scattering: e— on static potential
e amplitude A_- = —ifd4acj5m,e_(az)AM(:U)
— with jgm,e_ () = —eV/ ()" W (x) = —eu(k’, s")yFu(k, S)e_i(k_k/)'m

Ze?
7= (k — K)|2

A _ = —i275(E — E') u' (K, sHu(k, s) (63)

(&

e change from s scattering:
2F — u' (K, sNu(k, s) (69)
— averaging over initial spin and summing over final spin gives

12
LSt sHulk, )2 = (2E)2(1 — B sin2 §) (70)
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8. Elementary Processes in Scalar and Spinor Electrodynamics
Trace techniques

e when summing / averaging over spins
— one can use the completeness relations eq.(52):

Z ua(ka S)’aﬁ(ka S) — (k + m)aﬁ Z Ua(ka S)Q_JB(ka S) — (k - m)aﬁ (71)

11 —a1
S—:|:§ 8—:|:§

e then the Lepton tensor
LM (k, k') = 33 [u(K, syt u(k, )] [a(k, s )y u(k, s)]* (72)
s,s’

becomes 2L*(k, k')

= ) [a, )y ulk, )]k, v ulk, )" = > a(k, )y u(k, )ik, s)y" u(k, s')

SS 88

= Zu(k’ sV + m)y u(k, s") = 2[7“(% + m)y"]apu(k’, s)pu(k’, s")a

= ZW‘U‘? + 17 Lo (K + m) 50 = TV + m)y (K 4 m)] (73)
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8. Elementary Processes in Scalar and Spinor Electrodynamics
Trace techniques

e using the Clifford algebra, eq.(13) {+", 7"} = g"" X 1444
e and the cyclic property of the trace:

Tr[AB...CD] =Tr[B...CDA] = Tr[CAB... D]

e one gets the result Tr[lax4] =4
Tr[odd number of v's] =0
Try#y"] = g Tr[laxa] = 4gH
TrlyHyVyPy7] = 4(ghv gP? + g¥PgoH — ghPgh?)

e then the Lepton tensor becomes

(74)

(75)

(76)
(77)
(78)
(79)

LM (k, k') = STr[y(k +m)y” (' + m)] = sm> Tr[y#y"] + 3 Triv" kv I']

= 2m2g" + 2[kFEY 4+ KVEP — g* (kK] (80)
= 2KMEY 4 2KVEF 4+ gMV (K — K)? using k2 = k2 = m?
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8. Elementary Processes in Scalar and Spinor Electrodynamics
scattering e st e st

e using the same current, eq.(64), in the interaction

Hint = 3k Au (81)
e we have to calculate (f|Teiﬁint(93)|z'>
— with
(1 = (eys | = (RE,2E) Y02y (K)alr') (82)
and
3) = leqrysiy) = (2Ep2E) Y/ 2el(k)al (p)|0) (83)
e the first order in the expansion of eHintt has a single photon
= it has to vanish:
(0lalo)y = (0]a’|o) = 0 (84)
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8. Elementary Processes in Scalar and Spinor Electrodynamics
scattering e st e st
e the second order

Ao =5 (0léy (K a(p)T[Hint(z) Hint(y)]el (k)a'(p)|0) x (16 EyE,EpEy)Y? (85)

has the structure

(Au@) AT (5Ey 1 €00 Gl (@) F T o (@) For st @)+ Tome WD)y e ) (86)
— connecting the same current (st,e”) to both points z,y disconnects the other:

(a:)jeym,er (y) |SE;)> <€(_]<;/’ ! e(_kj,s)>

<SE;)’ 6(}/,8,)\35ms+($)3§m,s+(y)\8?;)> e(_k;,s)> = <5+
= (2n)363(K — k)6ss(2E,2E,)Y/?
x(a(p')(@(q1) +a'(q1))(@(g2) + a'(g2)) el %)=
x (@(g3) +a'(g3))(@(ga) + @' (ga)) e = ")7a1 (p))o (87)

— which can be understood like p.160, Figure 6.3.(b) and (c)
* an unconnected electron, "flying through”
« and a loop-correction on the sT line

e SO the second order of A, .+ reduces to

oy / / T (@5 A (@) A ()l i T (@leg ) + (@ )} (88)

Thomas Gajdosik Gauge Theories in Particles Physics: important concepts 25



8. Elementary Processes in Scalar and Spinor Electrodynamics
scattering e st e st
e calculating the currents using the expansions eq.(39) and eq.(49):
(sEnldtm(@)s ) = 46(2Ey2E,)Y2(@(p)ild" (2)(0"$(2)) — (8"9' (2))d(x)]a" (p))o
= igy(2Ey2E,)?(2E42E,) /7 // (@) ([a'(g)e' " +b(q)e " "*]1(—ig") [a(g)e " — bi (g)e'*”]
—(ig")[a"(¢)e' "™ — B(q)e " [a(q)e " " + bl ()’ *"]) @' (p))o (89)
— for a normal ordered Hamiltonian, b has to be on the right side of b':
(s litm@lsy) = as(Fg) / / @) ((¢)[af(¢Hag)e' @0 — bl (q)b(g)e @~ 0] (90)
+(q’“)[aT(;’3qa(q)ei (W=0-2 _ b1 (q)b(q)e™ =D]) @l (p))o
= qqs(%)_m / | (¢" + ¢") @)@ (¢)a(g)e' =P — b ()b(q)e "7~ D"]al (p))o

— using the commutators and the annihilation properties we get

(8?;,,)|35m(33)|822)) = gpA / EZ:EZ / | (q/‘ _|_ q’ﬂ)[(2ﬂ-)363(1—5’ _ q—')(27.(.)353(ﬁ . q—»)ez (q’—q).sc]
qsq
= Q¢(pu + p/u)ei (p'—p).x (91)
= (x)|e(_k,s)> — _q'(/)'a(k/, s/)’y”u(k, S)ei (K'—k).x (92)
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8. Elementary Processes in Scalar and Spinor Electrodynamics
scattering e st e st

e together with the photon propagator eq.(93), Fourier transformed:

B d*q ie -(@-y) quqy
t (Au(2)Au(y))r = 2 T ie [—gw+(1 £) ] (93)
e We g¢c
Acyr = G- //xy/(2 ya qqs(p“—l-p’“)e"(p"p)'wﬁ |:_guu+(1—€)%:| e'-(2=v)

x(—qwuuc’ )7 u(k, s)e! ETV 4 (2 5 1) |

= %% // z(p —p—q).% i (K'—k+q).y
oy vy
X |~ 0+ 20) + (1= OWHRDL] G, )y ulk, ) + (2 < 9) |

4
= —%qw/ (;l C§4(27r)454(p’ —p—q)(2m)** (K — k + q)

XK, ) [~ (p ) + (1 — DDk, s) (94)

— using the §-function we see: q=p ' —p = (p+p)qg=p?—p>°=m2—-—m?2=0
— no gauge dependence (dependence on &) in A, ¢+
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8. Elementary Processes in Scalar and Spinor Electrodynamics
scattering e st e st

with the definition of the scattering matrix, e€q.(26),

Ayt (5,8) = i) *6* @/ + K — p— )M, +(s, ) (95)

e we get the invariant amplitude (with ¢ = k — k)

M 1(s,5") = =gk, sHv"u(k, s) L ay(p + 1) (96)

e and the differential cross section

|2
— |Me_3+(878 >|
4E}DEk|77rel|

do -+ (s, dLips(s = (p + k)% p, k') (97)

e for the unpolarised cross section we have to sum / average over spins:

% Zs,s’ |Me—3+(57 S/) |2
4[(p-k)2 — (mym,)?]1/?

(do— +) = dLips(s; p’, k") (98)

Thomas Gajdosik — Gauge Theories in Particles Physics: important concepts 28



8. Elementary Processes in Scalar and Spinor Electrodynamics
scattering e st e st
e summing / averaging over electron spins gave the Lepton tensor, €q.(72)

L (k, k) 5 > [a(k, ) ulk, )]ak, s')y" u(k, s)]*

= 2kMEY 4 2KVEH + g" (K — K)? (99)
o we get withk—k =qg=9p —p

3D IMew(s, NP = (EE?[2KF 4 26K + ¢l (0 + P)u(p+P),  (100)

— but the Lepton tensor was transverse: L*q, = L*q, =0

[2KkFE"Y + 2KV KM + g" ?l(k — k), = 2kH(k.K — k%) + 2(k? — k.E) (K" — ¢"*) + ¢°¢*
= 2kM(k.E —m?+m? —kKDE* — ¢*(2m? =2k — (k- K)?) =0 (101)

e 50 13 IMe(s, 8P = (EE)2[2KAK" + 267K + ¢ ¢?)(2p + 0)u(2p + )

8,8’

= (Z)24[4k.pk .p+p°c°] = (EE)8[2k.pk.p+ LMZ] (102)
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8. Elementary Processes in Scalar and Spinor Electrodynamics
scattering e st e st

e for the cross section in the CM frame we still need
— the phasespace in the CM frame, eq.(32)

dLips(s;pa, pB)CM = Gt gy AWS(V/s — W) (103)

— and the fluxfactor in the CM frame, eq.(35)
4\/(papp)? — (mamp)? = 4p\/s (104)

e finally we get with 4y = —qy = e and
2
[o-yt))  _ (—e228RReH et HME]
dQ oM T 4p+/s 41 4 /s
—_ 20‘2 / q2 2
— all quantities are invariant — except the solid angle dS2
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8. Elementary Processes in Scalar and Spinor Electrodynamics
scattering e st e st
e we can boost the CM-frame into the Lab-frame

d3K'
(2m)32E;

— the invariant phasespace element ist still
— but the solid angle dS2 changes

e with the limit me < /s we ignore the electron mass: k2 = k'2 = 0
— we get ¢2 = (k— k)2 = —2k.k' = —2E, E|(1 — cos@) = —4FE, E, sin’
— with p* = (M, 0) we get k.p = M+E, and k'.p = M+ E|
—and s= (p+ k)2 =p?+2pk+ k2= M2 + 2M+E, = Mx (Mg + 2E,)

9
2

e elastic scattering implies p/'? = MSQ+ or

0 = Ma—(p+k—FkK) =-2pk+2pk +2kk =4E,E;sin®% +2M,.E;, — 2M . E,
21\4S+E,g(2]§j+ sian+1—% = %: 1+2A§7:<+ sin? ¢ (106)

e giving the no-structure cross section

do 2 E, 6
< Oe 3+> — 204' 7 k C052 d (107)
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8. Elementary Processes in Scalar and Spinor Electrodynamics
Formfactors

e a static charge distribution has a potential Ao(ac),
— following the Poisson equation V2A49%(z) = —Zep(z)

e calculating the scattering on the Coulomb potential
— we were using the Fourier transform A9(g) = [, e 4% A0(x)
— taking the Fourier transformation of the Poisson equation we get

/ e T2 AO (1) = —Ze/ e T (2) = —ZeF(J) (108)
X

X

— doing two times a partial integration we get
[emERaw) = [V TEA@) = [ (@7 @) = 2@ (109)

e taking an exponential shape for the density p(z) = [8€_|Z|]/1a/2
m™a

1
[(§)2a2+1]°

— we get F(q) =
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8. Elementary Processes in Scalar and Spinor Electrodynamics
xT formfactor

e we want to generalize the conserved current of the st
. -~ o
it @) = (s T (@5 ) = ag(p 4 pHre! PP (110)
e two independent fourvectors: p* and p’® (or (p+p)* and ¢* = (p' — p)* )
— but only one independent scalar g2 = 2M?2—2p.p/, since p? = p/2 = M?

e we can make an ansatz with two formfactors, depending on q2

it @) = (w G @)n ) =t elF(®) (p+ ) + G(g%)gHe 4 (111)

em,w"‘
e current conservation 9,j5% = 0 gives us
au[F(a*)(p + PV + G(¢*)d"] = [F(¢*)q-(p + ) + G(¢*)q*] = G(¢*)¢* =0 (112)

— giving us the constraint: G(¢2) x §(g?)
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8. Elementary Processes in Scalar and Spinor Electrodynamics
scattering e 7t — e+

e One can study the pion formfactor with the scattering

e (k,s) +nT(p) = e (K,s) + 71 (@)

(113)

— this probes the formfactor in the space-like region: q2 = (k — k’)2 <0

e studying the process

et (k1,s1) +e (k,s) = 7))+ 7 (p1) (114)
gives the same matrix element as
e (k,s) + 71T (—p1) = e (=k1,—s1) + 7T () (115)
— this probes the formfactor in the time-like region:
? = (k—K)? = (k- (k1)) = +p1)? > 2mq)? (116)
= Crossing symmetry = CPT-symmetry
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8. Elementary Processes in Scalar and Spinor Electrodynamics

Electron Compton scattering

v(k,A) + e (p,s) = v(K'\N) +e (P, ) (117)
e the factors for external photons are obtained ''as usual”

— using the plane wave expansion, eq. (58)
— sandwiching field with creation/anihilation operator in the vacuum:

V2E; (Ola(k, \) AH(z)]0) = e*H(k, \)e' Fo (118)
e the fermion propagator was given in eq. (57)
e the amplitude for the two diagrams (Figure 8.14) becomes

M, (5,8, M, N) = —e 2e* (K NV (K, \)

<0, ) [ ez ez ] (. ) (119)

= —e €*M(k, )\/)Ey(k' )\)’U,(p S/) ’Y,u Qﬁ_ll;m I/_I_ I/p_gp ];l’m] ’Lb(p, 3)
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8. Elementary Processes in Scalar and Spinor Electrodynamics

Electron Compton scattering

e gauge invariance requires the invariance

el (k,\) ~ eP(k,N\) = e(k, \) + BEH (120)

= replacing any e#(k, A) with k* in M. - has to give O (Ward identity)

e checking:

( with k—klzp/—p k2 —_ k/2 —_ O, p2 _p/2 _m and p.k/:p/.k, p/.k/:p.k )

Ay

") | Qﬁzm B L ﬁp ,;/nw] u(p, s)

a(p. s _% (p' —I-QJ;:m)% B %(p;?:,m)k'] u(p, 3)

iy s) '({}é’,p’}+[—2,;z;4];o+m]%’m B %({k’,p}n;l;’.[k—/p—om]) u(p, s)
a(p, ') |25 = 522 ulp,s) = (BF — EDac, s)wulp.s)

(1 —Da(p, sHnwulp,s) = 0 (121)
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8. Elementary Processes in Scalar and Spinor Electrodynamics
Electron Compton scattering

e gauge invariance simplifies the spinsum for external photons
— any matrixelement with an external photon line can be written as

M = 5“(k,>\)T,L (122)
— for the unpolarized cross section we get

SOMPE =Y ek, T (k)T = |Th]? + T2 (123)

A==1 A==1
— from the Ward identity we had (with k# = (k,0,0,k) and T# := (To,11,715,73))
0 = k'T, = klp—kI3 = To=1 (124)
and hence
> ek, VT (b, VT = T + [T + T3 — |To|? = —¢g"T,T;  (125)
A==+1
= photon spin sum > ef(k,A)e"*(k,\) = —g" (126)
A==1
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8. Elementary Processes in Scalar and Spinor Electrodynamics
Electron Compton scattering

e we get the unpolarized cross section (|M..-|?)

= +k+m F+m +f4+m k+
i Z et ey [’Yup T ’YV%W] uehe™'u [%’%W G p2p—k’mw} /
A, s, s

e (—ag' ) (—agv” +m +m +
— (=g 125( g )TI’ [(’Ylu—g T v — 'nyp o ’Y,u) (p — m) ('Yv’g

;n% ’Yu K ’YV’) (p - ’m)]

et +m +m +m v
= T (0 — ) = m) (R i) f )]

64
= 1o (T P — m)y Ty G —m)| + T [t (p — my By = m)
T [ (p — ) B (= m) B (p — )y g — )]
e4
= =(A+B-0) (127)

— using the abbreviations: u() = u(p, s(), eWlr = lu (k) X0
— and definitions ¢* = (p + k)" and r* = (p — K')*
x connected to the Mandelstam variables
s=q¢ =@+k)>>=p"+2pk+k>=m"+2pk = pk=23i(s—m°) (128)
u=r’=((p—-kK)=p>—2pk +K?’=m?—-2pk = pk = —%(u —m?) (129)
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8. Elementary Processes in Scalar and Spinor Electrodynamics
Electron Compton scattering

e using yudy* = 2ayy* — dyuy* = ¢(2 — D) = —2¢4 we get for A

A = Tr -’yﬂ o fyy(p m),yuﬁ m ,u(p/_m)]
g+m

= Tr | (-2p - am)L(~2p — 4m) (130)

— motivated by later discussed quark-gluon scattering, we set m — 0O

A = p‘,i)zTr PP = G2 T [(p+k>p(p+k>p] o2 T Ky

e k)2 [kap Kk — kap] =32~ (131)

e B is like A, just with the replacements: ¢ — ¢ and p.k — p.k'
— or s < (—u)

B =325 (132)
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8. Elementary Processes in Scalar and Spinor Electrodynamics
Electron Compton scattering

o for C' we get  (using yudb¢y* = —2¢B¢ and ~,d¢py"* = 4a.b)

Cc = Tr [’mﬁ%m LAY+ kwm p,ﬂ p’} (133)
= oipr U P0dry Y + iy py ] (134)
= Gnem T+l = THS
— but
gr = (+k).(0—K)=p*+pk—(p+k)K (135)
= O04+pk— G +E)K=pk—p kK -—kE’=pk—pk—-—0=0
4 _
= (M%) = &(327%+ 325 —0) = -2 (4 + £) (136)
and with eq.(36) J M ]2
— fil
ol (8m)2%s 2 (5 T =) (137)
e for loosening a constraint (like k2 = —QQ)

— one has to start the calculation from the beginning!

* before the constraint was used . ..
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8. Elementary Processes in Scalar and Spinor Electrodynamics
Electron muon elastic scattering

e assuming one photon exchange

M—y(rysi7' ") = ea(k, S Yyuulk, )= (@, yulp, ) (138)

2
2 v o
<|Me_lu_ 2> — (2_2) L,UP(k‘7 k‘/)g'u gp MI/O'(p7p,) (139)

with M,, the leptonic current of the muon.

and

e remembering L,, is symmetric, 2p.k = (p+ k)2 —p? — k2, 2p.k' = p* + K2 — (p—k')?, etc
LM™ = 2[k,k), + kK, + $g.]2[2p"p" + £g"]
= 4[2p.kp K + 2p.K pk' + Ppp + PkK + (£)%4]

2[(2p.k)° + (2p.K')* + ¢°[2p” — (p — P')°] + ¢°[2k° — (k — K')?] 4+ 2(¢%)?]
2[(2p.k)? + (2p.k")? + 2¢°(M? + m?)] (140)

— compare to eq.(105)

e going to the muon rest frame, i.e. p#* = (M,0,0,0), we get ... (no proof)

doe - do, o 2
doeyr) o ({doesr) 1 -4 _tan2¢ (141)
9 iQ /.. oMz C 2
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8. Elementary Processes in Scalar and Spinor Electrodynamics
Electron proton elastic scattering and nucleon form factors

e writing a conserved proton current in analogy to the electron current

Jh(p,p';8,8") = (0; 0, 8|7k plPi Dy s)  with  quJh(p,p’) =0 (142)
we can define a proton tensor
BM = I3 (pip, 8|5k pl0 D, 8)(05 D, 8|5 | Pi 2, 5)* (143)
s,s’

e Lorentz invariance of the cross section requires that B*Y is a tensor

— can be constructed from p#, ¢* = (p' — p)#, and g"¥
* Parity forbids the term e#*’p,qgz

e current conservation requires q,B*"" = qB* =0
= find tensors from p#, ¢* = (p’ — p)#, and g"¥

* easiest to construct from vectors, that are normal to g,

— solution: define p* = pt — %qq“, then

B = 4A(¢))P'p” + 2M?B(q*) [—g" + L4] (144)
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8. Elementary Processes in Scalar and Spinor Electrodynamics
Electron proton elastic scattering and nucleon form factors
e the traditional definition of the proton current is

ikFo(q?)

3 o qu | u(p,s)(145)

(P; 0, 8|7 plPi Dy 8) = (Fe)u(p’, s') !’Y“ﬂ(qz) +

— with the normalisations F7(0) = F1(0) =1
— the spin tensor o = L[yH, 4]
— and the anomalous magnetic moment up =1+ k with Kk = 1.79

e the cross section in the Laboratory frame, p* = (M,0,0,0) is

do__ 4+ do _
0o pt) _ ({doeot) (A+ Btan? %) (146)
dQ iQ /..

with A = F?41Kr%F3 (147)
B = 27(F1 + kF>)? (148)

2
and the kinematic factor . _— —9_ (149)

4 M2
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8. Elementary Processes in Scalar and Spinor Electrodynamics
Kinematic of electron proton scattering

e looking at the point like case we take ;ﬁ instead of p

e energy-momentum conservation requires  p, + qu = p:L (150)
e mass-shell condition gives p? =p% = M? (151)
— elastic scattering 2p.g = —q° (152)

e Laboratory frame, p* = (M, 0,0, 0): same definitions as on slide p.31

— additionally: p.q=M(E,— E.) =:Mv (sov=4q°) (153)
— with Q2 = —¢? elastic scattering becomes v = % (154)
— changing variables dQ = 2nd(cosh) = (r/E;?)dQ?  (155)
— gives the double-differential cross section in the Lab frame
2 2 2 2
d;QJdV — 4Eg(:in4g : E:E]/{: COs? g -+ 2?42 sin? g] %) (1/ — QQ—M> (156)
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9. Deep Inelastic Electro-Nucleon Scattering and the Quark Parton Model
Inelastic electron-proton scattering: structure functions

e generalising the proton tensor, eq.(143), to inelastic scattering
— we have to sum over all possible final states

o2m)464
PWH (q,p) = CEGEaPIL S~ (5, g[GE X V(X P (G plPi Dy s) (157)
SX

— but the invariant mass of the final state is variable: p/? = W?2

— parametrizing WH” by the same tensors
x with the definition p# = pt — %q“

— and functions depending on Q2 and v = 9|,
W (q,p) = (—g" + LEIW1(Q?,v) + BEWa(Q?,v) (158)

e the total double-differential cross section becomes — compare €q.(156)
d?o . Tl 1
dQ%dv  4E2sin*Y E.E

0 0
W COSQE + 2W1 sin2§ (159)
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9. Deep Inelastic Electro-Nucleon Scattering and the Quark Parton Model
Bjorken scaling and the parton model
e in the deep inelastic region

MW1(Q?,v) — Fy(z)
vWo(Q?,v) — Fo(x)

(160)

Q2 — oo _ 02 ..

with © = fixed =
UV — 00 2Mv

= F7 and F5 finite

e the scaling can be understood,
— if the scattering happens on point-like "partons’ inside the proton
— each parton carries a fraction f of the proton momentum P#

pl = fpP* (161)
— on-shell condition for a single parton means
pi(= f?P?) =p? = (pi+q@)° = (fP" 4+ q)° = f°P* + 2fPq+ ¢° (162)
« with Q2 = —¢? and P.q = Mq° = Mv
QQ
= the fraction f is the Bjorken-z: f = S = B (163)
1%
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9. Deep Inelastic Electro-Nucleon Scattering and the Quark Parton Model
Bjorken scaling and the parton model

e understanding the proton as a superposition of incoherent partons
— compare the double-differential cross sections (156) and (159)

x with v = -2 and e; the electric charge of the parton 1

2Mx
2 2
WiQ%2) = 7% 56(v — 5ar) (164)
. 2
Wh(Q%2) = ef6(v— i) (165)

e for full scattering of the proton we have to sum over all partons
— with a probability f;(x) to find parton 7 with momentum fraction z

1 .
Wo=3 [ da fi(2)W; (166)

or

@) = % / dv fi(a)e 5 Eb(v — 22) = 23" 1e2fi(ap) = LFi(ap)  (167)

1

WHQ%v) = ) /O dx fi(x)e?d(v — 33-) =1 " eZapfi(zp) = 1P (zp) (168)
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9. Deep Inelastic Electro-Nucleon Scattering and the Quark Parton Model

Bjorken scaling and the parton model

e from this representation for F7 and F» follows

Po(z) =Y efnfi(z) =2z 3ef fi(z) = 2zFy (a) (169)
i i
= Callan-Gross relation
— a direct consequence of assuming spin—% quarks
e taking instead of eq.(156) the scalar analogue eq.(107)
— gives a different relation
e the Callan-Gross relation fits the experiment quite well
= quarks have spin-3
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9. Deep Inelastic Electro-Nucleon Scattering and the Quark Parton Model
The quark parton model

e using the quantum numbers of the quarks (Table 1) we can write
Fy'(2) = z [glu(@) + u(2)] + 5ld(x) + d(z) + s(z) +5(2)] + ... ] (170)

e USINg iSO-spin invariance

— the neutron is like the proton, just up- and down quarks interchanged
uP(x) = d"(x) = u(x) dP(x) = u"(x) = d(x) (171)
we have

F5"(z) = = [gld(2) + d(2)] + §lu(z) + a(z) + s(z) + 5(2)] + ... | (172)
e from strangeness and charges of proton and neutron we get sumrules
1 1 1
/ dx[s —5] =0 / dr[2(u—u) —i(d—d)] =1 / de[2(d—d) —s(u—u)] =0 (173)
0 0 0
— these are fulfilled by taking valence- and sea quarks:

u=uy+qs d=dy+qs u=d=s=35=qg (174)

1
e and a momentum sumrule /dww[u+ﬂ+d+5+s+§]=1—e (175)
0]
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9. Deep Inelastic Electro-Nucleon Scattering and the Quark Parton Model

The Drell-Yan process

e the same probability distributions (parton distribution functions)
are used for proton-(anti)proton collisions
— the easiest process goes via a virtual photon: Drell-Yan process

p+p—putp +X (176)
e in the CM-frame we have (ignoring all masses)
p" = (P,0,0,P) py = (P,0,0,—P) and s=4P? (177)
— the momenta of the participating quarks are
pgl — CBl(P,0,0,P) p/(;Q — 33‘2(P,0,0, _P) (178)
— the photon momentum is
¢ =pl +p, = P(x1+22,0,0,z1 —x2) = q° = 4P%xq x5 (179)
e the QED process ¢ — puTu~ is the same as ete™ — putu~
= take the same cross section (Problem 8.19) ...and next slide
— the cross section will be proportional to the parton distribution functions
— and the interval in z; and x> — with both combinations g(z1) and ¢(x»)
A0 (pps ity 4+ X) = Z O (it i-—+x)[2a(21) qa(22) + qa(22)qa(z1)] d21 d22 (180)
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9. Deep Inelastic Electro-Nucleon Scattering and the Quark Parton Model

The Drell-Yan process

e massless fermion CM cross section: from eq.(28), eq.(36) and eq.(139)

(o) =

* Lo (k. KLY (p,
(IMI%) dQ2 = / 2 i ) (pp)de(cose)

(87)2s (87)2s

e in the CM frame for massless fermions we have
2p.k =p° + k> — (p— k)* = —£(1 + cos )
2p.k' =p° — K% — (p—k')*> = —£(1 + cos0)
— and analogous to eq.(140)

Ll = 2[(2p-k)* 4+ (2p.k')?] = 2[5 (1 — cos6)® + (1 + cos )]
= s%(1+ cos?9)

— giving the cross section

7'('042

(o) = >4 /(1 + cos? 0)d(cos 6) = 7%2(2 + %) =

4o

3s

(181)

(182)
(183)

(184)

(185)
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9. Deep Inelastic Electro-Nucleon Scattering and the Quark Parton Model

eTe™ annihilation into hadrons

e assuming the dominance of the one-photon process
— it should be similar to the Drell-Yan process, just reversed

A2

2 186
3, (186)

— going into hadrons (i.e. summing over all possible quarks) gives

(O(ete —sqa)) =

47ra
<U(e+e —>hadrons) Z : (187)

e taking the ratio to muon production:

R = <O(e+e —>hadrons) Z 2 (]_88)

(O (ete—ptp))

= prediction for R depends on the energy:

R o= 302+ D+ (D +0E-m)(D? +0F —m)(-H2 =2| Q| L (189)
e the factor 3 describes the number of colors in QCD

— essential for reproducing the experimental values = proof for 3 colors
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