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QCD II: Asymptotic freedom, the renormalization group and scaling violations
in deep inelastic scattering

Going to the next-to-leading order of Drell-Yan production with the tree level matrix element

F_

N =

we have to include the 1-loop QCD corrections with the matrix element

to get the squared matrix element
|F7 + F, ,v|2 = |Fv|2 + QRQ[FJFQ,U] + |Fg,v|2 ~ |Fv|2 + QRG[FJFQ,U] = O(ag) + O(O‘;) . (1)

The one loop part Iy, will diverge for some loop momentum ...
But adding the cross section of

for momenta of the gluon, that cannot be seperated from one of the quarks, will give the same divergence,
but with an opposite sgine and hence cancel the divergence in Fj ,: soft and collinear gluons.

This cancellation is a general result stated in the Bloch-Nordsieck theorem (1937).

Another theorem, by Kinoshita (1962) and Lee & Nauenburg (1964), states, that mass singularities
(i.e. singluarities occuring for a mass parameter going to zero) are absent, if all indistinguishable mass-
degenerate states are added up. Then only singularities coming from the inital lines can remain. These
give in deep inelastic scattering (DIS) the scaling violations.

Going back to ete™ — g7 + ng, i.e.:

>v<‘ M %@ +
For the cross section we get a term proportional o from the tree level (a), terms propormonal oo from
(b) and (c), and terms proportional a?a? from (d). But these higher order terms come with a factor

O[g S
[0 ()]

33—2Ny
127

(a)

where 12 is some mass scale. In the Standard Model b =
the ratio of the terms of O(a?as) and of O(a?a?) is

with Ny counting the active flavors. So

basln<s)~1 for Ny =5, as~04, p~1GeV, s~ (10GeV)?
12

So the perturbation series ”fails”.
Summing these terms anyway, we get

oot @) o8]

where we introduce the effective coupling constant as(u?).
Calculating the next order, O(a?a?), one gets additional terms

2
Qg s
)]
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which gives the impression, that we have here a series like H—w =1—x+2%2— 23+ ... Assuming, that
this is true, we get for the "resummed” cross section
as/T as(p?)
14— | =opt |1
* 1+ bag 1n(s/u2)] Pt [ * ™

The large logarithms are now in the denominator, which reduce now the effective coupling a(1?), when
the energy grows = asymptotic freedom.

Renormalization group — dealing with large logarithms

We will consider only QED, since it is much simpler than QCD, but has the same technical features. The
renormalization of the charge was written

7z
e=eq (Z—T)Zéﬂ .

Due to the Ward identity we had Z; = Zs.

As areminder: the renormalization constants were defined as the terms in the Lagranigan, proportional

to
VAR AR e\i/'y“\i/ flu
Zy i ZyUnrio, ¥
Zs i Zy- E,Fw

and the Ward identity from eq.(11.6) can be written graphically as

Y _ @L( e )
i
From ~y e ~

: :e*

we got Z1 =1+ 117 (0) with

d4k’ (1 —
H ) = 8¢? z/ dx/ oA fr)ze) where A, =m? —x(1 —x)¢> , and¢®><0 . (2)

Regularizing with a cutoff for [k'| < A we got

1DA+‘/A2+A7_ A
VA, VAZ+ A,

Setting ¢* = 0 and expanding in ¢ we have Ay =m?2, /A2 + A, = Ay/1+ %22 ~ A+ 72”4;

2 1
R
0

2 1 A /A2 2 A
n2o) = _e_/ dx z(1—z) [In i tme
K w2 0 Me \/A2+mg
e? A m?2 m2] /2 !
- S lm|(=] el ) = |14 Be 1—
= [n (me + + A2 ) [ + AQ] /0 dx x(1 —x)
A
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and
(21 _ 177[2 _ @ A
Zg _1+§H’[Y](O)_1_3_ﬂ'1nﬁe
The renormalized selfenergy
02(¢%) = 1 (¢%) — 1 (0) (3)
gets rid of the cutoff dependence. So
2 1 2 large ¢° 2
al2,2y & me se g a g
H[V](Q)P/O dr (1 —2z)n ol — ) — gln—g .

This is how the scale m, enters via the renormaliation constant Zs.

Choosing another point for the definition of the renormalization procedure, for instance ¢ = —pu?2,
we just get a different value for the charge, defined at a different point. This scale is arbitrary, but the
physical result has to stay the same!

Changing the renormalization scale:  with changing ;2 we can change the large logarithm In _#—ZZ.

For the counterterm Zg] () =1+ H[YQ] (¢*> = —p?), defined at p?, we get

a A
\/Zg,:l—l—%ﬂg]((f:_M2)21—3—ﬁln; .

Then the renormalized selfenergy becomes

62

1
H[f] (¢% 12) == 1‘[[72]((12) — 1‘[[72]((12 =—p?) = _ﬁ/o dr z(1 —z)In

m?2 — (1 — x)q
u2

2
logs” —ba In % are smalll But we have to define now the coupling also at u?:

For m. < |¢?|, 42, the logarithm goes to In which is small for |¢?| ~ 2. Therefore also the "large

2 « A
€(n) = Z:L,](H)'eoz(lfgln;)eo
and not at = 0:
« A
e= ZéQ](O)-eO—(l—g—ﬂlnﬁ)eo
So
1—2Ind
3 1% H
= ~ |1+ —In—
€ = 7 %mWZe (—i—ﬂ me)e

We should change the scale from m. to a large p in many steps, in order to stay in the valid regime for
the perturbation expansion. We can regard e, as a continuous function of the scales p and p'. The only
scales in the problem are yu, ¢/, and m.. So we have to have

/

ew = Eley, %, "Zf) .

Differentiating logarithmically with respect to u’ gives

d 0 -
/j/ld_‘u/eu’ ::u’/a_‘u/E(eua%a He) )
letting ' — p gives
d 0 m m me < [
M@eu’ = {&E(eu,z, Te)] . = Beu f) = Blew,0) = Blen) »

the Callen Symanzik equation.
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The bare coupling

AN\ L a . A e%ﬂ) A —e?“)
o= (150 e<u>~(1+371“;)6<””(1 o 1y | €0 = €00+ i

is independent of u: differentiating with respect to u for fixed eg gives

A

i

o = Tt G = e (1 ) - L
or
dey €l Py A\ e second oxder €0y 1o
,uﬂ = W<1+4 > In H) = 12”2—6 (e(w) -

This can easily be solved by rewriting the equation as

degy 1 dp

3 2
€ 1272 p

and integrating between the scales pq and po:

(1) ) (k2) B1)

€(u1)

and with pe = p and pu1 = M we have

e 2
1t 1 w2 1- 1(2A721M1 2 _ %M)
P R T R Vi o Cw T
€y € m et 1— 1;;;1 i
or with o = %
N (M)
(H) = @ 2
1— =2 Ingm

and the possibly large logarithm is now safely in the denominator.
The general solution for the coupling constant can be obtained from the equation

e(u) de
ln —
€(M) 6

degy [ 111 a1 ] 1 de [ 1
S| 2e2 T e 2 |- 2n2 0 |12z MM T g
e ( ) ( in 1 "

H2
%1

Since physical observables cannot depend on te choice of the renormalization scale p, we can express

. . . . . . . .. 2
dimensionless quantities in terms of dimensionless quantities: &, -5, ...etc. So

u2

1lopp | 2| 2 ignoring masses | 2|
_g _ m-, il g1,
- gpoint =5 ( ,LLQ ) /L2 ’e(#)) - S ( /L2 ’e(ﬂ)) )

and

ds 0 de
= u=2 = (1)
dp o

dp

0 2 0 0
—— | 5 (1l;e P + Bleq) S
86(#)> ( w (“)) ( ou e (®) 66(#) (

€(p) €o

sl
u2 1 €(u)

)

which describes the Renormalization Group Equation (RGE) for S. The normal definition uses

e2

a = £ and u? instead of e and p:
0 0 2
2 la”]

<'“ ERE ﬁ(a(u))aa(u)> S ( [T 7O‘(u)) 0,

2

where (a) 1= p? 66#2 , which at 1 loop has the value 1% () := &

()
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When we change to the logarithmic variable

t:= ln% or % =
we get u? = |q¢?le~t and
u?ii 2 Ot 0 2#_2(7 |q2| )2:72
oy azor Ul (W) o ot
and
<—% . +6(a(“))30¢6(u>> S(e'aq) =0, (4)

which can be solved exactly by introducing «(|¢?|) via the definition

a2’ g
o= [, e ®

Proof. The rule for differentiating an integral with respect to a limit is

f(a)
o [ st = gran gt

Differentiating eq.(5) with respect to ¢ = In 143! | for fixed a(y) gives

_ 1 da(lg]) or alla?) =
L= Si@ ot pla(lg™))

Differentiating eq.(5) with respect to o, for fixed ¢ gives

da(lg’)
ot '

1 dofe?) 1 e 300l g
Bla(le?]) dagy — Blag) Blaw) =5y -~ Al =0

Both together give

0=

da(l¢*))  dallg®) [ O 9 2\ _
aa(#) ot - é%ﬂ(a(“))aa(#) a(|q |) o

Blay)

This makes S(e’, o)) = S(1, (|¢?|)) a solution of eq.(4):

(=55 + 8o 5 SLali?))

da(lg?])) 9S(1, al|g]) da(lq?]) 05 (L, a(lg*]))

Y 802(|q2|) +8lag) dagy  Oallg?])
aa a 2 35 , Qv 2
~ ([F2E ag)aeiy) el o )

That means, that S’(lzé, () depends on |¢*| only through the dependence of a(|¢?|) on |¢?|. This allows
predictions of the leading energy dependence of S.
Integrating the S-function (to one loop order) we got

Y(p) X(w)
Oé(|q2|) 2 a( 1) I
R L s

from eq.(15.30) with the replacements p? — |¢?| and M — p.
Calculating perturbative corrections we can write the result as the perturbation expansion in the
coupling constant:

S(1,ag) = Siaq + 200, + Sza(,) + -
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we get S(1,a(|¢%]))

= Sia(l¢’]) + S2le|d* D] + Ss [N + - ..

[ ayt oyt 2 Ayt 3 | 2 [ ot aut 2 ’
= Sla(u) 1+ 3 +(37r) +(37r) + +SQO[(#) 1+ 3 +<37‘r) +

3
g, [T+t ]

| aut agt)? agt)? > | gt agt)?
= Sy |1+ =37 +( gm) +( ?ﬂr) + .| 4 S20(,, 1+2?+3< ?m) T
+S3af,,) [1+3“§+jt+...}+...
2
- Q(M)Sl+a%ﬂ)(%S1+S2)+O‘?M)((%) )S1+2%S2+S3+...

So using o(|¢?|) instead of a(,) sums up the leading logarithmic terms Z-.

3
= Now we should apply the same logic to QCD.

Asymptotic freedom

The term b from eq.(15.4) gvies the second order term for the S-function of QCD:

By = 2 Oas with A2 = —pa? where b — 33 — 2Ny
T o . . 127
12 fixed bare o ™
For Ny < 16 we have b > 0, whereas the corresponding value for QED is bqrp = —3% <0, i.e.

da
MQa—uQ = B = —bqepa’

So from the analogy

(8] (6]
a(lg’]) = %()M) [T - 2]
1-— Flnﬂ—2 1+ bqEDOY(1) th
we get
(@]
as(l¢?]) = w

7 -
1+ bas(p) In 2

So as(]¢?]) runs in the opposite direction compared to aqrp(|¢®|): as gets smaller with higher energies!
In QED we had only the ”vacuum sceening”

WVQNW

which gives for the single electron bqrp = —
In QCD we get

Agﬁc AL

~

€

N
5. OT for Ny flavours —=L.
vy

3T

1
6m

e e+ e o -

give the other contribution of +%.
From Peskin & Schroeder, Chapter 16, eq.(16.85):

with the colorfactors Zaﬁﬁﬁ(%)\“)aﬂéﬂv(%)\b)wéaa
But

%5“”. So the 3i becomes % for each flavor.
us s

3
80) =~ (566 - gusc)
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for SU(N) we have the values C2(G) = N and C(r) = 1, so

g (1 41y ¢ /1 4 1
B:(9) = ~ a2 (?N - §”f§) e (?N - §"f§)

and
2711, 2 —9
Bulas) === <—3 - _nf) _ B2y s

The running coupling can also be rewritten with the definition

In w2 __/°° day _/°° das_/OO day, [_ 1 ro B 1
Adep as(u?) Bs anw?) B Jauu2) bO3 bats ] o, 2y bas(n?)

or with |¢?| = p?

1
InA2cp =In|¢?| — ———
n QCD Il|q | baé(|q2|) )
which picks a specific scale ;2. Then
1
as(l¢) = ——=
la?]
bln Agw

the extraction of Aqcp is complicated, but gives typically Aqep ~ 200 MeV ~ (fm) 1.
At two-loop the term for the S-function

153 — 19Ny
B = bt af ~ Wai
involves terms of the type In(ln ‘Z—Z') Three-loop results exist, but people only use then numerical evalua-

tions of a(u?).

Anomalous dimension and running masses
Recall the relation between the bare coupling and the coupling at the scale pu:

_ %1 e

T %V
If now 7y # Zs then

Ineg=InZ; —InZs — %annglne(M) .

The logarithmic derivative ﬁ = u% gives the equation

d d d 1 d d
p—Ihey=0=pu—Im2)| —pu—ImImZy —-pu—InZs P
du du o du e 2 dp e €y dp
or
1 d,: =eq (13 + 272 — u@ In Zy) where 23 = 5”@ InZss .

For Z; # Z5 we need the fermion field renormalization and the vertex renormalization. Zs comes from
the relation between the bare and the renormalized propagator

QT (9@ 0(0) 12) = (17 (Fo(2)Fo(0)) )

and

Sp(a) = [ dzenn (@it (§a2)00) j0) -
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The question We want to ask now is: how does S’ look for |q | = —¢®> > m? ? From the dimensionality
we have S o< M as we expect S = to be like the propagator — . In order to get a dimensionless quantity
we define

5 (ld?] &
Ry (u2 , Q) = 457(4°)
The we get the equation
12

where 5 comes from the involvement of Z5 in the definition of the renormalized propagator. For the fixed
point 8 = 0 we get the simple solution

2 = |
+8 + R e 0,
(a U)o oo Ya(v(u)) (ug () =

Q)

2
- q _ o
R%(%’mm)d(u?) n2lew)

And since R ( l] ,a(,,y) only depends on ¢? through ‘q ‘ , we get

(a(u))
I 112\
SF(F)Q(,U,)) X % ? )

which describes an ”anomalous power law” dependence for the pro.
= anomalous dimension of the fermion field, which means, that the full propagator of the interacting
theory does not scale like the free propagator.

The full solution for g # 0 is

2 tflnM
~ q ~ n
RH%’O‘W) = Rip(1,a(|¢?])) - exp /0 dt’ ya(a(t"))

Assuming a fixed point for the S-function, S(a*) = 0, we can expand the S-function in the vicinity of the
fixed point B(a) = —B(a — a*) and get for the definition of a(|q?]):

lq a(lq™]) do el N X
e T ey =~ e — o = 4 [infagy - a”) — n(a(l¢?) - )]
X ()

So

In(e(|¢?]) — ) = In(cyy — @) + Bln m

and
p?\ " w2\ "
a(|q2|) —a* + (a(u) . a*) (@) =ao* + COIlSt(in a2) <E>

Therefore a(|g?|) — a* for sufficiently large |¢%|. Then

/ |q2| !/ * ! / * Y *\ 2 (a™)t _ P * |q2| nae)

RF(?,OA(M)) — Ru(1,a™) - exp dt' yo(a*) p = R (1,a%)e = RL(1,a%) ?

0

One problem arises for gauge theories: S is not gauge invariant, and neither is Zs ... and hence also s.

One can still treat gauge invariant quantities this way, like the (total) scattering cross section, etc. ...

Quark masses. The pole prescritopn (i.e. ”on-shell”) cannot be used for particles that cannot be
observed as free particles! ... But there is no need to use it either. We can treat the mass term mW¥W¥ as a
coupling. And since WV is a gauge invariant quantity we can use the RGE approach without any problem:

!

0 0 2
T Bz + > Yilas) +ym(@s)mg— | Rp(4 o, 1) =0,
s i=anomalous dimensions of R



Aitchison and Hay: Chapter 15 June 8, 2015 9

with B(as) = o, ym(es(1¢?]) = & Inm(|g?]), and t = ‘QZ‘ and the definition for m(|¢?|)

la°|
m(Ig?)) = m() -exp{ /] d1n|q'2|w(as<|q'2|>>}

As

In QCD for one loop v (as) = —%=, so

2 =m 2 X A2
m(|g*|) = m(p”) 7111('(”)

AT

1 12
D >0
2 b 33—2N
In ( ) 4

Therefore quark masses decrease logarithmically with increasing energy! So quark mass effects are not

only suppressed by the energy as "Z;—;l, but by an additional suppression factor!

Technicalities: MS, MS, and differencies

Dimensional regularization for eq.(2)

=i fLin [ s Y

We recognize d*k = dk°d3k. With the Wick rotation k% — ik* we can avoid the poles in the propagator:

— A, +ie— (k)2 — k2 — A, +ie=—(F + (") + A,) +ie = —(k2 + A,) |

where we identify k* with a fourth Euclidean dimension. Next we split the integration over f iy d*kg

infty
into the integration of the solid angle dQ3, and the length ¢ with 2 = k%. So we have

1 3 0 3
dQ ede
H[Q] 2y _ 2./ d 1_ / E /
v (0) =8 0 zall - o) @m)*Jo (Z+Ay)2 7

where we now understand the integrals as dependent on the dimensionality D of the Euclidean space, that
we integrate over:

1 dQP-t oo yD-1qy
H[Q] i D T 2/ 1 a / = /
(q*, D) 8e ; dzx(l —x) emD ), @A)

Now we solve these integrals in dependence on D as a purely mathematical exercise.
With the substitution

A, PN 11—y d A 20
= FP=""2_-A =A 7 d dy=— T Al =N —————dl
YTy TAW > Yy ! Ty " YTaey Ay T2+ A)?
and the boundaries y(0) = ofA =1 y(x) = ﬁ = 0 we have the ¢ integration part as
) - D/2-1
/ (-tde / ()P A, 2ecw B / / (—dy)
0 (P+A,)? 24, (12 +A)2  2A,

D/2 2

2

/ dy y PP (1 -yl
0

which we can identify as the definition of the mathematical Beta-function

_w 1 _ )1

So we can identify the exponents § = D/2 and a = (—=D/2+ 1)+ 1=2— D/2 and get

Pl g_gr@*%)r‘( ) 4 D_y DT/ D
/0 [CEYSi (Ay) F(—[2)+)_§(A7) re-3)r(s) .

N [=
vl
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The integral over the solid angle

/ oyt orD/2 2
@2mP  (@2mPT(%) @mPrr(g)
gives then

2
(4m)P/20(5)

)/Oldxx(l—x) (%)%_2 .

Using the expansion I'(e) = % — .M. + O(€), where g\, ~ 0.5772 is the Euler-Mascheroni constant,
with e =4 — D we get

HAa)Ere - 9)rd)

1
2,2 2
H[Y](q,D) = —8e /0 dzx(l —x) 5

0e]
(9]
o
N}

8e?

(e*e) = _(47T)2F(§)/01 drz(1 — z) (%)_%

—% E — e+ O(e)} /01 dza(l — z)e 3 0(5)

8e?

_ _% /01 dza(l — ) E s+ In(dr) —In A, + 0(6)]

Regularisation — Renormalisation

i~}

e throwing away = minimal subtraction MS

B
e throwing away %

—ygM. +In(47) =  modified minimal subtraction MS

From there enters the dependence of calculations on the renormalization scheme.

Aqcp is scheme dependent! A change from scheme A to scheme B goes with a change in the strong
coupling:

o =al(l+ca+..),

SO
| AB L /Ozf(‘f) da 1 1 (1 N ) af(“f‘) 1 1 1 (1 N )
n— = 3 — = |—— =—|—-—=
AA 2 ag‘;(lqzl) b042(1+) 2b « aA(‘qQ') 2b Oé? O[SB
1 ab —at 1+ )7i oA (@24 —ad (1+ )%c_l
~ 2b| afaB T2 | (ad)2(1 4 craft +.)) 20’

when |¢?| — 00, as a5 — 0 and In ﬁ—f becomes independent of |¢?|. With this we have
In % —7YE.M.

2 A2
AM_S = AMSe

= better define Aqcp at M3

o(eTe™ — hadrons) revisited

We had the perturbation series in «a; for cross section

1+ %’ﬂ) + i%(ﬁ) (%“2))"]

with values calculated C(1) = 1.411 and C3(1) = —12.8. We can fix the 2 dependence for each coefficient
by 66—;2 = (0. When we truncate after n = 2 we have

1+ %‘LQ) + Ca () <O‘SST”2)>T

0 = Opoint

0 = Opoint W
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Applying the logarithmic derivative

. 2 dC5 (= 21\ 2 2 2
uzd(g/apomt) —0= lﬂ2dO‘S(N ) 42 Q(H ) <O‘SSTM )> +CQ(%)2045(M )M2d0‘5(ﬂ )

dp? T dp? " dp? T dp?
or

dCa(5) w2 [1 @ w8 () 7(—ba?)

2wl % |2 ERY St — _ s) _ _ s) _
e a? [Wﬁ(as) T CGE)2 T ﬂ(as)] a2 ai ™
if we ignore the second term, as it is of a higher order, and insert the value of S to one-loop order. Setting
2 2

the integration variable z = -5 we get dz = — (5;12“)2 or % = —d—f and

% iz d 2 % d
/“ dcg(z):cg(%)fczu):/“ iﬂb:wb/“ (—y = —abln % |
1 " 1 H 1

x w

and hence the energy dependent shift of the coefficient

CQ(#—SQ) = 02(1) — 7Tb1n % .

QCD corrections to the Parton Model

As a reminder: the Bjorken z = % describes the scaling of the structure functions: MW7 (Q? v) —
Fy (), which has no seperate dependence on the variables Q2 and v.

e (k) e (k')

final state X (p)

p(p)

This diagram illustrates the definition of the structure function

eWH (q,p)

|
<
M

> (0P, 8[54 ()X ()X ()]5 (0)|p(p, 8)) x (27)*6* (p + ¢ — p')

= )W1<Q2,u>+e2 [p“ (p‘qﬁq“} {p" (p'qﬁqu] w2y

S

Il
o
()
7N
\
=
N
+
')
kS
I

q q M?

with p.q) = Mv and ¢ = —Q°.
On the parton level the diagram simplifies to

e (k) e (k)

yp
where yp is the momentum fraction of the parton. It has virtual
;g S S
and real corrections
+ E + E

e

...but this last contribution can be subtracted by studying the difference (ep) — (en) of the electron
scattering between proton and neutron — ”non-singlet” contributions.
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Everything is done on the cross section level: i.e.: it is summed over the final spins and averaged over

the initial spins. That means, that no information about the electron is retained. Then it is simpler to

study the virtual photon scattering — but with only transverse photons!
The real diagrams

and the virtual diagrams
e ,;;F - >’W

to calculate the higher orders of the structure function. Writing the phase space factor K =

w2 — M2
oM
where W? is the invariant mass of the hadronic final state, we can relate eq.(9.43) and eq.(9.45)
Wy = —1 ith op = - = (Ne, ()W
1= m wi T =35 Z e.(Nev(A) (¢,p)
A=+1
Calculating v7q — gq: in the CM-frame, as it is the real correction to Wj. The matrix element comes
from the diagrams
t-channel s-channel
q q Y
+ with ko =p' 4+ ¢
ko
yP=p yP=p q
and reads
i i
M = —eqgse(d, N)e,(q, Na(p', s') {7“77” +9 " ulp, s)
Ya—9q q9s n [—— ¥y —myg

. k0 1 y/ (! ! FtFW Fsl“/
= _Zqusgv(q a)‘ )Elu(Qa )\)U(p ) S ) T + S U(Pa 5)

where we use the Mandelstam variables s = (p’ + ¢/)? and t = (p’ — ¢q)? and the small quark masses to
reduce the squares of the propagators to

5 and %, respectively. The spin averaged matrix element squared
(|Mog—gql?) is then
1 2 6395 ENOVERY) ARV *
1 Z [IMoygogel” = 4 Z (er(qds N)e, (g A ))(Eu(%}‘)ﬂu (¢:A)
8,87 N\ s,8" A\

FtﬂV +Fs,uu
t s

VS
<alpl, ) |+ i (wc )
s
The spin sum for the transverse photon is the same as for the real photon or the real gluon:

S Ed N)e (@ X)) = (—gwr)  and Y (g,(a. Neh (@, ) = (—guw) -
v

A

u(p, s)) )

The complex conjugate amplitude can be rewritten as

aa Y * ’.,! Y T s Y
wiv wv nv wv HovIN T noviyt
<a<p'> [F— B ] u(m) _ <a<p’> [F " F—] u(p>> — ul(p) [<Ff M Py

t s
v\t TEZEN
u(p)y° {(F"t L BT }vou(p’)

a(p) (4" + LR )
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which allows the splitting of the fermion trace

Za(p’, s) [FF" + LF u(p, s) (a(p',s’) [%Ft"/y/ + %FS“/”/} u(p,s))

s,s’

Tr Z [1E" 4+ LFM u(p, s)u(p, s) {%Ft’/y/ +1 _S“/”/} u(p', s )u(p',s")

s,s’

Te [[3FY + LR+ mg) EY + LR )+ my)|

= BT [FpEl ] G [Fp RS o EpESY ] e [

into three parts; we used that the quark masses can be neglected in the last line. Using

SFY = v”k%v“ =7 ((5 :j,))g Y=+ 4" and
1 pppv " v n — /) v 1. p INAV
B = ) ((Zj,)g’Y =37 (Pfﬁ)'}’
we get
FI* = 2207 + 47" =10+ ) ()T = 4 )" and
o= A0 =) =200 = ) () = (-

Contracting with the spin sums of photon (—g,,,/) and gluon (—g,./) gives for the traces

Tr [FpEs,p] = Te [y (' + 4O ponp’ + d)wp'] = T [ + 4)(=2p) (' + 4 )vp'y”]
ATe [(p' + 4 )p(p + 4 )] = 4T [ pd'p' ] = 4T [¢' (2(p-a") — d'p)p'] = 8(p-¢)Tx [¢'p']
= 4(-t)4(p'.q") = —8st ,

since 2(p.¢') = —((p = ¢')* —=p* = ¢*) = —t and 2(p".¢") = (' + ¢)* = p* —¢*) = s.

Tr [FpELp] = Te [y (p = d)"pr(p — )] = Te [(p = ) (=2p) (p — d) (=29)]
= ATr[¢'pd'p'] = —8st ,

and

Tr [FMpE,p + FpEp ] = Te (v (F + 4" po (p — 4 + 7" — )V prap + 4 ) wp']
= Te[(-2p" (@ +d DG — vy + "¢ — D20 + ) uplp]
= 20 [ + )P~ ' + @ — )G+ 4 )pp ")
= 2T [ +4)(p— 440 p) + P — 4 + d)4(p-p")]
= QT [pp+dp—pd —dd +pp +pd —dy —d'd'] =32u(@"p) + (d"p) — /-0
= 16u((—u) + (=t) — s) = —16u(s + t + u) = —16uq® ,
since all the other momentum squares are zero. So

2 2

<|qu—>gq|2> = eq4g5 (5%(_8‘%) + %2(_837?) + $(16uq2) = _26393(5 + % + 2‘12%) )

which is the same result as in Compton scattering. But we are still missing the color factor:

1 555/ Us (C)

ur(b) %/\Z,T e.(9) ur(b)
These colorfactors give the same result for both graphs:

EZ(Q)QS(C)‘SSS’%)‘Z%UT@) = %52(9)(71(0))‘(1“((7)) = EZ(Q)Qs(C)%AZr’(ST/TUT(b)

13



Aitchison and Hay: Chapter 15 June 8, 2015 14

Writing the fundamental representation u,(b) with three basis vectors

1 0 0
o], 1 ],{O ;
0 0 1

its hermitian cobjugate with the corresponding row vectors and the adjoint representation e,(g) with
8-dimensional unit vectors, we can express the sum over colors

1 0 0 100
> us(@ug(e)=1| 0 | -(1,0,00+ | 0 |-(0,,0)+ | 0 | -(0,0,1)=| 0 1 0 | =4
c=r,b,g 0 0 0 0 0 1

and similarly

8
Z = 5aa’ )

so that the average over the incoming and the sum over the outgoing colors becomes

2 et @)X ) = 15 3 e (s (D)o (0)in (O ) ] ()

b,c,g b,c,g

= 5600 Osrrg AL BN = HTe[ANY) = 516 = 3 .

rs rs’ = 12 \rs\sr 12

Now we need only dLips to calculate our cross sections:

d3ﬁ d3q—1 é‘(qO + ypo —FE,—F /)d3q_¥
dLi ' d) = (2m)ist —_d 9 _ q P
ips(p',q') (2m)*6* (¢ +yp—q p)(%)gwp/ 2r)52E, (2722, 2E,
5"+’ —Ey —Ep) o g2
d d=Q
(47T)2Ep/Eq/ |q | |q |

From ¢"* = 0 follows || = E; =: F and d|¢’| = dF and from p"? = 0 follows E,| = §'| =|{'| = E and

: 6(¢° + yp° — 2E) 1 1_¢"+yp°
drL ) = E%dFE d4%Q, = - — F) dEdcosfdy .
ZpS(p 7Q) (47T)2E2 q (477)2 2 ( 2 ) CoS ¥
So
X 0 0

AWy = /%%[726393(%%*2q2%>]<43r>2%5(—q 3~ B) dEdcosfdy

_ 2_7r2qus/d 9( +S+22£)_ d 9( +_ QQQU)

h 3 (4rm)2 o8 t i 3 o8

where the 27 come from the integral over dp and the energy F is fixed to %(qO + yp®). The integral over
d cosf has to be done in the CM-frame of the NLO correction

q
From the Parton model LO cross section we calculate the correction to the process v+ g — ¢, where the
quark ¢ has the momentum fraction yP. The correction is the gluon radiation, so that the quark has only
a fraction of this original momentum fraction yP. We will call this reduced fraction yz P and hence we

q+yzP=yp

The quark should stay on-shell, so we have P? = p’2 = 0 and the energy transfer from the photon was
> = Q?. So we get
Q2
0=(g+yzP)* = ¢ + 2y2(P.g) + y*2"P* = —Q* + 2yz(Pq)  or 2y(Pq) =~ .
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For the correction we have the process v+ ¢ — ¢ + ¢ and the four-momentum conservation
q+yP=p+4q

This gives the Mandelstam variables of this process

2 2_ 2 2 p2 2, Q2 Q*
s = W Hd) =0+yP) =¢ +2y(Pg) +y' P =-Q +—="(1-2)
t = (¢—9)=(d—yP)*=-2y(Pq)
u = (a-4¢) =0 —yP)*=-2y(Pp)
In the CM-frame we assigne the momenta
g = (¢°0,0,k) p = k'(1,sin0,0,cos0)
yP = k(1,0,0,-1) ¢ = K(1,—sin6,0,—cosh)
and get for the Mandelstam variables
QQ
s o= (0 +d) =@F) =4 = —(1-2)
t = —2(yPq)=—2kK'(1— cos 9)
u —2(yP.p') = —2kK' (1 + cos0)

With the energy conservation ¢° + k = 2k’ we get ¢° = 2k’ — k and
2
P =—-Q*=(")? -k = 2K —k)? —k* =4k — 4kk' + k* —k* = s — 4kK' = @ (1 — 2) — 4Kk’
so 0= %2 — 4kk' or 2kk’ = g—j and

Q° Q° Q°

s=— (1-2) t 22( cosf) u 22( + cosd)
and so
W, — 3045 1 dcos@(_%z(l_cose) Q%(l—z) 20? Q2 (1;—0059)
3 “~(1-2) —5-(1 —cos?) (1- 2)5(1—0059)
1
s 11— 1-— 1
= 32 dc(§1z+21i_21zz1+2) — oo for the upper boundary .

= collinear mass divergence — but only in the zero quark mass limit!
When we include the quark mass in the propagator:

1 1 1 1 1 —&
T ne N2 2 = 2 - T @ - 2m2z )
b a=p)? (g=p)?—mp t-mp o —F(1-o)-mZ 142
2m z
which we can now integrate (with a =1+ —=4-):
1 2m z miz
22/ de 2z [~ In )]1 221 a—1 2z 1+ Qz -1 221 ToE
— = ——[-In(a—-c = — n—s55——=—Iln———
Q*Ja—c Q? @ el @ e @
2 mQZ
Q_ZQ In @ for Q2 — 00 ,
which gives the expected large logarithms.
Keeping the masses in the denominators
2z
1 —02 1 1 1
SN and - — =
t a-c s (P+g)P-mZ s—m2

15
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we get for W

1 1 _ 2z 2
2045 9 Qg Q2 2Q°u t
= d -2 -  —ei—
“ay ¢(3ls =277 ) 073 /1 C(a—c[s s—m3]+s—mg)
2z 2 2
= 2as ldc @ [Q_Q(l_z)_2Q2(7§_Z(1+C))]_ 7622_2(176)
a3 —1 a—c z %2(1—z)—m3 Q—(l—z)—m3
1
s 2 1 1 1—
= a% [ a 1= 2y — H)imz 5 ( C)mz
e (1-2)- | 20-2)- 5
_ oo [ 2 (oAl - )+ (1+a—(a— o) 1 (1-¢
q _ zm?2 zm?2
3 )4 a—c (1-2)— 5 2(1-2)— 52
2
1 q
s 2 1—2)1—2z— =+ (14+a)z 1 1
= eia de ( )[ ¢ 2]7712 ( ) 9 22) zm?2 : zm?2
3 )4 a—c (1-2) Q; 2 1—z— 25 21—
b (L=l = 2= DR e (1411250 1 1 de a1 | 1
] e a—c) ez G2 iz \ )4
(1_Z)_Q2 1 1_Z_Q2 —1
1 1
_ — (/ dcg)
1—=2 on -1
2 m2Z
20, (1 —2)" 4+ 22 — (1 - 22) 1+ 55 « 1—4z
= e 35 g In m2ZQ 335 P
(1_2)_ qu qu 1_2— qu
inm 5 21422 @Q?
773 1—2  m2z

We have to add this correction now to the proton structure function 2F; = %FQ, which was obtained in
chapter 9:

B 1 1 _
Boon=¥ [t [ a:2mise -y
x - Jo 0

with a reminder from eq.(9.31):

Z/Oldwfi(fv)ef5 V*— Z/ dafi(x)e] ; oz — 2?\2/[V)

So the correction becomes (when retaining only terms ~ %, as calculated):

Negas.é1+z2.l Q2:egas.P (z)-an—2
2r 3 1—=2 mg 27 a4 g’

where P, (%) denotes the splitting function, i.e. the probability for a quark to radiate off a gluon while
scattering on the virtual photon.

So analogously to summing over all quarks and all contributing momenta, we have also to sum over
the energies, that are lost to gluon radiation. Since we do not know the quark distribution function, we
just add the "mass singularity”, i.e. the large logarithm In & mZ to the unknown function. Then we have
only known and finite terms left and a function, that has to be taken fromthe experiment anyway.

Wit this ansatz we have a quark distribution function

14 2
o) =a0)+ 32 [ L) [Pz L+ o

2 a

depending on a renormalisation scale p? and a ﬁnite function C' (””), which is calculable and depends on
the adopted scheme, how to split In 7?; into 1n + In ﬂ— to make both logarithms calculable. But now

this p? is the "factorization scale”! = it is convenlent to identify the factorization scale with the
renormalization scale — but it is not necessary!
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There are different factorization schemes, to decide which finite parts should be calculated and which
other finite parts should be put into the uncalculable, but measureable parton distribution function:

e DIS the deep inelastic scattering scheme: put everything into g(z, u?), then one has
2F(z, Q) = e}q(z,Q?)

e MS the modified minimal subtraction scheme, which adopts the renormalization prescription. Then

one has
tdy oy, Qs s
Fi(e, Q%) =¢f | Zlay, @) 60— 2)+ o2
where the 6(1 — —) comes from the LO contribution, i.e. the same as in the DIS scheme.

Repeating the RGE procedure to the parton distribution functions (PDFs), we can write for a single quark

MzaQ(x7M2) _as(p?) /1 @qu(i)q(y,/ﬁ) :

Ou? 2m Yy

When including all quarks and the gluon, one gets coupled differential equations for the PDFs.
How do we measure the PDFs? ...by measuring different cross sections at different energies.
A convenient way to parametrize the PDFs is by Mellin moments:

1
n _ n—1 . o 2
Mlg I(t) /0 dz 2" q(x,t) with t=1Inp

Using the RGE

u2% = %q(m) = a;(r)/m dyP o($aly.t) -

and taking the moments

! 4 0 ot
/Od:cz" 1&q(x,t): 2;_ / " 1/ —qu y,t) .

and interchanging the integrations

o 1 - a(t 1 e Vdr [z\"* .
5 ; dzx 1q(z,t)%/0 dyy 1‘](yvt)/0 - (‘) qu(g)

Yy \y

and redefining x = yz, so dx = ydz, in the second integral one gets

d as(t) ' - as(t)
— Ml = =8 [N] n—1 —. =5\ pyln]
dth (t) 27T ( )/O dZZ qu (Z) . 271‘ q (t)47qq )

where the last integral was defined like an ”anomalous dimension”. So instead of a convolution of integrals
we have just a product. Using the one loop approximation

dog(t — 2N
das® _ ez with b= 222N
dt 127
we can rewrite the equation for the moments:
amy o dag "
My () _Oaa g = Jin A0 Tan gy

M,;n](f) T 87 81 —bay 8mb

or

dnM(6)

dln o, C87b | w

with the solution
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The technical problems of this approach were solved 1978.
Physical arguments, like ”the net number of quarks is conserved” ..., fixes the gluon contribution:

a1/t 1
T [/0 dxq(x,t)] =0 = /0 da P (x,t) =0,

where Pq‘z is a distribution, defined as

/ dz f(z)PqJ[Z(z) ::/ dz [f(z) — f(1)] Pyq(2) -
0 0

With these we get for the anomalous dimension

1
’qu 4/0 dzz"ilpqq(z) ,

using the distribution

1 1 1
/0 dz Pl (z) =0 and /0 dz z”flquz(z) = /0 dz [2" 7 = 1]Py(2)

and the one loop result for the splitting function Py,(z) = %1“2

1—z
3 3 ! 41422 (11—t =t
A = dzlzn"1 112 = dz—" (1 2y — dz 27 (1 2
16 2a 16 /0 z[z ]31—,2 /0 TS (1+2%) ;/O 227 (1+ 29)
n—2 1 n—2 ]+1 ]+3 1 n—2 1 n—2 1
D I R D Dl e R A D i Dl
=0/ = J+ J+3]g j:0J+ — )t
n—1 n+1 n n
1 1 1 1 1 1 1 1
= R R D el B R Db
=i = e B = n+
11 1 "1 1 1 "1
= 1]—-———= 2 = 2 Z
2+n+1+ ]z:;j 2 n(n+1)+ ;;’

and



