
2. Special Relativity (SR) — Generators as differential operators

Translation and Rotation Operators

• The momentum operator ~P = −i ∂
∂~x

= −i~∂ generates translations:

– in index notation: Pk = −i ∂
∂xk

= −i∂k

eia
kPkf(x) = ea

k∂kf(x) =
∞
∑

n=0

1

n!
(ak∂k)

nf(x)

= f(x) + ak∂kf(x) +
1

2
ajak∂j∂kf(x) + . . .

– the Taylorseries of f(x+ a) is

f(x+ a) = f(x) + ak∂kf(x) +
1

2
ajak∂j∂kf(x) + · · · = ei~a

~Pf(x)

⇒ the operator ei~a
~P moves the function f by the amount ~a

• The angular momentum operator ~L = ~X × ~P generates rotations

– in index notation: Lj = ǫjkℓ x
kPℓ = −iǫjkℓ x

k∂ℓ

– or Lx = i(z∂y − y∂z), Ly = i(x∂z − z∂x), Lz = i(y∂x − x∂y)
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2. Special Relativity (SR) — Generators as differential operators

Translation and Rotation Operators

• The components of ~L do not commute:

– if you rotate around the x̂-axis and then around the ŷ-axis,

you get a different result than rotating first around ŷ and then x̂.

– mathematically:

[Ly, Lx] = i2[(x∂z − z∂x)(z∂y − y∂z)− (z∂y − y∂z)(x∂z − z∂x)]

= i2[(x∂y + xz∂z∂y − xy∂2
z − z2∂x∂y + zy∂x∂z)

−(zx∂y∂z − z2∂y∂x − yx∂2
z + y∂x + yz∂z∂x)]

= i2[x∂y − y∂x] = −iLz

– or in index notation: [Lj, Lk] = iǫjkℓLℓ ⇒ Rotationgroup

• but the square L2 = ~L · ~L = LkLk does commute:

[L2, Lj] = Lk[Lk, Lj] + [Lk, Lj]Lk = LkiǫkjℓLℓ + iǫkjℓLℓLk

= LhiǫhjmLm + iǫmjhLhLm = i(ǫhjm + ǫmjh)LhLm = 0

⇒ use L2 and Lz to describe quantum mechanical states (particles)
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2. Special Relativity (SR) — the Rotationgroup

Eigenstates of the Rotationgroup

• We write an eigenstate of the operators L2 and Lz as |λ,m〉

L2|λ,m〉 = λ|λ,m〉 and Lz|λ,m〉 = m|λ,m〉

– |f〉 is called a ket and used to denote a quantum mechanical state.

• We define the ladder operators L± = Lx ∓ iLy with

[L2, L±] = [L2, Lx]∓ i[L2, Ly] = 0 and

[Lz, L±] = [Lz, Lx]∓ i[Lz, Ly] = iLy ∓ i(−iLx) = ±(Lx ∓ iLy) = ±L±

⇒ L±|λ,m〉 is also an eigenstate of L2 and Lz :

L2(L±|λ,m〉) = ([L2, L±] + L±L
2)|λ,m〉 = 0+ L±L

2|λ,m〉

= L±λ|λ,m〉 = λ(L±|λ,m〉)

and

Lz(L±|λ,m〉) = ([Lz, L±] + L±Lz)|λ,m〉 = (±L±+ L±Lz)|λ,m〉

= (±L±+ L±m)|λ,m〉 = (m± 1)(L±|λ,m〉)
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2. Special Relativity (SR) — the Rotationgroup

Eigenstates of the Rotationgroup

• L± does not change the eigenvalue λ of the state |λ,m〉

• L± changes the eigenvalue m of the state |λ,m〉

⇒ the states |λ,m+ n〉 with n ∈ Z are related

⇒ for each λ there would be ∞ many states unless there is

∗ a = mmin with L−|λ, a〉 = 0 and

∗ b = mmax with L+|λ, b〉 = 0

• using

L±L∓ = (Lx ∓ iLy)(Lx ± iLy) = L2
x ± iLxLy ∓ iLyLx + L2

y

= (L2
x + L2

y + L2
z)− L2

z ± i[Lx, Ly] = L2 − L2
z ± i(iLz)

= L2 − Lz(Lz ± 1)

we can relate a and b.
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2. Special Relativity (SR) — the Rotationgroup

Eigenstates of the Rotationgroup

• relating a and b:

– 0 = L+L−|λ, a〉 = (λ− (a2 + a))|λ, a〉 ⇒ λ = a2 + a

– 0 = L−L+|λ, b 〉 = (λ− (b2 − b))|λ, b〉 ⇒ λ = b2 − b

a(a+1) = b(b− 1) or a = −b

• Applying (L+) n times on the state |λ, a〉 gives |λ, a+ n〉

• for some n we have to reach |λ, b〉 ⇒ a+ n = b

• with a = −b we get −b+ n = b or mmax = b = n
2

• The rotationgroup allows for half integer eigenstates

⇒ Spinors
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2. Special Relativity (SR) — SU(2) spinors

Constructing a spinor from the known number of eigenstates

• we can write the two eigenstates as
∣

∣

1
2
, 1
2

〉

and
∣

∣

1
2
,−1

2

〉

with
〈

1
2
, 1
2
|1
2
, 1
2

〉

=
〈

1
2
,−1

2
|1
2
,−1

2

〉

= 1 and
〈

1
2
, 1
2
|1
2
,−1

2

〉

= 0

– but this is not a matrix representation.

• for a matrix representation we need two independent vectors

⇒ at least a two dimensional representation (i.e. two component vectors)

– we can choose any two complex orthonormal 2d vectors for
∣

∣

1
2
, 1
2

〉

and
∣

∣

1
2
,−1

2

〉

– an SU(2) rotation allows us to rotate these vectors to

∣

∣

1
2
, 1
2

〉

→ s+ =

(

1

0

)

and
∣

∣

1
2
,−1

2

〉

→ s− =

(

0

1

)

– now we have to find the SU(2) generators Sk that

∗ give the correct eigenvalues for s+ and s−:

S3s
+ = 1

2
s+ and S3s

− = −1
2
s−

∗ raise s− to S+s− = s+ and lower s+ to S−s+ = s−.

⇒ we get the matrices

S+ =

(

0 1

0 0

)

S− =

(

0 0

1 0

)

S3 = 1
2

(

1 0

0 −1

)
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2. Special Relativity (SR) — SU(2) spinors

Constructing a spinor from the known number of eigenstates

• requiring the generators to be hermitian (for convenience)

– we can write S± = S1 ± iS2

– and recognise the commutation relations of the rotation group

[Sj, Sk] = iǫjkℓSℓ

⇒ the generators Sk = 1
2σk are given by the Pauli matrices

σx =

(

0 1

1 0

)

σy =

(

0 −i

i 0

)

σz =

(

1 0

0 −1

)

• these Spin matrices act on 2d complex column vectors ~s =

(

α

β

)

with |α|2 + |β|2 = 1 ⇒ (Weyl)spinors

– each Weylspinor can also be written as a four parametric rotation (σ0 = 12×2)

(

α

β

)

= ei(φ0σ
0+φiσ

i)
(

1

0

)

or

(

α

β

)

= ei(χ0σ
0+χiσ

i)
(

0

1

)

⇒ fundamental representation of the rotation group SU(2)
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2. Special Relativity (SR) — SU(2) spinors

Rotations of Spinors

• with simple matrix multiplication we can see for the Pauli matrices:

σ2x = σ2y = σ2z =

(

1 0

0 1

)

= 12×2

• So the finite rotation of a spinor around the ŷ-axis is

R[θ] = eiθSy =
∞
∑

n=0

1

n!
(iθ12σy)

n =
∑

n even

1

n!
(iθ2)

nσny +
∑

n odd

1

n!
(iθ2)

nσny

=
∞
∑

n

(−1)n(θ2)
2n

(2n)!
(σ2y )

n + i
∞
∑

n

(−1)n(θ2)
2n+1

(2n+1)!
(σ2y )

nσy

= cos θ
2 ∗ 12×2 + i sin θ

2σy =

(

cos θ
2

sin θ
2

− sin θ
2

cos θ
2

)

– acting on the spinor ~s =

(

α

β

)

⇒ spinors rotate only with half of the rotation angle θ
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2. Special Relativity (SR) — Algebra of the Poincaré group

Invariants of the Poincaré group

• obviously [ab, c] = a[b, c] + [a, c]b = abc− acb+ acb− cab = abc− cab

[Pµ, P
2] = [Pµ, Pν]P

ν + P ν[Pµ, Pν] = 0

and

[Mαβ, P
2] = gµν[Mαβ, Pµ]Pν + gµνPµ[Mαβ, Pν]

= gµνi(gαµPβ − gβµPα)Pν + gµνPµi(gανPβ − gβνPα)

= −2i[Pα, Pβ] = 0 .

⇒ P2 = m2 invariant is a consequence of the Poincaré algebra!

• Another invariant is W2

– with the Pauli-Lubanski vector Wµ = 1
2ǫ

µνρλMνρPλ

[Pκ,W
µ] = 1

2ǫ
µνρλ([Pκ,Mνρ]Pλ +Mνρ[Pκ, Pλ])

= 1
2ǫ

µνρλ i(gρκPν − gνκPρ)Pλ = 0

⇒ Particles can be characterised simultaneously by the eigenvalues

of P2 and W2
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2. Special Relativity (SR) — Algebra of the Poincaré group

Invariants of the Poincaré group

• the spin vector Wµ is orthogonal to Pµ :

(P.W ) = Pµ1
2ǫµνρλM

νρPλ = 0

• For a particle at rest: Pµ = (m,0) and Wµ = 1
2mǫµνρ0M

νρ = m(0, ~J)

– so W2 = −m2 ~J2 = −m2s(s+1)

⇒ eigenvalue of P2 is m2 and of W2 is m2s(s+1)

• For a massless particle Pµ = (η, η,0,0)

– we have P2 = (P.W ) = W2 = 0

⇒ eigenvalues of P2 and W2 are 0

– but: 0 = λ2P2 − 2λ(P.W ) +W2 = (λP −W )2

⇒ therefore: Wµ = λPµ with the helicity λ = 0,±1
2,±1, . . .

∗ λ depends on the representation (i.e. the spin) of the particle

⇒ Particles are characterised by mass and spin !
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2. Special Relativity (SR) — Algebra of the Poincaré group

Investigating the Lorentz group

• distinguishing again boosts and rotations

Ki = M0i = −M
0i and Ji =

1
2ǫijkM

jk ,

the Lorentz algebra gives

[Jj, Jk] = iǫjkℓJℓ , [Kj,Kk] = −iǫjkℓJℓ , [Jj,Kk] = iǫjkℓKℓ

• defining

Li = Ni =
1
2(Ji + iKi) and Ri = N

†
i = 1

2(Ji − iKi)

one gets

[Lj, Rk] = 0 , [Lj, Lk] = iǫjkℓLℓ , [Rj, Rk] = iǫjkℓRℓ

• the Lorentz algebra is similar to SU(2)L ⊗ SU(2)R !

• two invariants: LiLi = n(n+1) and RiRi = m(m+1)

– Ji = Li +Ri ⇒ spin j = n+m
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2. Special Relativity (SR) — Algebra of the Poincaré group

Investigating the Lorentz group

• Parity leaves rotations invariant Ji
P
−→ Ji, but flips boosts Ki

P
−→ −Ki,

⇒ Li
P
←→ Ri, (n,m)

P
←→ (m,n), SU(2)L

P
←→ SU(2)R

• Charge conjugation also interchanges SU(2)L ⇔ SU(2)R

– like Parity

⇒ the combined transformation CP leaves SU(2)L and SU(2)R invariant

– but it still includes mathematically a complex conjugation

• Time reversal T is an antiunitary transformation

– it includes a complex conjugation

⇒ any quantum field theory

built from the representations of the Poincaré algebra

– that means: scalars, spinors, vectors, . . .

has to be invariant under CPT
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2. Special Relativity (SR) — Algebra of the Poincaré group

classifying particles

according to the eigenstates (n,m) of SU(2)L ⊗ SU(2)R

• (0,0) is a scalar

• (12,0) is the χa left-handed Weyl-spinor

– transforms with Λ(ω) b
a = [eiωαβσ

αβ
] b
a

• (0, 12) is the η̄ȧ right-handed Weyl-spinor

– transforms with Λ(ω)ȧ
ḃ
= [eiωαβσ̄

αβ
]ȧ

ḃ

• (12,0)⊕ (0, 12) is Ψ =
(

χa

η̄ȧ

)

, the Dirac-spinor

– transforms with Λ(ω)a b = [eiωαβ(−
i
4[γ

α,γβ])]a b, with γµ =

(

0 σµ

σ̄µ 0

)

∗ a and b go from 1 to 4, (3 and 4 representing the dotted indices)

• (12,0)⊗ (0, 12) = (12,
1
2) is (χσµη̄) = χασ

µ
αα̇η̄

α̇, the spin-1 four-vector

⇒ in that sense is the spinor the square root of the vector
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