2. Special Relativity (SR) — Generators as differential operators

Translation and Rotation Operators

- The momentum operator $\vec{P} = -i\frac{\partial}{\partial \vec{x}} = -i\vec{\partial}$ generates translations:
 - in index notation: $P_k = -i \frac{\partial}{\partial x^k} = -i \partial_k$

$$e^{ia^k P_k} f(x) = e^{a^k \partial_k} f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} (a^k \partial_k)^n f(x)$$
$$= f(x) + a^k \partial_k f(x) + \frac{1}{2} a^j a^k \partial_j \partial_k f(x) + \dots$$

- the Taylorseries of f(x+a) is

$$f(x+a) = f(x) + a^k \partial_k f(x) + \frac{1}{2} a^j a^k \partial_j \partial_k f(x) + \dots = e^{i\vec{a}\vec{P}} f(x)$$

- \Rightarrow the operator $e^{i \vec{a} \vec{P}}$ moves the function f by the amount \vec{a}
- The angular momentum operator $\vec{L} = \vec{X} \times \vec{P}$ generates rotations
 - in index notation: $L_j = \epsilon_{jk\ell} x^k P_\ell = -i\epsilon_{jk\ell} x^k \partial_\ell$
 - or $L_x = i(z\partial_y y\partial_z)$, $L_y = i(x\partial_z z\partial_x)$, $L_z = i(y\partial_x x\partial_y)$

2. Special Relativity (SR) — Generators as differential operators

Translation and Rotation Operators

- The components of \vec{L} do not commute:
 - if you rotate around the \hat{x} -axis and then around the \hat{y} -axis, you get a different result than rotating first around \hat{y} and then \hat{x} .
 - mathematically:

$$[L_{y}, L_{x}] = i^{2}[(x\partial_{z} - z\partial_{x})(z\partial_{y} - y\partial_{z}) - (z\partial_{y} - y\partial_{z})(x\partial_{z} - z\partial_{x})]$$

$$= i^{2}[(x\partial_{y} + xz\partial_{z}\partial_{y} - xy\partial_{z}^{2} - z^{2}\partial_{x}\partial_{y} + zy\partial_{x}\partial_{z})$$

$$-(zx\partial_{y}\partial_{z} - z^{2}\partial_{y}\partial_{x} - yx\partial_{z}^{2} + y\partial_{x} + yz\partial_{z}\partial_{x})]$$

$$= i^{2}[x\partial_{y} - y\partial_{x}] = -iL_{z}$$

- or in index notation: $[L_i, L_k] = i\epsilon_{ik\ell}L_\ell \implies \mathsf{Rotationgroup}$
- but the square $L^2 = \vec{L} \cdot \vec{L} = L_k L_k$ does commute:

$$[L^{2}, L_{j}] = L_{k}[L_{k}, L_{j}] + [L_{k}, L_{j}]L_{k} = L_{k}i\epsilon_{kj\ell}L_{\ell} + i\epsilon_{kj\ell}L_{\ell}L_{k}$$
$$= L_{h}i\epsilon_{hjm}L_{m} + i\epsilon_{mjh}L_{h}L_{m} = i(\epsilon_{hjm} + \epsilon_{mjh})L_{h}L_{m} = 0$$

 \Rightarrow use L^2 and L_z to describe quantum mechanical states (particles)

2. Special Relativity (SR) — the Rotationgroup

Eigenstates of the Rotationgroup

• We write an eigenstate of the operators L^2 and L_z as $|\lambda, m\rangle$

$$L^2|\lambda,m\rangle = \lambda|\lambda,m\rangle$$
 and $L_z|\lambda,m\rangle = m|\lambda,m\rangle$

- $-|f\rangle$ is called a ket and used to denote a quantum mechanical state.
- We define the ladder operators $L_{\pm} = L_x \mp iL_y$ with

$$[L^2, L_{\pm}] = [L^2, L_x] \mp i[L^2, L_y] = 0$$
 and $[L_z, L_{\pm}] = [L_z, L_x] \mp i[L_z, L_y] = iL_y \mp i(-iL_x) = \pm (L_x \mp iL_y) = \pm L_{\pm}$

 $\Rightarrow L_{\pm}|\lambda,m\rangle$ is also an eigenstate of L^2 and L_z :

$$L^{2}(\underline{L}_{\pm}|\lambda, m\rangle) = ([L^{2}, L_{\pm}] + L_{\pm}L^{2})|\lambda, m\rangle = 0 + L_{\pm}L^{2}|\lambda, m\rangle$$
$$= L_{\pm}\lambda|\lambda, m\rangle = \lambda(\underline{L}_{\pm}|\lambda, m\rangle)$$

and

$$L_z(L_{\pm}|\lambda,m\rangle) = ([L_z,L_{\pm}] + L_{\pm}L_z)|\lambda,m\rangle = (\pm L_{\pm} + L_{\pm}L_z)|\lambda,m\rangle$$
$$= (\pm L_{\pm} + L_{\pm}m)|\lambda,m\rangle = (m \pm 1)(L_{\pm}|\lambda,m\rangle)$$

2. Special Relativity (SR) — the Rotationgroup

Eigenstates of the Rotationgroup

- L_{\pm} does not change the eigenvalue λ of the state $|\lambda, m\rangle$
- L_{\pm} changes the eigenvalue m of the state $|\lambda, m\rangle$
- \Rightarrow the states $|\lambda, m+n\rangle$ with $n \in \mathbb{Z}$ are related
 - \Rightarrow for each λ there would be ∞ many states unless there is
 - * $a = m_{\min}$ with $L_{-}|\lambda,a\rangle = 0$ and
 - * $b = m_{\text{max}}$ with $L_{+}|\lambda,b\rangle = 0$
 - using

$$L_{\pm}L_{\mp} = (L_x \mp iL_y)(L_x \pm iL_y) = L_x^2 \pm iL_xL_y \mp iL_yL_x + L_y^2$$

= $(L_x^2 + L_y^2 + L_z^2) - L_z^2 \pm i[L_x, L_y] = L^2 - L_z^2 \pm i(iL_z)$
= $L^2 - L_z(L_z \pm 1)$

we can relate a and b.

2. Special Relativity (SR) — the Rotationgroup

Eigenstates of the Rotationgroup

• relating a and b:

$$-0 = L_{+}L_{-}|\lambda, a\rangle = (\lambda - (a^{2} + a))|\lambda, a\rangle \Rightarrow \lambda = a^{2} + a$$

$$-0 = L_{-}L_{+}|\lambda, b\rangle = (\lambda - (b^{2} - b))|\lambda, b\rangle \Rightarrow \lambda = b^{2} - b$$

$$a(a + 1) = b(b - 1) \quad \text{or} \quad a = -b$$

- Applying (L_+) n times on the state $|\lambda,a\rangle$ gives $|\lambda,a+n\rangle$
- for some n we have to reach $|\lambda,b\rangle$ \Rightarrow a+n=b
- with a=-b we get -b+n=b or $m_{\text{max}}=b=\frac{n}{2}$
- The rotationgroup allows for half integer eigenstates

2. Special Relativity (SR) — SU(2) spinors

Constructing a spinor from the known number of eigenstates

• we can write the two eigenstates as $\left|\frac{1}{2},\frac{1}{2}\right\rangle$ and $\left|\frac{1}{2},-\frac{1}{2}\right\rangle$ with

$$\langle \frac{1}{2}, \frac{1}{2} | \frac{1}{2}, \frac{1}{2} \rangle = \langle \frac{1}{2}, -\frac{1}{2} | \frac{1}{2}, -\frac{1}{2} \rangle = 1$$
 and $\langle \frac{1}{2}, \frac{1}{2} | \frac{1}{2}, -\frac{1}{2} \rangle = 0$

- but this is not a matrix representation.
- for a matrix representation we need two independent vectors
 - ⇒ at least a two dimensional representation (i.e. two component vectors)
 - we can choose any two complex orthonormal 2d vectors for $\left|\frac{1}{2},\frac{1}{2}\right\rangle$ and $\left|\frac{1}{2},-\frac{1}{2}\right\rangle$
 - an SU(2) rotation allows us to rotate these vectors to

$$\left|\frac{1}{2},\frac{1}{2}\right\rangle \to s^{+} = \begin{pmatrix} 1\\0 \end{pmatrix}$$
 and $\left|\frac{1}{2},-\frac{1}{2}\right\rangle \to s^{-} = \begin{pmatrix} 0\\1 \end{pmatrix}$

- now we have to find the SU(2) generators S_k that
 - * give the correct eigenvalues for s^+ and s^- :

$$S_3 s^+ = \frac{1}{2} s^+$$
 and $S_3 s^- = -\frac{1}{2} s^-$

- * raise s^- to $S^+s^-=s^+$ and lower s^+ to $S^-s^+=s^-$.
- ⇒ we get the matrices

$$S^{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad S^{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \qquad S_{3} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

2. Special Relativity (SR) — SU(2) spinors

Constructing a spinor from the known number of eigenstates

- requiring the generators to be hermitian (for convenience)
 - we can write $S^{\pm} = S_1 \pm iS_2$
 - and recognise the commutation relations of the rotation group

$$[S_j, S_k] = i\epsilon_{jk\ell} S_\ell$$

 \Rightarrow the generators $S_k = \frac{1}{2}\sigma_k$ are given by the Pauli matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

- these Spin matrices act on 2d complex column vectors $\vec{s} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ with $|\alpha|^2 + |\beta|^2 = 1 \Rightarrow$ (Weyl)spinors
 - each Weylspinor can also be written as a four parametric rotation $(\sigma^0=\mathbf{1}_{2\times 2})$

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = e^{i(\phi_0 \sigma^0 + \phi_i \sigma^i)} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \text{or} \qquad \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = e^{i(\chi_0 \sigma^0 + \chi_i \sigma^i)} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 \Rightarrow fundamental representation of the rotation group SU(2)

2. Special Relativity (SR) — SU(2) spinors

Rotations of Spinors

with simple matrix multiplication we can see for the Pauli matrices:

$$\sigma_x^2 = \sigma_y^2 = \sigma_z^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{1}_{2 \times 2}$$

• So the finite rotation of a spinor around the \hat{y} -axis is

$$R[\theta] = e^{i\theta S_y} = \sum_{n=0}^{\infty} \frac{1}{n!} (i\theta \frac{1}{2}\sigma_y)^n = \sum_{n \text{ even }} \frac{1}{n!} (i\frac{\theta}{2})^n \sigma_y^n + \sum_{n \text{ odd }} \frac{1}{n!} (i\frac{\theta}{2})^n \sigma_y^n$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{\theta}{2})^{2n}}{(2n)!} (\sigma_y^2)^n + i \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{\theta}{2})^{2n+1}}{(2n+1)!} (\sigma_y^2)^n \sigma_y$$

$$= \cos \frac{\theta}{2} * 1_{2 \times 2} + i \sin \frac{\theta}{2} \sigma_y = \begin{pmatrix} \cos \frac{\theta}{2} & \sin \frac{\theta}{2} \\ -\sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{pmatrix}$$

- acting on the spinor $\vec{s} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$
- \Rightarrow spinors rotate only with half of the rotation angle θ

Invariants of the Poincaré group

• obviously [ab,c] = a[b,c] + [a,c]b = abc - acb + acb - cab = abc - cab $[P_{\mu},P^{2}] = [P_{\mu},P_{\nu}]P^{\nu} + P^{\nu}[P_{\mu},P_{\nu}] = 0$ and $[M_{\alpha\beta},P^{2}] = g^{\mu\nu}[M_{\alpha\beta},P_{\mu}]P_{\nu} + g^{\mu\nu}P_{\mu}[M_{\alpha\beta},P_{\nu}]$ $= g^{\mu\nu}i(g_{\alpha\mu}P_{\beta} - g_{\beta\mu}P_{\alpha})P_{\nu} + g^{\mu\nu}P_{\mu}i(g_{\alpha\nu}P_{\beta} - g_{\beta\nu}P_{\alpha})$ $= -2i[P_{\alpha},P_{\beta}] = 0 .$

 $\Rightarrow P^2 = m^2$ invariant is a consequence of the Poincaré algebra!

- Another invariant is W^2
 - with the Pauli-Lubanski vector $W^{\mu}=\frac{1}{2}\epsilon^{\mu\nu\rho\lambda}M_{\nu\rho}P_{\lambda}$

$$[P_{\kappa}, W^{\mu}] = \frac{1}{2} \epsilon^{\mu\nu\rho\lambda} ([P_{\kappa}, M_{\nu\rho}] P_{\lambda} + M_{\nu\rho} [P_{\kappa}, P_{\lambda}])$$
$$= \frac{1}{2} \epsilon^{\mu\nu\rho\lambda} i (g_{\rho\kappa} P_{\nu} - g_{\nu\kappa} P_{\rho}) P_{\lambda} = 0$$

 \Rightarrow Particles can be characterised simultaneously by the eigenvalues of P^2 and W^2

Invariants of the Poincaré group

ullet the spin vector W^μ is orthogonal to P_μ :

$$(P.W) = P^{\mu} \frac{1}{2} \epsilon_{\mu\nu\rho\lambda} M^{\nu\rho} P^{\lambda} = 0$$

- For a particle at rest: $P_{\mu}=(m,0)$ and $W_{\mu}=\frac{1}{2}m\epsilon_{\mu\nu\rho0}M^{\nu\rho}=m(0,\vec{J})$
 - so $W^2 = -m^2 \vec{J}^2 = -m^2 s(s+1)$
 - \Rightarrow eigenvalue of P^2 is m^2 and of W^2 is $m^2s(s+1)$
- For a massless particle $P_{\mu} = (\eta, \eta, 0, 0)$
 - we have $P^2 = (P.W) = W^2 = 0$
 - \Rightarrow eigenvalues of P^2 and W^2 are 0
 - but: $0 = \lambda^2 P^2 2\lambda (P.W) + W^2 = (\lambda P W)^2$
 - \Rightarrow therefore: $W^{\mu} = \lambda P^{\mu}$ with the helicity $\lambda = 0, \pm \frac{1}{2}, \pm 1, \dots$
 - * λ depends on the representation (i.e. the spin) of the particle
- ⇒ Particles are characterised by mass and spin!

Investigating the Lorentz group

distinguishing again boosts and rotations

$$K_i = M_{0i} = -M^{0i}$$
 and $J_i = \frac{1}{2}\epsilon_{ijk}M^{jk}$,

the Lorentz algebra gives

$$[J_j, J_k] = i\epsilon_{jk\ell}J_\ell$$
, $[K_j, K_k] = -i\epsilon_{jk\ell}J_\ell$, $[J_j, K_k] = i\epsilon_{jk\ell}K_\ell$

defining

$$L_i = N_i = \frac{1}{2}(J_i + iK_i)$$
 and $R_i = N_i^{\dagger} = \frac{1}{2}(J_i - iK_i)$

one gets

$$[L_j, R_k] = 0$$
 , $[L_j, L_k] = i\epsilon_{jk\ell} L_\ell$, $[R_j, R_k] = i\epsilon_{jk\ell} R_\ell$

- the Lorentz algebra is similar to $SU(2)_L \otimes SU(2)_R$!
- two invariants: $L_iL_i = n(n+1)$ and $R_iR_i = m(m+1)$

$$-J_i = L_i + R_i \quad \Rightarrow \quad \text{spin } j = n + m$$

Investigating the Lorentz group

- Parity leaves rotations invariant $J_i \stackrel{\mathsf{P}}{\longrightarrow} J_i$, but flips boosts $K_i \stackrel{\mathsf{P}}{\longrightarrow} -K_i$, $\Rightarrow L_i \stackrel{\mathsf{P}}{\longleftrightarrow} R_i$, $(n,m) \stackrel{\mathsf{P}}{\longleftrightarrow} (m,n)$, $SU(2)_L \stackrel{\mathsf{P}}{\longleftrightarrow} SU(2)_R$
- Charge conjugation also interchanges $SU(2)_L \Leftrightarrow SU(2)_R$
 - like Parity
- \Rightarrow the combined transformation CP leaves $SU(2)_L$ and $SU(2)_R$ invariant
 - but it still includes mathematically a complex conjugation
 - Time reversal T is an antiunitary transformation
 - it includes a complex conjugation
- ⇒ any quantum field theory

built from the representations of the Poincaré algebra

- that means: scalars, spinors, vectors, . . .

has to be invariant under CPT

classifying particles

according to the eigenstates (n,m) of $SU(2)_L \otimes SU(2)_R$

- (0,0) is a scalar
- $(\frac{1}{2},0)$ is the χ_a left-handed Weyl-spinor
 - transforms with $\Lambda(\omega)_a{}^b = [e^{i\omega_{\alpha\beta}\sigma^{\alpha\beta}}]_a{}^b$
- $(0,\frac{1}{2})$ is the $\bar{\eta}^{\dot{a}}$ right-handed Weyl-spinor
 - transforms with $\Lambda(\omega)^{\dot{a}}_{\dot{b}} = [e^{i\omega_{\alpha\beta}\bar{\sigma}^{\alpha\beta}}]^{\dot{a}}_{\dot{b}}$
- $(\frac{1}{2},0)\oplus(0,\frac{1}{2})$ is $\Psi=\begin{pmatrix}\chi_a\\\bar{\eta}^{\dot{a}}\end{pmatrix}$, the Dirac-spinor
 - $-\text{ transforms with }\Lambda(\omega)^a{}_b=[e^{i\omega_{\alpha\beta}(-\frac{i}{4}[\gamma^\alpha,\gamma^\beta])}]^a{}_b,\text{ with }\gamma^\mu=\left(\begin{array}{cc}0&\sigma^\mu\\\bar\sigma^\mu&0\end{array}\right)$
 - st a and b go from 1 to 4, (3 and 4 representing the dotted indices)
- $(\frac{1}{2},0)\otimes(0,\frac{1}{2})=(\frac{1}{2},\frac{1}{2})$ is $(\chi\sigma^{\mu}\bar{\eta})=\chi^{\alpha}\sigma^{\mu}_{\alpha\dot{\alpha}}\bar{\eta}^{\dot{\alpha}}$, the spin-1 four-vector
 - ⇒ in that sense is the spinor the square root of the vector