2. Special Relativity (SR) — Generators as differential operators

Translation and Rotation Operators

e [ he momentum operator P = —ia% = i generates translations:
. . .0 _ .
— in index notation: P, = —ls = — 10}
-’ k O
Nk f(@) = " Ohf(z) =Y —(a"Op)"f (=)
n—0 n.

1 .
f(x) + a0 f(x) + Eaﬂakajak f(z) + ...
— the Taylorseries of f(x + a) is

fata) = )+ i) + ald 00 f (@) + - = P f(2)

= the operator e'@P moves the function f by the amount a

e The angular momentum operator L = X x P generates rotations
— in index notation: Lj = ijg :Ekpg = _iejké :Ekag
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2. Special Relativity (SR) — Generators as differential operators
Translation and Rotation Operators

e The components of I do not commute:

— if you rotate around the x-axis and then around the y-axis,
you get a different result than rotating first around y and then Zz.

— mathematically:

[L,, L] = ?[(20, — 20.)(20, — yd,) — (20, — y8,) (20, — 20,)]

i?[(20y + £20.0, — xy0? — 220,80, + 2y0:0,)
—(220,0, — 2°0,0, — yx0? + Y0, + y20.0,)]

= %20y — yO:] = —iL,

— or in index notation: [L;, L] = ie;p0Ly, =  Rotationgroup

e but the square L2 = L. L = L, L; does commute:

(L2, L;] Ly[Ly, Lj] + [Ly, Lj] Ly, = Lyieg oLy + iegjpLoLy,

Lhiehijm —|— iemthhLm — Z(Ehjm —|— 6mjh>LhLm =0

— use L2 and L, to describe quantum mechanical states (particles)
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2. Special Relativity (SR) — the Rotationgroup
Eigenstates of the Rotationgroup

e We write an eigenstate of the operators L? and L. as |\, m)
L2\, m) = A\, m) and L.\, m) = m|X\, m)

— |f) is called a ket and used to denote a quantum mechanical state.

e We define the ladder operators L+ = Ly F Ly with
[L?,L+] = [L% L] Fi[L% Lyl =0  and
Lz, Lt] = [Lz, L] FilLz, Lyl = ily Fi(—ily) = £(La Fily) = £L4

= L4|\,m) is also an eigenstate of L? and L. :
L?(Li|h,m)) = ([L? L+]+ L+L?)|A\,m) =0+ LyL?|\,m)
= LiAA,m) = A(La|\,m))
and
Lo(L4|A,m))

([Lz, L] + LiLz)|\,m) = (£L+ + LiL;)|\,m)
(£L+ + Lim)|A,m) = (m = 1)(L+[A, m))
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2. Special Relativity (SR) — the Rotationgroup
Eigenstates of the Rotationgroup

e [ does not change the eigenvalue X\ of the state |\, m)
e L+ changes the eigenvalue m of the state |\, m)

= the states |\, m + n) with n € Z are related

= for each X\ there would be oo many states unless there is

e USing

LiLy = (LzFiLly)(Le+ily) = L34 iLyLyFiLyLy+ L
(Lz+ L5+ L2) — L7 £i[Ls, Ly] = L% — LZ +4(iLz)
L2 —L.(L,+1)

we can relate a and b.
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2. Special Relativity (SR) —  the Rotationgroup
Eigenstates of the Rotationgroup

e relating a and b:
—0=LyL_|Na)=(O-(a®+a))|N\a) = I=a’+a
—0=L_LyA\b)=(A—=(b%2=0b)IN\b) = AX=0b2-0b

ala+1)=bb—-—1) or a=-b
e Applying (L4 ) n times on the state |\, a) gives |\,a + n)
e for some n we have to reach |[\,b) = a+4+n=1>

e With a=-bweget -b+n=0>b0r mmax =506 =

NS

e T he rotationgroup allows for half integer eigenstates

= Spinors
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2. Special Relativity (SR) — SU(2) spinors

Constructing a spinor from the known number of eigenstates

e we can write the two eigenstates as |1,2) and |1, —2) with
1 191 1\ _ /1 1,1 1\ _ 1 11 1\ __
(3:313:3) =(5—3l5,-3) =1  and (3,313, —3) =0

— but this is not a matrix representation.

e for a matrix representation we need two independent vectors
= at least a two dimensional representation (i.e. two component vectors)
— we can choose any two complex orthonormal 2d vectors for L 1> and

272
— an SU(2) rotation allows us to rotate these vectors to

11 +_ (1 1 1 - _ (0
§,§>—>S — (O) and 5,—§>—>8 = (1>
— now we have to find the SU(2) generators S; that

« give the correct eigenvalues for st and s—:

S3stT = %8—'_ and S35~ = —L1s~

+ raise s~ to Sts~ = s and lower sT to S—sT = s
= we get the matrices

+ (01 _ (o0 o0 _1f{ 1 o0
s=(as) s=(12) ==3s3)
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2. Special Relativity (SR) — SU(2) spinors
Constructing a spinor from the known number of eigenstates

e requiring the generators to be hermitian (for convenience)
— we can write ST = 57 +1iS5
— and recognise the commutation relations of the rotation group
(S, Skl = i€reS

= the generators 5, = %ak are given by the Pauli matrices

(01 ([ 0 —i (1 o0
v =11 o Yy =\ o 92 =\ 0 -1
e these Spin matrices act on 2d complex column vectors s = ( g )
with |a]2 + |82 =1 = (Weyl)spinors

— each Weylspinor can also be written as a four parametric rotation (00 = 15x2)

( g ) — ei(ﬁboao‘l‘ﬁbiai)( Cl) ) or ( g ) e ei(XOJO_FXiUi)( Cl) )

= fundamental representation of the rotation group SU(2)
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2. Special Relativity (SR) — SU(2) spinors
Rotations of Spinors

e With simple matrix multiplication we can see for the Pauli matrices:
2 _ 2 __ 2__ (1 0\ _
O-a:_o-y_o-z—(o 1>—12><2

e S0 the finite rotation of a spinor around the y-axis is

R[6] = &= % —(ibz00)" = 3. —(z2>”a”+ > —(zz)” ;
n—=0 TV n even 1 n odd ™
B 00 (_1>n(g>2n 2 . )n( )2n—|—1 o
= L gy ) En: (n+ 1)1 )
. 9 [ cos? sing
— cos * 1oyo +iSin 50y = ( —sian COSQ%>

— acting on the spinor §= ( ; )

— spinors rotate only with half of the rotation angle 6
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2. Special Relativity (SR) — Algebra of the Poincaré group

Invariants of the Poincaré group

e obviously [ab,c] = alb, c] + [a, c]b = abc — acb + acb — cab = abc — cab

[P, P?] = [P, P]P"+ P'[P,,P,]=0
and
[Meag, P?] = g"[Mag, PP, + g" Pu[Mag, P,]
— gwji(ga,upﬂ - gﬁuPa)Py + guyp,ui(gavpﬁ - gBuPa)
= —2i[P,Ps] =0 .
— P2 = m? invariant is a consequence of the Poincaré algebra!

e Another invariant is W2
— with the Pauli-Lubanski vector W# = %eWP)‘MVpP)\

[P, WH] LeMVPA([Pe, Myp) Py + Muyp[Pr, Py])

— %E'Lbyp)\'l/(gpﬁpy — gy/{Pp)PA — O

— Particles can be characterised simultaneously by the eigenvalues
of P2 and W2
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2. Special Relativity (SR) — Algebra of the Poincaré group

Invariants of the Poincaré group
e the spin vector W is orthogonal to P, :

(P.W) = PFie,, \M"PP* =0

e For a particle at rest: P, = (m,0) and W, = %mew/poMVp = m(0,J)
— 50 W2 =—-m2J2=—m2s(s+ 1)
= eigenvalue of P2 is m? and of W? is m2s(s+ 1)

e For a massless particle P, = (n,n,0,0)
— we have P2 = (PW) =W?2=0
— eigenvalues of P2 and W< are 0
— but: 0 = \2P2 —2A(P.W) + W2 = (AP —W)?
= therefore: WH = \PH with the helicity A = 0,+1, +1. ...
+ )\ depends on the representation (i.e. the spin) of the particle

— Particles are characterised by mass and spin !
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2. Special Relativity (SR) — Algebra of the Poincaré group
Investigating the Lorentz group

e distinguishing again boosts and rotations

— — Oz — 1 k
K; = My, = —M ¢ and J; = §6ijkM] ,

the Lorentz algebra gives

[Jj, Jk] = i€pede (K, Ki| = —iejredy [T, Ki] = i€ Ky
e defining
Li=N;=x(J;+iK;) and  R;=N=1(J—iK))
one gets
[Lj7 Rk] =0, [Ljv Lk] — iejkﬁLf ) [ij Rk] — iEjkgRg

e the Lorentz algebra is similar to SU(2); ® SU(2)p !

e two invariants: L;L; =n(n+ 1) and R;R; = m(m + 1)
— J;=L; + R; = spin j=n-+m
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2. Special Relativity (SR) — Algebra of the Poincaré group
Investigating the Lorentz group

e Parity leaves rotations invariant J; i> J;, but flips boosts K; i> — K,

—~ L, <5 R, (n,m) < (m,n), SU(2); <= SU(2) R

e Charge conjugation also interchanges SU(2);, < SU(2)g
— like Parity

= the combined transformation CP leaves SU(2); and SU(2)g invariant
— but it still includes mathematically a complex conjugation

e Time reversal T is an antiunitary transformation
— it includes a complex conjugation

= any quantum field theory
built from the representations of the Poincarée algebra
— that means: scalars, spinors, vectors, . ..

has to be invariant under CPT
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2. Special Relativity (SR) — Algebra of the Poincaré group

classifying particles
according to the eigenstates (n,m) of SU(2); ® SU(2)p

e (0,0) is a scalar

o (3,0) is the xq left-handed Weyl-spinor

— transforms with /\(w)ab = [eiwaﬁaaﬂ]ab

o (0,3) is the 7% right-handed Weyl-spinor
~af
]CL

— transforms with /\(w)“ = [eWaB®
o (3,00 ®(0,3) is W= (j;g) the Dirac-spinor
— transforms with A(w)?, = [eiwaﬁ(_%ha”ﬁ])]ab, with ~H = ( ; OON )
« a and b go from 1 to 4, (3 and 4 representing the dotted indices)

o (2,0) ® (O, 2) = (2, 2) is (xotn) = x® aana the spin-1 four-vector
= in that sense is the spinor the square root of the vector
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