
4. Quantum Field Theory (QFT) — Gauge Theories

Electromagnetism as a gauge theory

• classically electromagnetism (EM) was described with fields ~E and ~B

• SR unified them to Fµν with Ei = −F0i and Bi = −1
2eijkFjk

– scalar Φ and vector potential ~A to the fourvector Aµ = (Φ,− ~A)

– with Fµν = ∂µAν − ∂νAµ

• any change of the type Aµ → A′
µ = Aµ+ ∂µα does not change anything

⇒ gauge transformation (reparametrisation invariance)

a gauge transformation describes the

redundant parametrisation of a system

but

nature is described most exactly

by gauge theories
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4. Quantum Field Theory (QFT) — Gauge Theories

Connection to the last semester

• In General Relativity (GR) we had

– the invariance under changes of the coordinate systems

– ”forms” to write vectors in a basis independent way

– the exterior derivative as a way to formulate differentiation

• using forms we could write the fieldstrength tensor from EM as a two-form F

F = 1
2
dxµ ∧ dxνFµν =

1
2
dxµ ∧ dxν(∂µAν − ∂νAµ)

= 1
2
(dxµ ∧ dxν∂µAν +dxν ∧ dxµ∂νAµ)

= (dxµ∂µ) ∧ (dxνAν) = d ∧A = dA ,

the exterior derivative of the one-form potential A = dxνAν

• since the exterior derivative is nilpotent: d2X = d(dX) = 0

– A and A′ = A+dX give the same F

⇒ A and A′ are equivalent, related by a gauge transformation

• gauge transformations constitute local symmetries of the system
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4. Quantum Field Theory (QFT) — Gauge Theories

Making global symmetries local

• The simplest symmetry is just the rotation of a phase.

– fields have to be complex to make a phase meaningful.

– the normal Dirac spinor, describing an electron, is complex.

• Since the Lagrangian should be real, we have

Lψ = iψ̄γµ∂µψ −mψ̄ψ or Lφ = (∂µφ†)(∂µφ)−m2φ†φ− 1
4!λ(φ

†φ)2

• a global phase transformation ψ → ψ′ = eiαψ or φ→ φ′ = eiαφ

leaves L′
ψ = Lψ and L′

φ = Lφ invariant.

• a local phase transformation ψ → ψ′ = eiα(x)ψ or φ→ φ′ = eiα(x)φ gives

δLψ = L′
ψ − Lψ = ψ̄γµψ(∂µα)

and

δLφ = L′
φ − Lφ = i[φ†(∂µφ)− (∂µφ†)φ](∂µα) + φ†φ(∂µα)(∂µα)

which reminds of the conserved Noether-currents.
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4. Quantum Field Theory (QFT) — Gauge Theories

Making global symmetries local

• only the derivatives spoil the invariance

• changing the normal derivative to a covariant derivative

∂µ → Dµ = ∂µ+ igAµ

• so that Dµψ (Dµφ) has the same transformation as ψ (φ):

Dµψ → (Dµψ)
′ = D′

µψ
′ = eiαDµψ

requires also a local change of the gauge field (”connection”)

A′
µ = Aµ − 1

g(∂µα)

• the field strength Fµν = ∂µAν − ∂νAµ = 1
ig[Dµ, Dν]

is obviously also covariant . . . (using D′
µ = eiαDµe

−iα):

F ′
µν =

1
ig
[D′

µD
′
ν −D′

νD
′
µ] =

1
ig
[eiαDµe

−iαeiαDνe
−iα − eiαDνe

−iαeiαDµe
−iα] = eiαFµνe

−iα

and so

Fµνψ → (Fµνψ)
′ = eiαFµνe

−iαeiαψ = eiαFµνψ
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4. Quantum Field Theory (QFT) — Gauge Theories

Making global symmetries local

• The Lagrangians of QED

Lψ = iψ̄γµDµψ − 1
4FµνF

µν −mψ̄ψ

or scalar QED

Lφ = (Dµφ†)(Dµφ)−
1
4FµνF

µν −m2φ†φ− 1
4λ(φ

†φ)2

are invariant under the gauge transformations

ψ
α
→ ψ′ = eiαψ φ

α
→ φ′ = eiαφ Aµ

α
→ A′

µ = Aµ − 1
g(∂µα)

• The gauge symmetry forbids any mass term for the gauge field Aµ !

m2
AA

2 = m2
AA

µAµ
α
→ m′2

AA
′µA′

µ = m′2
A(A2 − 2

gA
µ(∂µα) +

1
g2
(∂µα)(∂µα))

for arbitrary α this can only be invariant if

m2
A = m′2

A = 0
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4. Quantum Field Theory (QFT) — Gauge Theories

The gauge boson propagator

• Canonical quantisation (CQ) defines the propagator ∆µν(x− y)

– as the time-ordered product

∆µν(x− y) = 〈0|T{Aµ(x)Aν(y)}|0〉

• from the pathintegral we get

i∆µν(x− y) =
1

Z(0; g)

δ2Z(J; g)

iδJµ(x) iδJν(y)

∣

∣

∣

∣

∣

J=0
• but both cannot be calculated !

– in CQ the conjugate momentum of A0 does not exist

– in the pathintegral, one cannot invert the term bilinear in the field

−1
4

∫

x

FµνF
µν = 1

2

∫

x

Aν∂µ(∂
µAν − ∂νAµ) = 1

2

∫

x

Aν(η
νρ∂µ∂

µ − ∂ν∂ρ)Aρ

∗ as the operator P νρ = (ηνρ∂µ∂µ − ∂ν∂ρ) is singular:

P νρ∂ρ = (ηνρ∂2 − ∂ν∂ρ)∂ρ = ∂2∂ν − ∂ν∂2 = 0

• . . . that does not happen if there would be a mass term

– but the mass term is forbidden by the gauge symmetry . . .
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4. Quantum Field Theory (QFT) — Gauge Theories

Gauge bosons in canonical quantisation

• Canonical quantisation uses the Hamiltonian

– but the Legendre transform of the Lagrangian is not defined

for a variable that does not have a conjugate momentum

∗ as is the case for A0 in L = −1
4
FµνF µν = 1

2
( ~E2 − ~B2)

( using Ej = F0j and Bj = −1
2
ǫjkℓFkℓ )

∗ Ȧ0 = ∂0A0 does not appear in the Lagrangian

∗ the conjugate momentum for Ai is πi =
∂L
∂Ȧi

= Ȧi −∇iA0 = Ei

⇒ no Legendre transform with respect to A0 is possible

– making the Legendre transform with the well defined pair (Ai, πi)

H = πiȦi − L = Ei(Ei +∇iA0)−
1
2
( ~E2 − ~B2) = 1

2
( ~E2 + ~B2) + ~E · ~∇A0

– partial integration gives H = 1
2
( ~E2 + ~B2)− (~∇ · ~E)A0

– A0 acts like a Lagrange multiplier for the constraint ~∇ · ~E = 0 (Gauss law)

• the canonical transformation produces a ”first class” constraint

– including this constraint with the Dirac bracket
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4. Quantum Field Theory (QFT) — Gauge Theories

Gauge bosons in canonical quantisation

• the Dirac bracket allows ”normal” canonical quantisation

– but the constraint ~∇ · ~E = 0 violates Lorentz covariance

– when choosing A0 = 0, the constraint can be written covariantly

∗ Lorentz gauge: ∂µAµ = 0

• quantization follows the Gupta-Bleuer procedure

– which introduces negative norm states (ghosts)

– these ghosts subtract the unphysical degrees of freedom

• the gauge fields are Fourier transformed

– coefficient functions become creation and annihilation operators

– these have to be orthogonal to the momentum (Gauss law)

⇒ only two polarisation vectors ε
(j)
µ ⇒ transverse photons

• the propagator becomes

∆µν(x− y) = 〈0|T{Aµ(x)Aν(y)}|0〉 =
∫

d4k
(2π)4

2
∑

j=1

ε
(j)
µ (k)ε

(j)
ν (k)ie

−ik.(x−y)

k2+iǫ
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4. Quantum Field Theory (QFT) — Gauge Theories

Gauge bosons in the pathintegral

• in the pathintegral we also integrate over all field configuratuions

Z[J] =
∫

DAµ e
iS+iJµAµ =

∫

DAµ e
iS[A,J]

– also the ones that are physically equivalent

∗ because the differ only by gauge transformations

– Aµ transforms under a gauge transformation U(x): Aµ → AUµ 6= Aµ

∗ for EM we have the gauge group U(1) and U(x) = eiϕ(x), so AUµ = Aµ −
1
g
∂µϕ

– but S and DAµ stay invariant under the gauge transformation

⇒ Z[J] picks up a divergent factor ∼ v(G)V

( with v(G) the volume of the gauge group and V the volume of space-time )

• Faddeev and Popov found a way of factoring out this constant factor
– by imposing a gauge condition g(AUµ ) consistently

– using the Faddeev-Popov determinant ∆−1
g [Aµ] =

∫

DUδ(g(AUµ ))

– that ∆−1
g [Aµ] = ∆−1

g [AUµ ] is invariant under gauge transformations can be seen

∗ by considering the group structure of the gauge transformations:

∗ when U and U ′ are gauge transformations, so is U ′′ = U ′U
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4. Quantum Field Theory (QFT) — Gauge Theories

Gauge bosons in the pathintegral

• inserting 1 = ∆g[Aµ]
∫

DUδ(g(AUµ )) into the partition function

Z[J] =
∫

DAµ ∆g[Aµ]
∫

DU δ(g(AUµ )) e
iS[A,J]

– changing Aµ → AU
′

µ as a change of integration variables

∗ with U ′ an arbitrary gauge transformation

– using the gauge invariance of S[A, J], DAµ, and ∆g[Aµ] we get

Z[J] =

[
∫

DU

]
∫

DAµ ∆g[Aµ] e
iS[A,J]δ(g(AU

′U
µ ))

∗ for U ′ = U−1 nothing depends on U ⇒
[∫

DU
]

is really a constant

– this procedure fixes the gauge consistently

∗ if ∆g[Aµ] is finite and non vanishing identically

• changing the gauge condition to δ(g(Aµ)− c(x))

– and averaging (integrating with gaussian weight) over the function c(x) gives

Z[J] =

∫

DAµDc e
−i
∫

x

c2

2ξ∆g[Aµ] e
iS[A,J]δ(g(Aµ)− c(x)) =

∫

DAµ ∆g[Aµ] e
i
∫

x
L[A,J]−

g(Aµ)2

2ξ

⇒ a gauge fixed Lagrangian
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4. Quantum Field Theory (QFT) — Gauge Theories

Gauge bosons in the pathintegral

• the gauge fixed Lagrangian ( in Lorentz gauge ∂µAµ = 0 )

Lξ = −1
4FµνF

µν − 1
2ξ(∂µA

µ)2

– allows the construction of a general gauge dependent propagator

∗ as the operator P νρ = (ηνρ∂2 − (1− 1
ξ
)∂ν∂ρ) is no longer singular

i∆g0

µν(x− y) =
1

Z(0; 0)

δ2Z(J; 0)

iδJµ(x) iδJν(y)

∣

∣

∣

∣

J=0

= [ηµν∂2 − (1− 1
ξ
)∂µ∂ν]−1

• as in 2.QTF lecture, the free propagator is the inverse of the bilinear of the fields

– from the Lagrangian we have after partial integration

1
2

∫

x

Aµ(η
µν∂ρ∂

ρ − ∂µ∂ν)Aν +
1
2ξ
Aµ(∂

µ∂νAν)

– with the Fourier transformation we can replace ∂µ → −ipµ
– this inverse can be calculated by P νρ∆ρµ = δνµ and the ansatz ∆ρµ = Aηρµ+Bpρpµ

δνµ = −[ηνρp2 − (1− 1
ξ
)pνpρ](Aηρµ+Bpρpµ) = −p2(Aδνµ+Bpνpµ)+ (1− 1

ξ
)pνpµ(A+Bp2)

⇒ A = −p−2 and B = (1− 1
ξ
)/(1

ξ
p2)A = (1− ξ)p−4 and the propagator in Rξ gauge

i∆g0

µν(x− y) =

∫

d4p

(2π)4
1

p2 − iǫ
(−ηµν + (1− ξ)

pµpν

p2
)
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4. Quantum Field Theory (QFT) — Gauge Theories

Gauge bosons in the pathintegral

• treating the Faddeev-Popov determinant consistently

– introduces again ghost fields (”book-keeping fields”)

– in U(1) gauge groups this can be avoided

∗ as the determinant is constant

• a general framework is given by the BRST quantisation

– introduced in the 1970s by Becchi, Rouet, Stora and independently Tyutin

– it introduces a nilpotent operator to deal with the gauge degrees of freedom

– it generates a ”supersymmetry” that allows to project out the ghosts

• with the reformulation of QFT in terms of fiber bundles

– BRST can be understood as a geometrical operation on the fiber bundle

– enforcing an ”anomaly cancellation” of the ghost

– . . . connection to General Relativity

• for gravity and supergravity one has to generalise the formalism

⇒ Batalin-Vilkovisky formalism

∗ and lots and lots of more ghosts . . .
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