4. Quantum Field Theory (QFT) — Gauge Theories
Electromagnetism as a gauge theory
e classically electromagnetism (EM) was described with fields £ and B

e SR unified them to Fj,, with E; = —Fpy; and B; = QGijF
— scalar ® and vector potential A to the fourvector A, = (®, —A)

e any change of the type A, — A, = Ay, + dua does not change anything

—  gauge transformation (reparametrisation invariance)

a gauge transformation describes the
redundant parametrisation of a system

but

nature is described most exactly
by gauge theories
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4. Quantum Field Theory (QFT) — Gauge Theories
Connection to the last semester

e In General Relativity (GR) we had
— the invariance under changes of the coordinate systems
— "forms” to write vectors in a basis independent way
— the exterior derivative as a way to formulate differentiation

e using forms we could write the fieldstrength tensor from EM as a two-form F'
F = %dx“ Ndz"F,, = %dx“ A dz”(9,A, — 0, A,)
— %(daz“ A dz”0,A, + dz” A dzt0,AL)
(dz*9,) A (dz"A,)) =dANA=dA |,

the exterior derivative of the one-form potential A = dxz¥A,

e since the exterior derivative is nilpotent: d2X = d(dX) =0
— A and A’ = A4 dX give the same F
= A and A’ are equivalent, related by a gauge transformation

e gauge transformations constitute local symmetries of the system
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4. Quantum Field Theory (QFT) — Gauge Theories
Making global symmetries local

e [ he simplest symmetry is just the rotation of a phase.
— fields have to be complex to make a phase meaningful.
— the normal Dirac spinor, describing an electron, is complex.

e Since the Lagrangian should be real, we have
Ly = ipy"Oup —mip  or L= (0 ") (9ue) — m¢le — HA(¢7¢)°

e a global phase transformation ¥ — ¢/ = e'*) or ¢ — ¢/ = €%
leaves L/ = L, and L = L4 invariant.

e a local phase transformation v — ' = e!)y, or ¢ — ¢/ = (@) ¢ gives

6Ly = Lip — Ly = Py (D)
and
5Ly = Ly — Ly =1i[¢T(0"¢) — ("N B](Ouc) + ¢Tp(0 ) (Dpuar)

which reminds of the conserved Noether-currents.
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4. Quantum Field Theory (QFT) — Gauge Theories
Making global symmetries local

e only the derivatives spoil the invariance

e changing the normal derivative to a covariant derivative

Oy — Dy = 0 +19A,
e so that D,y (D,¢) has the same transformation as ¢ (¢):
Dy — (D) = Dy = €Dy
requires also a local change of the gauge field (""connection’)
Ay = Ay — +(8ua)
o the field strength Fu = 8,Ay — 0y Ay = 75[D,, D]

1

IS obviously also covariant ... (using D) = e"*D e™**):
F/W = %[DLDL — D,’/DL] = %[eiO‘DMe_iaeio‘Dye_m — e Dye "D, e ] = eiO‘FWe_m
and so

I 1 —t 0, ), 1
Fuvwﬁ(Fluyw) _eO‘FWe € ¢_6 F,uyw
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4. Quantum Field Theory (QFT) — Gauge Theories
Making global symmetries local

e [ he Lagrangians of QED

Ly = ipyH D yrp — %FWFW — ma)

or scalar QED

£¢ — (DM¢T>(DM¢) — %FMVF/”LV — m2¢T¢ _ %)\(QﬁTqﬁ)Q

are invariant under the gauge transformations

p P =% 9B =% A D A= Ay — 2 (0ua)

e The gauge symmetry forbids any mass term for the gauge field A, !
m3 A2 = m3AF A, S mFAP Al = m/f (A% — %Aﬂ(aﬂa) + g%(@“a)(@ua))

for arbitrary « this can only be invariant if

mizm/j:O
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4. Quantum Field Theory (QFT) — Gauge Theories
The gauge boson propagator

e Canonical quantisation (CQ) defines the propagator A, (z —y)
— as the time-ordered product

A'uy(w —y) = <O|T{A,LL(33)AV(CU)}|O>

e from the pathintegral we get
1 62Z(J; g)

Z(0; g)id JH(z) i6J¥ (y)

J=0
e but both cannot be calculated !

— in CQ the conjugate momentum of Ag does not exist
— in the pathintegral, one cannot invert the term bilinear in the field

—2 / Fu P =2 / AL, (BFA” — BV AF) = 5 / A, (nP8,0" — 8V 0") A,
* as the operator P"? = (n*r0,0" — 0¥0P) is singular:
P9, = (n"P0? — 8Y0")0, = 820" — 0"9* =0

e ... that does not happen if there would be a mass term
— but the mass term is forbidden by the gauge symmetry
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4. Quantum Field Theory (QFT) — Gauge Theories
Gauge bosons in canonical quantisation

e Canonical quantisation uses the Hamiltonian

— but the Legendre transform of the Lagrangian is not defined
for a variable that does not have a conjugate momentum

« as is the case for Ag in £L = —1F, F" = 1(E? - B?)
(using E; = Fo; and B; = —Z¢€;ieFiu )

« Ag = O0gAp does not appear in the Lagrangian

« the conjugate momentum for A; is n* = g—i = A, — V;Ag = E;

= no Legendre transform with respect to Ag is possible
— making the Legendre transform with the well defined pair (A;, 7*)
H=r'A; — L = Ei(E; + ViAo) — 3(E? — B?) = 2(E* + B?) + E - VA
— partial integration gives H = 3(E2 + B?) — (V- E)Ao

— Ap acts like a Lagrange multiplier for the constraint V-E=0 (Gauss law)

e the canonical transformation produces a 'first class’ constraint
— including this constraint with the Dirac bracket
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4. Quantum Field Theory (QFT) — Gauge Theories
Gauge bosons in canonical quantisation

e the Dirac bracket allows "normal” canonical quantisation

— but the constraint V- E = 0 violates Lorentz covariance
— when choosing Ag = 0, the constraint can be written covariantly
+ Lorentz gauge: 9,A¥ =0

e quantization follows the Gupta-Bleuer procedure
— which introduces negative norm states (ghosts)
— these ghosts subtract the unphysical degrees of freedom

e the gauge fields are Fourier transformed
— coefficient functions become creation and annihilation operators
— these have to be orthogonal to the momentum (Gauss law)
= only two polarisation vectors s,(f) = transverse photons

e the propagator becomes
ik.(z—y)

Ap(x—y) = (OT{Au(x)Av(y)}O) = (34’§4 Z 5(‘7)(k)8(‘7)(k>w k2+ie
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4. Quantum Field Theory (QFT) — Gauge Theories
Gauge bosons in the pathintegral

e in the pathintegral we also integrate over all field configuratuions
Z[J) = / DAy e T A = / DA, 514

— also the ones that are physically equivalent
+ because the differ only by gauge transformations

— Ay, transforms under a gauge transformation U(x): A, — Ag * Ay
+ for EM we have the gauge group U(1) and U(z) = e, so AY = A, — %c‘%o

— but S and DA, stay invariant under the gauge transformation
— Z[J] picks up a divergent factor ~ v(G)V
( with v(G) the volume of the gauge group and V the volume of space-time )

e Faddeev and Popov found a way of factoring out this constant factor
— by imposing a gauge condition g(Af{) consistently
— using the Faddeev-Popov determinant A [A,] = [DUS(g(A]))

— that A 1[A,] = A, [A]] is invariant under gauge transformations can be seen
+« by considering the group structure of the gauge transformations:

+ when U and U’ are gauge transformations, so is U”" = U'U
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4. Quantum Field Theory (QFT) — Gauge Theories
Gauge bosons in the pathintegral

o inserting 1 = Ay[A,] [ DUS(g(AY)) into the partition function

21 = [ DA AglAu [ DU s(g(A])) 5141
— changing A, — Ag/ as a change of integration variables
* with U’ an arbitrary gauge transformation

— using the gauge invariance of S[A,J], DA,, and A4[A,] we get
Z[J] = [/DU] /DAM DglA,] eS1AT15(5(AU'VY)
* for U’ = U~! nothing depends on U = |[DU| is really a constant

— this procedure fixes the gauge consistently
+ if Ay[A,] is finite and non vanishing identically
e changing the gauge condition to 6(g(A,) — c(z))

— and averaging (integrating with gaussian weight) over the function c(x) gives

9(Ap)?

Z[J] = /DAMDCG_ifgg%Ag[AM] eiS[A’J]5(g(AM) . c(x)) — /'DAM Ag[Au] 6iLC[A,J]— -

= a gauge fixed Lagrangian
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4. Quantum Field Theory (QFT) — Gauge Theories
Gauge bosons in the pathintegral
e the gauge fixed Lagrangian ( in Lorentz gauge 9,A* =0 )
Lo = —3FuFH — 2%(@14/“‘)2

— allows the construction of a general gauge dependent propagator
* as the operator P¥? = (n"P9% — (1 — %)8’/89) is no longer singular

1 6°Z(J;0)
Z(0;0)i6J%(z) i6J7(y) | ,_q

A, (z—y) = = [0 — (1 — $)9"9"]?

e as in 2.QTF lecture, the free propagator is the inverse of the bilinear of the fields
— from the Lagrangian we have after partial integration

L / A, (0,07 — 0'0") A, + %AM(E?“@”A,,)

2
x

— with the Fourier transformation we can replace 0, — —ip,
— this inverse can be calculated by P"?A,, = o0, and the ansatz A,, = Anp, + Bpppy
5, = —[n""p* — (1 = PP’ Anou + Bpppu) = —p*(Ad), + Bp"pu) + (1 — £)p"pu(A+ Bp?)

- A=-p2and B=(1— %)/(%ﬁ)A = (1 - ¢&p* and the propagator in R; gauge

d4p 1 PuPv
(2m)4 p2 — ie(_nw/ +(1-9) 2 )

i (z—y) =
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4. Quantum Field Theory (QFT) — Gauge Theories
Gauge bosons in the pathintegral

e treating the Faddeev-Popov determinant consistently
— introduces again ghost fields ("book-keeping fields'")

— in U(1) gauge groups this can be avoided
+ as the determinant is constant

e a general framework is given by the BRST quantisation
— introduced in the 1970s by Becchi, Rouet, Stora and independently Tyutin
— it introduces a nilpotent operator to deal with the gauge degrees of freedom
— it generates a "supersymmetry” that allows to project out the ghosts

e With the reformulation of QFT in terms of fiber bundles
— BRST can be understood as a geometrical operation on the fiber bundle
— enforcing an "anomaly cancellation” of the ghost
— ... connection to General Relativity

e for gravity and supergravity one has to generalise the formalism
= Batalin-Vilkovisky formalism

* and lots and lots of more ghosts
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