#### Electromagnetism as a gauge theory

- ullet classically electromagnetism (EM) was described with fields  $ec{E}$  and  $ec{B}$
- SR unified them to  $F_{\mu\nu}$  with  $E_i=-F_{0i}$  and  $B_i=-\frac{1}{2}e_{ijk}F_{jk}$ 
  - scalar  $\Phi$  and vector potential  $\vec{A}$  to the fourvector  $A_{\mu} = (\Phi, -\vec{A})$
  - with  $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$
- any change of the type  $A_{\mu} \to A'_{\mu} = A_{\mu} + \partial_{\mu} \alpha$  does not change anything
  - ⇒ gauge transformation (reparametrisation invariance)

# a gauge transformation describes the redundant parametrisation of a system

#### but

# nature is described most exactly by gauge theories

#### Connection to the last semester

- In General Relativity (GR) we had
  - the invariance under changes of the coordinate systems
  - "forms" to write vectors in a basis independent way
  - the exterior derivative as a way to formulate differentiation
- ullet using forms we could write the fieldstrength tensor from EM as a two-form F

$$F = \frac{1}{2} dx^{\mu} \wedge dx^{\nu} F_{\mu\nu} = \frac{1}{2} dx^{\mu} \wedge dx^{\nu} (\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu})$$

$$= \frac{1}{2} (dx^{\mu} \wedge dx^{\nu} \partial_{\mu} A_{\nu} + dx^{\nu} \wedge dx^{\mu} \partial_{\nu} A_{\mu})$$

$$= (dx^{\mu} \partial_{\mu}) \wedge (dx^{\nu} A_{\nu}) = d \wedge A = dA ,$$

the exterior derivative of the one-form potential  $A = dx^{\nu}A_{\nu}$ 

- since the exterior derivative is nilpotent:  $d^2X = d(dX) = 0$ 
  - A and A' = A + dX give the same F
  - $\Rightarrow$  A and A' are equivalent, related by a gauge transformation
- gauge transformations constitute local symmetries of the system

#### Making global symmetries local

- The simplest symmetry is just the rotation of a phase.
  - fields have to be complex to make a phase meaningful.
  - the normal Dirac spinor, describing an electron, is complex.
- Since the Lagrangian should be real, we have

$$\mathcal{L}_{\psi} = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi$$
 or  $\mathcal{L}_{\phi} = (\partial^{\mu}\phi^{\dagger})(\partial_{\mu}\phi) - m^{2}\phi^{\dagger}\phi - \frac{1}{4!}\lambda(\phi^{\dagger}\phi)^{2}$ 

- a global phase transformation  $\psi \to \psi' = e^{i\alpha}\psi$  or  $\phi \to \phi' = e^{i\alpha}\phi$  leaves  $\mathcal{L}'_{\psi} = \mathcal{L}_{\psi}$  and  $\mathcal{L}'_{\phi} = \mathcal{L}_{\phi}$  invariant.
- a local phase transformation  $\psi \to \psi' = e^{i\alpha(x)}\psi$  or  $\phi \to \phi' = e^{i\alpha(x)}\phi$  gives

$$\delta \mathcal{L}_{\psi} = \mathcal{L}'_{\psi} - \mathcal{L}_{\psi} = \bar{\psi} \gamma^{\mu} \psi(\partial_{\mu} \alpha)$$

and

$$\delta \mathcal{L}_{\phi} = \mathcal{L}'_{\phi} - \mathcal{L}_{\phi} = i[\phi^{\dagger}(\partial^{\mu}\phi) - (\partial^{\mu}\phi^{\dagger})\phi](\partial_{\mu}\alpha) + \phi^{\dagger}\phi(\partial^{\mu}\alpha)(\partial_{\mu}\alpha)$$

which reminds of the conserved Noether-currents.

#### Making global symmetries local

- only the derivatives spoil the invariance
- changing the normal derivative to a covariant derivative

$$\partial_{\mu} \to D_{\mu} = \partial_{\mu} + igA_{\mu}$$

• so that  $D_{\mu}\psi$   $(D_{\mu}\phi)$  has the same transformation as  $\psi$   $(\phi)$ :

$$D_{\mu}\psi \to (D_{\mu}\psi)' = D'_{\mu}\psi' = e^{i\alpha}D_{\mu}\psi$$

requires also a local change of the gauge field ("connection")

$$A'_{\mu} = A_{\mu} - \frac{1}{g}(\partial_{\mu}\alpha)$$

• the field strength  $F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}=\frac{1}{ig}[D_{\mu},D_{\nu}]$  is obviously also covariant . . . (using  $D'_{\mu}=e^{i\alpha}D_{\mu}e^{-i\alpha}$ ):

$$F'_{\mu\nu} = \tfrac{1}{ig} [D'_{\mu} D'_{\nu} - D'_{\nu} D'_{\mu}] = \tfrac{1}{ig} [e^{i\alpha} D_{\mu} e^{-i\alpha} e^{i\alpha} D_{\nu} e^{-i\alpha} - e^{i\alpha} D_{\nu} e^{-i\alpha} e^{i\alpha} D_{\mu} e^{-i\alpha}] = e^{i\alpha} F_{\mu\nu} e^{-i\alpha}$$
 and so

$$F_{\mu\nu}\psi \to (F_{\mu\nu}\psi)' = e^{i\alpha}F_{\mu\nu}e^{-i\alpha}e^{i\alpha}\psi = e^{i\alpha}F_{\mu\nu}\psi$$

#### Making global symmetries local

The Lagrangians of QED

$$\mathcal{L}_{\psi} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - m\bar{\psi}\psi$$

or scalar QED

$$\mathcal{L}_{\phi} = (D^{\mu}\phi^{\dagger})(D_{\mu}\phi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - m^2\phi^{\dagger}\phi - \frac{1}{4}\lambda(\phi^{\dagger}\phi)^2$$

are invariant under the gauge transformations

$$\psi \xrightarrow{\alpha} \psi' = e^{i\alpha}\psi \qquad \phi \xrightarrow{\alpha} \phi' = e^{i\alpha}\phi \qquad A_{\mu} \xrightarrow{\alpha} A'_{\mu} = A_{\mu} - \frac{1}{g}(\partial_{\mu}\alpha)$$

ullet The gauge symmetry forbids any mass term for the gauge field  $A_{\mu}$  !

$$m_A^2 A^2 = m_A^2 A^{\mu} A_{\mu} \stackrel{\alpha}{\to} m_A'^2 A'^{\mu} A'_{\mu} = m_A'^2 (A^2 - \frac{2}{g} A^{\mu} (\partial_{\mu} \alpha) + \frac{1}{g^2} (\partial^{\mu} \alpha) (\partial_{\mu} \alpha))$$

for arbitrary  $\alpha$  this can only be invariant if

$$m_A^2 = m_A'^2 = 0$$

#### The gauge boson propagator

- Canonical quantisation (CQ) defines the propagator  $\Delta_{\mu\nu}(x-y)$ 
  - as the time-ordered product

$$\Delta_{\mu\nu}(x-y) = \langle 0|T\{A_{\mu}(x)A_{\nu}(y)\}|0\rangle$$

from the pathintegral we get

$$i\Delta_{\mu\nu}(x-y) = \frac{1}{Z(0;g)} \frac{\delta^2 Z(J;g)}{i\delta J^{\mu}(x) i\delta J^{\nu}(y)} \bigg|_{J=0}$$

- but both cannot be calculated!
  - in CQ the conjugate momentum of  $A_0$  does not exist
  - in the pathintegral, one cannot invert the term bilinear in the field

$$-\frac{1}{4}\int_{x}F_{\mu\nu}F^{\mu\nu} = \frac{1}{2}\int_{x}A_{\nu}\partial_{\mu}(\partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}) = \frac{1}{2}\int_{x}A_{\nu}(\eta^{\nu\rho}\partial_{\mu}\partial^{\mu} - \partial^{\nu}\partial^{\rho})A_{\rho}$$

\* as the operator  $P^{\nu\rho}=(\eta^{\nu\rho}\partial_{\mu}\partial^{\mu}-\partial^{\nu}\partial^{\rho})$  is singular:

$$P^{\nu\rho}\partial_{\rho} = (\eta^{\nu\rho}\partial^{2} - \partial^{\nu}\partial^{\rho})\partial_{\rho} = \partial^{2}\partial^{\nu} - \partial^{\nu}\partial^{2} = 0$$

- . . . that does not happen if there would be a mass term
  - but the mass term is forbidden by the gauge symmetry . . .

#### Gauge bosons in canonical quantisation

- Canonical quantisation uses the Hamiltonian
  - but the Legendre transform of the Lagrangian is not defined for a variable that does not have a conjugate momentum
    - \* as is the case for  $A_0$  in  $\mathcal{L}=-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}=\frac{1}{2}(\vec{E}^2-\vec{B}^2)$  (using  $E_j=F_{0j}$  and  $B_j=-\frac{1}{2}\epsilon_{jk\ell}F_{k\ell}$ )
    - $*\dot{A}_0 = \partial_0 A_0$  does not appear in the Lagrangian
    - \* the conjugate momentum for  $A_i$  is  $\pi^i = \frac{\partial \mathcal{L}}{\partial \dot{A_i}} = \dot{A_i} \nabla_i A_0 = E_i$
  - $\Rightarrow$  no Legendre transform with respect to  $A_0$  is possible
    - making the Legendre transform with the well defined pair  $(A_i,\pi^i)$

$$\mathcal{H} = \pi^i \dot{A}_i - \mathcal{L} = E_i (E_i + \nabla_i A_0) - \frac{1}{2} (\vec{E}^2 - \vec{B}^2) = \frac{1}{2} (\vec{E}^2 + \vec{B}^2) + \vec{E} \cdot \vec{\nabla} A_0$$

- partial integration gives  $\mathcal{H} = \frac{1}{2}(\vec{E}^2 + \vec{B}^2) (\vec{\nabla} \cdot \vec{E})A_0$
- $A_0$  acts like a Lagrange multiplier for the constraint  $\vec{\nabla} \cdot \vec{E} = 0$  (Gauss law)
- the canonical transformation produces a "first class" constraint
  - including this constraint with the Dirac bracket

#### Gauge bosons in canonical quantisation

- the Dirac bracket allows "normal" canonical quantisation
  - but the constraint  $\vec{\nabla} \cdot \vec{E} = 0$  violates Lorentz covariance
  - when choosing  $A_0 = 0$ , the constraint can be written covariantly
    - \* Lorentz gauge:  $\partial_{\mu}A^{\mu} = 0$
- quantization follows the Gupta-Bleuer procedure
  - which introduces negative norm states (ghosts)
  - these ghosts subtract the unphysical degrees of freedom
- the gauge fields are Fourier transformed
  - coefficient functions become creation and annihilation operators
  - these have to be orthogonal to the momentum (Gauss law)
  - $\Rightarrow$  only two polarisation vectors  $\varepsilon_{\mu}^{(j)}$   $\Rightarrow$  transverse photons
- the propagator becomes

$$\Delta_{\mu\nu}(x-y) = \langle 0|T\{A_{\mu}(x)A_{\nu}(y)\}|0\rangle = \int \frac{d^4k}{(2\pi)^4} \sum_{j=1}^2 \varepsilon_{\mu}^{(j)}(k)\varepsilon_{\nu}^{(j)}(k) \frac{ie^{-ik.(x-y)}}{k^2 + i\epsilon}$$

#### Gauge bosons in the pathintegral

• in the pathintegral we also integrate over all field configuratuions

$$Z[J] = \int \mathcal{D}A_{\mu} \ e^{iS + iJ^{\mu}A_{\mu}} = \int \mathcal{D}A_{\mu} \ e^{iS[A,J]}$$

- also the ones that are physically equivalent
  - \* because the differ only by gauge transformations
- $A_{\mu}$  transforms under a gauge transformation U(x):  $A_{\mu} \rightarrow A_{\mu}^{U} \neq A_{\mu}$ 
  - \* for EM we have the gauge group U(1) and  $U(x)=e^{i\varphi(x)}$ , so  $A_{\mu}^{U}=A_{\mu}-\frac{1}{g}\partial_{\mu}\varphi$
- but S and  $\mathcal{D}A_{\mu}$  stay invariant under the gauge transformation
  - $\Rightarrow$  Z[J] picks up a divergent factor  $\sim v(G)^V$  (with v(G) the volume of the gauge group and V the volume of space-time )
- Faddeev and Popov found a way of factoring out this constant factor
  - by imposing a gauge condition  $g(A_{\mu}^{U})$  consistently
  - using the Faddeev-Popov determinant  $\Delta_g^{-1}[A_\mu] = \int \mathcal{D}U \delta(g(A_\mu^U))$
  - that  $\Delta_g^{-1}[A_\mu] = \Delta_g^{-1}[A_\mu^U]$  is invariant under gauge transformations can be seen
    - $\ast\,$  by considering the group structure of the gauge transformations:
    - st when U and U' are gauge transformations, so is U''=U'U

#### Gauge bosons in the pathintegral

• inserting  $1 = \Delta_g[A_\mu] \int \mathcal{D}U \delta(g(A_\mu^U))$  into the partition function

$$Z[J] = \int \mathcal{D}A_{\mu} \, \Delta_g[A_{\mu}] \int \mathcal{D}U \, \delta(g(A_{\mu}^U)) \, e^{iS[A,J]}$$

- changing  $A_{\mu} \to A_{\mu}^{U'}$  as a change of integration variables
  - \* with U' an arbitrary gauge transformation
- using the gauge invariance of S[A,J],  $\mathcal{D}A_{\mu}$ , and  $\Delta_g[A_{\mu}]$  we get

$$Z[J] = \left[ \int \mathcal{D}U \right] \int \mathcal{D}A_{\mu} \, \Delta_{g}[A_{\mu}] \, e^{iS[A,J]} \delta(g(A_{\mu}^{U'U}))$$

- \* for  $U' = U^{-1}$  nothing depends on  $U \quad \Rightarrow \quad \left[\int \mathcal{D}U\right]$  is really a constant
- this procedure fixes the gauge consistently
  - \* if  $\Delta_g[A_\mu]$  is finite and non vanishing identically
- ullet changing the gauge condition to  $\delta(g(A_\mu)-c(x))$ 
  - and averaging (integrating with gaussian weight) over the function c(x) gives

$$Z[J] = \int \mathcal{D}A_{\mu} \, \mathcal{D}c \, e^{-i\int_{x} \frac{c^{2}}{2\xi}} \Delta_{g}[A_{\mu}] \, e^{iS[A,J]} \delta(g(A_{\mu}) - c(x)) = \int \mathcal{D}A_{\mu} \, \Delta_{g}[A_{\mu}] \, e^{i\int_{x} \mathcal{L}[A,J] - \frac{g(A_{\mu})^{2}}{2\xi}}$$

⇒ a gauge fixed Lagrangian

#### Gauge bosons in the pathintegral

• the gauge fixed Lagrangian ( in Lorentz gauge  $\partial_{\mu}A^{\mu}=0$  )

$$\mathcal{L}_{\xi} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2\xi} (\partial_{\mu} A^{\mu})^2$$

- allows the construction of a general gauge dependent propagator
  - \* as the operator  $P^{\nu\rho}=(\eta^{\nu\rho}\partial^2-(1-\frac{1}{\xi})\partial^{\nu}\partial^{\rho})$  is no longer singular

$$i\Delta_{\mu\nu}^{g^0}(x-y) = \frac{1}{Z(0;0)} \frac{\delta^2 Z(J;0)}{i\delta J^{\mu}(x) i\delta J^{\nu}(y)} \bigg|_{J=0} = \left[\eta^{\mu\nu} \partial^2 - (1-\frac{1}{\xi}) \partial^{\mu} \partial^{\nu}\right]^{-1}$$

- as in 2.QTF lecture, the free propagator is the inverse of the bilinear of the fields
  - from the Lagrangian we have after partial integration

$$\frac{1}{2} \int_x A_{\mu} (\eta^{\mu\nu} \partial_{\rho} \partial^{\rho} - \partial^{\mu} \partial^{\nu}) A_{\nu} + \frac{1}{2\xi} A_{\mu} (\partial^{\mu} \partial^{\nu} A_{\nu})$$

- with the Fourier transformation we can replace  $\partial_{\mu} 
  ightarrow -i p_{\mu}$
- this inverse can be calculated by  $P^{\nu\rho}\Delta_{\rho\mu}=\delta^{\nu}_{\mu}$  and the ansatz  $\Delta_{\rho\mu}=A\eta_{\rho\mu}+Bp_{\rho}p_{\mu}$

$$\delta^{\nu}_{\mu} = -\left[\eta^{\nu\rho}p^2 - (1 - \frac{1}{\xi})p^{\nu}p^{\rho}\right](A\eta_{\rho\mu} + Bp_{\rho}p_{\mu}) = -p^2(A\delta^{\nu}_{\mu} + Bp^{\nu}p_{\mu}) + (1 - \frac{1}{\xi})p^{\nu}p_{\mu}(A + Bp^2)$$

$$\Rightarrow$$
  $A=-p^{-2}$  and  $B=(1-\frac{1}{\xi})/(\frac{1}{\xi}p^2)A=(1-\xi)p^{-4}$  and the propagator in  $R_{\xi}$  gauge

$$i\Delta_{\mu\nu}^{g^{\circ}}(x-y) = \int \frac{d^4p}{(2\pi)^4} \frac{1}{p^2 - i\epsilon} (-\eta_{\mu\nu} + (1-\xi)\frac{p_{\mu}p_{\nu}}{p^2})$$

#### Gauge bosons in the pathintegral

- treating the Faddeev-Popov determinant consistently
  - introduces again ghost fields ("book-keeping fields")
  - in U(1) gauge groups this can be avoided
    - \* as the determinant is constant
- a general framework is given by the BRST quantisation
  - introduced in the 1970s by Becchi, Rouet, Stora and independently Tyutin
  - it introduces a nilpotent operator to deal with the gauge degrees of freedom
  - it generates a "supersymmetry" that allows to project out the ghosts
- with the reformulation of QFT in terms of fiber bundles
  - BRST can be understood as a geometrical operation on the fiber bundle
  - enforcing an "anomaly cancellation" of the ghost
  - connection to General Relativity
- for gravity and supergravity one has to generalise the formalism
  - ⇒ Batalin-Vilkovisky formalism
    - \* and lots and lots of more ghosts ...