History of Stringtheory

- 1960s: describing strong dynamics with string models
 - Yoichiro Nambu; and later Lenny Susskind and Holger Nielsen
- 1970s: string theory as quantum gravity
 - bosonic string theory: John H. Schwarz and Joel Scherk
- 1984: Green-Schwarz anomaly cancellation mechanism
 - Michael Green and John H. Schwarz
 - \Rightarrow the first Superstring revolution
- 1990: D-branes by Polchinsky
- 1995: M-theory by Edward Witten
 ⇒ the second Superstring revolution
- 1997: AdS/CFT correspondence conjecture by Juan Maldacena
- since then: stringtheory becomes a mathematical tool

Ideas and Consequences of Stringtheory (Ed. Witten)

- replacing the point particle with a string
- quantizing the string \Rightarrow mass spectrum
 - lowest energy state of the bosonic string has $m^2 < 0 \Rightarrow$ tachyonic
 - second lighest state is a massless spin-2 particle \Rightarrow graviton
- including SUSY \Rightarrow the tachyonic state vanishes
- Feynman diagrams in QFT have 2 parts: propagators and vertices
 - they are in principle different
 - vertices happen when particles meet/decay \Rightarrow space-time
- strings have no vertices, no exact location of an interaction
 - \Rightarrow space-time itself becomes fuzzy
- general predictions of stringtheory:
 - Gravity + Gauge Symmetry + Supersymmetry

Bosonic String, Nambu-Goto action, Polyakov action

- in a fixed Pseudo-Riemannian space-time of dimension D with
 - coordinates $X = (X^{\mu}), \ \mu = 0, \dots, D-1$
 - metric $G_{\mu\nu}(X) = (1, -1, \dots, -1) = (1)(-1)^{D-1}$
- \bullet the motion of a string forms a two-dimensional world-sheet Σ with
 - coordinates σ^{α} , $\alpha = 0, 1$
 - induced metric $G_{\alpha\beta} = \frac{\partial X^{\mu}}{\partial \sigma^{\alpha}} \frac{\partial X^{\nu}}{\partial \sigma^{\beta}} G_{\mu\nu}$
 - intrinsic metric $h_{\alpha\beta}$
- the Nambu-Goto action is the area of the string world-sheet

$$S_{\rm NG} = \frac{1}{2\pi\alpha'} \int_{\Sigma} d^2\sigma \left| \det \left(G_{\alpha\beta} \right) \right|^{1/2}$$

• the Polyakov action is the same, just using the intrinsic metric

$$S_{\mathsf{P}} = \frac{1}{4\pi\alpha'} \int_{\Sigma} d^2\sigma \sqrt{h} h^{\alpha\beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} G_{\mu\nu}$$

where $h = \det(h_{\alpha\beta})$ and α' is the energy per length or tension.

Polyakov action

- the equations of motion of $h_{\alpha\beta}$ the Polyakov action are algebraic
 - the intrinsic metric $h_{\alpha\beta}$ is non-dynamical
 - the energy-momentum tensor of the 2D field theory is

$$T_{\alpha\beta} := \frac{1}{4\pi\alpha'\sqrt{h}} \frac{\delta S_{\mathsf{P}}}{\delta h^{\alpha\beta}} = \partial_{\alpha} X^{\mu} \partial_{\beta} X_{\mu} - h_{\alpha\beta} \partial_{\gamma} X^{\mu} \partial^{\gamma} X_{\mu}$$

- so the equations of motion are the 2D Einstein equations
- the Polyakov action has three local symmetries:

$$\sigma^{\alpha} \to \tilde{\sigma}^{\alpha}(\sigma^0, \sigma^1)$$
 and $h_{\alpha\beta}(\sigma) \to e^{\Lambda(\sigma)} h_{\alpha\beta}(\sigma)$

- can be used to gauge-fix the metric $h_{\alpha\beta} \doteq \eta_{\alpha\beta} = \text{diag}(1, -1)$
- introduce light cone coordinates $\sigma^{\pm}=\sigma^{0}\pm\sigma^{1}$
- but still has conformal invariance:

$$\sigma^+ \to \tilde{\sigma}^+(\sigma^+)$$
 and $\sigma^- \to \tilde{\sigma}^-(\sigma^-)$

Polyakov action

• in flat space $G_{\mu\nu} = \eta_{\mu\nu}$ one gets the 2D wave equation:

$$\partial^2 X^{\mu} = \partial_- \partial_+ X^{\mu} = 0$$

with the general solutions

$$X^{\mu}(\sigma) = X^{\mu}_L(\sigma^+) + X^{\mu}_R(\sigma^-)$$

• imposing the boundary conditions gives open or closed strings

- closed strings are obtained by $X^{\mu}(\sigma^{0}, \sigma^{1} + \pi) = X^{\mu}(\sigma^{0}, \sigma^{1})$ or

$$X^{\mu}(\sigma) = x^{\mu} + 2\alpha' p^{\mu} \sigma^{0} + i\sqrt{2\alpha'} \sum_{n \neq 0} \frac{\alpha_{n}^{\mu}}{n} e^{-2in\sigma^{+}} + \frac{\tilde{\alpha}_{n}^{\mu}}{n} e^{-2in\sigma^{-}}$$

- for open strings we can choose

- * Neumann boundary conditions $\partial_1 X^{\mu}|_{\sigma^1=0,\pi}=0$ or
- * Dirichlet boundary conditions $X^{\mu}|_{\sigma^1=0,\pi} = x^{\mu}_{1,2}$
- − for Dirichlet boundary conditions the string has to end on a surface
 ⇒ D-branes

Quantised bosonic string

- it turns out that QFT for the string is an unnecessary complication
- using light cone coordinates, one immediately gets $T_{+-} = T_{-+} = 0$
- Fourier transforming $T_{\pm\pm}$ gives the Virasoro generators

$$L_m := \int_0^{2\pi} d\sigma^+ T_{++} e^{im\sigma^+} \qquad \tilde{L}_m := \int_0^{2\pi} d\sigma^- T_{--} e^{im\sigma^-}$$

which fulfill classically the Witt algebra of Poisson brackets

$$\{L_m, L_n\}_{\mathsf{P},\mathsf{B}} = i(m-n)L_{m+n}$$

• in terms of the α^{μ} : $L_m = -\frac{1}{2} \sum_{n=-\infty}^{\infty} \eta_{\mu\nu} \alpha^{\mu}_{m-n} \alpha^{\nu}_n$

• quantisation extends the Witt algebra to the Virasoro algebra

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m+n,0}$$

– the central charge $c=\eta^{\mu\nu}\eta_{\mu\nu}=D$

– the algebra only closes for $D = 26 \Rightarrow$ critical bosonic string

Quantised bosonic string with gauge group

- introducing charges to an open string or an oriented string
 - = Chen-Paton factors; introduces gauge groups to the strings

Superstring

- introduction of fermionic states
 - as target space fermions: Green-Schwarz superstring
 - by introducing world-sheet Supersymmetry: (RNS)
 - * Ramond (R) with periodic boundary conditions
 - * Neveu-Schwarz (NS) with antiperiodic boundary conditions
 - since there are left chiral and right chiral fermions
 - * four sets of boundary conditions: R-R, NS-R, R-NS, NS-NS
 - gives a new critical dimension D = 10
- the GSO projection (Gliozzi, Scherk and Olive) removes the tachyon
 - and allows two different choices of chirality projections

Types of Superstring theories

- strings can be: open or closed, oriented or non-oriented, differently GSO projected, with different gauge groups
- taking the bosonic string and curling up the 16 additional dimensions:
 - \Rightarrow a 10D string with a gauge group
 - combining with another superstring \Rightarrow heterotic string

Туре	open/closed	oriented	chiral	SUSY	gauge group
I	both	no	yes	N = 1	<i>SO</i> (32)
IIA	closed	yes	no	N = 2A	
IIB	closed	yes	yes	N = 2B	
heterotic	closed	yes	yes	N = 1	$E_8 \times E_8$
heterotic	closed	yes	yes	N = 1	<i>SO</i> (32)

Compactification

- how to connect the 10D of Superstrings to our 4D world?
 - in 1921 Kaluza extended GR to 5D
 - in 1926 Klein proposed, that the 4^{th} spatial dimension is curled up
 - ⇒ compactification of extra dimensions is called Kaluza-Klein (KK)
- 10D Superstrings use Calabi-Yau manifolds for compactification
 - a string can live on the curled up dimension
 - * the momentum in that direction is quantised as $\frac{n}{R}$
 - \ast the quantised momentum is seen like an addition to the mass
 - \Rightarrow KK-tower of states: $m^2 = m_0^2 + \frac{n}{R}$
 - a closed string can also wind around a curled up dimension
 - \ast the quantised momentum gets an addition $n\cdot R$
 - \Rightarrow winding number states: $m^2 = m_0^2 + n \cdot R$
 - \Rightarrow duality of large and small radius of the compactification

Dualities

• T-duality relates compactification radii:

 $I \Leftrightarrow I' \mid IIA \Leftrightarrow IIB \mid heterotic SO(32) \Leftrightarrow heterotic E_8 \times E_8$

- S-duality relates couplings
 - strong coupling in one theory to weak coupling in another:

I \Leftrightarrow heterotic SO(32) IIB \Leftrightarrow IIB

• 1995 Ed. Witten found that 11D Supergravity is dual to Strings:

IIA	\Leftrightarrow	11D Sugra compactified on a circle
heterotic $E_8 \times E_8$	\Leftrightarrow	11D Sugra compactified on an interval

 \Rightarrow all five types of string theories are related

M-theory

- has the 5 Superstring theories and 11D Sugra as perturbative limits
- all 6 are related by dualities: "there has to be something in between" \Rightarrow *M*-theory

"Branes"-theory and black holes

• since Stringtheory today looks mostly at branes as dynamical objects

⇒ "Branes"-theory rather than Stringtheory

but: branes as fundamental objects are not "free", even in a flat background

- black holes can be described by dimensional reduction of p-branes:
 - the Bekenstein-Hawking entropy $S_{BH} = \frac{A}{4}$ could be calculated by the microscopic degrees of freedom of the strings $S = \log N$

Links

- http://www.sukidog.com/jpierre/strings/index.html
- http://theory.tifr.res.in/%7Emukhi/Physics/string2.html
- http://online.kitp.ucsb.edu/online/plecture/witten/