General features of Supersymmetry

- connects bosons and fermions
- provides an extension to the Poincaré algebra
- unbroken global Supersymmetry
 - bosons and fermions of the same superfield have the same mass
 - the energy of the vacuum is always positive
 - loop corrections involving superfields vanish
 - $\Rightarrow\,$ there is no renormalisation of couplings or masses
- broken global Supersymmetry
 - bosonic and fermionic loop corrections nearly cancel each other
 - $\Rightarrow\,$ solves the hierarchy problem of the Standardmodel
 - better unification of couplings: Grand unified Theories (GUTs)
- local Supersymmetry
 - includes Gravity \Rightarrow Supergravity (SUGRA)
- needed for consistent 10 dimensional Stringtheory \Rightarrow Superstrings

Supersymmetry (SUSY) as an extension of the Poincaré algebra

- the Poincaré algebra describes space-time transformations of particles
- due to statistics bosons and fermions transform separately
- so all normal symmetries are bosonic
- according to the Coleman-Mandula theorem
 - all symmetry generators have to commute with the generators of the Poincaré algebra
 - no other symmetries are allowed for a meaningful QFT
- Supersymmetry evades this restriction by using anticommutators
 - Supersymmetry generators are fermionic
 - they extend the Poincaré algebra to the Super-Poincaré algebra
- SUSY provides the unique extension for the Poincaré algebra
 - there can be 1, 2, 4, or 8 pairs of SUSY generators

The Super-Poincaré algebra

• the Poincaré algebra with generators $M_{\alpha\beta}$ and P_{μ}

$$[M_{\kappa\lambda}, M_{\rho\sigma}] = i(g_{\kappa\rho}M_{\lambda\sigma} - g_{\lambda\rho}M_{\kappa\sigma} - g_{\kappa\sigma}M_{\lambda\rho} + g_{\lambda\sigma}M_{\kappa\rho}) ,$$

$$[P_{\mu}, P_{\nu}] = 0 \quad \text{and} \quad [M_{\kappa\lambda}, P_{\mu}] = i(g_{\kappa\mu}P_{\lambda} - g_{\lambda\mu}P_{\kappa})$$

- is extended by the Supersymmetry generators Q_{α} and $\bar{Q}_{\dot{\alpha}}$ to $[M^{\mu\nu}, Q_{\alpha}] = (\frac{1}{2}\sigma^{\mu\nu})_{\alpha}{}^{\beta}Q_{\beta}$, $[M^{\mu\nu}, \bar{Q}_{\dot{\alpha}}] = -\bar{Q}_{\dot{\beta}}(\frac{1}{2}\bar{\sigma}^{\mu\nu})^{\dot{\beta}}{}_{\dot{\alpha}}$,
 - $\Rightarrow Q_{\alpha} \text{ and } \bar{Q}_{\dot{\alpha}} \text{ transform as spinors under Lorentz transformations} \\ \{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\} = 2\sigma^{\mu}_{\alpha\dot{\alpha}}P_{\mu} , \quad \text{and} \quad [Q_{\alpha}, P_{\mu}] = [\bar{Q}_{\dot{\alpha}}, P_{\mu}] = 0$
 - \Rightarrow the algebra closes
- mass dimensions of the generators:
 - P_{μ} has 1
 - $M_{\kappa\lambda}$ has 0
 - Q, \bar{Q} have half the dimension of P_{μ} , so $[Q] = [\bar{Q}] = \frac{1}{2}$

Superspace

- the normal coordinates x^{μ} can be extended to $(x^{\mu}, \theta^{lpha}, \overline{\theta}_{\dot{lpha}})$
 - θ^{α} , $\bar{\theta}_{\dot{\alpha}}$ (with $\alpha, \dot{\alpha} = 1, 2$) are Grassmann valued parameters
- The SUSY generators can be represented by differential operators:

$$Q_{\alpha} = \frac{\partial}{\partial \theta^{\alpha}} + i \sigma^{\mu}_{\alpha \dot{\alpha}} \bar{\theta}^{\dot{\alpha}} \frac{\partial}{\partial x^{\mu}} \quad \text{and} \quad \bar{Q}_{\dot{\alpha}} = -\frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} - i \theta^{\alpha} \sigma^{\mu}_{\alpha \dot{\alpha}} \frac{\partial}{\partial x^{\mu}}$$
similar to $P_{\mu} = -i \frac{\partial}{\partial x^{\mu}}$

• it is convenient to introduce differential operators

$$D_{\alpha} = \frac{\partial}{\partial \theta^{\alpha}} - i\sigma^{\mu}_{\alpha\dot{\alpha}}\bar{\theta}^{\dot{\alpha}}\frac{\partial}{\partial x^{\mu}} \qquad \text{and} \qquad \bar{D}_{\dot{\alpha}} = -\frac{\partial}{\partial \bar{\theta}^{\dot{\alpha}}} + i\theta^{\alpha}\sigma^{\mu}_{\alpha\dot{\alpha}}\frac{\partial}{\partial x^{\mu}}$$

– they anticommute with Q_{lpha} and $ar{Q}_{\dot{lpha}}$ and have a similar algebra:

$$\{D_{\alpha}, Q_{\beta}\} = \{D_{\alpha}, \bar{Q}_{\dot{\beta}}\} = \{\bar{D}_{\dot{\alpha}}, Q_{\beta}\} = \{\bar{D}_{\dot{\alpha}}, \bar{Q}_{\dot{\beta}}\} = 0$$
$$\{D_{\alpha}, D_{\beta}\} = \{\bar{D}_{\dot{\alpha}}, \bar{D}_{\dot{\beta}}\} = 0 \quad \text{and} \quad \{D_{\alpha}, \bar{D}_{\dot{\beta}}\} = 2i\sigma^{\mu}_{\alpha\dot{\beta}}\partial_{\mu}$$

Superfields in Superspace

- a Superfield S is a function of $(x^{\mu}, \theta^{\alpha}, \overline{\theta}_{\dot{\alpha}})$
- it can be expanded in component fields
 - the expansion terminates since $(\theta^{\alpha})^2 = (\bar{\theta}_{\dot{\alpha}})^2 = 0$
 - the highest term is the coefficient of $\theta\theta = \theta^{\alpha}\theta_{\alpha}$ or $\bar{\theta}\bar{\theta} = \bar{\theta}_{\dot{\alpha}}\bar{\theta}^{\dot{\alpha}}$

 $S = s + \theta \chi + \bar{\theta} \bar{\chi} + \theta \theta \, m + \bar{\theta} \bar{\theta} \, n + \theta \sigma^{\mu} \bar{\theta} v_{\mu} + \theta \theta \, \bar{\theta} \bar{\lambda} + \bar{\theta} \bar{\theta} \, \theta \lambda + \theta \theta \, \bar{\theta} \bar{\theta} \, d$

• The SUSY transformation with spinorial parameter η is $\delta_{\eta} = \eta Q + \bar{\eta} \bar{Q}$

$$\delta_{\eta}S = \delta_{\eta}s + \theta\delta_{\eta}\chi + \bar{\theta}\delta_{\eta}\bar{\chi} + \theta\theta\,\delta_{\eta}m + \bar{\theta}\bar{\theta}\,\delta_{\eta}n + \theta\sigma^{\mu}\bar{\theta}\delta_{\eta}v_{\mu} + \theta\theta\,\bar{\theta}\delta_{\eta}\bar{\lambda} + \bar{\theta}\bar{\theta}\,\theta\delta_{\eta}\lambda + \theta\theta\,\bar{\theta}\bar{\theta}\,\delta_{\eta}d = (\eta Q + \bar{\eta}\bar{Q})S = (\eta\frac{\partial}{\partial\theta} + i(\eta\sigma^{\mu}\bar{\theta})\partial_{\mu} + \bar{\eta}\frac{\partial}{\partial\bar{\theta}} + i(\theta\sigma^{\mu}\bar{\eta})\partial_{\mu})S$$

gives the transformation property of the component fields.

- since Qs and Ds anticommute
 - constraints written with Ds are unaffected by δ_{η}

Superfields containing bosons and fermions

- Superfields describe multiplets of component fields
- but they have too many (unnecessary) degrees of freedom (dof)

 \Rightarrow constraints:

• chiral Superfields are defined as $\bar{D}_{\dot{\alpha}}\Phi = D_{\alpha}\Phi^{\dagger} = 0$

- solved by $\Phi = \Phi(y = x - i\theta\sigma^{\mu}\overline{\theta}, \theta, 0)$, so $\Phi = \phi + 2\theta\psi - \theta\theta F$

$$- \delta_{\eta}\phi = 2\eta^{\alpha}\psi_{\alpha}, \ \delta_{\eta}\psi_{\alpha} = -\eta_{\alpha}F - i(\sigma^{\mu}\bar{\eta})_{\alpha}\partial_{\mu}\phi, \ \delta_{\eta}F = -2i(\partial_{\mu}\psi)\sigma^{\mu}\bar{\eta}$$

- F has mass dimension 2 \Rightarrow auxiliar field
- complex scalar ϕ has 2 dof, Weyl spinor ψ has 2 dof
- Vector Superfields are defined as $V = V^{\dagger}$
 - allow a "gauge transformation" $V \xrightarrow{\Phi} V' = V + \Phi + \Phi^{\dagger}$
 - Wess Zumino gauge: pick a chiral field Φ , such that

*
$$V' = \theta \sigma^{\mu} \overline{\theta} v_{\mu} + \theta \theta \, \overline{\theta} \overline{\lambda} + \overline{\theta} \overline{\theta} \, \theta \lambda + \theta \theta \, \overline{\theta} \overline{\theta} \, D$$

 $\Rightarrow (V')^2 = -\frac{1}{2} \theta \theta \, \overline{\theta} \overline{\theta} v^\mu v_\mu$ and $(V')^3 = 0$

The minimal supersymmetric Standardmodel (MSSM)

- gives a superpartner to each particle in the Standarmodel:
 - fermions get the scalar sfermions
 - vector bosons (gauge bosons) get the fermionic gauginos
 - the 2 doublets of Higgs bosons get the fermionic higgsinos
 - * SUSY invariance together with gauge invariance requires two Higgs doublets

the Lagrangian consists of

- supersymmetric parts, which are invariant under the SM gauge group $G_{SM} = SU(3)_{color} \times SU(2)_L \times U(1)_Y$:
 - vector superfields in the adjoint representation of $G_{\rm SM}$
 - chiral superfields in the fundamental representation of $G_{\rm SM}$
 - * give the matter fields and the higgse doublets
 - the interaction between chiral and vector superfields
- and soft breaking terms:
 - they are not invariant under a supersymmetry transformation
 - the couplings have a mass dimension ≥ 1
 - break spontaneously $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em} \implies masses$ like in the SM
 - \Rightarrow no SUSY breaking \Rightarrow no masses in the MSSM

MSSM and Renormalisation

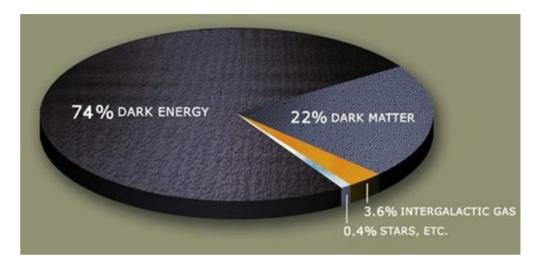
the soft breaking terms (masses and trilinear couplings) break SUSY
 they generate a mass splitting between superpartners:

$$ilde{m}^2 = m_{
m fermion}^2 - m_{
m boson}^2 \sim \mathcal{O}(1) \ {
m TeV}$$

- natural cut-off scale for the SM is the Plank scale: $m_P \sim 10^{19} {
 m GeV}$
 - the loop corrections to the Higgs mass should be $\Delta m_{H}^{2} \sim \mathcal{O}(lpha m_{P}^{2})$
 - in the MSSM the loop corrections are $\Delta m_{H}^{2} \sim \mathcal{O}(lpha ilde{m}^{2})$
 - \Rightarrow stabilizes the Higgspotential
 - * the Higgs self coupling is a gauge coupling
- the running of the gauge couplings is changed
 - the three gauge couplings $g_{U(1)}$, $g_{SU(2)}$, and $g_{SU(3)}$ "unify"
 - * they meet at a single scale $g_{U(1)} = g_{SU(2)} = g_{SU(3)} = g_{GUT}$ at $m_{GUT} \sim 10^{18} \text{GeV}$
 - a grand unified theory (GUT) is possible
 - * describes the three forces as different representations of one single force
 - \Rightarrow predictions for proton decay are consistent with experiment
 - $\ast\,$ non-SUSY GUTs give a too fast proton decay

MSSM and Cosmology

- Astronomers measure the content of the universe:
 - 73% Dark Energy
 - 23% Dark Matter
 - 3.6% Intergalactic gas
 - 0.4% Stars, etc . . .



- the MSSM has a discrete symmetry: *R*-parity
 - supersymmetric particles can only be produced in pairs
 - a SUSY particle can only decay into a SUSY particle
 - \Rightarrow the lightest supersymmetric particle (LSP) is stable
 - * this is usually the neutralino $\tilde{\chi}^0_1$ with $m_{\tilde{\chi}^0_1}>50{\rm GeV}$
- \Rightarrow the MSSM provides a Dark Matter candidate
 - if SUSY particles are found by LHC
 - \Rightarrow some properties of dark matter can be investigated

supersymmetric flat space

- as in GR it will be helpful to use forms
 - they are easily generalized to superspace
 - but they no longer vanish for p > n, as there are spinors, too
- as in GR we can choose any basis, not only $dz^M = (dz^m, d\theta^\mu, d\bar{\theta}_{\dot{\mu}})$
 - using superspace, $M = (m, \mu, \dot{\mu})$ denotes the superspace index
 - *~m is the space-time index, μ and $\dot{\mu}$ the spinor indices
 - a better basis is given by the supersymmetric covariant derivatives

$$D_{a} = \frac{\partial}{\partial x^{a}} \qquad D_{\alpha} = \frac{\partial}{\partial \theta^{\alpha}} - i\sigma^{\mu}_{\alpha\dot{\alpha}}\bar{\theta}^{\dot{\alpha}}\frac{\partial}{\partial x^{\mu}} \qquad \bar{D}^{\dot{\alpha}} = -\frac{\partial}{\partial\bar{\theta}_{\dot{\alpha}}} + i\theta_{\alpha}\sigma^{\mu}_{\alpha\dot{\beta}}\epsilon^{\dot{\beta}\dot{\alpha}}\frac{\partial}{\partial x^{\mu}}$$

- i.e. $e^{A} = (e^{a}, e^{\alpha}, e_{\dot{\alpha}})$ and $d = dz^{M}\partial_{M} = e^{A}D_{A}$
* this relation also defines the vielbein: $e^{A} = dz^{M}e_{M}^{A}$
* $d(dz^{M}) = 0$ but $de^{A} = dz^{M}dz^{N}\partial_{N}e_{M}^{A} = e^{M}{}_{B}e^{B}e^{C}D_{C}e^{A} \neq 0$

- this defines supersymmetric flat space
- but even in flat space, the supersymmetric torsion does not vanish:

$$T_{\alpha\dot{\beta}}{}^{c} = T_{\dot{\beta}\alpha}{}^{c} = 2i\sigma^{c}_{\alpha\dot{\beta}}$$

local Supersymmetry

- SUSY always includes fermions, the basic quantities are
 - the local vielbein $E_M{}^A$
 - and the spin connection $\omega_M{}^A{}_B$
 - \ast A and B are called Lorentz indices
 - * M and N are Einstein indices (general coordinate transformations)
- the Lorentz group can be seen as the local Symmetry group
 - with local Lorentz transformations (LLTs) $\Lambda_B{}^A$
 - the space time and spinorial parts are linked:

$$\sigma^{a}_{\alpha\dot{\alpha}}\sigma^{b}_{\beta\dot{\beta}}\Lambda_{ab} = -2\epsilon_{\alpha\beta}\Lambda_{\dot{\alpha}\dot{\beta}} + 2\epsilon_{\dot{\alpha}\dot{\beta}}\Lambda_{\alpha\beta}$$

- a general coordinate transformation in superspace $z'^M = z^M \xi^M$
 - on a vector field (gauge field) V^A

$$\delta_{\xi} V^{A} = -\xi^{B} E_{B}{}^{M} \partial_{M} V^{A} + V^{B} \Lambda_{B}{}^{A} = -\xi^{B} \nabla_{B} V^{A} + V^{B} \xi^{C} \omega_{CB}{}^{A} + V^{B} \Lambda_{B}{}^{A}$$

- $*~~\nabla$ is the corvariant derivative of GR; $\omega_{CB}{}^A$ is the spin-connection
- taking the LLT $\Lambda_B{}^A = -\xi^C \omega_{CB}{}^A$ gives supergauge transformations
 - * or gauged supersymmetry transformations

Supergravity

- all of the introduced quantites are superfields
 - they can be expanded in the superspace coordinates
 - the metric is replaced by the vielbein as the dynamic quantity
 - * like in the Cartan formulation of GR: $g_{\mu\nu}(x) = e^a_\mu(x) e^b_
 u(x) \eta_{ab}$
 - constraints on the torsion: $T_{\alpha\dot{\beta}}{}^c = T_{\dot{\beta}\alpha}{}^c = 2i\sigma^c_{\alpha\dot{\beta}}$
 - \Rightarrow express the connection in terms of the vielbein
 - the vielbein contains graviton and gravitino
- gives a scenario for SUSY breaking
 - with mechanisms to motivate the soft breaking terms
- this SUSY breaking happens at high energies
 - \Rightarrow relevant for Cosmology
 - \ast but only for the first nanoseconds

it does not make GR a renormalisable QFT

but is this necessary ?