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1 Introduction

This note is written mainly for students of the course Modernoji Teorinė Fizika at VU. The
goal of these notes is to illustrate how the methods of Quantum Field Theory (QFT) are
used to obtain the Feynman rules for the ABC-Theory, which is in a certain way the sim-
plest possible toy model in 3+1 dimensions. The ABC-Theory describes three interacting
scalar fields, that have only a singe intereaction. It was introduced for teaching purposes
by David Griffiths [1] and then extensively used by I. J. R. Aitchison and A. J. G. Hey [2]
to explain preturbative expansions, regularization and renormalisation in QFT.

2 Lagrangian and action

The simplest quantity in space is a point without any structure, i.e. the real scalar. So let
us first consider the Lagrangian of a single real scalar field φ(x) without interactions:

Lφ = 1
2
(∂µφ(x)) (∂µφ(x))−

1
2
m2

φφ
2(x) . (1)

The action is the integral over the Lagrangian. So the action Sφ of the free, i.e. non
interacting, real scalar field φ = φ(x), can be written as

Sφ =

∫

d4xLφ =

∫

d4x 1
2
(∂µφ)(∂µφ)−

1
2
m2

φφ
2

= −1
2

∫

d4xφ(∂2 +m2
φ)φ+ 1

2
[φ(∂µφ)]at x→∞ , (2)

where we used partial integration. The last piece can usually be set to zero, as fields that
do not vanish rapidly enough at infinity are not localized enough to be treated as particles.

Using the Fourier transformation on the field φ

φ(x) =

∫

d4k

(2π)4
e−ikxφ̃(k) and φ̃(k) =

∫

d4xeikxφ(x) (3)

with the understanding, that kx = kµx
µ, we can rewrite the action

Sφ =

∫

d4x

∫

d4k

(2π)4

∫

d4p

(2π)4
1
2
(∂µe−ikxφ̃(k))(∂µe

−ipxφ̃(p))− 1
2
m2

φe
−ikxφ̃(k)e−ipxφ̃(p)

= 1
2

∫

d4x

∫

d4k

(2π)4

∫

d4p

(2π)4
[(−ikµ)(−ipµ)−m2

φ]e
−i(k+p)xφ̃(k)φ̃(p) . (4)

The integral over x gives the Dirac delta function δ(k + p), which can be used to perform
the k-integral by replacing k with (−p):

Sφ = −1
2

∫

d4k

(2π)4

∫

d4p

(2π)4
φ̃(k)[kµpµ +m2

φ](2π)
4δ(k + p)φ̃(p)

= −1
2

∫

d4p

(2π)4
φ̃(−p)(−p2 +m2

φ)φ̃(p) . (5)
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When Fourier transforming back to φ(x)

Sφ = −1
2

∫

d4x

∫

d4y

∫

d4p

(2π)4
ei(−p)xφ(x)(−p2 +m2

φ)e
ipyφ(y)

= −1
2

∫

d4x

∫

d4y φ(x)

[
∫

d4p

(2π)4
e−ip(x−y)(−p2 +m2

φ)

]

φ(y) . (6)

we could go back to the same for where we started, but we can also use the opportunity
to define the Feynman propagator

DF (x, y) := DF (x− y) =

∫

d4p

(2π)4
i

p2 −m2
φ + iǫ

e−ip(x−y) , (7)

where the infinitesimal iǫ gives the prescription, how we should calculate the integral, when
p2 → m2

φ. Its inverse D−1
F (x, y) can be found from

δ(x− z) =

∫

d4y DF (x, y)D
−1
F (y, z) =

∫

d4y D−1
F (x, y)DF (y, z) (8)

with the ansatz

D−1
F (x, y) =

∫

d4q

(2π)4
e−iq(x−y)d̃(q) (9)

and the help of Fourier transformations

eikz =

∫

d4x eikxδ(x− z)

=

∫

d4x eikx
∫

d4y

∫

d4p

(2π)4
i

p2 −m2
φ + iǫ

e−ip(x−y)

∫

d4q

(2π)4
e−iq(y−z)d̃(q)

=

∫

d4p

(2π)4

∫

d4q

(2π)4

∫

d4x ei(k−p)x

∫

d4y ei(p−q)y i

p2 −m2
φ + iǫ

eiqzd̃(q)

=

∫

d4p

(2π)4

∫

d4q

(2π)4
(2π)4δ(k − p)(2π)4δ(p− q)

i

p2 −m2
φ + iǫ

eiqzd̃(q)

=
ieikzd̃(k)

k2 −m2
φ + iǫ

, (10)

or simply d̃(k) = −i(k2 −m2
φ + iǫ), where the iǫ is no longer necessary, since the function

does not have any singularity. So we can write

D−1
F (z) =

∫

d4q

(2π)4
e−iqzd̃(q) = i

∫

d4q

(2π)4
e−iqz(−k2 +m2

φ) . (11)

Here is also the best place to note, that DF (x, y) and D−1
F (x, y) are symmetric under the

exchange of x and y:

DF (y, x) =

∫ +∞

−∞

dDp

(2π)4
ie−ip(y−x)

p2 −m2
φ + iǫ

= (−1)D
∫

−∞

+∞

dDk

(2π)4
ieik(y−x)

(−k)2 −m2
φ + iǫ

= (−1)2D
∫ +∞

−∞

dDk

(2π)4
ie−ik(x−y)

k2 −m2
φ + iǫ

= (−1)2DDF (x, y) , (12)



MTF: Feynman Rules for the ABC-Theory October 3, 2012 5

for all integer dimensions D.
For the action we can now write

Sφ = 1
2

∫

d4x

∫

d4y φ(x)i

[

i

∫

d4p

(2π)4
e−ip(x−y)(−p2 +m2

φ)

]

φ(y)

= 1
2

∫

d4x

∫

d4y φ(x)iD−1
F (x− y)φ(y) = 1

2
φx(iD

−1
F )xyφy , (13)

where the last rewriting of the action emphasizes that it is bilinear in the scalar field.

3 Pathintegral

The pathintegral describes the vacuum to vacuum transition by summing over all quantum
mechanically possible trajectories in the presence of a source function J(x). This generating
functional can now be written as

Z(J) =

∫

Dφ exp{iSφ + i

∫

d4x J(x)φ(x)} =

∫

Dφ e−
1
2
φx(D

−1

F
)xyφy+iJxφx , (14)

which is a Gaussian integral of the form
∫ +∞

−∞

e−bx2+cxdx =

√

π

b
e

c2

4b (15)

with b = 1
2

and c = iJ . So

Z(J) = N × e−
1
2
Jx(DF )xyJy = N × e

i
2
Ja(iDF )abJb , (16)

with an undetermined normalization factor N . When moving to the logarithm

W (J) := −i lnZ(J) = −i(lnN + i
2
Ja(iDF )abJb) (17)

we find that the propagator is exactly the second functional derivative of W :

δ

δJx

δ

δJy

W (J)

=
δ

δJx

δ

δJy

(−i lnN + 1
2
Ja(iDF )abJb) =

δ

δJx

(0 + 1
2
δya(iDF )abJb +

1
2
Ja(iDF )abδ

y
b )

= 1
2
((iDF )ybδ

x
b + δx(iDF )ay) =

1
2
((iDF )yx + (iDF )xy) = (iDF )xy (18)

So we get an exact description of a non-interacting theory.
Including now an interaction

LI = gABC (19)

of three different scalar fields A, B, and C, which are in their free form identical to our
previous field φ, we get the total action

S = SA + SB + SC + SI

= 1
2
Ax(iD

−1
FA)xyAy +

1
2
Bx(iD

−1
FB)xyBy +

1
2
Cx(iD

−1
FC)xyCy + g

∫

z

AzBzCz (20)
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and the pathintegral

Z(JA, JB, JC ; g) =

∫

DADBDC exp{iS + iJAxAx + iJBxBx + iJCxCx} . (21)

For zero coupling, i.e. g = 0, we can still solve this integral exactly

Z(JA, JB, JC; 0)

=

∫

DADBDC exp{iSA + iJAxAx + iSB + iJBxBx + iSC + iJCxCx}

= N × exp{ i
2
JAx(iDFA)xyJAy +

i
2
JBx(iDFB)xyJBy +

i
2
JCx(iDFC)xyJCy} . (22)

Taking the interaction term and writing the exponential as its powerseries

ex =
∞
∑

k=0

xk

k!
(23)

and noting that we can write

∫

DAA(z) exp{iSA + iJAxAx} =

∫

DA
δ

iδJAz

exp{iSA + iJAxAx} (24)

we can reformulate the pathintegral as Z(JA, JB, JC; g)

=

∫

DADBDC exp{iSI} × exp{iSA + iJAxAx + iSB + iJBxBx + iSC + iJCxCx}

=

∫

DADBDC

[

∞
∑

k=0

1

k!

(

ig

∫

z

AzBzCz

)k
]

× eiSA+iJAxAx+iSB+iJBxBx+iSC+iJCxCx

=

∫

DADBDC

[

∞
∑

k=0

1

k!

(

ig

∫

z

δ

iδJAz

δ

iδJBz

δ

iδJCz

)k
]

× eiSA+iJAxAx+iSB+iJBxBx+iSC+iJCxCx

=

[

∞
∑

k=0

1

k!

(

−g

∫

z

δ

δJAz

δ

δJBz

δ

δJCz

)k
]

×

∫

DADBDC eiSA+iJAxAx+iSB+iJBxBx+iSC+iJCxCx

= exp

{

−g

∫

z

δ3

δJAz δJBz δJCz

}

× Z(JA, JB, JC ; 0) . (25)

4 Generating Functionals

When we go to the logarithm we can no longer split the exponents and solve exactly, as
δ

δJAz
does not commute with JAx(iDFA)xyJAy and has only a meaning when it acts on the

functional.
But it still allows the definition of the full propagator of the interacting theory as

(iDF )xy :=
δ

δJx

δ

δJy

W (J ; g) . (26)
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Therefore W (J ; g) is also called the generating functional of all connected Greensfunctions.
We will write out the full propagator with the definition of the pathintegral later and see,
that it contains the averaged correlator of two fields at the points x and y: 〈φ(x)φ(y)〉.

As the next step we define the classical field

ϕ(x) :=
δ

δJ(x)
W (J ; g) =

δ

δJx

[−i lnZ(J ; g)] =
−i

Z

δZ(J ; g)

δJx

= −i

∫

Dφ iφxe
iSφ+iJxφx

∫

Dφ eiSφ+iJxφx
= 〈φx〉 , (27)

which is the average over all quantum states generated by the classical source function J(x).
It allows to perform the Legendre transform W (J) → Γ(ϕ) from the generating functional
of all connected Greensfunctions to the generating functional of all one-particle-irreducible
(1PI) vertices

Γ := W − Jxϕx = Γ(ϕ; g) . (28)

which is also called effective potential.
We will first investigate some features of and relations between the two generating

functionals. The first is the normal property of the Legendre transformation:

δ

δϕ(x)
Γ(ϕ; g) =

δ

δϕx

(W − Jzϕz) =
δ

δϕx

W − (
δ

δϕx

Jz)ϕz − Jz(
δ

δϕx

ϕz)

=
δJy

δϕx

δ

δJy

W − (
δJz

δϕx

)ϕz − Jzδ
x
z =

δJy

δϕx

ϕy −
δJz

δϕx

ϕz − Jx = −Jx (29)

But this property has important implications. One is, that the effective potential is as a
functional an extremum in the classical field when there is no external source. This is also
reflected by the Euler Lagrange equations: the classical solution is the minmum of the
action. And it holds also with the inclusion of quantum corrections for the effective action
— hence the name.

There is also an important connection of the second derivatives of Γ and W . Taking
the above equation and performing the derivative with respect to the source we get

δzx =
δ

δJz

Jx =
δ

δJz

(−
δ

δϕx

Γ) =
δϕy

δJz

δ

δϕy

(−
δ

δϕx

Γ) =

(

δ

δJz

δW

δJy

)(

−
δ2Γ

δϕyδϕx

)

=

(

δ2W

δJzδJy

)(

−
δ2Γ

δϕyδϕx

)

, (30)

which basically states, that the second derivatives are inverse to each other:

δ2W

δJxδJy

=

(

−
δ2Γ

δϕyδϕx

)−1

, (31)

and including the definition of the propagator

(iDF )xy =
δ2W

δJxδJy

=

(

−
δ2Γ

δϕyδϕx

)−1

. (32)
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This allows us to write the derivative with respect to a source fully in terms of the effective
action and the classical fields:

δ

δJx

=
δϕy

δJx

δ

δϕy

= (
δ

δJx

δW

δJy

)
δ

δϕy

= (
δ2W

δJxδJy

)
δ

δϕy

= (iDF )xy
δ

δϕy

, (33)

or in the opposite direction

δ

δϕx

=
δJy

δϕx

δ

δJy

= [
δ

δϕx

(−
δΓ

δϕy

)]
δ

δJy

= (−
δ2Γ

δϕxδϕy

)
δ

δJy

= [−(iDF )
−1
xy ]

δ

δJy

= (iD−1
F )xy

δ

δJy

. (34)

As the next step we investigate the connection of the higher derivatives of W , Z and
Γ. From the direct writing of the pathintegral we get:

iδ2

δJxδJy

W =
iδ2

δJxδJy

[−i lnZ] =
δ

δJx

[
1

Z

δZ

δJy

] =
1

Z

δ2Z

δJxδJy

−
1

Z2

δZ

δJx

δZ

δJy

= [〈φxφy〉 − 〈φx〉〈φy〉] = 〈φxφy〉connected (35)

and

iδ3

δJxδJyδJz

W =
δ

δJx

[
1

Z

δ2Z

δJyδJz

−
1

Z2

δZ

δJy

δZ

δJz

]

=
1

Z

δ3Z

δJxδJyδJz

−
1

Z2

δZ

δJx

δ2Z

δJyδJz

−
1

Z2

δ2Z

δJxδJy

δZ

δJz

−
1

Z2

δZ

δJy

δ2Z

δJxδJz

+2
1

Z3

δZ

δJx

δZ

δJy

δZ

δJz

= [〈φxφyφz〉 − 〈φx〉〈φyφz〉 − 〈φxφy〉〈φz〉 − 〈φy〉〈φxφz〉+ 2〈φx〉〈φy〉〈φz〉]

= 〈φxφyφz〉connected (36)

and

iδ4

δJwδJxδJyδJz

W

=
δ

δJw

[
1

Z

δ3Z

δJxδJyδJz

−
1

Z2

δZ

δJx

δ2Z

δJyδJz

−
1

Z2

δ2Z

δJxδJy

δZ

δJz

−
1

Z2

δZ

δJy

δ2Z

δJxδJz

+ 2
1

Z3

δZ

δJx

δZ

δJy

δZ

δJz

]

= 1
Z

δ4Z
δJwδJxδJyδJz

− 1
Z2

δZ
δJx

δ3Z
δJwδJyδJz

− 1
Z2

δ3Z
δJwδJxδJy

δZ
δJz

− 1
Z2

δZ
δJy

δ3Z
δJwδJxδJz

− 1
Z2

δ2Z
δJwδJx

δ2Z
δJyδJz

− 1
Z2

δ2Z
δJxδJy

δ2Z
δJwδJz

− 1
Z2

δ2Z
δJwδJy

δ2Z
δJxδJz

+2 1
Z3

δ2Z
δJwδJx

δZ
δJy

δZ
δJz

+ 2 1
Z3

δZ
δJx

δ2Z
δJwδJy

δZ
δJz

+ 2 1
Z3

δZ
δJx

δZ
δJy

2δZ
δJwδJz

− 1
Z2

δZ
δJw

δ3Z
δJxδJyδJz

+ 2 1
Z3

δZ
δJw

[ δZ
δJx

δ2Z
δJyδJz

+ δ2Z
δJxδJy

δZ
δJz

+ δZ
δJy

δ2Z
δJxδJz

]

−6 1
Z4

δZ
δJw

δZ
δJx

δZ
δJy

δZ
δJz

(37)
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which gives

iδ4

δJwδJxδJyδJz

W

= 〈φwφxφyφz〉 − 〈φw〉〈φxφyφz〉 − 〈φx〉〈φwφyφz〉 − 〈φy〉〈φwφxφz〉 − 〈φz〉〈φwφxφy〉

−〈φwφx〉〈φyφz〉 − 〈φwφy〉〈φxφz〉 − 〈φwφz〉〈φxφy〉

+2〈φw〉〈φx〉〈φyφz〉+ 2〈φw〉〈φy〉〈φxφz〉+ 2〈φw〉〈φz〉〈φxφy〉

+2〈φx〉〈φy〉〈φwφz〉+ 2〈φx〉〈φz〉〈φwφy〉+ 2〈φy〉〈φz〉〈φwφx〉

−6〈φw〉〈φx〉〈φy〉〈φz〉

= 〈φwφxφyφz〉connected (38)

and so forth.

Interpreting the derivative with respect to the source as a starting
point for a field, we can conclude that W generates diagrams where
all starting points are connected and all the unconnected ones are
substracted.

We can interpret the third derivative of W also in another way. We can write

δ3

δJxδJyδJz

W =
δ

δJx

δ2W

δJyδJz

=
δ

δJx

[

(

−
−δ2Γ

δϕzδϕy

)−1
]

= (iDF )xa
δ

δϕa

[

(

δ2Γ

δϕzδϕy

)−1
]

(39)

which we can evaluate using the matrix identity ∂M−1 = −M−1(∂M)M−1, obtained from

0 = ∂(1) = ∂(M ·M−1) = (∂M)M−1 +M(∂M−1) , (40)

and write

δ3

δJxδJyδJz

W = (iDF )xa

(

−δ2Γ

δϕzδϕc

)−1 [

−
δ

δϕa

(

−δ2Γ

δϕcδϕb

)](

−δ2Γ

δϕbδϕy

)−1

=

(

−δ2Γ

δϕxδϕa

)−1(
−δ2Γ

δϕyδϕb

)−1(
−δ2Γ

δϕzδϕc

)−1(
δ3Γ

δϕaδϕbδϕc

)

= (iDF )xa(iDF )yb(iDF )zc
δ3Γ

δϕaδϕbδϕc

. (41)

Rewriting the same derivative as

δ

δJx

(iDF )yz =
δ

δJx

(

−δ2Γ

δϕxδϕa

)−1

= (iDF )xa(iDF )yb(iDF )zc
δ3Γ

δϕaδϕbδϕc

. (42)
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we get for the four point function δ4W
δJwδJxδJyδJz

=
δ

δJw

δ3W

δJxδJyδJz

=
δ

δJw

[

(iDF )xa(iDF )yb(iDF )zc
δ3Γ

δϕaδϕbδϕc

]

=

[

(iDF )wd(iDF )xe(iDF )af
δ3Γ

δϕdδϕeδϕf

]

(iDF )yb(iDF )zc
δ3Γ

δϕaδϕbδϕc

+(iDF )xa

[

(iDF )wd(iDF )ye(iDF )bf
δ3Γ

δϕdδϕeδϕf

]

(iDF )zc
δ3Γ

δϕaδϕbδϕc

+(iDF )xa(iDF )yb

[

(iDF )wd(iDF )ze(iDF )cf
δ3Γ

δϕdδϕeδϕf

]

δ3Γ

δϕaδϕbδϕc

+(iDF )xa(iDF )yb(iDF )zc(iDF )wd

δ4Γ

δϕaδϕbδϕcδϕd

, (43)

where the brackets [. . . ] indicate the derivatives of the propagators (iDF ). This equation
already shows, that the connected diagrams can be constructed by glueing vertices together
with propagators.

And since the propagators are only the inverse of the second derivative of Γ, we need
only calculate the derivatives of Γ to the required accuracy to obtain all information about
the investigated process.

5 ABC-Theory example

So let us calculate now δnΓ
(δϕ)n

for the ABC-theory. Here we have to go back and express
everything in terms of the generating functional Z, since this is the only quantity that we
can calculate directly in perturbation theory. We will use the form

Z(JA, JB, JC ; g) = exp

{

−g

∫

z

δ3

δJAz δJBz δJCz

}

× Z(JA, JB, JC; 0) . (44)

We have to treat the classical field A as depending on its source JA. The quantum fields
do not appear anymore, as they are integrated out and the sources are independent from
each other:

δJj(x)

δJk(y)
= δ

j
kδ(x− y) , where j, k ∈ {A,B,C} . (45)

In the same way, the propagator is assumed to be independent of the sources:

δ(iDFj)xy
δJk(z)

=
δ(iD−1

Fj )xy

δJk(z)
= 0 , where j, k ∈ {A,B,C} , (46)

although the propagator is the second derivative of W or the inverse of the second derivative
of Γ. These relations tell, how to expand the full propagator into subdiagrams.
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The first derivative

δΓ

δAx

=
δ

δAx

[W − JAzAz − JBzBz − JCzCz]

= (iD−1
FA)xy

δW

δJAy

− JAzδ(x− z)− (iD−1
FA)xy

δJAz

δJAy

Az − (iD−1
FA)xy

δ

δJAy

[JBzBz + JCzCz]

= −JAx + (iD−1
FA)xy[

δW

δJAy

− δ(y − z)Az − JBz

δBz

δJAy

− JCz

δCz

δJAy

] (47)

is proportional to sources when the definition of the classical fields ϕ = δW
δJ

are plugged in:

δΓ

δAx

= −JAx + (iD−1
FA)xy[

δW

δJAy

− δ(y − z)
δW

δJAz

− JBz

δ

δJAy

δW

δJBz

− JCz

δ

δJAy

δW

δJCz

]

= −JAx − (iD−1
FA)xy[JBz

δ

δJAy

(
−i

Z

δZ

δJBz

) + JCz

δ

δJAy

(
−i

Z

δZ

δJCz

)]

= 0 for Jφ = 0 . (48)

We get a similar result for the other fields B and C:

δΓ

δAx

∣

∣

∣

∣

Jφ=0

=
δΓ

δBx

∣

∣

∣

∣

Jφ=0

=
δΓ

δCx

∣

∣

∣

∣

Jφ=0

= 0 . (49)

I kept here the formal derivation and did not do the normal expansion into powers of the
coupling, as this first derivative can be done in a short enough way. I will still discuss
the second and third derivative on general grounds in order to show, that only the higher
derivatives of the generating functional have to be considered for the Feynman rules.

From the second derivatives

δ2Γ

δByδAx

=
δ2

δByδAx

[W − JAzAz − JBzBz − JCzCz]

=
δ2W

δByδAx

−
δ2JAz

δByδAx

Az − JAz

δ2Az

δByδAx

−
δ2(JBzBz)

δByδAx

−
δ2(JCzCz)

δByδAx

(50)

we see, that

δ2JAz

δByδAx

Az =
δ

δBy

[(iD−1
FA)xw

δJAz

δJAw

]Az =
δ

δBy

[(iD−1
FA)xwδ(z − w)]Az = 0 (51)

and

JAz

δ2Az

δByδAx

= JAz

δ

δBy

[δ(z − x)] = 0 (52)

and similar for the other parts, so that only the derivative of W remains:

δ2Γ

δByδAx

= (iD−1
FA)xu(iD

−1
FB)yw

δ2W

δJBwδJAu

= −i(iD−1
FA)xu(iD

−1
FB)yw

δ2 lnZ

δJBwδJAu

= −i(iD−1
FA)xu(iD

−1
FB)yw

δ

δJBw

[
1

Z

δZ

δJAu

]

= −i(iD−1
FA)xu(iD

−1
FB)yw[

1

Z

δ2Z

δJBwδJAu

−
1

Z2

δZ

δJBw

δZ

δJAu

] (53)
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and

δ2Γ

δAyδAx

= −i(iD−1
FA)xu(iD

−1
FA)yw[

1

Z

δ2Z

δJAwδJAu

−
1

Z2

δZ

δJAw

δZ

δJAu

] . (54)

Using

Z = Ne
−g

∫
z

δ3

δJAz δJBz δJCz × e
i
2
JAx(iDFA)xyJAy+

i
2
JBx(iDFB)xyJBy+

i
2
JCx(iDFC)xyJCy (55)

we get for δZ
δJAu

always a source down from the exponent, that stays and is set to zero at

the end. The contribution to O(gk) gives

δZ

δJAu

∝
∑

n

J2n−k−1
A J2n−k

B J2n−k
C . (56)

There are no integers k and n such that

2n− k − 1 = 0 and 2n− k = 0 (57)

and hence

δZ

δJAu

∣

∣

∣

∣

J=0

= 0 . (58)

A similar analysis holds for δ2Z
δJBwδJAu

. The contribution to O(gk) gives

δ2Z

δJBwδJAu

∝
∑

n

J2n−k−1
A J2n−k−1

B J2n−k
C , (59)

which gives the same equations as before and hence

δ2Z

δJBwδJAu

∣

∣

∣

∣

J=0

= 0 . (60)

But for δ2Z
δJAwδJAu

we get the contribution to O(gk)

δ2Z

δJAwδJAu

∝
∑

n

J2n−k−2
A J2n−k

B J2n−k
C , (61)

which has vanishing exponents, and hence a finite value, for k = 2n + 2. So the lowest
order for a one-particle-irreducible (1PI) two-point function is k = 2:

δ2Γ[2]

δAyδAx

∣

∣

∣

∣

J=0

= −i(iD−1
FA)xu(iD

−1
FA)yw

[

1

Z

δ2Z

δJAwδJAu

−
1

Z2

δZ

δJAw

δZ

δJAu

]

J=0, O(g2)

= −i(iD−1
FA)xu(iD

−1
FA)yw

[

Z(0; 0) + Z(0; g2)
]−1

×

[

δ2

δJAwδJAu

(Z(J ; 0) + Z(J ; g2))

]

J=0, O(g2)

(62)
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where

Z(J ; 0) = N × e
i
2
JAa(iDFA)abJAb+

i
2
JBa(iDFB)abJBb+

i
2
JCa(iDFC)abJCb

Z(J ; g2) =
1

2!
(−g)2

∫

1

δ3

δJA1 δJB1 δJC1

∫

2

δ3

δJA2 δJB2 δJC2

× Z(J ; 0) (63)

and hence Z(0; 0) = N and

Z(0; g2) =
1

2!
(−g)2

∫

1

δ3

δJA1 δJB1 δJC1

∫

2

δ3

δJA2 δJB2 δJC2
× Z(J ; 0)

∣

∣

∣

∣

J=0

= −N
g2

2

∫

1,2

(DFA)12(DFB)12(DFC)12 . (64)

Further
[

δ2

δJAwδJAu

Z(J ; 0)

]

J=0

= Ni(iDFA)wu = −N(DFA)wu (65)

and
[

δ2

δJAwδJAu

Z(J ; g2)

]

J=0

=
δ2

δJAwδJAu

g2

2

∫

1

δ3

δJA1 δJB1 δJC1

∫

2

δ3

δJA2 δJB2 δJC2
× Z(J ; 0)

∣

∣

∣

∣

J=0

= N
g2

2
(−1)

∫

1,2

(iDFB)12(iDFC)12
δ4

δJAwδJAuδJA1δJA2

1

2!
( i
2
JAa(iDFA)abJAb)

2 (66)

= N
g2

2

∫

1,2

(DFB)12(DFC)12 [(DFA)wu(DFA)12 + (DFA)w1(DFA)u2 + (DFA)w2(DFA)u1] .

So

δ2Γ[0+2]

δAyδAx

∣

∣

∣

∣

J=0

= i(D−1
FA)xu(D

−1
FA)yw

[

N −N
g2

2

∫

1,2

(DFA)12(DFB)12(DFC)12

]−1

×
[

−N(DFA)wu +N
g2

2

∫

1,2

(DFB)12(DFC)12[(DFA)wu(DFA)12

+(DFA)w1(DFA)u2 + (DFA)w2(DFA)u1]
]

= i(D−1
FA)xu(D

−1
FA)yw(−(DFA)wu)

+i(D−1
FA)xu(D

−1
FA)yw

g2

2

∫

1,2

(DFB)12(DFC)12[(DFA)w1(DFA)u2 + (DFA)w2(DFA)u1]

= −i(D−1
FA)xuδ(y − u)

+i
g2

2

∫

1,2

(DFB)12(DFC)12[δ(y − 1)δ(2− x) + δ(y − 2)δ(1− x)]

= −(iD−1
FA)xy + ig2

1

2
[(DFB)yx(DFC)yx + (DFB)xy(DFC)xy]

= −(iD−1
FA)xy − ig2(iDFB)xy(iDFC)xy , (67)
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where the first term is the definition of the propagator and the second term is the 1PI
two-point function to order g2, which is just two other propagators connecting the two
points.

With a similar argumentation we find, that the only non-vanishing three-point function
is

δ3Γ

δCzδByδAx

= (iD−1
FA)xu(iD

−1
FB)yw(iD

−1
FC)zt

δ3W

δJCtδJBwδJAu

(68)

and we again only need to investigate

δ3Z

δJCtδJBwδJAu

∝
∑

n

J2n−k−1
A J2n−k−1

B J2n−k−1
C , (69)

which has solutions for k = 2n + 1 with the lowest order k = 1. The calculation is even
simpler, since

Z(0, g1) = (−g)

∫

1

δ3

δJA1 δJB1 δJC1
× Z(J ; 0)

∣

∣

∣

∣

J=0

= 0 . (70)

Now

δ3Z [1]

δJCtδJBwδJAu

= N
δ3

δJCtδJBwδJAu

(−g)

∫

1

δ3

δJA1 δJB1 δJC1
× Z(J ; 0)

∣

∣

∣

∣

J=0

= −Ng(−i)

∫

1

(iDFA)u1(iDFB)w1(iDFC)t1 (71)

and so

δ3Γ[1]

δCzδByδAx

= (iD−1
FA)xu(iD

−1
FB)yw(iD

−1
FC)zt[N ]−1 ×Ng

∫

1

(DFA)u1(DFB)w1(DFC)t1

= −ig

∫

1

δ(x− 1)δ(y − 1)δ(z − 1) . (72)

If we want to write now the Feynman rules not in position space but momentum space, we
have for each field the plane-wave factor eipx. Writing these factors down, by writing the
propagators with their Fourier transformations, we can integrate over the arbitrary point
1 and obtain

Γ[qA, qB, qC ; g
1]

=

∫

d4xeiqAx

∫

d4yeiqBy

∫

d4zeiqCz δ3Γ[1]

δCzδByδAx

= −ig

∫

d4xeiqAx

∫

d4yeiqBy

∫

d4zeiqCz

∫

d4t

∫

d4u

∫

d4w

∫

d41

∫

d4pA

(2π)4
ie−ipA(x−u)(−p2A +m2

A)

∫

d4pB

(2π)4
ie−ipB(y−w)(−p2B +m2

B)

∫

d4pC

(2π)4
ie−ipC(z−t)(−p2C +m2

C)

∫

d4kA

(2π)4
ie−ikA(u−1)

k2
A −m2

A + iǫ

∫

d4kB

(2π)4
ie−ikB(w−1)

k2
B −m2

B + iǫ

∫

d4kC

(2π)4
ie−ikC(t−1)

k2
C −m2

C + iǫ
(73)
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and further

Γ[qA, qB, qC ; g
1]

= −ig

∫

d4pA

(2π)4
(p2A −m2

A)

∫

d4pB

(2π)4
(p2B −m2

B)

∫

d4pC

(2π)4
(p2C −m2

C)

∫

d4kA

(2π)4
1

k2
A −m2

A + iǫ

∫

d4kB

(2π)4
1

k2
B −m2

B + iǫ

∫

d4kC

(2π)4
1

k2
C −m2

C + iǫ
∫

d4xei(qA−pA)x

∫

d4yei(qB−pB)y

∫

d4zei(qC−pC)z

∫

d4t

∫

d4u

∫

d4w

∫

d41

ei(pA−kA)uei(pB−kB)wei(pC−kC)tei(kA+kB+kC)1

= −ig

∫

d4pA

(2π)4
(p2A −m2

A)

∫

d4pB

(2π)4
(p2B −m2

B)

∫

d4pC

(2π)4
(p2C −m2

C)

∫

d4kA

(2π)4
1

k2
A −m2

A + iǫ

∫

d4kB

(2π)4
1

k2
B −m2

B + iǫ

∫

d4kC

(2π)4
1

k2
C −m2

C + iǫ

(2π)4δ(qA − pA)(2π)
4δ(qB − pB)(2π)

4δ(qC − pC)

(2π)4δ(pA − kA)(2π)
4δ(pB − kB)(2π)

4δ(pC − kC)(2π)
4δ(kA + kB + kC)

= −ig

∫

d4pA

(2π)4
(p2A −m2

A)

p2A −m2
A + iǫ

∫

d4pB

(2π)4
(p2B −m2

B)

p2B −m2
B + iǫ

∫

d4pC

(2π)4
(p2C −m2

C)

p2C −m2
C + iǫ

(2π)4δ(qA − pA)(2π)
4δ(qB − pB)(2π)

4δ(qC − pC)(2π)
4δ(pA + pB + pC)

= −ig(2π)4δ(qA + qB + qC) , (74)

which is just the Feynman rule for the simple vertex in momentum space: vertex factor
times momentum conservation.
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