VILNIAUS UNIVERSITETAS
TEORINES FIZIKOS KATEDRA

Thomas Gajdosik

Using the Pathintegral

to derive the Feynman Rules

for the ABC-Theory

notes for the lecture Modernioji Teoriné Fizika

Vilnius 2012



Leidinj T. Gajdosik. "Using the Pathintegral to derive the Feynman Rules for the ABC-
Theory” apsvarsté ir rekomendavo spaudai VU teorinés fizikos katedra (2012-06-25, pro-
tokolas Nr. 07-2012).

Prof. dr. Darius Abramavi¢ius

Recenzavo:

Contents

1 Introduction

2 Lagrangian and action
3 Pathintegral
4 Generating Functionals
5 ABC-Theory example

References

Prof. dr. Egidijus Norvaisas

10

15



MTEF: Feynman Rules for the ABC-Theory October 3, 2012 3

1 Introduction

This note is written mainly for students of the course Modernoji Teoriné Fizika at VU. The
goal of these notes is to illustrate how the methods of Quantum Field Theory (QFT) are
used to obtain the Feynman rules for the ABC-Theory, which is in a certain way the sim-
plest possible toy model in 341 dimensions. The ABC-Theory describes three interacting
scalar fields, that have only a singe intereaction. It was introduced for teaching purposes
by David Griffiths [1] and then extensively used by I. J. R. Aitchison and A. J. G. Hey [2]
to explain preturbative expansions, regularization and renormalisation in QFT.

2 Lagrangian and action

The simplest quantity in space is a point without any structure, i.e. the real scalar. So let
us first consider the Lagrangian of a single real scalar field ¢(x) without interactions:

Ly =5(0"0(x)) (0u0(x)) — gmge*(x) - (1)

The action is the integral over the Lagrangian. So the action S, of the free, i.e. non
interacting, real scalar field ¢ = ¢(x), can be written as

Se = /d4~”€ Ly = /d%%(a%)(am) — sm3¢°
= = / d'z (O +m)d + 3[0(0u)]at amoe (2)
where we used partial integration. The last piece can usually be set to zero, as fields that

do not vanish rapidly enough at infinity are not localized enough to be treated as particles.
Using the Fourier transformation on the field ¢

o(x) :/(;lﬂ];e_imqg(k) and qg(k):/d‘lxeimgb(x) (3)

with the understanding, that kz = k,2", we can rewrite the action

4 d4k d4 1/9n ,—ikx —ipx | 1,2 —ikx ] —ipx |
s, = [t / / D1 (e R (k) (B P 3(p)) — Smle S B(R)e PG (p)
- / o'z / i / d (k) (—ipy) — mEle PR (R)A(p) | (4)

The integral over x gives the Dirac delta function §(k + p), which can be used to perform
the k-integral by replacing k& with (—p):

d*k d*p - i : 4 ~
Se = =4 [ ot | Gt p + ml ek + D)oo

N[

= 3 [ G i) )
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When Fourier transforming back to ¢
S0 = = [d [y / PG () (—p? + mE)eP(y)

=t [ e U T | CURNC

we could go back to the same for where we started, but we can also use the opportunity
to define the Feynman propagator

Dp(x,y) = Dz —y) = / :

dp 1

—ip(z—y) 7
27r)4p2—m35+ie€ ’ 0

where the infinitesimal ie gives the prescription, how we should calculate the integral, when
p* = m3. Its inverse D' (x,y) can be found from

5 —2) = / d*y Dr(x,y) D5 (y, =) = / d'y D (x.y) Drly, 2) (8)
with the ansatz
D) = [ el Q

and the help of Fourier transformations

eikz — /d4xezkx5(x Z)
, , o d* 4G ay—2)
— d*z e | dby e~ @Y e 1v=)d(q)
)i p? —m2 + e (@n)i
(27r) (27r) p? —mi + e

- eyl gw;wk_pxm%@_w#w

P — my + 1€
- e (10)
k* —mg + ie
or simply d(k) = —i(k? — m7, + i€), where the ie is no longer necessary, since the function
does not have any singularity. So we can write
A s d'q
Dfl — —igz g — i 7ZqZ ]{Z2 ) 11
P = [ et =i [ e i ) (1)

Here is also the best place to note, that Dg(z,y) and Dy'(z,y) are symmetric under the
exchange of x and y:

too gDy jo—ip(y—z) > dPk je'k(v=2)
p e ie
Dr(y,z) = / (2m)  p? — m2 + ie - (_1)D/ (2m)* (—k)2 — m2 + ie
oo p ® +oo ¢

oo gDk jemikle—y)
= _1 2D _ _1 2DD 12
Y / @i g e Prey) (12)

[e.9]
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for all integer dimensions D.
For the action we can now write

Sy = %/d‘lx /d4y¢(:c)i {i/%eip(xy)(—pQ-i-mi) o(y)
_ 1 / d'a / d'y $(2)iDpMa — y)d(y) = 30s(iDF )aydy (13)

where the last rewriting of the action emphasizes that it is bilinear in the scalar field.

3 Pathintegral

The pathintegral describes the vacuum to vacuum transition by summing over all quantum
mechanically possible trajectories in the presence of a source function J(z). This generating
functional can now be written as

Z(J) = / D exp{iSy + i / diz J(2)p(x)} = / Do ¢~ 302 (D Javytidata : (14)

which is a Gaussian integral of the form

+o0 2
/ e—bx2+6$dx _ \/geib (15)

Z(J) = N x e~ 2% (PPlevly — N 5 o3Py (16)

Withb:%andc:z}]. So

with an undetermined normalization factor N. When moving to the logarithm

W(J):=—ilnZ(J) = —i(In N + £J,(iDp)apJs) (17)
we find that the propagator is exactly the second functional derivative of W:
o 0
55,5, )
_ 00 InN + 1J,(iD _ 0 Lsv(iD L J.(iDg) a0
= 5{]335—&]?4(—2 n + EJQ(Z F)abe) = E(O + 5 a(Z F)abe + §Ja<l F)ab b)
= 3((iDr)yly +0°(iDrp)ay) = 5((iDF)ys + (iDrp)zy) = (iDp)ay (18)

So we get an exact description of a non-interacting theory.
Including now an interaction

L; = gABC (19)

of three different scalar fields A, B, and C', which are in their free form identical to our
previous field ¢, we get the total action

S = Sa+Sg+Sc+ S
= 1A,(iDp})uyAy + 3Bo(iDpp)uy By + 3C.(iDpt) 2y Cy + g/AZBZCZ (20)
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and the pathintegral
Z(Ja, B, Jeosg) = /DA DBDC exp{iS + iJa, Ay + i By +1Jc.Cy} . (21)

For zero coupling, i.e. g = 0, we can still solve this integral exactly
Z(Ja, B, Jc;0)
= /DA DBDC exp{iSa +iJaz Az +1Sp +iJp. By + iS¢ + 1o Cy}
= N xexp{:Jas(iDpa)uytay + 5JB:(1DpB) sy oy + 2 Jca(iDpc)syJoy} - (22)

Taking the interaction term and writing the exponential as its powerseries

Zfﬂ— (23)

and noting that we can write

/DA A(z) exp{iSa + iJa, Az} = /DA i&éf exp{iSa + iJaz Az} (24)

Az
we can reformulate the pathintegral as Z(J4, Jg, Jo; g)

_ / DADBDC exp{iSi} x exp{iSa + iJasAs +iSp + iJm By + iSc + iJonCl)
= /DADBDC Zl( /ABC)k
k!
= /DADBDC Z ('/.5 00 )k
10J 4,10, 10,

ml(/ééé)k]/ S A+iJAnAu+iSp+idpe BetiSctiJoyC
_ Z_ —g < | DADBDC ¢iSatiJazAuvtiSp+iJps BatiSctioaCo
L:o k! L 0J4,0Jp, 0Jc,

53
- a Z ) ,
eXp{ g z 5<]Az 5JBZ§‘]C'2} X (JA7‘]Baz]C7O) ( 5)

iSA +iJAg Ay +iSB +iJBzBa +iSC +iJog Cy

iSa+iJar Az +iSB+iJps Ba+iSc+iJo, Cx

X e

A~|._

4 Generating Functionals

When we go to the logarithm we can no longer split the exponents and solve exactly, as
T J does not commute with Ja,(iDpa)zyJa, and has only a meaning when it acts on the
functional.

But it still allows the definition of the full propagator of the interacting theory as

('LDF)xy =

—W(J;9) . (26)
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Therefore W (.J; g) is also called the generating functional of all connected Greensfunctions.

We will write out the full propagator with the definition of the pathintegral later and see,

that it contains the averaged correlator of two fields at the points x and y: (¢(z)p(y)).
As the next step we define the classical field

0 —i 6 Z(J;
fa) = W) = 5 il 2] = 5 2T
= _Z»f D¢ igye'Sottete "y o

which is the average over all quantum states generated by the classical source function J(z).
It allows to perform the Legendre transform W (J) — I'(¢) from the generating functional
of all connected Greensfunctions to the generating functional of all one-particle-irreducible
(1PI) vertices

=W —Jyp, =T(e;9) . (28)

which is also called effective potential.
We will first investigate some features of and relations between the two generating
functionals. The first is the normal property of the Legendre transformation:

) 1) ) )
e (¢ 9) 5%( ©z) 5o (5% )¢ (5%<p )
6, 6 8J. 8, 8l

500 0, (5%)% A= g =k (29)
But this property has important implications. One is, that the effective potential is as a
functional an extremum in the classical field when there is no external source. This is also
reflected by the Euler Lagrange equations: the classical solution is the minmum of the
action. And it holds also with the inclusion of quantum corrections for the effective action
— hence the name.

There is also an important connection of the second derivatives of I' and W. Taking
the above equation and performing the derivative with respect to the source we get

.0 0 ) 0y 0 0 (6 oW 5°r
% = 5JZJ$ n 5JZ( &pr‘) A 5<py( &%F) N (5Jz 5Jy) ( 5g0y5g0$)

52w 5T
0J.6.J, 0y 00,
which basically states, that the second derivatives are inverse to each other:
2 2 -1
oW _(_ 4] ’ (31)
0J,0J, 0y 00y
and including the definition of the propagator
52w 2T\

Dp) ey = =|- . 32
(Dr)ey = 5757, ( 5%5%) (32)
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This allows us to write the derivative with respect to a source fully in terms of the effective
action and the classical fields:

5 S, 5,8 6W. 6 W 5

— = — — (iD i
5T 500y G100, e, 5a, g, PP, (33
or in the opposite direction
o 0J, o ) or .. 6 5T 5 . )
= <7 —< )| < — {(— _ = |— D [
o )
- (ZDFl)J:yE . (34)

As the next step we investigate the connection of the higher derivatives of W, Z and
I'. From the direct writing of the pathintegral we get:

62 62 —ilnZ) ) [1 52] 1 67 1 62 67
= —17 1n = e = — R
57,07, 500, " 07, 267, Z6Jd, Z26J,0J,
= [(Gady) — (02)(y)] = (D20y)connected (35)
and
LW _ 0 [iﬂ_ié_ZéZ]
§J.00,00,  0J, Z68J,60,  Z28J,8J,
1 3z 1 62 67 1 8272 67 1 672 67
 Z6J.00,00.  Z26J,60,00.  Z20J,00,00.  Z%8J,0J.0,
n 1 0Z 6Z 07
Z36J,60,0J.
(620y02) — (Ge)(by®:) — (620,)(6:) — (Dy)(0202) + 2(0a) () (6:)]
<¢x¢y¢z>connectad (36)
and
- ¢4
10 W
0.J0J40.J,0 ],
0 [i 3z L(SZ 8z i 8z 67 ié_Z 8z +2i625_Z§Z
6w Z8J,60,00,  Z28J,00,00. Z26J,00,6]. Z26J,6J,00. Z36J,6J,0J.
— 1__ &z 1z &z 1 __ &z sz _ 1z _ ¥z
T Z68JwbJnddydd.  Z2 8Jy 6Jwddydd.  Z2 6JwdJyddy 80,  Z2 8Jy 8Juwd b,
1 8z 8%z 1 6%z 8%z 1 8%z 8z

T Z208J0w0Jy 0Jy0 T, Z28J50dy 6Jwd:  Z2 8Juwddy 0150,
491 %27 87 87 49l 62 2z 57 + 9.1 82 82 252

783 57000y 8Jy 0T 73 50y 8Jwddy T 73 850y 8Ty 8Juwo

152 83z +2L5Z[5_Z 527 827 57 | 6Z 8°Z ]
22 500 020000, 73 6Ju 1005 0Jy0J. | 6J50dy 0. | 0Jy 8Ju0J,
—G-L. 92 92 37 62 (37)

7% 500 6J5 60y 0.

]
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which gives
i0*

= (Gudsty®:) — (bu)(D20yd:) — (D) (Pudyd:) — (¢
—(Puwa)(Dydz) — (Pudy)(D20:) — (Pu:)(Dady)
+2(Pw)(Pe) (Gy@2) + 2(Dw) (Dy) (Pa®z) + 2(Puw) (2) (D2y)
+2(00) (Dy)(Dudz) + 2(d2)(0:) (Pudy) + 2(y) (¢2)(Pu )
—6{dw) (¢92)(Dy)(9:)

= (PuPuPy®:)connected (38)

|14
>< w(b:v(bz) - <¢z> <¢w¢x¢y>

and so forth.

Interpreting the derivative with respect to the source as a starting
point for a field, we can conclude that W generates diagrams where
all starting points are connected and all the unconnected ones are
substracted.

We can interpret the third derivative of W also in another way. We can write
g 8 PW ) <_ —0°T )‘1
0J,0J,0J, 0Jp 0Jy0J,  o0J, 0,00,

= D [(&farso)] &

which we can evaluate using the matrix identity OM ' = —M~1(OM)M~!, obtained from

0=01)=0(M -M") = @M)M* 4+ MOM™") , (40)
and write

3 ) -1 iy 52 -1
o (iDr)us 5°T 9 5°T 5°T
0,000, 0000 0pa \Opcdipn ) | \ dprdpy

- (5 65 ) G
3900 3,0 dp.0p, 00 0Pp0 P,

: : . 5T
= (ZDF)$Q(ZDF)yb(ZDF)Zcm . (41)
Rewriting the same derivative as
5 § [ =60\ 5T
D = = (D D Dp)ye——— . 42
e = 57 (525) = (DPaliDR DRy (12
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s w

we get for the four point function STad a0,

I 1
§Ju 0J.0,00, 0.y

= [(ZDF)wd(ZDF)xe<ZDF>

[(ZDF)xa (iDF)yb@DF)zc
»r
I 5padpediy

6T }
0adPpdpe
5T
0pa0PpOPe
5T
T
}@ F)Zcégpa&)ob(s@c
5T 5T
D D D D D
HDE)aiDe) | (DehadiDe)-siDF)es | 5o
5T
0padppdpcdpa

} (iDp)y(iDF) e
5T

+(iDFp) s [<iDF)wd<iDF)ye (D)o m

+(iDF)5a(iDp)yp(iDp) 2c(iDp)wa (43)
where the brackets [...] indicate the derivatives of the propagators (¢Dp). This equation
already shows, that the connected diagrams can be constructed by glueing vertices together
with propagators.

And since the propagators are only the inverse of the second derivative of I', we need
only calculate the derivatives of I" to the required accuracy to obtain all information about
the investigated process.

5 ABC-Theory example

So let us calculate now g;rn for the ABC-theory. Here we have to go back and express
everything in terms of the generating functional Z, since this is the only quantity that we
can calculate directly in perturbation theory. We will use the form

53
Z(Ja, I, Josg) = — X Z(Ja, JB, Jc;0) . 44
(Ja, JB, Jc; 9) exp{ 9/25JA25JBZ5JCZ} (Ja, JB, Jc; 0) (44)
We have to treat the classical field A as depending on its source J4. The quantum fields
do not appear anymore, as they are integrated out and the sources are independent from
each other:

= 0]0(x —y) , where j k€ {A, B,C} . (45)

In the same way, the propagator is assumed to be independent of the sources:

8(iDpj)ey  O(iDg;)ay
Sn(z) 6 Jk(2)

=0, wherej ke {A B,C} , (46)

although the propagator is the second derivative of W or the inverse of the second derivative
of I'. These relations tell, how to expand the full propagator into subdiagrams.
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The first derivative

or 0
S = Fa W Jasds = JpeBe = JouC]
o oW L 5JAZ . — Y
= <ZDF114)xy—5JAy - JAz5<x - Z) - (ZDFil):vymAz - (ZDF}LX):vym[JBZBZ + chcz]
SW 0B oC
= —Jm bDilm—_(s - Az_Jz—Z_JZ—Z 47
ae + (Dpa)nl5 7= =0y = 2) T o
is proportional to sources when the definition of the classical fields ¢ = %_vy are plugged in:
5T SW oW [ o oW
— T+ (D) e — S(y — —Jper— o — Joa
5A$ Az T+ (Z FA) y[(SJAy <y z>5JAz b 5<]Ay 5JBz “ 5‘]1431 5‘]02
o0 ,—i 04 6 —i 0
I—Jm_bDilvaz—_ JZ 7
ae = (1Dp4)ayl B 5JAy< Z cSJBz)jL ¢ 5JAy< Z 5ch)]
= 0 for J,=0. (48)
We get a similar result for the other fields B and C:
or or or
0Az |y, 0B:ljo  0Cal;,

I kept here the formal derivation and did not do the normal expansion into powers of the

coupling, as this first derivative can be done in a short enough way. I will still discuss

the second and third derivative on general grounds in order to show, that only the higher

derivatives of the generating functional have to be considered for the Feynman rules.
From the second derivatives

T = i (W — Ja, A, — Jg.B, — Je.C]
5By5A$ — 5By5A$ Az{41z BzPz CzVz
W 6% J 4. 52A, 6?(Jp.B.) 6*(Jc.C.)
= — A, — Ja, — — (50)
0B,0A, 0B,0A, 0By A, 0By A, 0B,0A,
we see, that
5%J 4 0 0J4 4}
A, = —[(iDpY))sw—2A, = —[(iD5 —w)]|A, = 1
5By5AJ; z 5By [(Z FA)mw 5<]Aw] z 5By [(Z FA)iBw5<z w)] z 0 (5 )
and
52A, 0
and similar for the other parts, so that only the derivative of W remains:
5T o R 2w U N InZ
5B,6A, = (ZDFA)xu(ZDFB)ywm = _Z(ZDFA)xU(ZDFB)ywm
o o o 1 67
= _Z(ZDF,lél)ﬂﬁu(ZDF}B)yw@[E (5JAu]
o o 1 %z 1 62 67
= —i(iDpa)eu(iDrp)yol (53)

7 5800 ae 2205w 0 au
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and
5°T A 1 072 o7
= D7) eu(iD wl=s— 54
sasa, i YV w3 it =r s wr v (54)
Using
7 — Ne ¥ zm > e%JAx(iDFA)zyJAy+%JBx(iDFB)zyJBy+%JCx(iDFC)zyJCy (55)
we get for ﬁ always a source down from the exponent, that stays and is set to zero at
the end. The contribution to (9( k) gives
2n k—1 12n—k 12n—k
5 JAu x Z Jan—k jan—k (56)
There are no integers k£ and n such that
2n—k—1=0 and 2n—k=0 (57)
and hence
0z
=0. (58)
0Jau | j—g
A similar analysis holds for MfT The contribution to O(g*) gives
8?27
J2n—k—1J2n—k—1J2n—k 59
5JBw5JAu X ; A B C ) ( )
which gives the same equations as before and hence
8?7
— =0. 60
5JBw5JAu J=0 ( )
But for w(SZJ — we get the contribution to O(g")
3z In—k—2 72n—k 72n—k
T JATETRIR TR IET 61
5JAw5JAu X ; B C ’ ( )

which has vanishing exponents, and hence a finite value, for £ = 2n + 2. So the lowest
order for a one-particle-irreducible (1PI) two-point function is k = 2:

A 1 62 6z

521—‘[2} . .D_1 .D_1
= ~UiDra)eu(iDra)y l?aJAwaJAu 2L 5JAULO, o)

SA0A,

J=0

-1

= —i(iDpp)eu(iDph)yw [Z(0;0) + Z(0; 6*)]

52
x72J;0+ZJ;2} 62
[MMU< (J;0) + Z(J; ¢%) o o (62)
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where
Z(J‘ 0) - N x e%JAa(iDFA)abJAb+%JBa(iDFB)abJBbJr%JCa(iDFo)abJCb
1 53 53
20702 :__2/ / x Z(J;0
(:5") 2!< 9) 10J410JB10Jc1 Jo 0420 B2 0 (:0)

and hence Z(0;0) = N and

1 & 6? 7
Z(0;9*) = =(—g9)° ‘
(0:9%) 2!< 9) /15JA1 §Jp10Jcn /25JA2 0520 Jcs | (:0) J=0

2
= —Ng—/ (Dra)i2(Drp)i2(Drc)ia -
12

2
Further
52
{mZ(J; O)] o = Ni(iDpa)wu = —N(Dra)wu
and
52
LSJAWMAUZ L 92)] o

52 g2 53 53
= —/ / x Z(J;0)
0Jaw0Jau 2 )1 6Ja10Jp10Jc1 Jo 0Ja20 2 0 Jco J=o

2 4
_ N : : J Lo o 2
= N 5 (1) /172<ZDFB)12<ZDFC)12 5T 5 18 0 2l (5J4a(1Dpa)ab a)

B Ng_2 /12<DFB)12(DFC)12 [(Dra)wu(Dra)io + (Dra)ur(Dra)us + (Dra)we(Drea)u] -

2

So
52T l0+2]

SA0A,

J=0

= i(Dph)ou(Dpy)yw {N - Ng; /1‘72(DFA)12(DFB)12(DFC)12:| -1

X [—N(DFA)M + N% /172(DFB)12(DFC)12[(DFA)wu<DFA)12

+(Dra)ur(Dra)ue + (Dra)u(Dra)a]

= DR e D)y (— (Dra)u)
g2

2

13

(63)

(66)

+i(D ) eu(Dph) yuw= /12<DFB)12(DFC>12[(DFA)wl(DFA)zQ + (Dra)w2(Dra)ul

= —i(Dpa)eud(y — u)
+ig§ /12(DFB)12(DF0)12[5(y —1)0(2—2) +6(y —2)0(1 — z)]

o ol
= —(iDpp)ay + Z92§[(DFB)y:v(DFc)yx + (DFB)2y(Drc)ey]
= —(iDp})oy — 19*(iDFB)ay(iDpc)ay

(67)
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where the first term is the definition of the propagator and the second term is the 1PI
two-point function to order g2, which is just two other propagators connecting the two
points.

With a similar argumentation we find, that the only non-vanishing three-point function
is

5T BW
————— = (iDp})wu(iDpp)yw(iDps)- 68
5C’zéBy5A$ (Z FA) (Z FB)Z/ (Z FC’) t5JCt5JBw5JAu ( )
and we again only need to investigate
37
s D D (69)

which has solutions for k = 2n + 1 with the lowest order £ = 1. The calculation is even
simpler, since

53
Z(0,¢") = (— / x Z(J;0 =0 . 70
0,97) = (—9) 5T 0T 0o ( )J:0 (70)
Now
DAY 53 53
- - =N _ 7(J:
8 Jc10 T w0 J au 5J0t5JBw5JAu( g)/15JA15JBl5J01 x 2(;0) J=0
— Ng(—i) / (iDpa)ut (iDrs)un (iDrc)i (71)
1
and so
S3rhl

= (iD;)eu(iDieh) g (iDp) [N X N /D a(Dpp)un (D
5C.6B,0A, (1Dpa)au(1Dpp)yuw(iDpe) [ N] g 1( FA)ul(DEB)wi (Dro)n

_ —ig/lé(x C )6y — D)oz — 1) . (72)

If we want to write now the Feynman rules not in position space but momentum space, we
have for each field the plane-wave factor . Writing these factors down, by writing the
propagators with their Fourier transformations, we can integrate over the arbitrary point
1 and obtain

Ulqa, g8, qc; 9"]

= /d4xeiqA$/d4yeiqu/d4zeiq0275311[1}
6C.0B,0A,

= —ig/d‘lxeiq”/d4yeiqu/d4zeiqcz/d4t/d4u/d4w/d41

d* -

(2m)t
d4pB — —w d4pC’ . g P
/ (2m)"° " )<_p23+m23>/ @n e+ me)

(73)

diky e tkalu=1) dikp e tke(w-1) d*ky  ie—tket=1)
/ (2m)* k% —m3 + e / (2m)* k2, — m2 + ie / (2m) " k2 — m2, + ie
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and further

Ulqa, a8, qc; 9"]

. d4pA 2 2 d4pB 2 2 d4pC 2 2
= —29/ (2m)? (pa —m3) / W(pB —mp) / W(Pc —me)
/ d*ky 1 / d*kp 1 / d*ke 1
2m) k4 —m% +ie ) (2m)* kL —m% +ie ] (2m)* kL —mE +ie

/d4:pe qA pA)$/d4y61(qB —pB)Y /d4zel(qc PC)z /d4 /d4 /d4 /d4

elPa—ka)uilpp—kp)w jilpc—ko)t ji(katkptkc)l

. d4pA 9 9 d4PB 2 2 d4p 2 2
= —29/ (27T)4(pA_mA)/W(pB_mB)/(z—ﬂ_)i(pC_mC)

Ak g 1 Ak 1 ke 1
/ (2m)* k% — m% + e / (2m)* k% — m% + ie / (2m)* kL — mZ + ie
(2m)*0(ga — pa)(2m)*6(qs — pB)(2m)*6(qc — pc)
(27)16(pa — k) (27" 6(p — ki) (27)6(pc: — k) (2m) 6 (ke + ki + )
- _Z»g/ d'pa _(ph —m3) / d'pp _(pf —mp) / d'pe _(pe — me)
(2m)* ph —m% +ie ) (2m)*ph —mG +ie ) (2m)* pE —mi +ie
(2m)*0(ga — pa)(2m)*6(qs — pB)(27)*6(qc — po)(27)*6(pa + pB + D)
= —ig(2m)*6(qa + g5 + qc) ,

15

(74)

which is just the Feynman rule for the simple vertex in momentum space: vertex factor
times momentum conservation.
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